
M. Bartoletti and S. Knight (Eds.):

11th Interaction and Concurrency Experience (ICE 2018)

EPTCS 279, 2018, pp. 4–20, doi:10.4204/EPTCS.279.4

c© Barbanera, de’Liguoro & Hennicker

This work is licensed under the

Creative Commons Attribution License.

Global Types for Open Systems ∗

Franco Barbanera

Dipartimento di Matematica e Informatica
University of Catania

barba@dmi.unict.it

Ugo de’Liguoro

Dipartimento di Informatica
University of Torino

ugo.deliguoro@unito.it

Rolf Hennicker

Institute of Informatics, LMU Munich

hennicker@ifi.lmu.de

Global-type formalisms enable to describe the overall behaviour of distributed systems and at the

same time to enforce safety properties for communications between system components. Our goal

is that of amending a weakness of such formalisms: the difficulty in describing open systems, i.e.

systems which can be connected and interact with other open systems. We parametrically extend,

with the notion of interface role and interface connection, the syntax of global-type formalisms.

Semantically, global types with interface roles denote open systems of communicating finite state

machines connected by means of gateways obtained from compatible interfaces. We show that safety

properties are preserved when open systems are connected that way.

1 Introduction

The intrinsic difficulties programmers have to face when developing and verifying distributed appli-

cations have been variously attacked by the theoretical computer science community with the aim of

devising formal systems enabling (1) to describe in a structured way the overall behavior of a system,

and (2) to steer the implementation of the system components, guaranteeing their compliance with the

overall behaviour together with some relevant properties of communications.

Several formalisms based on the notion of global type have been proposed in the literature to pursue

such an aim [2, 3, 5]. The expressiveness of the investigated formalisms kept on increasing during the

last decade, recently leading to representations of global behaviours as graphs [8, 13, 16], where the local

end-point projections are interpreted by communicating finite state machines (CFSMs), a widely inves-

tigated formalism for the description and the analysis of distributed systems [1]. For systems of CFSMs,

most of the relevant properties of communications are, in general, undecidable [4] or computationally

hard. Instead, systems of CFSMs obtained by projecting the generalised global types of [8] or the global

graphs of [13, 16] (more precisely those which satisfy a well-formedness condition) are guaranteed to

satisfy desired properties of communications like deadlock-freeness, that any sent message is eventually

consumed or that each participant will eventually receive any message s/he is waiting for [8].

The centralised viewpoint offered by the global type approaches makes them naturally suitable for

describing closed systems. This prevents a system described/developed by means of global types to be

looked at as a module that can be connected to other systems. The description and analysis of open

systems has been investigated, instead, in the context of CFSMs in [12, 11] and for synchronous com-

munication in the context of interface automata in [6, 7]. In the present paper we address the problem

of generalising the notion of global type in order to encompass the description of open systems and, in

particular, open systems of CFSMs; so paving the way towards a fruitful interaction between the investi-

gations on open systems carried out in automata theory and those on global types.

∗The first two authors were partially supported by the COST Action EUTYPES CA-15123 and by, respectively, Project

“Chance” of the University of Catania and Project FORMS 2015 of the University of Torino.

http://dx.doi.org/10.4204/EPTCS.279.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


Barbanera, de’Liguoro & Hennicker 5

In our approach, an “open global type” – that we dub “global type with interface roles” (GTIR) –

denotes a number of connected open systems of CFSMs where some participants (roles1) are identified

as interfaces rather than proper participants. We have no necessity to stick to any particular global type

formalism as a basis for our GTIRs, as long as the local end-point behaviours of a global type G can

be interpreted as CFSMs. So we introduce a parametric syntax which, given a global type formalism

GT , extends its syntax by essentially enabling to identify some roles as interface roles and to define

a composition of open global types, semantically interpreted by systems of CFSMs. We call GT -IR

(GT -with-Interface-Roles) the so obtained formalism.

Syntactically, a GTIR is either a global type G (formulated in GT ) together with a distinguished

subset of the roles of G declared as interface roles, or it is a composite expression where two GTIRs are

composed via compatible interfaces. The non-connected interface roles remain open after composition.

The semantics of a GTIR is always a set of CFSMs. In the case of a basic GTIR, i.e. a global type G

equipped with interface roles, it is just the set of CFSMs obtained by projecting G to its end-point CFSMs.

Those CFSMs interpreting interface roles model the expected behaviour of an external environment of

the open system. Interface roles are compatible if their CFSMs have no mixed states, are input and

output deterministic and if their languages are dual to each other. If a GTIR G is a composite expression,

composing GTIRs G1 and G2 via compatible interface roles H and K, then the semantics of G is the union

of the two CFSM systems denoted by G1 and G2 where the CFSMs MH and MK, interpreting the interface

roles H and K, are replaced by appropriate gateway CFSMs gw(MH,K) and gw(MK,H). These gateways

are constructed by a simple algorithm out of MH and MK.

A main objective of our work is to study the preservation of safety properties under composition.

We consider three kinds of properties: deadlock-freedom, freedom of orphan messages and freedom of

unspecified receptions following the definitions in [8] (which in turn follow definitions in [4]). The main

result of the present paper is that these safety properties hold for the CFSM system S denoted by a GTIR

G whenever they hold singularly for all subsystems Si obtained by the semantics of the global types Gi

that are used for the construction of G. In particular, it has been shown in [8] that the safety properties

are ensured whenever the Gi’s are well-formed generalised global types

Overview. In Section 2 the main definitions concerning CFSMs and systems of CFSMs are recalled,

together with the definitions of safety properties. Syntax and semantics of global types with interface

roles are introduced in Section 3. Section 4 studies the preservation of safety properties for systems

connected via gateways and proves our main result. Section 5 concludes by pointing to related work and

describing directions for further investigations.

2 Systems of Communicating Finite State Machines

In this section we recall (partly following [4, 8, 13]) the definitions of communicating finite state ma-

chine (CFSM) and systems of CFSMs. Throughout the paper we assume given a countably infinite set

PU of role (participant) names (ranged over by p,q,r,s,A,B,H,I, . . .) and a countably infinite alphabet

AU (ranged over by a,b,c, . . .) of messages.

Definition 2.1 (CFSM). Let P and A be finite subsets of PU and AU respectively.

i) The set CP of channels over P is defined by

CP = {pq | p,q ∈ P,p 6= q}

1We prefer to use the word role rather then participant since interface role sounds more suitable for the present setting than

interface participant.



6 Global Types for Open Systems

ii) The set ActP,A of actions over P and A is defined by

ActP,A =CP ×{!,?}×A

iii) A communicating finite-state machine over P and A is a finite transition system given by a tuple

M = (Q,q0,A,δ )
where Q is a finite set of states, q0 ∈ Q is the initial state, and δ ⊆ Q×ActP,A×Q is a set of transi-

tions.

Notice that the above definition of a CFSM is generic w.r.t. the underlying sets P of roles and A of

messages. This is necessary, since we shall not deal with a single system of CFSMs but with an arbitrary

number of open systems that can be composed. We shall write C and Act instead of CP and ActP,A when

no ambiguity can arise. We assume l, l′, . . . to range over Act; ϕ ,ϕ ′, . . . to range over Act∗ (the set of finite

words over Act), and w,w′, . . . to range over A∗ (the set of finite words over A). ε (/∈ A∪Act) denotes

the empty word and | v | the lenght of a word v ∈ Act∗∪A
∗. The transitions of a CFSM are labelled by

actions; a label sr!a represents the asynchronous sending of message a from machine s to r through

channel sr and, dually, sr?a represents the reception (consumption) of a by r from channel sr.

We write L (M) ⊆ Act∗ for the language over Act accepted by the automaton corresponding to ma-

chine M, where each state of M is an accepting state. A state q ∈ Q with no outgoing transition is final; q

is a sending (resp. receiving) state if all its outgoing transitions are labelled with sending (resp. receiving)

actions; q is a mixed state otherwise.

A CFSM M = (Q,q0,A,δ ) is:

a) deterministic if for all states q ∈ Q and all actions l: (q, l,q′),(q, l,q′′) ∈ δ imply q′ = q′′;

b) ?-deterministic (resp. !-deterministic) if for all states q∈Q and all actions (q,rs?a,q′),(q,pq?a,q′′)∈
δ (resp. (q,rs!a,q′),(q,pq!a,q′′) ∈ δ ) imply q′ = q′′;

c) ?!-deterministic if it is both ?-deterministic and !-deterministic.

The notion of ?!-deterministic machine is more demanding than in usual CFSM settings. It will be

needed in order to guarantee safety-properties preservation when systems are connected.

Definition 2.2 (Communicating systems and configurations). Let P and A be as in Def. 2.1.

i) A communicating system (CS) over P and A is a tuple S = (Mp)p∈P where

for each p ∈ P, Mp = (Qp,q0p,A,δp) is a CFSM over P and A.

ii) A configuration of a system S is a pair s = (~q,~w) where

- ~q = (qp)p∈P with qp ∈ Qp;

- ~w = (wpq)pq∈C with wpq ∈ A
∗.

The component ~q is the control state of the system and qp ∈ Qp is the local state of machine Mp.

The component ~w represents the state of the channels of the system and wpq ∈ A
∗ is the state of

the channel for messages sent from p to q. The initial configuration of S is s0 = (~q0,~ε) with ~q0 =
(q0p)p∈P.

Definition 2.3 (Reachable configurations). Let S be a communicating system, and let s = (~q,~w) and

s′ = (~q′, ~w′) be two configurations of S. Configuration s′ is reachable from s by firing a transition with

action l, written s
l

−→ s′, if there is a ∈ A such that one of the following conditions holds:

1. l = sr!a and (qs, l,q
′
s) ∈ δs and

a) for all p 6= s : q′p = qp and



Barbanera, de’Liguoro & Hennicker 7

b) w′
sr = wsr ·a and for all pq 6= sr : w′

pq = wpq;

2. l = sr?a and (qr, l,q
′
r) ∈ δr and

a) for all p 6= r : q′p = qp and

b) wsr = a ·w′
sr and for all pq 6= sr : w′

pq = wpq.

We write s −→ s′ if there exists l such that s
l

−→ s′.

As usual, we denote the reflexive and transitive closure of −→ by −→∗

3. The set of reachable configurations of S is RS(S) = {s | s0 −→
∗ s}.

According to the last definition, communication happens via buffered channels following the FIFO prin-

ciple.

Definition 2.4 (Safety properties [8, 4]).

Let S be a communicating system, and let s = (~q,~w) be a configuration of S.

i) s is a deadlock configuration if

~w =~ε ∧ ∀p ∈ P. qp is a receiving state

i.e. all buffers are empty, but all machines are waiting for a message.

We say that S is deadlock-free whenever, for any s ∈ RS(S), s is not a deadlock configuration.

ii) s is an orphan-message configuration if

(∀p ∈ P. qp is final) ∧ ~w 6=~ε

i.e. each machine is in a final state, but there is still at least one non-empty buffer.

iii) s is an unspecified reception configuration if

∃r ∈ P. qr is a receiving state ∧ ∀s ∈ P.[ (qr,sr?a,q′r) ∈ δr =⇒ (|wsr|> 0 ∧ wsr 6∈ aA∗) ]

i.e. there is a receiving state qr which is prevented from receiving any message from any of its

buffers. (In other words, in each channel sr from which role r could consume there is a message

which cannot be received by r in state qr.)

iv) S is safe if, for each s ∈ RS(S), s is neither a deadlock, nor an orphan-message, nor an unspecified

reception configuration.

The above definitions of safety properties are the same as in [8]. They follow, for the notions of

deadlock and unspecified reception, the definitions in [4]. The deadlock definition in [13] is slightly

weaker, but coincides with [8] if the local CFSMs have no final states. Still weaker definitions of deadlock

are used in [16] and in [1].

3 Global Types with Interface Roles

Our aim is the development of a formalism GT -IR suitable for the composition of open systems which

ensures preservation of safety properties and hence is suitable for modular system construction. The idea

is that our approach should be usable for any global type formalism GT which satisfies the following

assumptions: For each global type G in GT ,

1. there is associated a finite set of roles P(G)⊂ PU and a finite set of actions A(G)⊂ AU,



8 Global Types for Open Systems

2. there is a projection function, denoted by ⇂ , such that for any p ∈ P(G), G⇂p is a CFSM over

P(G) and A(G).

Global types are considered as syntactic objects while the projection function yielding a communi-

cating system (G⇂p)p∈P(G) over P(G) and A(G) is considered as the semantics of a global type G. A GT

formalism satisfying the above requirements could be, for instance, the formalism of generalised global

types in [8] or that of global graphs in [13, 16]. Under certain conditions on the form of a global type

G, safety properties are guaranteed for the system obtained by projecting all roles of G to a CFSM. For

instance, Theorem 3.1 in [8] states that a communicating system generated from the projections of a well-

formed global type is safe in the sense of Def. 2.4. Therefore, if we can assure that safety is preserved

by composition, we get a safe system whenever the underlying global types denote safe (sub)systems.

In order to look at global types as open, we shall identify some of their roles as interface roles. An

interface roles represents (part of) the expected communication behaviour of the environment. Interface

roles are the basis to compose systems. In this section, we introduce Global Types with Interface Roles

(GTIRs) and provide their syntax and semantics. First we define the syntactic notion of a pre-GTIR.

Then we present our working example which already points out that we need a semantic compatibility

relation between interfaces for safe composition. Interface compatibility and a few additional conditions

must be respected to get a proper GTIR. The semantics of a GTIR is then defined in terms of a system of

CFSMs obtained, in the base case, by the projections of a global type with distinguished interface roles,

and, in the composite case, by composing open CFSM systems by means of suitable “gateway” CFSMs.

3.1 Pre-GTIRs

A pre-GTIR is either just a global type where some roles are declared as interface roles or it is a syntactic

expression composed from two pre-GTIRs by connecting certain interface roles. The non-connected

interface roles remain open.

Definition 3.1 (pre-GTIR). The set of pre-GTIR expressions [G]〈I〉 with set of interface roles I is defined

by simultaneous induction together with their sets of roles P([G]〈I〉) and components C ([G]〈I〉):

i) [G]〈I〉 ∈ pre-GTIR and P([G]〈I〉) = P(G) and C ([G]〈I〉) = {G} if

(a) G is a global type of GT ,

(b) I ⊆ P(G),

ii) [[G1]
〈H〉H↔K [G2]

〈K〉]〈I〉 ∈ pre-GTIR and P([[G1]
〈H〉H↔K [G2]

〈K〉]〈I〉) = P([G1]
〈H〉)∪P([G2]

〈K〉) and

C ([[G1]
〈H〉H↔K [G2]

〈K〉]〈I〉) = C ([G1]
〈H〉)∪C ([G2]

〈K〉) if

(a) [G1]
〈H〉, [G2]

〈K〉 ∈ pre-GTIR with H ∈ H, K ∈ K,

(b) I = (H∪K)\{H,K},

(c) P([G1]
〈H〉)∩P([G2]

〈K〉) = /0.

Notice that in a composed pre-GTIR, the notation of the set I is actually redundant and it is used just

to immediately spot the interface roles. By the above definition, a pre-GTIR is an expression formed by

either a global type in GT or a number of global types in GT “composed” via symbols of the form H↔K,

and where sets of interface roles are identified by means of superscripts. These global types are what we

have defined as the components of the pre-GTIR.



Barbanera, de’Liguoro & Hennicker 9

3.2 Working example

We introduce the compatibility relation we have in mind and the composition operator that we want to

use for constructing GTIRs by means of a working example inspired by one in [7].

Let us assume we wish to develop an open system, let us dub it S, which can receive a text message

from the outside. Once a text is received, the system tries to transmit it at most n times (where also the

number n of possible trials is provided from the outside when the system is initialized). A successful

transmission is acknowledged by an ack message; a nack message represents instead an unsuccessful

transmission. An ok message is sent back in case of a successful transmission; a fail message in case of

n unsuccessful trials. Before any transmission trial, a semantically-invariant transformation is applied to

the message. The system can hence be used to send messages to social networks which are particularly

strict for what concerns propriety of language. If the message is not accepted by the social network, our

system automatically transforms it maintaining its sense, and sending it again and again up to n times,

invariantly transforming it each time. A counter is used to keep track of the number of trials and it is

reset to n each time a message is successfully transmitted. It is instead automatically reset to n each time

0 is reached, before issuing a failure message and restarting the protocol with some new message.

If we consider the formalism of generalized global types of [8], the overall behaviour of the above

system S can be described by the graph G shown in Fig. 1, where the roles (participants) are:

M: the manager of the system;

T: the process implementing the semantically-invariant message transformation;

C: the trials counter;

I, J and H: the roles (that we identify as interface roles) representing those parts of the environment

which, respectively: initializes the system; sends the text message and receives back the ok or fail mes-

sage: receives the messages transmitted by the systems and acknowledges its propriety, if so.

Informally, in the graph G in Fig. 1, a label s→ r : a represents an interaction where s sends a mes-

sage a to r. A vertex with label © represents the source of the graph and⋄+ marks vertexes corresponding

to branch or merge points, or to entry points of loops. In our formalism, we can look at G as a global

type with interface roles by identifying the roles I,J and H as interface roles. We do that by writing,

according to the syntax of Def. 3.1(i):

[G]〈{I,J,H}〉

Given a global type with interface roles, it is reasonable to expect all its roles to be implemented but the

interface ones, since they are actually used to describe the behaviour of the “environment” of the system.

The projections of global types with interface roles onto their interface roles yield CFSMs which are used

instead to check whether two systems can be connected in a safe way. In particular, to check whether

interface roles are “compatible”. According to the projection algorithm for generalized global types (see

§3.1 and Def. 3.4 of [8]), the projection on role J of the graph G of Fig. 1 is the following CFSM

MJ = G⇂J (see (1)) which describes the behaviour of that part of the environment of system S which

sends a text and waits for a positive or negative answer.

1

J

2

JM!text

MJ?ok MJ?fail

(1)



10 Global Types for Open Systems

H−→M : ack

M−→C : reset

M−→J : ok

C−→M : zero C−→M : notzero

H−→M : nack

M−→J : fail

M−→H : text

T−→M : text

M−→T : text

J−→M : text

I−→C : trialsNum

Figure 1: The global type G of the working example

Going on with our example, let us consider now another open system S′, having, among others, roles

A, B and K, where K is one of its interface roles. In S′, the roles A and B keep on sending, in an alternating

manner, a text message to K, which replies with a positive or negative acknowledgement (ok or fail,

respectively). Role B can send its message only after a successful sending by A, and vice versa. A fail

message from K forces the resending of the message. Let us assume that the behavior of interface role K

is given by the following CFSM MK (see (2)):

1

K

2

3

4

AK?text

KA!ok
KA!fail

BK?text

KB!ok
KB!fail

(2)



Barbanera, de’Liguoro & Hennicker 11

The interface roles J and K are compatible, in that the text message asked for by K can be the one

provided by J to system S, whereas the ok and fail messages J receives can be the ones that K sends to

system S′. In a nutshell, if we do not take into account channels in the labels, the language accepted by

J is the dual (i.e. ’!’ and ’?’ are exchanged) of that accepted by K.

Once the compatibility of J and K is ascertained, the behaviours of two gateways processes could be

easily constructed from MJ and MK. The idea is to insert an intermediate state with appropriate transitions

in the middle of any transition of MJ (and similarly of MK) enabling to pass messages from the interface

role of one system to the other. For instance, the transition of MJ from state 1 to state 2 labelled with

JM!text is split into two transitions (see Fig. 2 , left), where J first receives a text from K and then sends

it to M.

Such gateways processes can be constructed by means of an algorithm that we dub gw(·). It takes

two arguments: the CFSM to be transformed and the name of the interface role of the other system, and

returns a “gateway” CFSM which enables systems to interact. For what concerns our example, by ap-

plying gw(·) to MJ and K and by applying gw(·) to MK and J, we get the two CFSMs depicted in Figure 2.

By assuming [G′]〈I∪{K}〉 to be the GTIR denoting the open system S′ above, the pre-GTIR

[[G]〈{I,J,H}〉J↔K [G′]〈I∪{K}〉]〈I∪{I,H}〉

is actually a proper GTIR, since the interface roles J and K are compatible. Its semantics is the system

obtained by connecting S and S′ by means of the gateways gw(MJ,K) and gw(MK,J). Notice that the

GTIR now exposes the remaining interface roles I∪{I,H}.

Remark 3.2. We could choose to connect systems by implementing a single “two-sided” gateway pro-

cess, but this would imply to change all the names in the channels of S and S′ from and to J and K. This

is not feasible if, as it is likely, S and S′ have been separately implemented. Also there would be no

straightforward generation of a single “two-sided” gateway process.

Remark 3.3. One could wonder what would change if, instead of using gateways, one simply renamed

the target of communications to interface nodes. That is unfeasible (unless a rather strict relation of

compatibility were used). It is enough to take into account our working example: if we tried to rename

the target of communications between MM and MJ, machine MM should be completely rewritten. In fact,

whereas both in S and in the new system with gateways MM receives the text from MJ, in a new system

without gateways MM would receive the text both from MA and MB.

3.3 Interface compatibility and GTIRs

The following definitions are preliminary to the formal definition of interface compatibility and hence of

a proper GTIR. First, we extend the projection function of the global type formalism GT to pre-GTIRs.

The projection of interface roles to CFSMs can then be used below to check interface compatibility.

Definition 3.4. Let [G]〈I〉 be a pre-GTIR and let p ∈ P([G]〈I〉). We define

[G]〈I〉⇂p= G⇂p where G ∈ C ([G]〈I〉) such that p ∈ P(G).

At next we want to consider the dual of the language accepted by a CFSM when input and output are

reversed and the names of communication channels are forgotten. For that purpose we need the following

definition:

Definition 3.5. i) Let ϕ ∈ Act∗, we define ϕ 6C ∈ ({!,?}×A)∗ inductively by:

ε 6C = ε (pq?a ·ϕ)6C =?a ·ϕ 6C (pq!a ·ϕ)6C =!a ·ϕ 6C.

Moreover, for A ⊆ Act∗, A 6C = {ϕ 6C | ϕ ∈ A}.



12 Global Types for Open Systems

1

J

1̂

2

2̂′ 2̂′′

KJ?text

JM!text

JK!ok JK!fail

MJ?ok MJ?fail

1

K

1̂

2

2̂′ 2̂′′

3

3̂

4

4̂′′4̂′

AK?text

KJ!text

JK?failJK?ok

KA!failBK?text

KJ!text

JK?fail JK?ok

KB!fail
KB!ok KA!ok

Figure 2: gw(MJ,K) and gw(MK,J)

ii) We define (·) : ({!,?}×A)→ ({!,?}×A) by: !a =?a ?a =!a.

(·) is then straightforwardly extended also to words and finite sets of words.

Finally, we define interface compatibility by requiring that the CFSMs of two interface roles are

dual to each other. Additionally we require the absence of mixed states as well as input and output

determinism for each of the two CFSMs. In fact, if either of these two conditions were omitted one can

provide counterexamples showing that our results on preservation of safety properties would generally

no longer be valid.

Definition 3.6 (Interface compatibility).

i) Let M and M′ be two CFSMs over P and A (P′ and A
′ resp.). M and M′ are compatible, denoted by

M↔M′, whenever

1) L (M)6C = L (M′)6C.

2) M and M′ do not contain mixed states.

3) M and M′ are ?!-deterministic.

ii) Let [G1]
〈H〉 and [G2]

〈K〉 be two pre-GTIRs. Two interface roles H ∈ H and K ∈ K are interface

compatible, denoted by H↔K, if [G1]
〈H〉⇂H↔ [G2]

〈K〉⇂K.

It is easy to check that in our working example we have J↔H, since the CFSMs (1) and (2) are com-

patible, i.e. one accepts the dual language of the other if channel names are not taken into account; they

have no mixed states and are ?!-deterministic.

We are now ready to introduce our notion of GTIR. The syntactic construction of proper GTIRs

follows the construction of pre-GTIRs but imposes two semantic conditions for the underlying CFSMs

formulated in i) and ii) of the next definition.

Definition 3.7 (GTIR).

i) A pre-GTIR [G]〈I〉 formed by a global type G and interface roles I ⊆ P(G) is a GTIR if no communi-

cation between interface roles (i.e. roles in I) is present, i.e. for each p ∈ P(G) the projection G⇂p

has no transition with a label of the form IJ!a or IJ?a with I,J ∈ I.

ii) A pre-GTIR [[G1]
〈H〉H↔K [G2]

〈K〉]〈I〉 obtained by the composition of two GTIRs [G1]
〈H〉 and [G2]

〈K〉 via

interface roles H ∈ H, K ∈ K is a GTIR if H and K are interface compatible, i.e. H↔K.



Barbanera, de’Liguoro & Hennicker 13

3.4 Semantics of GTIRs

To provide semantics for GTIRs we first define the gateway transformation gw(·) previously mentioned.

By means of such a function it is possible to construct the gateway processes enabling the CFSM systems

described by GTIRs to be connected.

The gw(·) function takes as input a CFSM MH of some role H and a role name K. In our application

H and K will be interface roles where H is the interface role to be connected to the interface role K. The

gateway function transforms MH by “inserting” a new state “in between” any transition. In such a way a

transition from q to q′ receiving a message a from a role s(6= K) is transformed into two transitions: one

from q to the new state q̂ receiving a from s, and one from q̂ to q′ sending a to K. Conversely, a transition

from q to q′ sending a message a to a role s(6= K) is transformed into two transitions: one from q to the

new state q̂ receiving a from K, and one from q̂ to q′ sending a to s. We distinguish the new “inserted”

states by superscripting them by the transition they are “inserted in between”.

Definition 3.8 (The gw(·) transformation).

Let MH = (Q,q0,A,δ ) be the CFSM of a role H, and let K be a role name. We define

gw(MH,K) = (Q′,q0,A,δ
′)

where

- Q′ = Q∪ Q̂δ , with Q̂δ =
⋃

q∈Q{q(q,l,q
′) | (q, l,q′) ∈ δ}, and

- δ ′ = {(q,KH?a,q(q,Hs!a,q′ )),(q(q,Hs!a,q′),Hs!a,q′) | (q,Hs!a,q′) ∈ δ}
∪ {(q,sH?a,q(q,sH?a,q′ )),(q(q,sH?a,q′ ),HK!a,q′) | (q,sH?a,q′) ∈ δ}

For the sake of readability, we shall often denote elements q(q,l,q
′),q(q,l

′ ,q′′),q(q,l
′′,q′′′), . . . of Q̂δ

by q̂, q̂′, q̂′′, . . .. We shall also refer to Q̂δ simply as Q̂ when clear from the context.

We can now define the composition of two communicating systems S1 and S2 w.r.t. compatible inter-

face roles H and K. We take the union of the CFSMs of S1 and S2 but replace the CFSMs MH and MK of

the interface roles H and K by their gateway CFSMs gw(MH,K) and gw(MK,H).

Definition 3.9 (Composition of communicating systems).

Let S1 = (M1
p)p∈P1

and S2 = (M2
q)q∈P2

be two communicating systems over P1 and A1 (P2 and A2 resp.)

such that P1 ∩P2 = /0. Moreover, let H ∈ P1 and K ∈ P2 be such that H↔K (i.e. M1
H↔M2

K).

The composition of S1 and S2 w.r.t. H and K is the communicating system

S1
H↔KS2 = (Mp)p∈(P1∪P2)

over P1∪P2 and A1∪A2 where MH = gw(M1
H ,K), MK = gw(M2

K ,H), Mp = M1
p for all p∈ P1 and Mp= M2

p

for all p ∈ P2.2

The semantics of a GTIR is inductively defined following its syntactic construction. In the base case,

its semantics is the communicating system obtained by the projections of the underlying global graph.

The semantics of a composite GTIR is the composition of the CFSM systems denoted by its constituent

parts.

Definition 3.10 (GTIR semantics).

The communicating system [[[G]〈I〉]] denoted by a GTIR [G]〈I〉 is inductively defined as follows:

- [[[G]〈I〉]] = (G⇂p)p∈P(G) where G is a global type in GT ;

- [[[[G1]
〈H〉H↔K [G2]

〈K〉]〈I〉]] = [[[G1]
〈H〉]]H↔K [[[G2]

〈K〉]].

2The CFSMs over P1 and A1 (P2 and A2 resp.) are considered here as CFSMs over P1 ∪P2 and A1 ∪A2.



14 Global Types for Open Systems

It is immediate to check that the operation of “connecting” GTIRs is semantically commutative and

associative, i.e. the following holds:

(comm) [[[[G1]
〈H〉H↔K [G2]

〈K〉]〈I〉]] = [[[[G2]
〈K〉K↔H [G1]

〈H〉]〈I〉]]
(ass) [[[[[G1]

〈H〉H↔K [G2]
〈K〉]〈I〉I↔J [G3]

〈J〉]〈I
′〉]] = [[[[G1]

〈H〉H↔K [[G2]
〈K〉I↔J [G3]

〈J〉]〈J
′〉]〈I

′〉]]
where J′ = K∪J\{I,J}

4 Preservation of Safety-Properties

In the present section we show that if we take two safe communicating systems S1 and S2 such that S1

possesses a CFSM M1
H and S2 a CFSM M2

K which is compatible with M1
H, replace both CFSMs by their

gateway transformations and then join the resulting systems, we get a a safe system.

General assumption: In the following of this section we generally assume given a system

S = S1
H↔K S2 composed as described in Def. 3.9 from systems S1 and S2 with compatible CFSMs M1

H

and M2
K .

Notation: The channels of S are C = {pq | p,q ∈ P,p 6= q} and the channels of Si are

Ci = {pq | p,q ∈ Pi,p 6= q} for i = 1,2. If s = (~q,~w) is a configuration of S, where ~q = (qp)p∈P and

~w = (wpq)pq∈C, we write s|i for (~q|i ,~w|i) where ~q|i = (qp)p∈Pi
and ~w|i = (wpq)pq∈Ci

(i = 1,2). Notice that

s|i is not necessarily a configuration of Si, because of possible states in Q̂, which are the additional states

of the gateways.

The following technical properties easily descend from the definition of gw(·). In particular from

the fact that the gateway transformation of a machine M does insert an intermediate state between any

pair of states of M connected by a transition. By definition, the intermediate state possesses exactly one

incoming transition and one outgoing transition.

Fact 4.1. Let s = (~q,~w) ∈ RS(S) be a reachable configuration of S = S1
H↔KS2.

1. If qH = q̂ ∈ Q̂H then qH is not final and there exists a unique transition (qH, , ) ∈ δH.

Moreover such a transition is of the form (qH,Hs!a,q′) with q′ 6∈ Q̂H.

Similarly for K.

2. If qH 6∈ Q̂H then either qH is final, or any transition (qH, , ) ∈ δH is an input one, that is of the form

(qH,sH?a, q̂′H) with q̂′H ∈ Q̂H. Similarly for K.

3. If qH 6∈ Q̂H then

a) If (qH,KH?a, q̂′H) ∈ δH then there exists (q̂′H,Hs!a,q′′H) ∈ δH with s 6= K such that (qH,Hs!a,q′′H) ∈
δ 1
H . The same holds for δ 2

K by exchanging H with K and vice versa.

b) If (qH,sH?a, q̂′H) ∈ δH with s 6= K then there exists (q̂′H,HK!a,q′′H) ∈ δH such that (qH,sH?a,q′′H) ∈
δ 1
H . The same holds for δ 2

K by exchanging H with K and vice versa.

If a reachable configuration of the connected system S = S1
H↔K S2 does not involve an intermediate

state of the gateway MH = gw(M1
H ,K), then by taking into account only the states of machines of S1 and

disregarding the channels between the gateways, we get a reachable configuration of S1. Similarly for

S2.

Lemma 4.2.

Let s = (~q,~w) ∈ RS(S) be a reachable configuration of S = S1
H↔KS2.



Barbanera, de’Liguoro & Hennicker 15

i) qH 6∈ Q̂H =⇒ s|1 ∈ RS(S1);

ii) qK 6∈ Q̂K =⇒ s|2 ∈ RS(S2).

Proof. [Sketch] (i) If s ∈ RS(S), then there exists s0 −→ s1 −→ . . .−→ sn−1 −→ sn = s. Let si = (~qi, ~wi)
(i = 0, ..n). Let j ≥ 0 be the smallest index such that q jH

6∈ Q̂H and q j+1H ∈ Q̂H (if there is not such a

j, then the thesis follows immediately). By definition of gw(·) we have that s j
rH?a
−→ s j+1 for a certain r.

Now let t ≥ j+1 be the smallest index such that qtH = q j+1H
and qt+1H 6∈ Q̂H. Such an index t does exist

because of the hypothesis qH 6∈ Q̂H (moreover, notice that no-self loop transitions are possible out of a

state in Q̂H). By definition of gw(·) we have that st
Hs!a
−→ st+1 for a certain s. It is now possible to build a

configuration-transitions sequence like the following one

s0 −→ s1 −→ . . . s j
rH?a
−→ s j+1

Hs!a
−→ s′j+2 −→ . . .−→ s′n−1 −→ sn = s

where q j+2H
6∈ Q̂H.

By iterating this procedure, we can get a sequence

s0 −→ s1 −→ . . .s j −→ s j+1 −→ s′j+2 −→ s′′j+3 −→ . . .−→ s′′n−1 −→ sn = s

such that any transition of the form rH?a is immediately followed by a transition Hs!a.

Now, it is possible to check that

a) for z = 0.. j−1, either sz|1 −→1 sz+1|1 or sz|1 = sz+1|1 , and

b) s j |1
−→1 s′j+2|1

.

By doing that for any transition of the form rH?a which is immediately followed by a transition Hs!a,

we can get a sequence s0|1 −→
∗ s|1 . So s|1 ∈ RS(S1).

(ii) This case can be treated similarly to (i).

In a reachable configuration of a connected system, if the states of the gateways are not among those

introduced by the transformation gw(·) and not final, and if the channels between the gateways are empty,

then one of the two gateways is ready to receive messages that the other gateway is ready to receive from

its system’s participants. This property relies on compatibility.

Lemma 4.3. Let s = (~q,~ε) ∈ RS(S) be a reachable configuration of S = S1
H↔KS2 such that

1. qH 6∈ Q̂H and qK 6∈ Q̂K, and

2. qH and qK are not final.

Then either

a) all the transitions from qH in δH are of the form (qH,KH? , ) and

all the transitions from qK in δK are of the form (qK,sK? , ) with s 6= H, or

b) all the transitions from qK in δK are of the form (qK,HK? , ) and

all the transitions from qH in δH are of the form (qH,sH? , ) with s 6= K

Proof. [Sketch] Let

s0
l1−→ s1

l2−→ . . .
ln−1
−→ sn−1

ln−→ sn = s

be a configuration-transitions sequence leading to s ∈ RS(S). Let s|H be the sequence of transitions
li1−→ . . .

liH−→ of the above sequence such that, for any m ∈ {i1, ..iH}, lm ∈ δH. We define similarly the

sequence s|K. By definition of gw(·), and by the fact that qH 6∈ Q̂H, we have that s|H is made of consecutive

pairs of the form
( ,KH?a, )
−→

( ,Hs!a, )
−→ , with s 6= K, or

( ,sH?a, )
−→

( ,HK!a, )
−→ , with s 6= K. Similarly for s|K.



16 Global Types for Open Systems

Since wHK = wKH = ε (which immediately follows from the hypothesis s = (~q,~ε)), the number of pairs
( ,KH? , )
−→

( ,Hs! , )
−→ in s|H is equal to the number of pairs

( ,rK? , )
−→

( ,KH! , )
−→ in s|K; and vice versa. This implies

that | s|H |=| s|K |.
Now, by extending to sequences s|K and s|H the following symbols function on pairs

symb(
( ,KH?a, )
−→

( ,Hs!a, )
−→ ) =!a symb(

( ,sH?a, )
−→

( ,HK!a, )
−→ ) =?a

(and the clauses got by exchanging H and K), we get symb(s|H) ∈ L (M1
H)

6C and symb(s|K) ∈ L (M2
K)

6C.

Moreover, symb(s|H) = symb(s|K). Notice that, by ?!-determinism of M1
H and M2

K and absence of mixed

states, there are no other sequences of pairs for which the previous properties hold.

Now, by contradiction, and by recalling that qH and qK are not final, let us assume that either

I) all the transitions from qH in δH are of the form (qH,KH? , ) and

all the transitions from qK in δK are of the form(qK,HK? , ) or

II) all the transitions from qH in δH are of the form (qH,sH? , ) with s 6= H and

all the transitions from qK in δK are of the form (qK,sK? , ) with s 6= H.

Notice that no other possibilities are given because, by compatibility, M1
H and M2

K have no mixed state.

If (I) holds, we get a contradictrion, since, by Fact 4.1(3), we would get both symb(s|H)·!a ∈ L (M1
H)

6C

and symb(s|K)·!b ∈ L (M2
K)

6C for some a and b, which is impossible by compatibility.

In case (II) we get a contradiction by arguing analogously as in the previous case.

Lemma 4.4. Let s = (~q,~ε) ∈ RS(S) be a deadlock configuration for S. Then, either s|1 ∈ RS(S1) is a

deadlock configuration for S1 or s|2 ∈ RS(S2) is a deadlock configuration for S2 (or both).

Proof. By definition of deadlock configuration and by Fact 4.1(1), we have that neither qH ∈ Q̂H nor

qK ∈ Q̂K. Otherwise there will be an output transition from either qH or qK, contradicting s to be a deadlock

configuration. Hence necessarily qH 6∈ Q̂H and qK 6∈ Q̂K. So, by Lemma 4.2 we get s|i ∈ RS(Si) for i = 1,2.

We show that under the assumption either s|1 ∈ RS(S1) or s|2 ∈ RS(S2) is a deadlock configuration.

Since s = (~q,~ε) ∈ RS(S) is a deadlock configuration for S, we have that for all r ∈ P, qr is a receiving

state of Mr. In particular, for all r ∈ P1 \{H}, qr is a receiving state of Mr = M1
r and for all r ∈ P2 \{K},

qr is a receiving state of Mr = M2
r . It remains to show that either qH is a receiving state of M1

H or qK is a

receiving state of M1
K , whereby we can assume that qH is a receiving state of MH = gw(M1

H ,K) and qK is a

receiving state of MK = gw(M2
K ,H).

Without loss of generality we consider qH. The proof for qK is analogous. By Lemma 4.3 we have

two possibilities to take into account

All the transitions from qH in δH are of the form (qH,KH? , ).
In such a case, still resorting to Lemma 4.3, we have that all the transitions from qK in δK are of the

form (qK,sK? , ) with s 6= H and, by Fact 4.1(3),

(qK,sK?a, q̂′K) ∈ δK implies (q̂′K,KH!a,q′′K) ∈ δK and (qK,sK?a,q′′K) ∈ δ 2
K .

Hence qK is a receiving state of M2
K . In summary, s|2 is a deadlock configuration for S2.

All the transitions from qH in δH are of the form (qH,sH? , ) with s 6= H.

In such a case, by Fact 4.1(3), we have that

(qH,sH?a, q̂′H) ∈ δH implies (q̂′H,HK!a,q′′H) ∈ δH and (qH,sH?a,q′′H) ∈ δ 1
H .

Hence qH is a receiving state of M1
H . In summary, s|1 is a deadlock configuration for S1.



Barbanera, de’Liguoro & Hennicker 17

Corollary 4.5 (Preservation of deadlock-freeness).

Let S1 and S2 be deadlock-free. Then S = S1
H↔KS2 is deadlock-free.

Proof. By contradiction, let us assume there is an s ∈ RS(S) such that s = (~q,~ε) is a deadlock configura-

tion. We get immediately a contradiction by Lemma 4.4 and the fact that S1 and S2 are two deadlock-free

systems.

Compatibility of interface roles forces all the messages sent by a gateway to be correctly received by

the other one. This implies that if the gateways both reach final states, the channels connecting them are

empty.

Lemma 4.6. If s = (~q,~w) ∈ RS(S) is a reachable configuration of S = S1
H↔K S2 such that both states qH

and qK are final, then wHK = wKH = ε .

Proof. [Sketch] By Fact. 4.1(1), qH /∈ Q̂H and qK /∈ Q̂K. We now proceed as in the first part of the proof

of Lemma 4.3. Let

s0
l1−→ s1

l2−→ . . .
ln−1
−→ sn−1

ln−→ sn = s

be a configuration-transitions sequence leading to s ∈ RS(S).

Let s|H be the sequence of transitions
li1−→ . . .

liH−→ of the above sequence such that, for any m ∈ {i1, ..iH},

lm ∈ δH. We define similarly the sequence s|K. By definition of gw(·), and by the fact that qH 6∈ Q̂H, we

have that s|H is made of consecutive pairs of the form
( ,KH?a, )
−→

( ,Hs!a, )
−→ , with s 6= K, or

( ,sH?a, )
−→

( ,HK!a, )
−→ , with

s 6= K. Similarly for s|K.

Without loss of generality, let us assume s|H to begin with a pair of the form
( ,sH?a, )
−→

( ,HK!a, )
−→ . (Otherwise

s|K would begin with a pair of the form
( ,sK?a, )
−→

( ,KH!a, )
−→ since L (M1

H)
6C = L (M2

K)
6C).) Hence, up to the

role s, the symbols of s|K are uniquely determined by s|H because of ?!-determinism and absence of

mixed states. Then symb(s|H) ∈ L (M1
H) and symb(s|K) ∈ L (M2

K). Moreover, symb(s|H) = symb(s|K). By

assuming either wHK 6= ε or wKH 6= ε we would get a contradiction. In fact, by the above, | s|H |=| s|K |.

Lemma 4.7. Let s = (~q,~w) ∈ RS(S) be an orphan-message configuration for S. Then, either s|1 is an

orphan-message configuration for S1 or s|2 is an orphan-message configuration for S2.

Proof. By Fact 4.1(1), no state in Q̂H ∪ Q̂K can be final. So, by definition of orphan-message config-

uration, qH 6∈ Q̂H and qK 6∈ Q̂K. Hence, for i = 1,2, s|i ∈ RS(Si) by Lemma 4.2. Now, by definition of

orphan-message configuration, both qH and qK are final in MH and MK respectively. Hence, by Lemma 4.6,

wHK = wKH = ε . This implies that either w|1 6=~ε or w|2 6=~ε . Moroeover, qH and qK must also be final in

M1
H and M2

K respectively. The rest of the thesis follows then by definition of orphan-message configura-

tion.

Corollary 4.8 (Preservation of no orphan-message). Let S1 and S2 be such that both RS(S1) and RS(S2)
do not contain any orphan-message configuration. Then there is no orphan-message configuration in

RS(S).

Proof. By contradiction, let us assume there is an s ∈ RS(S) which is an orphan-message configuration.

We get immediately a contradiction by Lemma 4.7.

Proposition 4.9 (Preservation of no unspecified reception). Let S1 and S2 be such that both RS(S1) and

RS(S2) do not contain any unspecified reception configuration. Then there is no unspecified reception

configuration in RS(S).



18 Global Types for Open Systems

Proof. [Sketch] By contradiction, let us assume there is an s = (~q,~w) ∈ RS(S) which is an unspecified

reception configuration. Moreover, let r∈ P and qr be the receiving state of Mr prevented from receiving

any message from any of its buffers (Definition 2.4(iii)). Without loss of generality, we assume r ∈ P1.

The following cases can occur:

qH 6∈ Q̂H.

By Lemma 4.2 we get s|1 ∈ RS(S1). Two sub-cases are possible:

r 6= H

In such a case we get immediately a contradiction by the hypothesis that RS(S1) does not

contain any unspecified reception configuration.

r= H

qH (= qr) is hence a receiving state. So let {(qH,s jH?a j, q̂ j)} j=1..m be the set of all the out-

going transitions from qH in δH. By definition of unspecified reception configuration, for any

j = 1..m, | ws jH |> 0 and wsH 6∈ a j ·A
∗. By compatibility, and in particular by the absence of

mixed states, we have just the following two possibilities:

s j 6= K for any j = 1..m.

By Fact 4.1(3) and definition of gw(·) we have that

[(qH,s jH?a j, q̂ j) ∈ δH ∧ s j 6= K] ⇐⇒ (qH,sH?a j,q j) ∈ δ 1
H

This implies s|1 to be an unspecified reception configuration for S1. Contradiction.

s j = K for any j = 1..m.

Let s|H and s|K be defined as in the proofs of Lemmas 4.3 and 4.6. We define now

- s|H! as the sequence made of the transition pairs in s|H of the form
( ,KH?a, )
−→

( ,Hs!a, )
−→

with s 6= K, and

- s|K? as the sequence made of the transition pairs in s|K of the form
( ,sK?a, )
−→

( ,KH!a, )
−→

with s 6= H.

Let now n =| s|H! | and let s
|H!

/n
be the sequence of the messages of the first n elements of

s|H!. By compatibility, in particular L (M1
H)

6C = L (M2
K)

6C, it follows that, if wKH ∈ b ·A∗,

then s
|K?

/n+1
= s

|K?

/n
·b and ∃ j.a j = b. So contradicting that, for any j = 1..m, wKH 6∈ a j ·A

∗.

qH = q̂ ∈ Q̂H.

By Fact 4.1(1) qH ∈ Q̂H is a sending state such that (qH,Hs!a,q′′H) ∈ δH. Hence it is impossible that

r= H. So, let r 6= H. In such a case, by definition of gw(·), we have necessarily a unique transition

of the form (q′H,pH?a,qH) ∈ δH. Moreover, q′H 6∈ Q̂H. So there exists necessarily an element s′ ∈

RS(S) such that s′ = (~q′, ~w′)
pH?a
−→ s with q′H 6∈ Q̂H. It follows that also s′ is an unspecified-reception

configuration and s′|1 ∈ RS(S1). Then we get a contradiction by arguing like in the first case,

sub-case r 6= H.

We are now ready to state our main results.

Corollary 4.10 (Safety properties preservation).

1. Let S = S1
H↔K S2 be the system composed from systems S1 and S2 with compatible CFSMs for the

roles H and K. If S1 and S2 are both safe, then S is safe.

2. Let [G]〈I〉 = [[G1]
〈H〉H↔K [G2]

〈K〉]〈I〉 be the GTIR composed from GTIRs [G1]
〈H〉 and [G2]

〈K〉 via com-

patible interface roles H and K. If [[[G1]
〈H〉]] and [[[G2]

〈K〉]] are both safe, then [[[G]〈I〉]] is safe.



Barbanera, de’Liguoro & Hennicker 19

As a consequence, by induction on the pairwise composition of GTIRs, we obtain the following

desired result.

Corollary 4.11. Let [G]〈I〉 be a GTIR such that, for any global graph G ∈ C ([G]〈I〉),
the system (G⇂p)p∈P(G) is safe. Then [[[G]〈I〉]] is safe.

5 Conclusions

We have proposed the GTIR formalism (Global Types with Interface Roles) to support the usage of global

types in the context of open systems, whenever the underlying global type formalism, like [8, 13, 16],

allows the interpretation of global types in terms of systems of communicating finite state machines (CF-

SMs), Our main result is that safety properties (deadlock-freeness, no orphan messages, no unspecified

receptions) are preserved by composing open systems when interface roles are compatible.

In [9, Sect. 6], the authors use the same compatibility notion for CFSMs showing that a system made

of two CFSMs, which both are deterministic and do not have mixed states, is free from deadlocks and

unspecified receptions. The general aim of enhancing the expressive power of global type formalisms

has been variously pursued in the literature. For example, in [15] the authors define a formalism where

global types with initial and end points can be combined. The results in [14] are slightly more related to

our approach. It is shown how to define choreographies partially specified, where only some processes

are provided. In case two choreographies are composable, some completely specified process of one can

be used instead of the unspecified ones in the other.

Even if some loose connections can be envisaged with the approach of interface automata of [6, 7],

our approach to open global types diverges from them in many relevant points: First of all, an interface

automaton describes the communication abilities of an automaton with its environment in terms of input

and output actions while internal behavior is described by internal actions. GTIRs, however, emulate the

expected behavior of the environment by providing distinguished interface roles and their CFSMs, while

internal behavior is modelled by the CFSMs of the other roles. Interface automata rely on synchronous

communication while we consider asynchronous communication via FIFO buffers. The crucial idea

of compatibility for interface automata is that no error state should be reachable in the synchronous

product of two automata. An error state is a state, in which one automaton wants to send a message

to the other but the other automaton is not ready to accept it. This situation is related to unspecified

reception in the asynchronous context. The speciality of interface automata is, however, that an error state

must be autonomously reachable, i.e. without influence of the environment. Since interface automata

use synchronous message passing, the problem of orphans is empty. Moreover, the theory of interface

automata does not consider deadlock-freedom. On the other hand, interface automata consider also

refinement and preservation of compatibility by refinement.

In the future, we first want to study whether our conditions for compatibility could be relaxed still

guaranteeing preservation of safety. Moreover, it would be worth taking into account, besides safety

properties, also liveness properties. In particular, the generalised global types of [8], at the cost of being

less expressive than global types in [13, 16], guarantee also liveness properties. Properties preserved by

connecting CFSM systems via gateways are worth to be investigated also for systems unrelated to global

type formalisms. For instance, a variety of communication properties are formalised for asynchronous

I/O-transition systems in [10]. Preservation by composition is shown there but using bags instead of

FIFO buffers for communication. Finally, the current composition operator for GTIRs is binary and thus

can only lead to tree-like compositions of global graphs. Therefore it would be challenging to see, how

we could get cyclic architectures.



20 Global Types for Open Systems

Acknowledgements We are grateful to the anonymous referees for several helpful comments and sug-

gestions. We also thank Emilio Tuosto for some macros used to draw Figure 1. The first author is also

thankful to Mariangiola Dezani for her everlasting support.

References

[1] Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–342, 1983.

doi:10.1145/322374.322380.

[2] Marco Carbone, Kohei Honda, and Nobuko Yoshida. A calculus of global interaction based on session types.

Electr. Notes Theor. Comput. Sci., 171(3):127–151, 2007. doi:10.1016/j.entcs.2006.12.041.

[3] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global types and multi-party

session. Logical Methods in Computer Science, 8(1), 2012. doi:10.2168/LMCS-8(1:24)2012.

[4] Gérard Cécé and Alain Finkel. Verification of programs with half-duplex communication. Inf. Comput.,

202(2):166–190, 2005. doi:10.1016/j.ic.2005.05.006.

[5] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global progress for

dynamically interleaved multiparty sessions. Mathematical Structures in Computer Science, 26(2):238–302,

2016. doi:10.1017/S0960129514000188.

[6] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In Proceedings of the 8th European Soft-

ware Engineering Conference held jointly with 9th ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering 2001, Vienna, Austria, September 10-14, 2001, pages 109–120, 2001.

doi:10.1145/503209.503226.

[7] Luca de Alfaro and Thomas A. Henzinger. Interface-based design. In Engineering Theories of Software

Intensive Systems: Proceedings of the NATO Advanced Study Institute on Engineering Theories of Software

Intensive Systems Marktoberdorf, Germany 3–15 August 2004, pages 83–104, Dordrecht, 2005. Springer

Netherlands. doi:10.1007/1-4020-3532-2_3.

[8] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating automata. In

ESOP’12, pages 194–213, 2012. doi:10.1007/978-3-642-28869-2_10.

[9] Mohamed G. Gouda, Eric G. Manning, and Yao-Tin Yu. On the progress of communication between two

machines. Information and Control, 63(3):200–2016, 1984. doi:10.1016/S0019-9958(84)80014-5.

[10] Serge Haddad, Rolf Hennicker, and Mikael H. Møller. Channel properties of asynchronously composed petri

nets. In Petri Nets, volume 7927 of Lecture Notes in Computer Science, pages 369–388. Springer, 2013.

doi:10.1007/978-3-642-38697-8_20.

[11] Rolf Hennicker. A calculus for open ensembles and their composition. In Leveraging Applications of

Formal Methods, Verification and Validation: Foundational Techniques - 7th International Symposium,

ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Proceedings, Part I, pages 570–588, 2016.

doi:10.1007/978-3-319-47166-2_40.

[12] Rolf Hennicker and Michel Bidoit. Compatibility properties of synchronously and asyn-

chronously communicating components. Logical Methods in Computer Science, 14(1), 2018.

doi:10.23638/LMCS-14(1:1)2018.

[13] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical choreogra-

phies. In POPL 2015, pages 221–232, 2015. doi:10.1145/2676726.2676964.

[14] Fabrizio Montesi and Nobuko Yoshida. Compositional choreographies. In CONCUR’13, volume 8052 of

LNCS, pages 425–439. Springer, 2013. doi:10.1007/978-3-642-40184-8_30.

[15] Nicolas Tabareau, Mario Südholt, and Éric Tanter. Aspectual session types. In MODULARITY ’14, pages

193–204. ACM, 2014. doi:10.1145/2577080.2577085.

[16] Emilio Tuosto and Roberto Guanciale. Semantics of global view of choreographies. J. Log. Algebr. Meth.

Program., 95:17–40, 2018. doi:10.1016/j.jlamp.2017.11.002.

http://dx.doi.org/10.1145/322374.322380
http://dx.doi.org/10.1016/j.entcs.2006.12.041
http://dx.doi.org/10.2168/LMCS-8(1:24)2012
http://dx.doi.org/10.1016/j.ic.2005.05.006
http://dx.doi.org/10.1017/S0960129514000188
http://dx.doi.org/10.1145/503209.503226
http://dx.doi.org/10.1007/1-4020-3532-2_3
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1016/S0019-9958(84)80014-5
http://dx.doi.org/10.1007/978-3-642-38697-8_20
http://dx.doi.org/10.1007/978-3-319-47166-2_40
http://dx.doi.org/10.23638/LMCS-14(1:1)2018
http://dx.doi.org/10.1145/2676726.2676964
http://dx.doi.org/10.1007/978-3-642-40184-8_30
http://dx.doi.org/10.1145/2577080.2577085
http://dx.doi.org/10.1016/j.jlamp.2017.11.002

	1 Introduction
	2 Systems of Communicating Finite State Machines
	3 Global Types with Interface Roles
	3.1 Pre-GTIRs
	3.2 Working example
	3.3 Interface compatibility and GTIRs
	3.4 Semantics of GTIRs

	4 Preservation of Safety-Properties
	5 Conclusions

