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In this paper we introduce the notion of spread net. Spread nets are (safe) Petri nets equipped with

vector clocks on places and with ticking functions on transitions, and are such that vector clocks

are consistent with the ticking of transitions. Such nets generalize previous families of nets like

unfoldings, merged processes and trellis processes, and can thus be used to represent runs of a net

in a true concurrency semantics through an operation called the spreading of a net. By contrast with

previous constructions, which may identify conflicts, spread nets allow loops in time.

1 Introduction

One of the most popular motto in Petri nets is that “the semantics of a net is a net” ([14]). Along this line

of thought non sequential processes have been proposed ([8]), where the causal dependencies among the

transitions of a net are faithfully represented. To model all the possible non sequential executions of nets,

the notion of unfolding of a net has been proposed in [13] and further investigated in [16] and [6]. The

idea is to represent conflicts as branching alternatives (whence the name of Branching Processes, that

are essentially unfoldings).

Unfoldings were introduced to represent the non sequential behaviors of (safe) Petri nets, but their

main application originated in the fact that they offered new techniques for the verification of concurrent

systems: rather than exploring the sequential behaviors of nets the use of partial orders allows one to

have more compact representations of these behaviors. Still, the data structure is in general infinite or

too large. One of the first attempts to overcome this problem was to turn non sequential processes into an

algebra, with a parallel composition and a suitable notion of concatenation ([4] and further investigated

in [5]). An orthogonal approach has been the one pursued in [12] where the unfolding is cut in a way

that still allows one to infer all the information needed to represent all possible computations of a safe

net. Another way to address this problem is to define an equivalence on some behaviors of (safe) Petri

nets, which implies that the data structure adopted cannot be any longer the one devised for unfoldings

or prefixes. The notion of unravel net introduced in [3] and [2] goes in this direction requiring that each

execution is a partial order, but the overall structure does not need to be a partial order. Overcoming

the request that (at least locally) the behavior should be represented using a partial order has led to the

introduction of a reveal relation playing the role of causality [1, 9]. There it is shown how to relate

occurrence nets and reveal relations. Still the more compact data structure has its origin in the partial

ordering representing the dependencies in the net.

In this paper we face the problem from another point of view. Rather than focussing on the properties

the whole net representing the behavior of another net has to enjoy, we enrich the net with informations

that will play a role analogous to those played by the properties the data structure has to fulfil.

We focus on systems (nets) that are composed of simpler subsystems: basically finite state automata.

These automata synchronize on common transitions. The resulting system gives us the basic ingredients

we want to elaborate on: causality, that coincides with time in each subsystem, and conflicts, which are

local to a component as well. Each synchronization among finite state automata determines the expansion
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of conflicts and causalities to all the components of the system. When unfolding a net, one has to unfold

completely both time and conflicts, and this yields a data structure that is generally infinite in time, and

infinite also in conflicts (branchings) when choices are repeated.

These difficulties have been addressed by limiting first the time dimension: the unfolding is restricted

to a finite prefix ([11]) that is sufficient (or “complete”) to check the properties at stake, for example the

reachability of some marking. Still the resulting data structure may be unnecessarily big, and in the last

decade, merged processes ([10]) and the closely related trellis processes ([7]) were introduced to limit the

expansion of the structure due to conflicts. The idea consists in merging runs that result from different

choices but produce identical resources, where identical may mean that the same resource is produced

by several alternative activities at the same time (trellis processes) or the i-th occurrence of the same

resource is produced by again alternative activities (merged processes). These two approaches combined

are quite successful to represent in a compact manner a sufficient set of runs of a concurrent system.

However, they rely on distinct treatments for time and for conflicts.

Spread nets are nets where each place is annotated, and the annotation depends on the transitions

putting a token in that place. In this way it is possible to keep track of the way that place is reached.

Based on this notion, in the present paper we propose the notion of spreading of nets as a unified

approach to Petri net unfolding. While trellises and merged processes had abandoned the requirement

that nodes should not be in self-conflict in the unfolding, the main move here is to abandon also the

requirement that the unfolding should be a directed acyclic graph. In other words, we consider structures

that partially unfold time, and then loop back to previously met resources. This parametric approach is

flexible enough to partially or totally expand both conflicts and time, thus capturing previous construc-

tions in a unified setting. It also assigns an equal treatment to time and conflicts. We consider structures

that are just ordinary nets where places are annotated with vector-clocks, and these annotations gather all

the information about time and conflicts.

The capability of folding time resembles the notion of concatenation introduced on non-sequential

behaviors of nets, whereas the capability of folding conflicts can be considered similar to the so called

collective tokens interpretations in Petri nets. According to this interpretation, the way a token is pro-

duced does not influence the subsequent use of it. With the capability of folding both time and conflict we

allow to have that certain components of the net are executed according the individual token philosophy,

whereas other parts may have different interpretations.

Structure of the paper: The paper is organized as follows. In the next section we recall the basic def-

initions about nets and we introduce multi-clock nets. In Section 3 we define the domains of information

on which our spreading strategy is based. Spread nets over a suitable domain of information are then

presented in Section 4. In Section 5 we first introduce the spreading operation of an multi-clock net,

and then we show that the spreading of a net enjoys some nice algebraic properties similar to the ones

of unfoldings and trellis processes. We also show that indeed our spreading strategy covers the ones of

trellis and branching processes.

2 Nets

Notation: With N we denote the set of natural numbers. Let X be a set, with |X | we denote the

cardinality of the set. Let A be a set, a multiset of A is a function f : A → N. The usual operations

on multisets, like multiset union + or multiset difference −, are defined in the standard way. We write
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f ≤ f ′ if f (a) ≤ f ′(a) for all a ∈ A. If a multiset f is a set, i.e. for all a ∈ A. f (a) ≤ 1, we confuse the

multiset with the set and write a ∈ f to indicate that f (a) = 1.

Given an alphabet Σ, with Σ∗ we denote as usual the set of words on Σ, and with ε the empty word.

The length of a word is defined as usual and, with abuse of notation, it is denoted with | · |.

Given two mapping f : A → B and g : B → C, with f ◦ g we denote the composition of the two

mappings defined as f ◦g(a) = g( f (a)).

(Safe) Nets: We first review the notions of (safe) labeled Petri net and of the token game. Consider a

set Σ of names.

Definition 1. A labeled Petri net over Σ is a 5-tuple N = 〈P,T,F,m, ℓ,Σ〉, where

• P is a set of places and T is a set of transitions (with P∩T = /0),

• F ⊆ (P×T )∪ (T ×P) is the flow relation,

• m : P → N is called the initial marking, and

• ℓ : T ∪P → Σ is a labeling mapping.

With respect to the usual definition we have already added the labeling mapping, which is defined

both on places and transitions. This will be handy when defining spread nets. Clearly ordinary Petri

nets are those where the labeling is the identity (thus the transition names are the transitions themselves,

and place names are the places themselves). Subscripts or superscripts on the net name carry over to the

names of the net components. Given x ∈ T ∪P, •x = {y | (y,x) ∈ F} and and x• = {y | (x,y) ∈ F}.
•x and x• are called the preset and postset respectively of x. Observe that, given a t ∈ T , •t and t•

can be seen ad multisets over P, as well as a marking m. A net 〈P,T,F,m, ℓ,Σ〉 is as usual graphically

represented as a bipartite directed graph where the nodes are the places and the transitions, and where

an arc connects a place p to a transition t iff (p, t) ∈ F and an arc connects a transition t to a place p iff

(t, p) ∈ F . We assume that all nets we consider are such that ∀t ∈ T •t and t• are not empty.

A transition t is enabled at a marking m, if m contains the preset of t, where contain here means that

m(p) ≥ 1 for all p ∈ •t, or equivalently •t ≤ m. If a transition t is enabled at a marking m it may fire

yelding a new marking defined as m′(p) =m(p)−|•t∩{p}|+ |t•∩{p}|, or equivalently m′ =m− •t+t•.

The firing of t at m giving m′ is denoted as m [t〉m′. The set of reachable markings of a net N is denoted

with MN . A net N is said to be safe whenever its places hold at most one token in all possible reachable

marking, namely ∀m ∈MN it holds that m can be seen as a set (the only possible values are 0 and 1). As

markings may be considered as the characteristic function of a set, we will often confuse markings with

subsets of places.

Net morphisms: We recall now the notion of morphism between safe nets [16].

Definition 2. Let N = 〈P,T,F,m, ℓ,Σ〉 and N ′ = 〈P′,T ′,F ′,m′, ℓ′,Σ′〉 be safe nets over Σ and Σ′ respec-

tively. A morphism φ : N → N ′ is the triple 〈φT ,φP,φℓ〉, where

• φT : T → T ′ is a partial function and φP ⊆ P×P′ is a relation such that

– for each p′ ∈ m′ there exists a unique p ∈ m and p φP p′,

– if p φP p′ then the restriction φT : •p → •p′ and φT : p• → p′• are total functions, and

– if t ′ = φT (t) then φ
op
P : •t ′ → •t and φ

op
P : t ′• → t• are total functions, where φ

op
P is the

opposite relation to φP, and
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• φℓ : Σ → Σ′ is such that if φT (t) is defined then ℓ′(φT (t)) = φℓ(ℓ(t)) and if p φP p′ then ℓ′(p′) =
φℓ(ℓ(p)).

The definition is the usual one, beside the last requirement which states that the labeling of the nets

is preserved. We will omit the subscript when it will clear from the context, hence the triple 〈φT ,φP,φℓ〉
will be often indicated as φ .

Morphisms among safe nets preserve reachable markings. Consider the morphism φ : N → N ′, then

for each m,m′ ∈ MN and transition t ∈ T , if m [t〉m′ then φP(m) [φT (t)〉φP(m
′) provided that φT (t) is

defined, where φP(m) = {p′ ∈ P′ | ∃p ∈ m and p φP p′}.

Clearly morphisms compose and then safe nets and morphisms form a category called Safe.

Multi-clock nets: Safe nets can be seen as formed by various sequential components (automata) syn-

chronizing on common transitions. Though this is not the usual way to consider safe nets, it is easy to

see that if we add to a safe nets the so called complemenary places, except in the case of self-loops, we

obtain a number of automata synchronizing on common transitions. A net automaton is a net in which

the preset and the postset of each transition has exactly one element.

The intuition that a safe net can be viewed as a net formed by various components, each of them

being a net automaton, is formalized in the notion of multi-clock nets, introduced by Fabre in [7].

Definition 3. A multi-clock net (mc-net) N is a pair (N,ν) where N = 〈P,T,F,m, ℓ,Σ〉 is a safe net and

ν : P → m is a mapping such that

• for all p, p′ ∈ m, it holds that p 6= p′ implies ν−1(p)∩ν−1(p′) = /0,

•
⋃

p∈m ν−1(p) = P,

• ν is the identity when restricted to m, and

• for all t ∈ T . ν is injective on •t and on t•, and ν( •t) = ν(t•).

The dimension of a mc-net N, denoted with υ(N), is the cardinality of m.

The mapping ν is used to identify the various components of a mc-net. Given p ∈ P, with p we

denote the subset of places defined by ν−1(ν(p)). The consequences of three requirements, namely

(a) ν(m) = m, (b) ν is injective on the preset (postset) of each transition and (c) that ν( •t) = ν(t•), is

that, for each p ∈ m, the net 〈p,Tp,Fp,{p}, ℓp,Σ〉 is a net automaton, where Tp are the transitions of N

such that ∀t ∈ Tp
•t ∩ p 6= /0 and t• ∩ p 6= /0, and Fp is the restriction of F to p and Tp. Each place p

in the initial marking can be identified with an index in {1, . . . ,υ(N)}, hence we denote Ni as the net

〈p,Tp,Fp,{p}ℓp〉 where i is the index of p. Thus the cardinality of the initial marking of a mc-net is the

number of components forming the net, and it is the dimension of the net.

Example 1. Consider the mc-net N in Figure 1. The ν in the mc-net N gives ν(a) = ν(b) = ν(c) = {a}
and ν(d) = ν(e) = {d}. The two net automata are N1 and N2. The composition of the two automata

(identifying the transitions with the same name, namely u and z) gives precisely N.

We consider morphisms that preserve the partitions of multi-clock nets.

Definition 4. Let N = (〈P,T,F,m, ℓ,Σ〉,ν) and N ′ = (〈P′,T ′,F ′,m′, ℓ′,Σ′〉,ν ′) be two multi-clock nets. A

morphism φ : N → N ′ is a mcn-morphism iff ∀p ∈ P, ∀p′ ∈ P′, p φP p′ implies that ν(p) φP ν ′(p′).

Multi-clock nets and mcn-morphisms form a category called MCN, which is a subcategory of Safe.

Example 2. Consider the mc-nets N and N1 in Figure 1. A mcn-morphism is the one relating places in

N to places with the same name in N1. Places d and e in N are not related with any place in N1. The

mapping on the transitions is the identity on s, t,u,v and z and it is undefined for w.

In this paper, for the sake of simplicity, we will spread mc-nets that are injectively labeled.
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Figure 1: A mc-net and its components

3 Ticking domains

We introduce the annotations for places of the spread nets, which we will define in the next section.

Annotations will be vector-clocks, where each entry of the vector will be an equivalence class of words

representing the local runs of each component. This simple annotation will turn out to be powerful

enough to represent most of the situations we are interested in.

Consider an alphabet A, the idea is that the elements of a ticking domain are equivalence classes of

words on that alphabet. Let Eq be a set of equalities of the form ui = u′i, with ui,u
′
i ∈ A∗. We denote by

∼Eq the equivalence relation in A∗ generated by relations in Eq and that is stable by suffix extension, i.e.

u ∼Eq u′ ⇒ uv ∼Eq u′v for u,u′,v ∈ A∗. Relation ∼Eq will simply be denoted ∼ when the generating

set is clear from the context, and equivalence classes are denoted as (|w|)∼ or simply (|w|). For the

sake of light notations, in the sequel we will often confuse w with its class (|w|). Observe that one has

(|(|u|)v |) = (|uv|).

Definition 5. Let A be an alphabet and let Eq be a set of equalities of the form α = β , with α ,β ∈ A∗.

Then a ticking domain over A is the set of equivalence classes of words in A∗ with respect to the suffix

stable equivalence relation ∼Eq generated by Eq, and it is denoted AEq = A∗/ ∼Eq. With alph(AEq) we

denote the alphabet A.

Example 3. Consider the mc-net N1 in Figure 1. The alphabet can be considered the name of the

transitions (hence A = {s, t,u,v,z}) and we may imagine the following equations: s = t, suvs = s and

suzs = s. These equations induce, among others, the following equivalence classes on the word rep-

resenting some executions of the mc-net N1: (|ε |)∼1
, (|s|)∼1

, (|su|)∼1
, (|suv|)∼1

and (|suz|)∼1
(the other

equivalence classes may be ignored, as it will become clear in the following). These equivalence classes

form a ticking domain for the state-machine net N1.

Another set of equations over A = {s, t,u,v,z}∗ can be the following: for all w,w′ ∈ {s, t,u,v,z},

w = w′ iff |w| = |w′|. In this case two words are in the same equivalence class iff they have the same

length. Requiring that the equivalence of words is also a congruence, the same set of equivalence classes
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could be obtained from the set of equations u = v with u,v ∈ {s, t,u,v,z}.

If the set of equations is empty then each word w ∈ A∗ is the unique member of the equivalence class

(|w|). Being the equivalence relation stable with respect to suffix, the same can be obtained using as the

set of equations u = u with u ∈ {s, t,u,v,z}.

Given two ticking domains AEq and A
′
Eq′

, δ : AEq →A
′
Eq′

is a ticking domain mapping iff given any

two words w,w′ ∈ A∗ in the same equivalence class in AEq, then δ (w),δ (w′) are in the same equivalence

class in A
′
Eq′

.

We are now ready to introduce the notion of vector-clock.

Definition 6. Given a set of index I and a set of ticking domains Ai, with i ∈ I, a vector-clock
−→
α is an

element of ×i∈IAi, and A=×i∈IAi is called the vector-clock domain (VCD for short). The dimension of

the vector-clock domain A, denoted with ι(A), is given by |I|.

The × on clock domains is associative and can be easily extended to an operation × on vector-clock

domains as a component-wise operation.

Vector clock elements can be mixed to obtain a new vector clock element. The intuition is that the

new element is obtained from the previous one selecting entries from each of them. This is formally

stated in the next definition.

Definition 7. Let J be a set of index and let Γ = {α j | j ∈ J ∧ α j ∈A} be a set of vector clock in A.

Then opk
J : A|J| → A, with k ∈ J, is an operation defined as follows: the i-th entry of opk

J(Γ) is the i-th

entry of the vector clock αi ∈ Γ if i ∈ J and of αk ∈ Γ otherwise.

We briefly discuss the intuition behind this definition. The various components of a vector-clock

represent the pieces of information each component has on its behavior and on the other components

behaviors as well. The various pieces of information have to be combined together to form a new vector

clock, which will be the argument of a function of a spread net. The way of combining the information

should take into account mainly the information associated to a certain set of indexes, as it will be again

clear when we will introduce the notion of spread net.

Clearly these pieces of information have to be consistent, and the operations defined above are re-

sponsible in assuring this.

Example 4. Take Γ = {(w j1
1 ,w j1

2 ,w j1
3 ),(w j2

1 ,w j2
2 ,w j2

2 )}, and op
j1
J , where J = { j1, j2}. Then op

j1
J (Γ) is

(w
j1
1 ,w

j2
2 ,w

j1
3 ), whereas op

j2
J (Γ) is (w

j1
1 ,w

j2
2 ,w

j2
3 ).

4 Spread Nets

We enrich mc-nets with vector clocks. The idea is that each place of a mc-net N of dimension υ(N) has

associated a vector-clock belonging to a vector clock domain A such that ι(A) = υ(N). Thus in general

the annotation of a place of a mc-net carries information on the component the place belongs to (the

proper entry in the vector clock), but it may also convey information about the other components (the

other entries of the vector clock).

We start by illustrating this idea with a little example.

Example 5. Consider the VCD A1 ×A2 ×A3, where A1 = {(|ε |)∼1
, (|v|)∼1

,(|u|)∼1
,(|us|)∼1

}, with ∼1

obtained by the equations uu = u, usv = us, usu = us, uss = us, vs = v, vu = v, vv = v and s = ε ,

A2 = {(|ε |)∼2
,(|u|)∼2

,(|us|)∼2
}, with ∼2 induced by the set of equations Eq2 = {u = w, us = ws, s = ε ,

su = ε ,sw = ε ,uu = u,uw = u}, and A3 = {(|ε |)∼3
}, with ∼3 induced from the set Eq3 = {ε = w}.

Consider now the mc-net in Figure 2.
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u

s

v w
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Figure 2: A net over an information domain

The components of this mc-net are identified by the partition mapping defined as follows: ν−1(a) =
{a,b,c,d,e}, ν−1( f ) = { f ,g,h,k} and ν−1(l) = {l}. For the ticking domains A1,A2 and A3 the al-

phabets on which they are based is the set of transitions of each component, thus alph(A1) = {v,u,s},

alph(A2) = {u,s,w} and alph(A2) = {w}. The vector clocks associated to the places of this mc-net are

the ones shown in the figure: to a, f and l the vector clock associated is (ε ,ε ,ε), to place b the vector

clock (v,ε ,ε), to c the vector clock (u,u,ε), to f the vector-clock (u,u,ε), to d and e the (us,us,ε) and

finally to h and k the vector-clock (ε ,us,ε).

mc-net over A: We first introduce the notion of mc-net over a domain and then we will formalize the

one of spread net.

Definition 8. The pair N = ((〈P,T,F,m, ℓ,Σ〉,ν),h : P →A), where

• N= (〈P,T,F,m, ℓ,Σ〉,ν) is a mc-net,

• A is a vector clock domain such that A = ×
υ(N)
i=1 Ai, where alph(Ai) = ℓ(Ti) with 1 ≤ i ≤ υ(N),

and

• h : P →A is a total mapping and it is called the information mapping.

is called a mc-net over A. With td(N) we denote the vector clock domain A.

Spread nets: We assume, for each Ai, that the set of equations Eqi on words over the alphabet

alph(Ai)
∗ such that Ai = alph(Ai)

∗/ ∼Eqi
, is well understood. A mc-net over a VCD is then an an-

notated net, where the annotations are on places. These annotations are of a specific kind, namely they

are vector-clocks where each component of the vector is an equivalence class of words on given alpha-

bets. Based on this notion we can introduce the notion of spread net, where the annotations of places are

calculated.
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Definition 9. Let N be a mc-net and A be a vector clock domain such that ι(A) = υ(N). Let S =
(N,h : P → A) be a mc-net over A. Let ~τ = {τi | 1 ≤ i ≤ υ(N)} be a set of ticking mapping with

τi : A×Ti →A Then S is a spread net with respect to~τ and A iff

• ∀p. m(p) = 1 it holds that h(p) = (ε , . . . ,ε),

• ∀p, p′ ∈ P. ℓ(p) = ℓ(p′) and h(p) = h(p′) implies p = p′, and

• ∀t ∈ T . ∀p ∈ t• h(p) = τi(op
ν(p)
ν( •t)({h(p′) | p′ ∈ •t}), t).

With support(S) we denote the mc-net N.

A spread net is a mc-net over a specific domain where the annotations on the places in the postset

of a transition t are related to annotations of the places in the preset of this transition and the transition

t itself. The annotations are a mean to keep track on how a place can be reached. Thus we require

that the annotations of the places in the initial marking is (ε , . . . ,ε), and the annotations on the places

in the postset of a transition are calculated on the basis of the annotations in the preset of this transition

(combined using the operations according to Definition 7): the annotations of the places in the component

i are calculated using a function τi which is local to the component itself, though the op
ν(p)
ν( •t) may not be

local at all. The requirement that ∀p, p′ ∈ P. ℓ(p) = ℓ(p′) and h(p) = h(p′) implies p = p′ implies that

if two equally labeled places have the same information, then they are indeed the same place. Indeed

two equally labeled places represent the same activity and if the annotation is the same then, despite

the various possible alternatives that may have produced them, they should not be distinguished and

hence are the same. This is a succinctness principle that avoid that the same information is associated to

different places representing the same resource.

Example 6. Consider again the net in Figure 2. Assume that the alphabets for the various components

are the transition labels (in this case, as the net is injectively labeled, these coincide with the transitions

themselves).

Take τ1 as the mapping that concatenatee the transition t to each entry i of the vector clock such that

t ∈ alph(Ai) and leave the other entries untouched, τ2 adds the transition t just to the second component

and finally τ3 is the constant mapping giving (ε ,ε ,ε).
When executing each transition of the net we assume that the vector clocks associated to the place

in the postset of a transition are calculated from the vector clocks associated to the places in the preset

of this transition, and that this is done locally. Thus, when executing v, the vector clock (ε ,ε ,ε) of a is

used to obtain (v,ε ,ε) on b, or when executing u the vectors clocks (ε ,ε ,ε) associated to a and (ε ,ε ,ε)
associated to e are used to obtain (u,u,ε) for c and (ε ,w,ε) for f , recalling that u ∼2 w. The two vector

clocks in •u are merged together, by selecting the proper components. The vector-clocks associated to

g and d are obtained first calculating a vector clock from the one in •s, and (u,u,ε) and (ε ,u,ε) are

merged obtaining (u,u,ε) and then d gets (us,us,ε) whereas g gets the vector clock (ε ,us,ε).

Morphisms: We specialize to this new setting the notion of morphism:

Definition 10. Let S = (N,h : P → A) and S
′ = (N′,h′ : P′ → A

′) be two spread nets, S over ~τ and A

and S
′ over~τ ′ and A

′ respectively. A spread-morphism f : S→ S is a pair f = (φ ,δ ) where

• φ : N→ N′ is a mcn-morphism,

• δ : A → A
′ is a mapping such that for each τi ∈ ~τ and τ ′

i ∈ ~τ ′ it holds that τ ′
i (δ (α),φT (t)) =

δ (τi(α , t)) whenever φT (t) is defined and t ∈ Ti, and

• δ (h(p)) = h′(p′) whenever p φP p′.
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We show that spread-morphisms compose. Let f = (φ ,δ ) : S→ S
′ and g= (φ ′,δ ′) : S′ → S

′′ two ND-

morphisms. f ◦g : S→ S
′′ defined as (φ ◦φ ′,δ ◦δ ′) is a well defined ND-morphism. The only condition

to check is that δ ◦ δ ′(τi(α , t)) is defined whenever also φT ◦φ ′
T (t) is defined, and it is equal to τ ′′

i (δ ◦
δ ′(α),φT ◦φ ′

T (t)(t)). Now δ ◦δ ′(τi(α , t)) = δ ′(δ (τi(α , t))) and this is equal to δ ′(τ ′
i (δ (α),φT (t))) and

finally also to τ ′′
i (δ

′(δ (α)),φ ′
T (φT (t))) which is τi(δ ◦ δ ′(α),φT ◦ φ ′

T (t)) as required. Clearly we have

that δ ◦ δ ′(h(p)) = δ ′(δ (h(p))) = δ ′(h(p′)) = h′(p′′) with p φP p′ and p′ φP p′′. Thus spread nets and

spread-morphisms form a category, that we call Spread.

This category is related to the one of mc-nets via two obvious functors. One takes an object S

in Spread and returns the mc-net support(S), and we call it F, the other takes a mc-net N where the

labeling ℓ is injective and associate the spread net G(N) over~τ = {τi | τi is the constant mapping returning

(ε , . . . ,ε)} and A⊥ defined as (N,h : P →{(ε , . . . ,ε)}) (thus all the places are annotated with the vector-

clock (ε , . . . ,ε)), and each mcn-morphism φ gives G(φ) = (φ , id).

When it will be clear from the context, we will omit to mention both the ~τ and A on which a spread

net is based on.

Configuration: We end this section by defining what a configuration of a spread net is. This notion

will be used when spreading a net, and it is the usual one adapted to the context of spread nets.

Definition 11. Let S= (N,h : P →A) be a spread net, and m [t1〉m1 . . .nn−1 [tn〉mn be a firing sequence

in N. Then a configuration is the multiset ∑n
i=1{ti}.

Configurations are ranged over with C and mn = mark(C) is marking reached executing the firing

sequence associated to the configuration. The set of configuration of a spread net S is denoted with

Conf (S).

5 Spreading nets

In this section we describe how to spread mc-nets. We assume that the labeling mapping of the net that

should be spread is the identity.

First we recall what a folding-morphism is. Let N and N′ be mc-nets. φ : N → N′ is a folding

morphism iff

• φ is total,

• ∀t, t ′ ∈ T . ( •t = •t ′ ∧φT (t) = φT (t
′))⇒ t = t ′.

These requirements are standard for folding morphisms. A folding what it does is to fold entirely a

mc-net onto another (the requirement of totality of the mapping) and it does in an economical way, as

transitions that are not distinguishable in the target net should be the same transition.

The algorithm will construct a spread net and also a morphism that will turn out to be a folding

morphism.

Spreading algorithm: We spread a mc-net with respect to a certain domain A of information inferred

by the net itself and a set of ~τ of ticking mappings that obey to a schema (which basically states how

conflicts are spread through the various components). In fact, as it will become clear in the following,

the schema for the ticking mappings can be seen as a parameter of the spreading, and it simply state how

time is counted in each component, also in relation with the other components.
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Input: A mc-net N = (〈P,T,F,m, ℓ,Σ〉,ν) of dimension υ(N), a VCD A of dimension ι(A) = υ(N)
such that for each i ∈ υ(N). alph(Ai) = ℓ(Ti), a set ~τ of ticking mapping and a set of operations opk

J

satisfying the requirements of Definition 7

Output: At each step a spread net O and a folding mapping φ onto N

Initialization step: Create |m| places for O and define a bijection φP : mO → m. Define, for each

p ∈ mO, hO(p) = (ε , . . . ,ε), and set O = 〈mO, /0, /0,mO, ℓO,P∪T 〉 with ℓO(p) = φP(p), obtaining the and

mc-net O = (O,νO) where νO(p) = ν(φP(p)). Finally set O = (O,hO). The φ mapping has just the

component on places. Output (O,φ).

Recursion: Consider the spread net constructed so far O= (O,hO) and the mapping φ .

Let C be a configuration of O = (O,νO), with O = 〈PO,TO,FO,mO, ℓO,P ∪ T 〉, and consider m̂ =
φP(mark(C)). Let t ∈ T be a transition such that •t ⊆ m̂. Check if T0 contains a transition t ′ such

that •t ′ ⊆ mark(C) and φT (t
′) = t. If yes consider another configuration, if not then

• add t ′ to TO and set φ ′
T (t

′) = t and φ ′
T (t

′′) = φT (t
′′) for all t ′′ ∈ TO,

• add to FO the set F ′
O = {(p′, t ′) | p′ ∈ mark(C) ∧ φP(p′) ∈ •t},

• for each p ∈ t•, check if there is a place p′ ∈ PO such that

– φ ′
P(p′) = p and

– h′(p′) = τνO(p′)(op
νO(p′)
J ({h(p′′) | p′′ ∈ mark(C) ∧ φP(p′′) ∈ •t}), ℓ′(t)), where J =

{νO(p′′) | p′′ ∈ mark(C) ∧ φP(p′′) ∈ •t}.

If yes, then simply add (t ′, p′) to F ′
O. If not then create a place p′, set h′(p′) =

τνO(p′)(op
νO(p′)
J ({h(p′′) | p′′ ∈ mark(C) ∧ φP(p′′) ∈ •t}), ℓ′(t)), where J = {νO(p′′) |

p′′ ∈ mark(C) ∧ φP(p′′) ∈ •t} add it to PO. Add (t ′, p′) to F ′
O as well,

• extend φP by setting φ ′
P(p′) = p, and

• set νO(p′) = φ−1
P (νO(p))

Let P′ the set of the new added places, let O′ = 〈PO ∪P′,T ∪{t ′},F0 ∪F ′
O,mO, ℓ

′
O,P∪T 〉 with ℓ′O(x) =

ℓO(x) for x ∈ PO ∪TO, ℓ′O(t
′) = t and ℓ′O(p) = φP(p) for each p ∈ P′, and ν ′

O(p) = ν(φP(p)) for p ∈ P′

and ν ′
O(p) = νO(p) for p ∈ PO.

Output O= ((O′,ν ′
O),h

′) and φ ′.

Figure 3: The spreading algorithm

Proposition 1. Let N = (〈P,T,F,m, ℓ,Σ〉,ν) be a mc-net of dimension υ(N) such that ℓ : T → Σ is

total and injective. For each i ∈ {1, . . . ,υ(N)} let Eqi be a set of equations on ℓ(Ti)
∗, where Ti are

the transitions of the i-th component of N and Ai = ℓ(Ti)
∗/ ∼Eqi

. Let A = ×
υ(N)
i=1 Ai and let ~τ = {τi |

1 ≤ i ≤ υ(N)} be a set of ticking mapping with τi : A×Ti →A. Then the algorithm in Figure 3 produces

a spreading net SA

~τ (N) = (O,h) and a folding morphism φ : support(S(N))→ N.

It is quite obvious that the algorithm define a spread net and a folding morphism as well. Observe
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that in the algorithm in Figure 3 we could have done the recursion step a bit differently, namely for each

t ′ added such that φT (t
′) = t, we could have added |t•| places, and then some of them could be glued

with some others in the spread net constructed so far provided that they are related to the same place

in N and have the same vector-clock annotation. This alternative guarantees the fact that the morphism

constructed is a folding one.

We want to stress that, depending on the vector-clock domain, the algorithm produce a finite data

structure (a finite spread net). Indeed, if the elements of the vector-clock domain are finite the spread net

constructed is finite as well, due to the way the labeling ℓ is defined when constructing the spread net.

(a,(ε ,ε))

p1

(b,(s,ε))

p2

(c,(su,u))

p4

(d,(ε ,ε))

p3

(e,(su,u))

p5

(a,(su,uz))

p6

(d,(su,uz))

p7

(b,(s,uz))

p8

(b,(suv,u)) p9

(d,(su,uz))p10

st1 t t2

u

t3

z

t4

st5 t t6

u

t7

v t8 wt9

u

t10

Figure 4: A spread net

Example 7. Consider the net in Figure 4. This is the spreading of the mc-net in Figure 1 according to

the τs ticking mappings and to the vector-clock domain as described in the following.

The ticking domain for the first component (the one on the left) is the with alphabet alph(A1) =
{s, t,u,v,z} and the equations are ε = ε , s= t, su= tu, suz= su, tuz= su, sus= s, tus= s, sut = s, tut = s,

suvu = su, tuvu = su, u = ε , v = ε , ss = s, ts = s and tt = t and x = ε for each x ∈ alph(A1)
∗ |x| ≥ 4 and

x 6= suvu and tuvu. The equivalence classes obtained are (|ε |)∼1
, (|s|)∼1

, (|su|)∼1
, (|suv|)∼1

and (|suz|)∼1
,

and these form the ticking domain A1. Concerning the ticking domain for the second component, the
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alphabet is alph(A2) = {u,w,z} the equivalence relation is based on the following equations: uwu = uz,

ε = ε and for each other word x in alph(A2)
∗ beside the ones involved in these equations, we have

x = ε . The equivalence classes we obtain are (|ε |)∼2
,(|u|)∼2

and (|uz|)∼2
, which are the elements of A2.

Equivalence classes are identified with their representative.

The operations τi (with i ∈ {1,2}) take a vector-clock and concatenate each word with label ℓ(t),
provided that ℓ(t) appears in the alphabet, thus τ1((su,u), t8) = (suv,u) as ℓ(t8) = v is in the alphabet of

the ticking domain A1 but not in the alphabet of A2, and τ1((su,u), t8) = (suz,uz) as ℓ(t10) = z belongs

to both alphabets.

The operations op (we omit the indexes as it is clear what they do) if applied to just one vector return

the same vector, otherwise the first component of the resulting vector comes from the first one and the

second component from the second one.

In the figure places are annotated with the pair (p,α) where p is the name of the place in the net N

in Figure 1 and α ∈ A1 ×A2. The first component of the pair is the ℓ mapping and the second is the h

mapping h : {p1, . . . , p10}→A1×A2 defined as follows; h(p1) = (ε ,ε) = h(p3),h(p2) = (s,ε),h(p4) =
h(p5) = (su,u), h(p6) = (suz,uz) = h(p7),h(p8) = (s,uz),h(p9) = (suv,u) and h(p10) = (su,uw).

Observe that the spread net is finite as the VCD is finite and ℓ maps places and transitions of the

spread net onto a finite set. Another spread net over the same domain with the same ticking mappings

does not need to be finite, provided that the ℓ mapping has an infinite codomain.

The nice property that the spreading of a net enjoys is that it is indeed a universal construction.

Theorem 1. Let N be an mc-net, then for each S spread net with respect to ~τ and A and morphism

g : support(S)→ N, there exists a unique morphism l : S→SA

~τ (N) such that g = F(l)◦φ .

The theorem implies that the spreading of mc-net with respect to a given ~τ and A, is somehow the

best construction with these characteristic we can aim at. The fact that it is the best construction depends

on the way the spreading is performed not only for the annotation of places but also for the labeling of

them. It is then quite obvious that any other spread net which is mapped onto the one to be spread, should

have a different labeling has it cannot have a different annotation.

We substantiate our claim showing that this new notion covers various notion of unfoldings. We will

consider here just branching processes and trellis processes (for the proper definitions we refer to [6, 16]

for branching processes and [7] for trellis processes).

Branching Processes: The ticking domain to be considered in this case is, for each component, the

one induced by the set of equations containing just ε = ε , and the alphabet of each ticking domain are

the transitions of the component. The result is that each equivalence class contains just a word. We call

the resulting vector-clock domain ABP. The τi add the transition to the words in the entries of the vector-

clock that are involved in the synchronization, and we call these τi as ~τBP. The operations op take the

words belonging to the components synchronizing, shuffle them taking into account the synchronization

transitions, and produces a new vector-clock where each entry is the word obtained projecting on the

proper alphabet the word obtained as described above. This convey the intuition that from a given

transition, there is a unique path to the places in the initial marking, which is the one of a causal net

([16]).

We can state the following result, where, UBP(N) is the branching process obtained by the mc-net N.

Proposition 2. Let N be a mc-net, and let S
ABP

~τBP
(N) be its spreading with respect to~τBP and ABP.

Then support(SABP

~τBP
(N)) is isomorphic to UBP(N).
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(a,(ε ,ε))

p1

(d,(ε ,ε))

p2

(b,(s,ε))

p3

(b,(t,ε))

p4

(c,(su,u))

p5 (c,(tu,u))p7

(e,(su,u))

p6 (e,(tu,u))p8

(a,(suz,uz))

p9 (d,(suz,uz))

p10
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p11
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Figure 5: The initial part of the Branching process of the mc-net N in Figure 1

Example 8. Figure 5 shows just the first part of the spreading of N according to the ABP domain. The

object constructed in this way is, as expected, infinite. Conflicts are inherited along the causality paths

(executions in each automata) and the quantity of information associated to each place in this spreading

increases. The annotation of a place contains, for each components, the trace in this component leading

to that place. For instance, consider the place p9. The annotation of p9 is (suz,uz). In fact the two

components of the net synchronize first on u and then on z, in the first component the first transition

executed is s whereas the second component should synchronize. Hence the annotation regarding the

first component is suz and the one regarding the second component is uz.

Trellises: Here the ticking domain for each component is the one induced by the following set of

equations: u = v for all u,v words with the same length on the alphabet such that they correspond to a

firing sequence in the component ending in the same place (as the length counts there is a difference with

the words ending in the same place). Thus two words w and w′ are equivalent iff they have the same

length and if they put a token in the same place. We call this domain ATr.

The τi work as follows: each of them receives in input a vector-clock and a transition and return a

vector-clock where the transition is concatenated to the word in the proper entry, and all the others are

set to ε . The set of these τi is called ~τTr. The operations op work like the ones devised for the branching

processes.

With UTr(N) we denote the trellis obtained by the mc-net N we have the following result:

Proposition 3. Let N be a mc-net, and let S
ATr

~τTr
(N) be its spreading with respect to~τTr and ATr.

Then support(SATr

~τTr
(N)) is isomorphic to UTr(N).

Example 9. Figure 6 shows the first part of the spreading of N according to the ATr domain. The object

constructed in this way is again infinite. Conflicts are folded in each automata according to the length of
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the local executions.

(a,(ε ,ε))

p1

(b,(s,ε))

p2 (d,(ε ,ε))

p3

(c,(su,ε))

p4

(e,ε ,u))

p5

(a,(suz,ε))

p6

(d,(ε ,uz))p7

(b,(suzs,ε))

p8

(b,(suv,ε)) p9

(e,(ε ,uwu))p11(c,(suzsu,ε))

p10

(c,(suvu,ε)) p12

st1 t t2

u

t3

z

t4

st5 t t6

u t7u

t8

v t9

wt10

...
...

...

Figure 6: The initial part of the trellis of the mc-net N in Figure 1

Each place is annotated with the language of all the traces leading to the place (with respect to the

equivalence relation). Consider the place p12. It belongs to the first component, and the distance from p1

is 4. The two words of belonging to the language of the first automaton ending in the image of p12 (c) are

suvu and tuvu. If we consider the place p11, it belongs to the second component, and the annotation uwu

is the equivalence class containing also uzu, which are the two words of length 3 ending in the image of

p11 (e).

6 Conclusions

In this paper we have presented the notion of spread net which is able to represent the non sequential

behaviors of safe nets, in particular of mc-nets. A spread net is a net where each place has an annotation

representing the amount of information that has been collected to produce that place, and the information

depends on two elements. One element is the information inferred from the annotations of the places in

the preset of the transitions in the preset of that place, and the second element is the transition itself.

Beside the notion of spread net we have formalized the algorithm for spreading a net, which is

basically the same algorithm which is used to unfold a net. Here we have presented the usual one based
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on the notion of configuration of a spread net, but the annotations of places may be used to define more

easily which subset of the involved places is a part of a marking reachable in the spread net and henceforth

corresponding to a marking of the unfolded net.

Here we have considered very simple domains, without making any real consideration on the kind of

properties one would like to prove on spread nets. But the main advantage of the notion is the fact that it

is indeed independent on the chosen domain, hence it can be used in quite different context.

In this paper we have not investigated an interesting issue, namely what is the brand of event structure
related to spread net, like it is done in [15]. However we believe that configuration structures can be easily
related with spread nets, hence part of the results presented there should be applicable also in our setting.
Clearly the kind of event structure related to spread nets will be somehow parametric on the kind of
annotations of the spread net.
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