Structured Operational Semantics for Graph Rewriting”

Andrei Dorman Tobias Heindel

Dip. di Filosofia, Universita Roma Tre LIPN — UMR 7030, Université Paris 13
LIPN — UMR 7030, Université Paris 13

andrei.dorman@lipn.univ-parisi3.fr

tobias.heindel@lipn.univ-parisi3.fr

Process calculi and graph transformation systems provide models of reactive systems with labelled
transition semantics. While the semantics for process calculi is compositional, this is not the case for
graph transformation systems, in general. Hence, the goal of this article is to obtain a compositional
semantics for graph transformation system in analogy to the structural operational semantics (SOS)
for Milner’s Calculus of Communicating Systems (CCS).

The paper introduces an SOS style axiomatization of the standard labelled transition semantics for
graph transformation systems. The first result is its equivalence with the so-called Borrowed Context
technique. Unfortunately, the axiomatization is not compositional in the expected manner as no rule
captures “internal” communication of sub-systems. The main result states that such a rule is derivable
if the given graph transformation system enjoys a certain property, which we call “complementarity of
actions”. Archetypal examples of such systems are interaction nets. We also discuss problems that
arise if “complementarity of actions” is violated.

Key words: process calculi, graph transformation, structural operational semantics, compositional methods

1 Introduction

Process calculi remain one of the central tools for the description of interactive systems. The archetypal
example of process calculi are Milner’s -calculus and the even more basic calculus of communication
systems (CCS). The semantics of these calculi is given by labelled transition systems (LTS), which in
fact can be given as a structural operational semantics (SOS). An advantage of SOS is their potential for
combination with compositional methods for the verification of systems (see e.g. [L7]).

Fruitful inspiration for the development of LTS semantics for other “non-standard” process calculi
originates from the area of graph transformation where techniques for the derivation of LTS semantics
from “reaction rules” have been developed [16,[7]. The strongest point of these techniques is the context
independence of the resulting behavioral equivalences, which are in fact congruences. Moreover, these
techniques have lead to original LTS-semantics for the ambient calculus [15} 3], which are also given
as SOS systems. Already in the special case of ambients, the SOS-style presentation goes beyond the
standard techniques of label derivation in [16}[7]. An open research challenge is the development of a
general technique for the canonical derivation of SOS-style LTS-semantics. The problem is the “monolithic”
character of the standard LTS for graph transformation systems.

In the present paper, we set out to develop a partial solution to the problem for what we shall call
CCS-like graph transformation systems. The main idea is to develop an analogy to CCS where each action
« has a co-action o that can synchronize to obtain a silent transition; this is the so-called communication
rule. In analogy, one can restrict attention to graph transformation systems with rules that allow to
assign to each (hyper-)edge a unique co-edge. Natural examples of such systems are interaction nets as

*This work was partially supported by grants from Agence Nationale de la Recherche, ref. ANR-08-BLANC-0211-01
(COMPLICE project) and ref. ANR-09-BLAN-0169 (PANDA project).

Bliudze, S., Bruni, R., Carbone, M., Silva, A. (Eds.); ICE 2011
EPTCS 59,2011, pp. 3751} doi:10.4204/EPTCS.59.4

http://dx.doi.org/10.4204/EPTCS.59.4

38 SOS for Graph Rewriting

introduced by Lafont [[11, [1]]. In fact, one of the motivations of the paper is to derive SOS semantics for
interaction nets.

Structure and contents of the paper We first introduce the very essentials of graph transformation and
the so-called Borrowed Context (BC) technique [7]] for the special case of (hyper-)graph transformation
in Section 2] To make the analogy between CCS and BC as formal as possible, we introduce the system
SOSBC in Section 3] which is meant to provide the uninitiated reader with a new perspective on the BC
technique. Moreover, the system SOSBC emphasizes the “local” character of graph transformations as
every transition can be decomposed into a “basic” action in some context. In particular, we do not have
any counterpart to the communication rule of CCS, which shall be addressed in Section 4} We illustrate
why it is not evident when and how two labeled transitions of two states that share their interface can be
combined into a single synchronized action. However, we will be able to describe sufficient conditions on
(hyper-)graph transformation systems that allow to derive the counterpart of the communication rule of
CCS in the system SOSBC. Systems of this kind have a natural notion of “complementarity of actions” in
the LTS.

2 Preliminaries

We first recall the standard definition of (hyper-)graphs and a formalism of transformation of hyper-graphs
(following the double pushout approach). We also present the labelled transition semantics for hyper-graph
transformation systems that has been proposed in [7]. In the present paper, the more general case of
categories of graph-like structures is not of central importance. However, some of the proofs will use
basic results of category theory.

Definition 2.1 (Hypergraphs and hypergraph morphisms). Let A be a set of labels with associated
arity function ar: A — N. A (A-labelled) hyper-graph is a tuple G = (E,V,{,cnct) where E is a set
of (hyper-)edges, V is a set of vertices or nodes, {: E — A is the labelling function, and cnct is the
connection function, which assigns to each edge e € E a string (e.g. a finite sequence) of incident vertices
cnct(e) = vy ---v, of length ar(¢(e)) = n (where {vy,...,v,} CV). Letv € V be a node; its degree, written
deg(v) is the number of edges of which it is an incident node, i.e. deg(v) = |{e € E | v incident to e}|
(where for any finite set M, the number of elements of M is |[M|). We also writeve Gande € Gif veV
andec E.

Let G; = (E;, Vi, ¢;,enct;) (i € {1,2}) be hyper-graphs; a hyper-graph morphism from G to Gy, written
f: Gy — Gy isapair of functions f = (fg: Ey — Ea, fy: Vi — V2) such that ¢, o fg = ¢ and for each edge
e € E; with attached nodes cnct(e) = v; - -+ v, we have cncty(fz(e)) = fy (vi) -+« fv(vn). A hyper-graph
morphism f = (fg, fv): G1 — G is injective (bijective) if both fg and fy are injective (bijective); it is an
inclusion if both fg(e) = e and fy(v) = v hold for all e € E| and v € V;. We write G| — G; or G2 < G|
if there is an inclusion from G| to G», in which case G| is a sub-graph of G».

To define double pushout graph transformation and the Borrowed Context technique [7]], we will

need the following constructions of hyper-graphs, which roughly amount to intersection and union of
hyper-graphs.
Definition 2.2 (Pullbacks & pushouts of monos). Let G; = (E;,V;,¢;,cenct;) (i € {0,1,2,3}) be hyper-
graphs and let G| — G5 < G, be inclusions. The intersection of Gy and G, is the hyper-graph G’ =
(E1NE»,ViNVa, ' enct’) where ¢/ (e) = ¢, (e) and cnct’(e) = cncty(e) for all e € Ey N E,. The pullback
of Gi — G3 < G, is the pair of inclusions G| < G’ — G; and the resulting square is a pullback square
(see Figure[T).

Andrei Dorman, Tobias Heindel 39

Gz —Gy Go— Gy

S N

G —d(¢ G —G"

Figure 1: Pullback and pushout square

Let G| +— Gy — G; be inclusions; they are non-overlapping if both E{ NE, C Eg and Vi NV, CVy
hold. The pushout of non-overlapping inclusions Gy < Gy — G, is the pair of inclusions G; — G” + G,
where G” = (Ey UE,V; UV;, 2" cenct”) is the hyper-graph that satisfies

y li(e) ifeckE cnctj(e) ifecE
t'(e) =

lr(e) otherwise

and cnct”(e) = {

cncty(e) otherwise

forall e € E{UE,.
Finally, we are ready to introduce graph transformation systems and their labelled transition semantics.

Definition 2.3 (Rules and graph transformation systems). A rule (scheme) is a pair of non-overlapping
inclusions of hyper-graphs p = (L <— I — R). Let A, B be hyper-graphs such that A < L and moreover
A < I — R is non-overlapping. Now, p transforms A to B if there exists a diagram as L] R
shown on the right such that the two squares are pushouts and there is an isomorphism J J l
1: B' — B. A graph transformation system (GTS) is pair ./ = (A, %) where Aisa +71 r
set of labels and Z is a set of rules.
A graph transformation rule can be understood as follows. Whenever the left hand side L is (isomorphic
to) a sub-graph of some graph A then this sub-graph can be “removed” from A, yielding the graph D. The
vacant place in D is then “replaced” by the right hand side R of the rule. The middleman / is the memory
of the connections L had with the rest of the graph in order for R to be attached in exactly the same place.
We now present an example that will be used throughout the paper to illustrate the main ideas.

—D—PB

Example 2.1. The system .7,, = (A, %) will be the following one in the sequel: A = {a,f,7,...} such
that ar(a) = 2, ar(B) = 3 and ar(y) = 1; moreover Z is the set of rules given in Figure 2] where the R;
represent different graphs (e.g. edges with labels R;).

To keep the graphical representations clear, all inclusions in the running example are given implicitly
by the spatial arrangement of nodes and edges.

defll Be=@

(a) Rule “a/B” (b) Rule “at/y”
. . —~ -
(c) Rule “B/y” (d) Rule “a/B/y”

Figure 2: Reaction rules of .%,,.

40 SOS for Graph Rewriting

Remark 2.1 (Rule instances). Given a rule L <— I — R and a graph A such that A <— L, one can assume
w.l.o.g. that A <~ I — R is non-overlapping. The reason is that in each case, the rule L <— I — R could
be replaced by an isomorphic “rule instance” p’ = L' <~ I’ — R’ (based on the standard notion of rule
isomorphism).

In fact the result of each transformation step is unique (up to isomorphism). This is a consequence of
the following fact.

Fact 2.4 (Pushout complements). Let G, < Gy < Gg be a pair of hyper-graph
inclusions where G; = (E;, Vi, {;,enct;) (i € {0,1,2}) such that for all v € Vi \ Vy (1)
there does not exist any edge e € Ey \ Ey such that v is incident to e. Then there lﬁ l
exists a unique sub-graph G, <— D such that (1) is a pushout square. G2—D

G —Gy

Definition 2.5 (Pushout Complement). Let G, <— G <— G be a pair of hyper-graph inclusions that satisfy
the conditions of Fact the unique completion G, <— D <— Gy in (1) is the pushout complement of
Gy + Gy + Gy.

Definition 2.6 (Labelled transition system). A labelled transition system (LTS) is a tuple (S,L,R) where
S is a set of states, L is a set of labels and R C S X L. x S is the transition relation. We write

o
s —S

if (s, @,s’) € R and say that s can evolve to s’ by performing c.

Definition 2.7 (DPOBC). Let . = (A, #) be a graph transformation
system. Its LTS has all inclusions of hyper-graphs J — G as states where
J is called the interface; the labels are all pairs of inclusions J — F <+ K,
and a state J/ — G evolves to another one K — H if there is a diagram as
shown on the right, which is called a DPOBC-diagram or just a BC-diagram.
In this diagram, the graph D is called the partial match of L.

—s [—]—

=

—

r l C

— G, —(C—

T

—F+—K

~—Q«—0
=

For a technical justification of this definition, see [[L6], but let us give some intuitions on what this
diagram expresses. States are inclusions, where the “larger” part models the whole “internal” state of the
system while the “smaller” part, the interface, models the part that is directly accessible to the environment
and allows for (non-trivial) interaction. As a particular simple example, one could have a Petri net where
the set of places (with markings) is the complete state and some of the place are “open” to the environment
such that interaction takes place by exchange of tokens.

The addition of agents/resources from the environment might result in “new” reactions, which have
not been possible before. The idea of the LTS semantics for graph transformation is to consider (the
addition of) “minimal” contexts that allow for “new” reactions as labels. The minimality requirement
of an addition J — E or J — F is captured by the two leftmost squares in the BC diagram above: the
addition J — F is “just enough” to complete part of the left hand side L of some rule. If the reaction
actually takes place, which is captured by the other two squares in the upper row in the BC diagram, some
agents might disappear / some resources might be used (depending on the preferred metaphor) and new
ones might appear. Finally the pullback square in the BC diagram restricts the changes to obtain the new
interface into the result state after reaction. As different rules might result in different deletion effects that
are “visible” to the environment, the full label of each such “new” reaction is the “trigger” J — F together
with the “observable” change F < K (with state K — H after interaction).

Andrei Dorman, Tobias Heindel 41

3 Three Layer SOS semantics

We start with a reformulation of the borrowed context technique that breaks the “monolithic” BC-step into
axioms (that allow to derive the basic actions) and two rules that allow to perform these basic actions
within suitable contexts. The axioms corresponds to the CCS-axioms that describe that the process ¢.P
can perform the action & and then behaves as P, written .P —a— P where o ranges over the actions a,a,
and 7. In the case of graphs, each rule L <— I — R gives rise to such a set of actions. More precisely, each
subgraph D of L can be seen as an “action” with co-action DE —s L such that L is the union of D and D*.
For example, in the rule /3, both edges a and 3 yield (complementary) basic actions.

Formally, in Table |1} we have the family of Basic Action axioms. It essentially represents all the
possible uses of a transformation rule. In an (encoding of) CCS, the left hand side would be a pair of unary
edges a and a, which both disappear during reaction. Now, if only a is present “within” the system, it
needs a to perform a reaction; thus, the part a of the left hand side induces the (inter-)action that consists
in “borrowing” @ and deleting both edges (and similarly for @). In general, e.g. in the rule &t/ /¥ there
might be more than two edges that are involved in a reaction and thus we have a whole family of actions.
More precisely, each portion of a left hand side induces the action that consists in borrowing the missing
part to perform the reaction (thus obtaining the coplete left hand side), followed by applying the changes
that are described by the right part of the rule.

Next, we shall give counterparts for two CCS-rules that describe that an action can be performed
in parallel to another process and under a restriction. More precisely, whenever we have the transition
P —a— P’ and another process Q, then there is also a transition P || Q —a— P’ || Q; similarly, we also have
(vb)P —a— (vb)P' whenever o ¢ {b,b}. More abstractly, actions are preserved by certain contexts. The
notion of context in the case of graph transformation, which will be the counterpart of process contexts
such as P || [] and (vb)[-], is as follows.

Definition 3.1 (Context). A context is a pair of inclusions C =J — E < J'. Let J — G be a state (such
that E < J — G is non-overlapping); the combination of J — G with the context C, written C[J — G, is
the inclusion of J' into the pushout of E < J — G as illustrated in the following display.

G G Té G
state: T context: construction: T T \ combination: T
J J—E—] J—E—17] J

The left inclusion of the context, i.e. / — E, can also be seen as a state with the same interface. The
pushout then gives the result of “gluing” E to the original G at the interface J; the second inclusion J' — E
models a new interface, which possibly contains part of J and additional “new” entities in E.

With this general notion of context at hand, we shall next address the counterpart of name restriction,
which we call interface narrowing, the second rule family in Table|l} In CCs, the restriction (va) preserves
only those actions that do not involve a. The counterpart of the context (va)|-] is a context of the form
J — J < J'. In certain cases, one can “narrow” a label while “maintaining” the “proper” action as made
formal in the following definition.

Definition 3.2 (Narrowing). A narrowing context is a context of the formC=J —J <+ J'. LetJ - F + K
be a label such that the pushout complement of F < J < J' exists; then the C-narrowing of the label,
written C[J — F < K] is the lower row in the following display

J—|>_F<—K
T T T where C=J —»J«J
ClJ — F < K] ::J’—>F’<—'_K’

42 SOS for Graph Rewriting

where the left square is a pushout and the right one a pullback. Whenever we write C[J — F < K|, we
assume that the relevant pushout complement exists.

If we think of the interface as the set of free names of a process, then restricting a name means removal
from the interface. Thus, J' is the set of the remaining free names. If the pushout complement F” exists, it
represents F with the restricted names erased. Finally, since a pullback here can be seen as an intersection,
K’ is K without the restricted names. So we finally obtain the “same” label where “irrelevant” names
are not mentioned. It is of course not always possible to narrow the interface. For instance, one cannot
restrict the names that are involved in labelled transitions of CCS-like process calculi. This impossibility
is captured by the non-existence of the pushout complement.

With the notion of narrowing, we can finally define the interface narrowing rule in Table

The final rule in Table [1| captures the counterpart of performing an action in parallel composition with
another process P. In the case of graph transformation, this case is non-trivial since even the pure addition
of context potentially interferes with the action of some state / — G. For example, if an interaction
involves the deletion of an (isolated) node, the addition of an edge to this node inhibits the reaction.
However, for each transition there is a natural notion of non-inhibiting context; moreover, to stay close to
the intuition that parallel composition with a process P only adds new resources and to avoid overlap with
the narrowing rule, we restrict to monotone contexts.

Definition 3.3 (Compatible contexts). Let C =J — E < J be a context; it is
monotone if J — J. Let J — F <+ K be a label; now C is non-inhibiting w.r.t.

J—F+—K
J — F + K if it is possible to construct the diagram (2)) where both squares are l l
pushouts. Finally, a context J — E < J is compatible with the label J — F < K (A

E—E —F'

if it is non-inhibiting w.r.t. it and monotone.

In a label J/ — F < K, the left inclusion represents the addition of new entities that “trigger” a certain
reaction. A compatible context is simply a context that is able to provide at least F', usually more than F,
while not attaching new edges to nodes that disappear during reaction.

The last rule in the SOSBC-system of Table[I]is the embedding of a whole transition into a monotone
context. To define this properly, we introduce a partial operation for the “combination” of co-spans
(which happens to be a particular type of relative pushout of co-spans); this generalizes the narrowing
construction.

Definition 3.4 (Cospan combination). Let C = (J/ — F <~ K) and C = (J — E < J) be two cospans.
They are combinable if there exists a diagram of the following form.

_>F

—EE —|<— El
-
K

[N

~N— M e—
—

i

:C[J — F < K]

The label J — F < K is the combination of C with C, and is denoted by C[J — F < K].
In fact, it is easy to show that compatible contexts are combinable with their label.

Lemma 3.5. Given a reduction label J — F < K and a compatible context J — E < J for it, we can
split the diagram[2)in order to get

Andrei Dorman, Tobias Heindel 43

J—F+—K
J—>F<—|_K l l
Lol =l i
I] i
E—E —F' - L
J— F——K=Cl/ »F <K

With this lemma we can finally define the rule that corresponds to “parallel composition” of an
action with another “process”. Now the SOSBC-system does not only give an analogy to the standard
SOs-semantics for CCS, we shall also see that the labels that are derived by the standard BC technique
are exactly those labels that can be obtained from the basic actions by compatible contextualization and
interface narrowing. In technical terms, the SOSBC-system of Table[I]is sound and complete.

e Basic Actions

where (L<1—R) e

(D—D) 22X 15 R) and D — L
e Interface Narrowing
(= G) 55 (k= H) where C=d I
' — G) 2K (ks H) andJ' — F' <+ K'=C|J - F «< K|
e Compatible Contextualization
J—G) K (k- | where €= = E ¢ 7 compatible with J — F « K
C[J%G]ME[K—)H] and C = (J = F < K)[C]

Table 1: Axioms and rules of the SOSBC-system.

Theorem 3.6 (Soundness and completeness). Let . be a graph transformation system. Then there is a
BC-transition

J = G) 25K (k- H)

if and only if it is derivable in the SOSBC-system.

The main role of this theorem is not its technical “backbone”, which is similar to many other
theorems on the Borrowed Context technique. The main insight to be gained is the absence of any “real”
communication between sub-systems; roughly, every reaction of a state can be “localized” and then
derived from a basic action (followed by contextualization and narrowing). In particular, we do not
have any counterpart to the communication-rule in CCS, which has complementary actions P —a— P’
and Q —a— Q' as premises and concludes the possibility of communication of the processes P and Q to
perform the silent “internal” transition P || Q —7— P’ || Q'. The main goal is to provide an analysis of
possible issues with a counterpart of this rule.

44 SOS for Graph Rewriting

4 The composition rule for CCS-like systems

Process calculi, such as cCS and the m-calculus, have a so-called communication rule that allows to
synchronize sub-processes to perform silent actions. The involved process terms have complementary
actions that allow to interact by a “hand-shake”. Howeyver, it is an open question how such a communication
rule can be obtained for general graph transformations systems via the Borrowed Context technique.
Roughly, the label of a transition does not contain information about which reaction rule was used to
derive it; in fact, the same label might be derived using different rules. Intuitively, we do not know how to
identify the two hands that have met to shake hands.

To elaborate on this using the metaphor of handshakes, assume that we have an agent that needs a
hand to perform a handshake or to deliver an object. If we observe this agent reaching out for another
hand, we cannot conclude from it which of the two possible actions will follow. In general, even after the
action is performed, it still is not possible to know the decision of the agent — without extra information,
which might however not be observable. However, with suitable assumptions about the “allowed actions”,
all necessary information might be available.

First, we recall from [2] that DPOBC-diagrams (as defined in Definition can be composed under
certain circumstances.

Fact4.1. Let

J—F+K

T—=6) 2 k5 H) and (7 — G 2K

K' —H')

be two transitions obtained from two DPOBC-diagrams with the same rule p = L <— 1 — R. Then, it is
possible to build a DPOBC-diagram with the same rule for the composition of J — G and J' — G’ along
some common interface J < J;, — J'.

Take the following example as illustration of this fact.

Example 4.1 (Composition of transitions). Let J — G be a state of .#,, that contains an edge o with its
second connection in the interface as shown in Figure Further, let J/ — G’ be a state that contains
an edge 8 with its second connection in the interface as shown in Figure [3(b)} Both graphs can trigger a
reaction from rule o/ /y. Such a composition is shown in Figure m

Hence, we see that is in general possible to combine transitions to obtain new transitions. However,
we emphasize at this point, that derivability of a counterpart of the communication rule of CCS is not the
same question as the composition of pairs of transitions that come equipped with complete BC-diagrams.
To clarify the problem, consider the following example where we cannot infer the used rule from the
transition label.

Example 4.2. Let G be a graph composed of two edges o and 8 and consider a transition label where an
edge v is “added”. Then it is justified by both rules a/y and 3/y (see Figure {4).

We shall avoid this problem by restricting to suitable classes of graph transformation systems. More-
over, for simplicities sake, we shall focus on the derivation of “silent” transitions in the spirit of the
communication rule of CCSs.

Definition 4.2 (Silent label). A label J — F < K is silent or 7T if J = F = K a silent transition is a
transition with a silent label.

Intuitively, a silent transition is one that does not induce any “material” change that is visible to an
external observer that only has access to the interface of the states. Hence, in particular, a silent transition
does not involve additions of the environment during the transition. Moreover, the interface remains

Andrei Dorman, Tobias Heindel 45

G

Al i))

|
e

(a) A first transition

@H‘*@

(b) A second transition

-] -6

(c) The composition of the transitions

Figure 3: An example of composition.

unchanged. This latter requirement does not have any counterpart in process calculi, as the interface is
given implicitly by the set of all free names. (In graphical encodings of process terms [3] it is possible to
have free names in the interface even though there is no corresponding input or output prefix in the term.)

Now, with the focus on silent transitions, for a given rule L <— I — R we can illustrate the idea of
complementary actions as follows. If a graph G contains a subgraph D of L and moreover a graph G’
has the complementary subgraph of D in L in it, then G and G’ can be combined to obtain a big graph
G — the “parallel composition” of G and G’ — that has the whole left hand side L as a subgraph and
thus G can perform the reaction. A natural example for this are Lafont’s interaction nets where the left
hand side consist exactly of two hyper-edges, which in this case are called cells. The intuitive idea of

complementary (basic) actions is captured by the notion of active pairs.

Definition 4.3 (Active pairs). For any inclusion D — L, where D # L and for all nodes v of D, deg(v) > 0,
let the following square be its initial pushout

Jlfj —>ﬁL

| b

D—L

i.e. DL is the smallest subgraph of L that allows for completion to a pushout. We call DE the complement
of D in L and J;; the minimal interface of D in L and we write {D,D'} = L if D' = D*. The set of active

46 SOS for Graph Rewriting

o

]

0
S

\/

g

(a) A transition from rule ot/y

R | oo

) TS

(b) A transition from rule 3/y

Figure 4: Same transition label for different rules.

pairs is
D={{D,D"} [L«I—ReX,D—L,D#L, Vv eED.deg(v) > 0}.
Abusing notation, we also denote by D the union of D.

It is easy to verify that the complement of DY in L is D itself and that its minimal interface is also J.
It is the set of “acceptable” partial matches in the sense that they do not yield a t-reaction on their own.
Indeed, if D is equal to L, then the resulting transition of this partial match is a 7-transition. And if it is
just composed of vertices, its complement is L and thus not acceptable.

Example 4.3 (Active pairs). In our running example, the set ID of our example is in obvious bijection to

{{o, B}, {00, v}, {B. v} {o. B+ 7} {a+ By} {a+7.B}}.

The minimal interface of any pair is a single vertex.

This completes the introduction of preliminary concepts to tackle the issues that have to be resolved
to obtain “proper” compositionality of transitions.

4.1 Towards a partial solution

Let us address the problem of identifying the rule that is “responsible” for a given interaction. We start by
considering the left inclusions of labels, which intuitively describe possible borrowing actions from the
environment. Relative to this, we define the admissible rules as those rules that can be used to let states
evolve while borrowing the specified “extra material” from the environment.

Definition 4.4 (Admissible rule). Let J/ — G be a state and let J/ — F' be an inclusion (which represents a
possible contribution of the context). A rule p is admissible (for J — F) if L / G and it is possible to
find D € D and L the left-hand side of p, such that the following diagram commutes

L

X

G—LGC
I
J—F

!

Jy—D

Andrei Dorman, Tobias Heindel 47

where J;, — D is the minimal interface of D in L. We call D the rule addition.

This just means that G can evolve using the rule p if D is added at the proper location.

Proposition 4.5 (Precompositionality). Let J — G ISPk s Hand) — G 2K K B be

two transitions such that a single rule p is admissible for both, and let D and D' be their respective rule
additions. If {D,D'} € D, it is possible to compose G and G' into a graph G in a way to be able to derive
a T-transition using rule p.

Proof. We first show that in such a case, D’ — G and the pushout of G «— D’ — L is exactly G¢. Similarly,

D — G’ and the pushout of G’ <~ D — L is exactly G’. Then, it is easy to see that it is possible to build the

DPOBC-diagram D; using rule p on G (respectively G') yelding the transition (J — G) bk, (K1 — Hy)

for some K, H; (respectively the DPOBC-diagram D; yelding the transition (J — G) EinihmiN (K» — Hp)
for some K5, H;), and then compose D; and D5.
This follows from {D,D’} € D and G = G*. Indeed, E = L so the top left morphism of the composed

DPOBC-diagram is an isomorphism and so are the ones under it, using basic pushout properties. O

This first result motivates the following definition.
Definition 4.6 (7-compatible). In the situation of Proposition i.5] we say the two transitions are -
compatible.
Remark 4.1. In general, in Proposition[4.5] the result of the 7-transition cannot be constructed from H
and H'; thus we do not yet speak of compositionality.
Example 4.4. Let G be a graph composed of two edges & and y and G’ of two edges 8 and ¥ (see
Figure[5). Then the rule o/ is admissible for both transitions and moreover they are T-compatible. The
rule o/ yields the respective rule additions. “Glueing” G and G’ by their interface results in a graph with
edges a, B and two ¥s; the latter graph can perform a t-reaction from rule /3, which however does not
give the desired result since the target state is not the “expected composition” of H and H'. In other words,
although we have been able to construct a T-transition, it is not the composition of the original transitions.

) oo {5

)

g

(a) A transition from rule 8/y

) o-B)-® (g
=

>
>

g

(b) A transition from rule a/y
Figure 5: t-compatible, but not composable: different rules.

We can see from the examples here that the difficulty of defining a composition of transitions comes
mainly from three facts. The first is that a partial match can have several subgraphs triggering a reaction.
This is delt with by the construction of the set of active pairs. The second one is the possibility to connect
multiple edges together, not knowing which one exactly is consumed in the reaction. Finally, a given edge
can have multiples ways of triggering a reaction.

48 SOS for Graph Rewriting

4.2 Sufficient conditions

We now give two frameworks in which neither of the two last problems do occur. Avoiding each of them
separately is enough to define compositionality properly. Both cases are inspired by the study of interaction
net systems [12} 16} [14]], which can be represented in the obvious manner as graph transformation systems.
In these systems, the DPOBC-diagram built from an admissible rule of a transition is necessarily the one
that has to be used to derive the transition. In one case, it works for essentially the same reasons as in CCS:
every active element can only interact with a unique other element, such as a vs. @, b vs. b. In the other
one, the label itself is not enough, but since we also know where it “connects” to the graph, it is possible
to “find” the partner that was involved in the transition.

We introduce interaction graph systems, which are caracterized among other rewriting systems by
the form of the left-hand sides of the reaction rules, composed of exactly two hyperedges connected by a
single node. We fix a labeling alphabet A.

Definition 4.7. An activated pair is a hypergraph L on A composed of two hyperedges e and f and a
node v such that v appears exactly once in cnct(e) and once in cnct(f). If v is the i-th incident vertex of e
labelled ¢ and the j-th incident vertex of f labelled B, we denote the activated pair by e;xf; and label it
by OCiMﬁ -

An interaction graph system (A, %) is given by a set of reaction rules & over hypergraphs on A where
all left-hand side of rules are activated pairs, and nodes are never deleted, i.e. for any rule p =L <1 — R,

e [is an activated pair;

e foranynodev,veL=vcl.

Note that for any interaction graph system, the set D is composed of pairs {D, D’} where each of them
is composed of an edge and its connected vertices. Also the minimal interface of any active pair {D,D’}
is a single node. It is also the case that it is enough for interfaces to be composed of vertices only.

Example 4.5. SIMPLY WIRED HYPERGRAPHS Lafont interaction nets are historically the first interaction
nets. They appear as an abstraction of linear logic proof-nets [[12]. Originally, Lafont nets have several
particular features, but the one we are interested in is the condition on connectivity.

Definition 4.8. Let N = (E,V,/,cnct) be a hypergraph on A.
The graph N is simply wired if Yv € V, deg(v) < 2. When deg(v) = 1, we say that v is free.

In other words, vertices are only incident to at most two edges of a graph. Note that in this special
case no issues arise if we restrict to the sub-category of simply wired hypergraphs. For this, we argue that
the purpose of the interface is the possible addition of extra context; thus, in simply wired hypergraphs, it
is meaningless for a vertex that is already connected to two edges to be in the interface.

Definition 4.9 (Lafont interaction graph system). A Lafont interaction graph is a simply connected graph
such that its interface consists of free vertices only. A Lafont system I = (A, %) is given by reaction rules
over Lafont interaction graphs; it is partitioned if two left-hand sides only overlap trivially, i.e. for two
rules pj =Lj<I; = R; € #Z (j = 1,2), either L| = L, or L; N L, is the empty graph (without any nodes
and any hyperedges).

Lemma 4.10. Let L be a partitioned Lafont system, let J — G be a state, let (J — G) IoFek,

be a non-t transition. Then there is exactly one admissible rule for this transition.

(K—H)

Example 4.6. HYPERGRAPHS WITH UNIQUE PARTNERS By generalizing Lafont interaction nets, we
obtain so called multiwired interaction nets. But then we lose the unicity of the rule for a given transition
label. It can be recovered by another condition.

Andrei Dorman, Tobias Heindel 49

Definition 4.11 (Unique partners). Let [= (A,#) be an interaction graph system. We say it is with
unique partners if for any @ € A and for all i < ar (o), there exists a unique 8 € A and a unique j < ar(f3)
such that a;xf; is the label of a left-hand side of a rule in Z.

Lemma 4.12. Let J — G a state of 1 and (J — G) IoPek, (K — H) a non-7 reaction label. Then there

is exactly one admissible rule p for this transition.
Finally, we conclude our investigation with the following positive result.

Theorem 4.13 (Compositionality). Let (A, %) be a Lafont interaction graph system, or an interaction
graph system with unique partners. Let D be its set of active pairs.
Lett; = (J = G) 55 (k w Hy and 1 = (J) - ¢/) L2255,
and D and D' their respective rule additions.
If{D,D'} =L €D, let G and H are described by the following diagrams

J! G H'
2205 N

D < <G R <H
%
%G/\ \H/

where J;, — J and J;, — J' are the inclusions from the admissibility of p for states J — G and J' — G’

(K" — H') be two non- transitions

(Definition 4.4).
Then

T —G6) =L G- a).
Sketch of proof. By Lemma.10/or[4.12] there exists exactly one rule p € # with L as a left-hand side
that allows to derive transitions #; and t, — it is indeed the same rule for both. Let D be the composition
diagram of the DPOBC-diagrams justifying the transitions.
It is first shown that G = G... Since the upper and lower left squares of D are pushouts we can infer that
D = Land J = F. Finally, since no vertex is deleted (see Definition[4.7), we have 7 — C and thus K = J.
So D is a BC-diagram of a T-reaction from J — G to J — H.

O
In fact, the main property that we have used is the following.
Definition 4.14 (Complementarity of Actions). A graph transformation D—L I R
systems satisfies Complementarity of Actions if for each transition l ! l rl
J—F<K . . G—G.—C—H
(J/ = G) —/——— (K — H) there is a unique rule L <— I — R such that T L T /
there exists a DPOBC-diagram as shown to the right. ~
J—F+«—K

In this situation, we can effectively determine if two transitions are T-compatible. Thus we can derive
a counterpart of the communication rule of CCS. Hence, if a graph transformation systems satisfies
Complementarity of Actions then a rule of the following form is derivable in SOSBC.
= J=F«K 4 = J=F+«K =
t=J—G) 2“5 (K—H) (=0U-G6)"" 5K -H)

JT—G) 2 G- m)

t and t' T-compatible

In other words, in a graph transformation system with Complementarity of Actions we can apply the
results of [2]] to obtain a counterpart to the communication rule.

50 SOS for Graph Rewriting

5 Related and Future work

On a very general level, the present work is meant to strengthen the conceptual similarity of graph
transformation systems and process calculi; thus it is part of a high-level research program that has been
the theme of a Dagstuhl Seminar in 2005 [9]. In this wide field, structural operational semantics is
occasionally considered as an instance of the tile model (see [8] for an overview). With this interpretation,
SOS has served as motivation for work on operational semantics of graph transformation systems (e.g. [S]]).

A new perspective on operational semantics, namely the “automatic” generation of labeled transition
semantics from reaction rules, has been provided by the seminal work of Leifer and Milner [13]] and its
successors [[16, [7]]; as an example application, we want to mention the “canonical” operational semantics
for the ambient calculus [15]. The main point of the latter work is the focus on the “properly” inductive
definition of structural operational semantics. To the best of our knowledge, there is no recent work on the
operational semantics of graph transformation systems that provides a general method for the inductive
definition of operational semantics. This is not to be confused with the inductive definition of graphical
encodings of process calculi on (global) states.

With this narrower perspective on techniques for the “automatic” generation of LTSs, we want to
mention that some ideas of our three layer semantics in Section [3|can already be found in [3]], where all
rules of the definition of the labelled transition semantics have at most one premise. This is in contrast
to the work of [15]] where the labelled transition semantics is derived from two smaller subsystems: the
process view and the context view; the subsystems are combined to obtain the operational semantics. The
latter work is term based and it manipulates complete subterms of processes using the lambda calculus in
the meta-language. We conjecture that the use of this abstraction mechanism is due to the term structure
of processes.

Concerning future work, the first extension of the theory concerns more general (hierarchical) graph-
like structures as captured by adhesive categories [[10]] and their generalizations (e.g. [4]). Moreover,
as an orthogonal development, we plan to consider the case of more general rules that are allowed to
have an arbitrary (graph) morphism on the right hand side; moreover, also states are arbitrary morphisms.
The general rule format is important to model substitution in name passing calculi while arbitrary graph
morphisms as states yield more natural representations of (multi-wire) interaction nets. The main challenge
is the quest for more general sufficient conditions that allow for non-trivial compositions of labelled
transitions, which can be seen as a general counterpart of the CCS communication rule.

6 Conclusion

We have reformulated the BC technique as the SOSBC-system in Table [1|to make a general analogy to the
Sos-rules for cCS. There is no need for a counterpart of the communication rule. We conjecture that this
is due to the “flat” structure of graphs as opposed to the tree structure of CCS-terms.

The main contribution concerns questions about the derivability of a counterpart of the communication
rule. First, we give an example, which illustrates that the derivability of such a rule is non-trivial; however,
it is derivable if the relevant graph transformation system satisfies Complementarity of Actions. We have
given two classes of examples that satisfy this requirement, namely hyper-graphs with unique partners
and simply wired hyper-graphs. This is a first step towards a “properly” inductive definition of structural
operational semantics for graph transformation systems.

Acknowledgements We would like to thank Barbara Kénig, Filippo Bonchi and Paolo Baldan for providing us

Andrei Dorman, Tobias Heindel 51

with drafts and ideas about a more general research program on compositionality in graph transformation. We are
also grateful for the constructive criticism and the helpful comments of the anonymous referees.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

V. Alexiev (1999): Non-deterministic interaction nets. Ph.D. thesis, University of Alberta, Edmonton, Alta.,
Canada.

P. Baldan, H. Ehrig & B. Konig (2006): Composition and Decomposition of DPO Transformations with
Borrowed Context. In: Proc. of ICGT 06 (International Conference on Graph Transformation), Springer, pp.
153-167, doi:10.1007/11841883_12. LNCS 4178.

F. Bonchi, F. Gadducci & G. V. Monreale (2009): Labelled transitions for mobile ambients (as synthe-
sized via a graphical encoding). Electronic Notes in Theoretical Computer Science 242(1), pp. 73-98,
doi;10.1016/j.entcs.2009.06.014.

B. Braatz, H. Ehrig, G. Karsten & U. Golas (2010): Finitary M-adhesive categories. In: Graph Transforma-
tions: 5Sth International Conference, ICGT 2010, Twente, the Netherlands, September 27—-October 2, 2010,
Proceedings, Springer-Verlag, pp. 234-249, doi3j10.1007/978-3-642-15928-2_16,

Andrea Corradini, Reiko Heckel & Ugo Montanari (2000): Graphical Operational Semantics. In: ICALP
Satellite Workshops, pp. 411-418.

T. Ehrhard & L. Regnier (2006): Differential interaction nets. Theoretical Computer Science 364(2), pp.
166-195, doi:10.1016/j.tcs.2006.08.003|

H. Ehrig & B. Konig (2006): Deriving Bisimulation Congruences in the DPO Approach to Graph
Rewriting with Borrowed Contexts. Mathematical Structures in Computer Science 16(6), pp. 1133-1163,
doi:10.1017/S096012950600569X.

F. Gadducci & U. Montanari (2000): The tile model. In Gordon D. Plotkin, Colin Stirling & Mads Tofte,
editors: Proof, Language, and Interaction, The MIT Press, pp. 133-166.

B. Konig, U. Montanari & P. Gardner, editors (2005): 04241 Abstracts Collection. Dagstuhl Seminar Proceed-
ings 04241, Internationales Begegnungs- und Forschungszentrum fiir Informatik (IBFI), Schloss Dagstuhl,
Germany, Dagstuhl, Germany. Available athttp://drops.dagstuhl.de/opus/volltexte/2005/27,

S. Lack & P. Sobocinski (2005): Adhesive and quasiadhesive categories. RAIRO - Theoretical Informatics
and Applications 39(2), pp. 522-546, doi:10.1051/ita:2005028.

Y. Lafont (1990): Interaction nets. In: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, POPL *90, ACM, New York, NY, USA, pp. 95-108, doi:10.1145/96709.96718.
Y. Lafont (1995): From proof-nets to interaction nets. In: Proceedings of the workshop on Advances in linear
logic, Cambridge University Press, New York, NY, USA, pp. 225-247, doi:10.1017/CB0O9780511629150.012.
J. J. Leifer & R. Milner (2000): Deriving Bisimulation Congruences for Reactive Systems. In Catus-
cia Palamidessi, editor: CONCUR, Lecture Notes in Computer Science 1877, Springer, pp. 243-258,
doi:10.1007/3-540-44618-4_19.

D. Mazza (2006): Interaction Nets: Semantics and Concurrent Extensions. Ph.D. thesis, Université de la
Méditerranée & Roma Tre.

J. Rathke & P. Sobocinski (2010): Deriving structural labelled transitions for mobile ambients. Information
and Computation 208, pp. 1221-1242, doij10.1016/1.1c.2010.06.001.

V. Sassone & P. Sobocinski (2003): Deriving Bisimulation Congruences Using 2-categories. Nordic Journal
of Computing 10(2), pp. 163—183.

A. Simpson (2004): Sequent calculi for process verification: Hennessy-Milner logic for an arbitrary GSOS.
Journal of Logic and Algebraic Programming 60-61, pp. 287-322, doi;10.1016/j.jlap.2004.03.004,

http://dx.doi.org/10.1007/11841883_12
http://dx.doi.org/10.1016/j.entcs.2009.06.014
http://dx.doi.org/10.1007/978-3-642-15928-2_16
http://dx.doi.org/10.1016/j.tcs.2006.08.003
http://dx.doi.org/10.1017/S096012950600569X
http://drops.dagstuhl.de/opus/volltexte/2005/27
http://dx.doi.org/10.1051/ita:2005028
http://dx.doi.org/10.1145/96709.96718
http://dx.doi.org/10.1017/CBO9780511629150.012
http://dx.doi.org/10.1007/3-540-44618-4_19
http://dx.doi.org/10.1016/j.ic.2010.06.001
http://dx.doi.org/10.1016/j.jlap.2004.03.004

	1 Introduction
	2 Preliminaries
	3 Three Layer SOS semantics
	4 The composition rule for CCS-like systems
	4.1 Towards a partial solution
	4.2 Sufficient conditions

	5 Related and Future work
	6 Conclusion

