
F. Ricca, A. Russo et al. (Eds.): Proc. 36th International Conference
on Logic Programming (Technical Communications) 2020 (ICLP 2020)
EPTCS 325, 2020, pp. 244–257, doi:10.4204/EPTCS.325.29

c© Y. G. Dantas, A. Kondeva & V. Nigam
This work is licensed under the
Creative Commons Attribution License.

Less Manual Work for Safety Engineers: Towards an
Automated Safety Reasoning with Safety Patterns

Yuri Gil Dantas Antoaneta Kondeva Vivek Nigam
fortiss GmbH

Research Institute of the Free State of Bavaria
Guerickestraße 25

80805 München, Germany
dantas@fortiss.org kondeva@fortiss.org nigam@fortiss.org

The development of safety-critical systems requires the control of hazards that can potentially cause
harm. To this end, safety engineers rely during the development phase on architectural solutions,
called safety patterns, such as safety monitors, voters, and watchdogs. The goal of these patterns
is to control (identified) faults that can trigger hazards. Safety patterns can control such faults by
e.g., increasing the redundancy of the system. Currently, the reasoning of which pattern to use
at which part of the target system to control which hazard is documented mostly in textual form
or by means of models, such as GSN-models, with limited support for automation. This paper
proposes the use of logic programming engines for the automated reasoning about system safety.
We propose a domain-specific language for embedded system safety and specify as disjunctive logic
programs reasoning principles used by safety engineers to deploy safety patterns, e.g., when to use
safety monitors, or watchdogs. Our machinery enables two types of automated safety reasoning: (1)
identification of which hazards can be controlled and which ones cannot be controlled by the existing
safety patterns; and (2) automated recommendation of which patterns could be used at which place
of the system to control potential hazards. Finally, we apply our machinery to two examples taken
from the automotive domain: an adaptive cruise control system and a battery management system.

1 Introduction

The development of safety-critical systems, such as vehicles, aircraft and medical devices aims to achieve
two goals: (1) to develop systems that cannot cause any harm, and (2) to convince regulatory bodies about
the safeness of the system by demonstrating compliance to safety standards [18, 17].

To achieve the first goal, safety engineers perform safety analysis to ensure that systems cannot cause
any harm. For example, Hazard Analysis [18, 16] identifies the main hazards that shall be controlled.
Other safety techniques, e.g., FTA [16], STPA [21], FMEA [16], HAZOP [8], break down the identified
main hazards into component hazards (a.k.a component failures), i.e., faults that can trigger main haz-
ards. Safety engineers commonly use safety architectural patterns [5, 22, 23] to control the identified
component hazards (or hazards for short) thus controlling the main hazards. To achieve the second goal,
safety engineers shall develop a safety case [18, 24] for the system under development. The purpose
of the safety case is to both (a) ensure that all hazards have been analyzed and (b) answer why a safety
pattern has been deployed at a particular component to control which hazard.

Safety cases are often documented in textual form, or by models e.g., the Goal Structure Notation
(GSN) [7]. These models, however, have limited support for automated reasoning [19]. It is not possible
to automatically check whether safety arguments used in a safety case are correct, i.e., check whether all
hazards have been controlled by, e.g., safety patterns. This is because the safety reasoning used to support

http://dx.doi.org/10.4204/EPTCS.325.29
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

Y. G. Dantas, A. Kondeva & V. Nigam 245

system safety is implicitly written textually thus lacking the precise semantics to enable automation [25].
As a result, correctness checks are performed manually, possibly leading to human errors.

Our vision is to build an incremental development process for system safety and security assurance
cases using automated methods that incorporate safety and security reasoning principles. This paper is
the first step towards achieving this vision. We provide safety reasoning principles with safety patterns
used during the definition of system architecture for embedded systems. We specify these principles
using logic and logic programming as they are suitable frameworks for the specification of reasoning
principles as knowledge bases and using them for automated reasoning [4].

Our main contributions are threefold:

• Domain-Specific Language (DSL): We propose a DSL for safety reasoning with safety patterns.
Our DSL includes (1) architectural elements, both functional components and logical communica-
tion channels; (2) safety hazards including guidewords used in typical analysis, e.g., erroneous or
loss of function; (3) a number of safety patterns including n-version programming, safety monitors,
and watchdogs;

• Reasoning Principles: We specify key reasoning principles for determining when a hazard can be
controlled or not, including reasoning principles used to decide when a safety pattern can be used
to control a hazard. These reasoning principles are specified as Disjunctive Logic Programs [11]
based on the DSL proposed;

• Automation: We illustrate the increased automation enabled by the specified reasoning principles
using the logic programming engine DLV [20]. Our machinery enables two types of automated
reasoning: (1) Controllability: which hazards can be controlled by the given deployed safety
patterns and which hazards cannot be controlled. (2) Safety Pattern Recommendation: which
safety patterns can be used and where exactly they should be deployed to control hazards that have
not yet been controlled.

We validate our machinery1 with two examples of safety-critical embedded systems taken from the
automotive domain. The first example is an Adaptive Cruise Control system installed in a vehicle to
adapt its speed in an automated fashion without crashing into objects in front and at the same time
trying to maintain a given speed. The second example is a Battery Management System [22] responsible
for ensuring that a vehicle battery is charged without risking it to explode by, e.g., overheating. Our
machinery infers a number of possible solutions involving different safety patterns that can be used to
control identified hazards.

2 Motivating Examples

This section describes two examples from the automotive domain. We refer to these examples as Adap-
tive Cruise Control system (ACC) and Battery Management System (BMS). We use the ACC as a running
example throughout the paper. We get back to the BMS example in Section 7.

Adaptive Cruise Control (ACC). Consider as a motivating example, a simplified ACC responsible for
maintaining safe distance to objects in front of its vehicle. The ACC is a critical system as harm, e.g.,
accidents, may occur if the ACC is faulty.

1All machinery needed to reproduce our results are publicly available: https://github.com/ygdantas/safpat

https://github.com/ygdantas/safpat

246 Towards an Automated Safety Reasoning with Safety Patterns

Figure 1: Adaptive Cruise Control (ACC) Functional Architecture

Figure 1 depicts the main functions composing the ACC. ACC uses information from two sensing
functions: (1) distance sensor function (DS) that computes the distance to objects immediately in front;
(2) velocity sensor function (VS) that computes the vehicle’s current speed. The ACC Management
function (ACCM) computes (adequate) acceleration and braking values for the vehicle which are sent to
the power-train control (PS) and brake control functions (BS), respectively. Notice that PS and BS are
not part of the ACC but interact with the ACC.

To address the safety of the ACC, safety analysis are carried out, such as Hazard Analysis, to deter-
mine main hazards. The main hazard is:

H0acc: The vehicle does not maintain a safe distance to any object in front.

We identify two hazards, H1acc and H2acc, that may lead to H0acc. The words loss and erroneous are
used by safety engineers to describe hazards: loss is used when a hazard is triggered whenever a function
is not working, and erroneous when a function is working but not correctly.

• H1acc– Erroneous ACC: ACC computes incorrect acceleration or braking values;

• H2acc– Loss of ACC: ACC is not functioning.

These hazards are subsequently further broken down to identify which sub-functions can trigger them
using, e.g., Fault Tree Analysis. The following hazards may lead to H1:

• H1.1acc- Erroneous DS: The DS computes an incorrect distance to the car in front;

• H1.2acc- Erroneous VS: The VS computes an incorrect velocity;

• H1.3acc- Erroneous ACCM: The ACCM computes wrong acceleration or braking values.

Battery Management System (BMS). We consider a simplified BMS responsible for controlling a
rechargeable electric car battery [22]. The BMS is a critical system as harm, e.g., battery explosions,
may occur if it does not compute the charging state of the battery correctly.

Figure 2 depicts the main functions composing the BMS. The charging interface (CI) represents the
interface at the charging car station. This interface is triggered while recharging the battery (BAT) of the
car. BMS receives relevant information (e.g., voltage and temperature values) from BAT so that it can
compute the charging state of BAT. Depending on the state of BAT, BMS sends signals of activation or
deactivation of the external changer to CI. These signals are sent though a CAN bus. CI is considered the
only function accessible by external users (e.g., drivers). To avoid that an intruder can access the CAN
bus through CI, a firewall (FW) is placed between BMS and CI.2 This decision, however, comes at a
safety impact, as mentioned below. The main hazard considered here is:

H0bms: The BAT is overcharged leading to its explosion.

Y. G. Dantas, A. Kondeva & V. Nigam 247

Figure 2: Battery Management System (BMS) Functional Architecture

We identify one erroneous hazard H1bms that may lead to H0bms.

• H1bms– Erroneous CI: The CI sends charging signals when BAT is fully charged.

The following three hazards may lead to H1bms. We use the word omission as a specialization of
the erroneous behavior whenever the corresponding function does not provide an output when such an
output is expected, e.g., not outputting a fail-safe signal.

• H1.1bms– Erroneous BMS: The BMS sends wrong signals to CI;

• H1.2bms– Erroneous CAN: The CAN bus sends wrong signals to CI;

• H1.3bms– Omission FW: The FW incorrectly blocks signals from BMS.

Hazards are also associated with severity class denoting the level of harm it can cause. Severity
classes range over no effect, minor, major, fatal, and catastrophic. The hazards described in this section
are classified as catastrophic, which means that they shall be strongly controlled.

3 Preliminaries

Safety Architectural Patterns. In the architectural level, a number of safety patterns are typically
used for embedded system safety [23, 5]. Examples of such patterns are Heterogeneous Duplex Redun-
dancy (HDR), Triple Modular Redundancy (TMR), N-Version Programming (NProg), Safety Monitors
(SafMon), and Watchdog (WD).

The goal of these patterns is to control some type of hazards provided some conditions are satisfied.
WDs are used to detect when there is loss of function, thus controlling hazards associated with a loss of
function. SafMons are used to check whether a function is computing correctly, thus controlling hazards
associated with erroneous functions. HDR and TMR are used to control hazards by increasing the
redundancy of existing hardware, thus reducing the overall fault rate. They can also be used to increase
the redundancy of paths in the system in case messages are lost or incorrectly computed. NProgs are
used control hazards associated with possibly erroneous software functions by increasing the redundancy
of such functions.

Answer-Set Programming and Disjunctive Logic Programs. We assume that the reader is familiar
with Answer-Set Programming (ASP) and provide only a brief overview here. Let K be a set of propo-
sitional variables. A default literal is an atomic formula preceded by not. A propositional variable and a

2We refer the reader to [22] for more insights on why adding a FW between BMS and CI makes the system more secure.

248 Towards an Automated Safety Reasoning with Safety Patterns

default literal are both literals. A rule r is an ordered pair Head(r)← Body(r), where Head(r) = `
is a literal and Body(r) = {`1, . . . , `n} is a set of literals. Such a rule is written as ` ← `1, . . . , `n.
An Answer-Set Program (LP) is a set of rules. An interpretation M is an answer set of a LP P if
M′ = least(P∪ {not A | A /∈ M}) and M′ = M ∪ {not A | A /∈ M}, where least is the least model of
the definite logic program obtained from the program P by replacing all occurrences of not A by a new
atomic formula not A.

The interpretation of the default negation not assumes a closed-world assumption. That is, we assume
to be true only the facts that are explicitly supported by a rule. For example, the following program P
with three rules has two answer-sets {a,c} and {b}:

a← not b b← not a c← a

DLV is an engine implementing disjunctive logic programs [11] based on ASP semantics [12]. In par-
ticular, a rule may have disjunction in its head, e.g., a1∨·· ·∨am← `1, . . . , `n, where ai for 0≤ i≤m are
atomic formulas. For example, consider the program P1 with the two clauses a∨b and c← a. It has the
same two answer-sets as the program P. If a rule’s head is empty, i.e., m = 0, then it is a constraint. For
example, if we add the clause← b to P1, then the resulting program has only one answer-set {a,c}.

In the remainder of this paper, we use the DLV notation writing :- for← and v for ∨. For example,
the program P1 is written as a v b and c :- a.

4 Basic DSL: Functional, Hardware and Safety Patterns

This section introduces our domain-specific language, called SafPat, for enabling automated safety rea-
soning with safety patterns. Tables 1 and 2 describe SafPat’s main elements, i.e., key terms and pred-
icates. Table 1 describes the language used to specify functional and hardware architecture, and safety
analysis, while Table 2 describes the predicates used to specify selected safety patterns. We illustrate
SafPat by using the ACC example described in Section 2.

Example 1 The functional architecture depicted in Figure 1 is specified by the following atomic formu-
las, or facts, using the notation of the DLV prover [20]:

cp(acc). cp(accm). cp(ds). cp(vs). cp(bs). cp(ps).

subcp(accm,acc). subcp(ds,acc). subcp(vs,acc). ch(dsaccm,ds,accm).

ch(vsaccm,vs,accm). ch(accmbs,accm,bs). ch(accmps,accm,ps).

if(if1,[vsaccm,accmbs]). if(if2,[dsaccm,accmbs]).

The fact ch(vsaccm,vs,accm) denotes the logical communication between the VS and the ACCM.
The information flow if1 denotes data flows from VS to BS. The facts below specify which functions are
implemented as software, e.g., ACCM, and which as hardware, e.g., DS.

sw(accm). hw(ds). hw(vs). hw(ps). hw(bs).

Finally, the ACC hazards and their relations are specified by the following facts:

hz(h1,acc,err,cat). hz(h2,acc,loss,cat). hz(h11,ds,err,cat).

hz(h12,vs,err,cat). hz(h13,accm,err,cat).

subHz(h11,h1). subHz(h12,h1). subHz(h13,h1).

For example, the hazard H1.3acc (h13) is a sub-hazard of H1acc (h1).

Y. G. Dantas, A. Kondeva & V. Nigam 249

Functional, Hardware and Safety Analysis

Fact Denotation

cp(id) id is a function in the system.

subcp(id1,id2) id1 is a sub-function of the function id2.

ch(id,id1,id2) id is a logical channel connecting an output of the function id1 to an input of the
function id2. Notice that it denotes a unidirectional connection.

if(id, ~ch) id is an information flow following the channels in ~ch.

hw(id) Function id is implemented as hardware, e.g., circuit connected to sensors.

sw(id) Function id is implemented as a software.

hz(id,idc,tp,sv) id is a hazard associated with the function idc is of type tp, where
tp ∈ {err, loss,omission, late,early}, and severity sv, where sv ∈
{minor,major, fatal,cat}. err, loss, omission, late, and early denote, respec-
tively, erroneous, loss of function, omission, late and early types of hazards.
minor,major, fatal,cat denotes, respectively, minor, major, fatal and catastrophic
severity levels.

subHz(id1,id2) id1 is a hazard causing hazard id2.

Table 1: SafPat: a DSL for specifying functional, hardware and safety analysis.

idc smfs

−→
I = [chI1, . . . , ch

I
n]

−→
O = [chO1 , . . . , ch

O
m]

−→
Ism = [chIsm,1, . . . , ch

I
sm,n]

−−→
Osm = [chOsm,1, . . . , ch

O
sm,m]

Figure 3: Safety Monitor Pattern

Due to space limitations, we illustrate only the
safMon pattern. The remaining patterns follow a simi-
lar reasoning. We refer the reader to [5, 23] for detailed
description of these patterns.

The safMon pattern is depicted by all dashed el-
ements in Figure 3 including channels. This safMon
is associated to the function idc and is used to detect
whether idc is computing erroneous values. To this end,
it takes the values of idc’s inputs (~I) and outputs (~O) to
the function sm through the channels ~Ism and ~Osm. The
channel fs connecting sm with idc is used to send fail-safe commands whenever abnormal input-output
relations are detected by sm.

In SafPat, one identifies a safMon by specifying the fact safMon(id,idc,~I,~O,fs, ~Ism, ~Osm,sm), contain-
ing all the information related to the safety monitor as described above.

5 Safety Reasoning using DLV

One of the main goals of safety engineers during the definition of a system architecture is to place suitable
safety patterns so that the identified hazards can be controlled. This section demonstrates how much of
this safety reasoning can be automated.

To this end, we introduce two new facts used to denote when a hazard is controlled or not:

250 Towards an Automated Safety Reasoning with Safety Patterns

Safety Architectural Patterns

Fact Denotation

HDR (id,idc,Ic,idc′,Ivt1 ,Ivt2 ,vt,
vtout ,idout)

id is a duplex redundancy associated with the function idc. Ic is
a channel from idc that might convey a fault message. idc′ is a
function possibly idc. vt is a voter that receives data from idc and
idc′ through channels Ivt1 , and Ivt2 , respectively. The result from
vt is sent to idout through channel vtout .

TMR (id,idc,Ic,idc′,idc′′,Ivt1 ,Ivt2 ,
Ivt3 ,vt,vtout ,idout)

id is a triple modular redundancy associated with the function idc.
Ic is a channel from idc that might convey a fault message. idc′ and
idc′′ are functions possibly idc. vt is a voter that receives data from
idc, idc′ and idc′′ through channels Ivt1 , Ivt2 , and Ivt3 , respectively.
The result from vt is sent to idout through channel vtout .

2Prog (id,idc, ~Iidc , ~Oidc ,idc′, ~Ivt1 , ~Ivt2 ,
~VT, ~VTout , ~idout)

id is a 2-version programming associated with the function idc

(a.k.a. version 1). idc′ (a.k.a. version 2) is an identical func-
tion of idc. The inputs to idc and the outputs from idc are sent
through channels ~Iidc and ~Oidc , respectively. ~VT is a list of vot-
ers that receive data from idc and idc′ through channels ~Ivt1 and
~Ivt2 , respectively. The results from ~VT are sent to their respective
functions ~VTout through channels ~idout .

safMon(id,idc,~I,~O,fs, ~Ism, ~Osm,sm) id is a safety monitor associated with the function idc. It uses the
list of input and output channels~I and ~O, respectively. The data of
these channels are sent as input to sm through the list of channels
~Ism and ~Osm. fs is a channel from sm to idc which sends a fail-safe
signal whenever some inconsistency is detected.

watchDog(id,idc,fs,Iwd,wd) id is a watchdog associated with the function idc. It receives live-
ness messages from idc through channel Iwd. fs is a channel from
wd to idc which sends a fail-safe signal whenever some inconsis-
tency w.r.t the expected messages is detected.

Table 2: SafPat: Language for Safety Architectural Patterns.

Y. G. Dantas, A. Kondeva & V. Nigam 251

• ctl(idH , idc, tp,sv) and nctl(idH , idc, tp,sv) denote that the hazard idH of type tp, severity sv and
associated with the function idc can be, respectively, controlled and not controlled.

Before we specify controlled and not controlled hazards, we need to distinguish two types of hazards:
basic hazards and derived hazards. A hazard is classified as basic if it does not have any sub-hazards,
and derived otherwise. The following DLV rules specify this:

basic(H,CP,TP,SV) :- hz(H,CP,TP,SV), not has_subHz(H).

has_subHz(H) :- subHz(SH,H).

derived(H,CP,TP,SV) :- hz(H,CP,TP,SV), has_subHz(H).

We now use the closed-world semantics of DLV to specify controllability. A basic hazard is not
controlled if there is no rule explicitly supporting its controllability, as specified by the rule:

nctl(H,CP,TP,SV) :- basic(H,CP,TP,SV), not ctl(H,CP,TP,SV) .

A derived hazard is not controlled if any one of its sub-hazards is not controlled as specified by the
following rules:

nctl(H,CP,TP,SV) :- hz(H,CP,TP,SV), derived(H,CP,TP,SV),

hasNCTLSubHz(H,CP,TP,SV).

hasNCTLSubHz(H,CP,TP,SV) :- hz(H,CP,TP,SV), subHz(SH,H),

nctl(SH,SCP,STP,SSV).

Example 2 Consider the hazards and sub-hazards relations in Example 1. The hazards
hz(h1,acc,err,cat) can be controlled if its three sub-hazards, h11, h12 and h13, can be controlled.

Safety patterns are commonly used to control hazards by, e.g., adding redundancy to the system.
Given our language SafPat, the reasoning principles used to do so can be easily captured by DLV rules.
We list some reasoning principles for some of the patterns:

WatchDog Pattern. The following rule specifies that watch dog can be used to control hazard of type
loss of function (loss).

ctl(ID,CP,loss,SV) :- hz(ID,CP,loss,SV), watchDog(_,CP,_,_,_).

Safety Monitor Pattern. The following rules specify intuitively that a hazard associated to a func-
tion CP of type erroneous can be controlled if a safety monitor is associated to CP provided not

inpNotCovSF(ID2) and not outNotCovSF(ID2): there are no input logical channels, i.e., chan-
nels incoming to CP specified by ch(CH,_,CP), not taken as input to the safety monitor, nor out-
put channels i.e., channels outgoing from CP specified by ch(CH,CP,_). The predicate #member,
e.g., #member(CH,ICHs) specifies that CH is a member of list ICHs. You can safely ignore the fact
isexploration which is only used for the automation as described in Section 6.

ctl(ID,CP,err,SV) :- hz(ID,CP,err,SV), safMon(ID2,CP,_,_,_,_,_,_),

not inpNotCovSF(ID2), not outNotCovSF(ID2).

inpNotCovSF(ID2) :- safMon(ID2,CP,ICHs,_,FS,_,_,_), ch(CH,_,CP),

CH != FS, not #member(CH,ICHs), not isexploration.

outNotCovSF(ID2) :- safMon(ID2,CP,_,OCHs,_,_,_,_), ch(CH,CP,_),

not #member(CH,OCHs), not #member(CH,MIN),

not #member(CH,MOUT), not isexploration.

252 Towards an Automated Safety Reasoning with Safety Patterns

2-version programming. This pattern is used to improve safety by adding software redundancy.
Hence, it can only be associated with functions implemented as software as specified by the rule:

ctl(ID,CP,err,SV) :- hz(ID,CP,err,SV), 2Prog(ID2,CP,_,_,_,_,_,_),

sw(CP), not inpNotCovNP(ID2).

Here inpNotCovNP is similar to inpNotCovSF explained above.

HDR. The HDR and TMR Voter patterns can used for two different safety reasons: (1) to improve
safety by hardware redundancy or (2) to improve safety by path redundancy. These are specified by the
following rules, where omission is a type of error:

ctl(ID,CP,err,SV) :- hz(ID,CP,err,SV),

hdr(ID3,_,_,_,_,_,VOTERCP,_,_), ch(_,CP,VOTERCP).

ctl(ID,CP,omission,SV) :- hz(ID,CP,omission,SV),cp(CP),cp(CP1),cp(CP2),

ch(CHOUT,CP1,_), ch(CHIN,_,CP2), ch(CH,CP,_),if(IF,PATH),

before(CH,CHIN,IF), before(CHOUT,CH,IF),

hdr(IDPAT,CP1,_,CP2,_,_,_,_,_).

The second rule requires further explanation. The fact before, e.g., before(CH,CHIN,IF) specifies
that CH appears before CHIN in the path PATH. The rule itself specifies that if there is an IF such that
there is a hazard of type omission associated to a component CP in the information path PATH, then
placing a HDR on a functions CP1 and CP2 before and after CP in the path can control an omission
hazard. Intuitively, this is because Voters places in this way can detect when safety critical messages are
lost during transmission due to the omission of CP.

Remark: This paper specifically focuses on architectural principles. We focus on the architecture com-
ponents and how such components interact with other through channels. Encoding other reasoning prin-
ciples like, e.g., the actual behavior of such components, are left to future work.

6 Automated Pattern Recommendation

This section builds on the principles specified to automate the recommendation of safety pattern. Our
machinery enables a safety engineer to understand which options of patterns he can use to control hazards
and decide which one is more suitable given factors, such as costs and hardware availability.

The recommendation machinery uses ASP/DLV semantics to enumerate design options by attempt-
ing to place safety patterns wherever they are applicable. In this way, each answer of our DLV spec-
ification corresponds to a recommended architecture. Some recommended architectures may be better
than others, e.g., controlling more hazards. From all obtained answers, the system can recommend to the
safety engineer only the best architectures, i.e., the ones that control the most number of hazards.

The recommendation system is activated by using facts of the form.

• explore(N,Pat) denoting that the system shall recommend the placement of at most N patterns of
type Pat, where Pat is one of patterns described in Table 2.

For example, if explore(1,safMon), the system attempts to add at most one additional safety monitor to a
given architecture. Multiple such facts can be used to recommend different patterns at the same time. As
a result, safety engineers can configure the pattern recommendation machinery to search for particular
safety patterns that can control identified hazards.

Y. G. Dantas, A. Kondeva & V. Nigam 253

We have implemented rules for recommending the patterns shown in Table 2. Due to space restric-
tions, we describe only some of them used for recommending safMon, TMR, and HDR.

The following DLV rule specifies the enumeration of placement or not of a safMon(nsafMon), asso-
ciated with the function CP that is furthermore associated with a basic or not controlled hazard ID:

safMon(nuSafMon,CP,allInputs,allOutputs,nuSC,numin,numout,numcp) v

nsafMon(nuSafMon,CP,allInputs,allOutputs,nuSC,numin,numout,numcp)

:- cp(CP),hz(ID,CP,err,SV),basicOrNCTL(ID,CP,err,SV),explore(N,safMon).

We assume here that the constants starting with nu are fresh, i.e., do not appear in the given architecture,
thus used only for recommended safety patterns. Since it is enough to know to which function a safety
monitor is associated to, we do not need to enumerate all the inputs and outputs of CP, but rather simply
denote CP’s inputs and outputs using, respectively, the fresh constants allInputs and allOutputs.

The rule above will attempt to place a safety monitor in any applicable location of the architecture.
The following clause limits the number of safety monitors that can be recommended to be at most N.
Here #count is a DLV aggregate predicate returning the size of a symbolic set defined by its argument.

:- #count{CP : safMon(nuSafMon,CP,_,_,_,_,_,_)} > N, explore(N,safMon).

Notice that whenever a pattern is recommended, the controllability reasoning described in Section 5
applies to infer which hazards are controlled by this pattern and which are not.

The reasoning principles described in Section 5 can be used to further constraint the number of
recommendations. For example, a TMR used for hardware redundancy shall only be associated with
components that are not software components as specified by the following rule:

tmr(nuTMR,CP1,CH1,nucp2,nucp3,nuchm1,nuchm2,nuchm3,nuvtcp,nucho,nucpo) v

ntmr(nuTMR,CP1,CH1,nucp2,nucp3,nuchm1,nuchm2,nuchm3,nuvtcp,nucho,nucpo)

:- cp(CP1),not sw(CP1),hz(HZ0,CP1,err,SV), ch(CH1,CP1,_), explore(N,tmr).

The next example illustrates the power of our language to specify pattern recommendation. It speci-
fies conditions for recommending HDR patterns to achieve path redundancy.

hdr(nuHDR,CP1,CH1,CP2,nuchm1,nuchm2,nuvtcp,nucho,CPO)

v nhdr(nuHDR,CP1,CH1,CP2,nuchm1,nuchm2,nuvtcp,nucho,CPO)

:- hz(ID,CP,omission,SV), cp(CP), cp(CP1), cp(CP2), CP1 != CP,

CP1 != CP2, CP1 != CPO, CP2 != CPO, ch(CHOUT,CP1,_), ch(CHIN,_,CP2),

ch(CH,CP,_), ch(CH1,_,CPO), if(IF,PATH), before(CHOUT,CHIN,IF),

before(CHOUT,CH,IF), before(CHIN,CH1,IF), explore(N,hdr).

We search for functions CP0, CP1 and CP2 and a channel CH1 where to place the HDR. The goal is to
control a hazard associated with function CP by increasing path redundancy. To this end, CP1 needs to
appear before CP in an information flow PATH that uses these functions. CP2 may either be equal to CP

or located after CP in such a PATH. Thus, HDR can, in principle, detect when messages are omitted by
CP. Whenever this happens, the HDR shall send a message to the function CPO used only later in the
information flow PATH.

A constraint similar to the one for safMon, constraints the number of TMR and HDR to be searched
for. These constraints are omitted here.

254 Towards an Automated Safety Reasoning with Safety Patterns

7 Case Studies

This section illustrates the results of our automated safety reasoning for two case studies, namely Adap-
tive Cruise Control (ACC) and Battery Management System (BMS). We illustrate our results by depicting
how the architectures of both ACC and BMS would appear on a layout when our machinery is used. The
safety patterns suggested by our machinery are depicted as dark gray boxes, and the channels related
(inputs or outputs) to such patterns are depicted as dashed arrows.

Adaptive Cruise Control (ACC). We identified an erroneous (H1acc) and a loss (H2acc) hazard on
ACC, as described in Section 2. The erroneous hazard (H1acc) is broken down into three sub-hazards,
namely erroneous DS (H1.1acc), erroneous VS (H1.2acc), and erroneous ACCM (H1.3acc).

Figure 4: ACC Functional Architecture with safMon, TMR and WD

We run our recommendation machinery to automatically identify what safety patterns could be used
to control the identified hazards. Our machinery yielded five complete solutions (i.e., architectures) for
controlling these hazards. For the sake of space, we only show one of those solutions. The architecture
of the chosen solution is depicted in Figure 4. The subset of our DLV specification for this solution is
shown below. It contains the predicates for the recommended safety patterns and controllability.

{safMon(nuSafMon,accm,allInputs,allOutputs,nuSC,numin,numout,numcp),

tmr(nuTMR,ds,dsaccm,nucp2,nucp3,nuchm1,nuchm2,nuchm3,nuvtcp,nucho,nucpo),

tmr(nuTMR,vs,vsaccm,nucp2,nucp3,nuchm1,nuchm2,nuchm3,nuvtcp,nucho,nucpo),

watchDog(nuWD,acc,nuscwd,nulvwd,nuwd), ctl(["hz",accLs],acc,loss,cat),

ctl(["hz",ds],ds,err,cat), ctl(["hz",vs],vs,err,cat),

ctl(["hz",accm],accm,err,cat), ctl(["hz",accEr],acc,err,cat)}

Our machinery recommended to use three safety patterns, i.e., safMon, TMR, and watchDog, to
control the identified hazards. The main difference w.r.t. the other solutions (omitted here) is 2Prog
instead of safMon. To control the sub-hazards H1.1acc and H1.2acc, our machinery recommended to
use TMR on DS and VS, respectively. The goal is to improve safety by hardware (i.e., DS and VS)
redundancy. The remaining sub-hazard H1.3acc can be controlled by placing a safMon on ACCM. The
hazard H1acc is then controlled by using both TMR and safMon. Finally, our machinery recommended
to use a watchDog on ACC to control the loss hazard H2acc.

Battery Management System (BMS). We identified an erroneous (H1bms) hazard on CI, as described
in Section 2. This erroneous hazard (H1bms) is broken down into three sub-hazards, namely erroneous
BMS (H1.1bms), erroneous CAN (H1.2bms), and omission FW (H1.3bms). Typically, hazards on CAN
buses can be controlled by replacement only. Hence, we assume that H1.2bms has already been controlled.

Y. G. Dantas, A. Kondeva & V. Nigam 255

Our recommendation machinery yielded four complete solutions (i.e., architectures) to control
H1bms, H1.1bms, and H1.3bms. For the sake of space, we only show two of those solutions. The ar-
chitecture of the chosen solutions are depicted in Figure 4. The DLV specification for those solutions is
similar to the one presented in the ACC case study.

(a) Path redundancy for BMS and CI (b) Path redundancy for BMS and FW

Figure 5: Battery Management System Functional Architecture with safMon and HDR

Our machinery recommended to use two safety patterns, i.e., safMon and HDR, to control the iden-
tified hazards. On both solutions, a safMon is placed together with BMS to control H1.1bms. For the
ACC example, TMR is placed to improve safety by hardware redundancy. Here, HDR is placed to im-
prove safety by path redundancy. The HDR solutions are depicted in Figures 5a and 5b control H1.3bms.
They differ w.r.t which functions are composing the HDR. Figure 5a illustrates that BMS and CI sent
redundant inputs to vt so that BAT has a higher chance of getting the expected input. That is, if CI does
not send the input to BAT due to, e.g., an omission from FW, BAT receives the expected input from
BMS through vt. Similarly, Figure 5b illustrates that BMS and FW sent redundant inputs to vt with CI
as destination. Consequently, BAT should have a higher chance of getting the expected input from CI.

8 Related Work

Failure Rates Computations. An important analysis for safety is the computation of failure rates of
the system and its sub-systems as it is a requirement for safety-critical systems to have (very) low failure
rates. The automation of this computation has been subject of some previous work [15, 2]. In particular,
for a given architecture and given sub-system fault rates, the failure rate of the system is computed. Our
work on reasoning with safety patterns complements the work above as we consider the design of the
architecture itself, which is part of the input used by the work above.

Safety Case Models. GSN [7] is a model for specifying safety cases. Safety cases are tree-like struc-
tures containing different types of nodes denoting, e.g., Goals, Strategies, Contexts, Assumptions of a
safety case. As the exact meaning of each node is specified textually (inside the node), models written in
GSN enables little automation. There are, however, work that provide more structure to GSN models and
others providing means for some automation [6]. We describe some approaches below. [13] proposes
patterns encoding typical safety reasoning principles, such as those using FTA, FMEA, STPA. While
these reasoning patterns provide some structure to GSN models, they suffer from the same automation
limitations of GSN described above. On the one hand, our work complements this work by specifying
reasoning principles based on safety patterns, which was not considered in [13]. On the other hand, we
believe that it is possible to encode some of the reasoning principles described in [13] and consider not
only safety reasoning with patterns but the other types of reasoning described in [13]. [9, 10] propose

256 Towards an Automated Safety Reasoning with Safety Patterns

automated quantitative evaluation methods for GSN models that associated to Goal nodes with values for
belief, disbelief and uncertainty. It is not clear from this work how these values are related to the quality
of safety argument. We believe that the encoding of our reasoning principles can profit from this work to
make the relation between the quality of the safety argument and the belief values more explicit.

Safety Reasoning using Logic Programming. Logic programming has been used in the past for safety
reasoning. For example, [14] provides decision support for air traffic control systems by specifying land-
ing criteria in complex landing situations by using Defeasible Logic Programming (DeLP). [26] outlines
a method for safety assessment of medical devices also based DeLP. An interesting work is presented
in [3] on the formalization of automotive standard requirements [18] to enable automatic reasoning about
compliance with the standard. We take a similar approach to these works as we also use logic program-
ming and engine to support safety engineers in the designing system architecture. However, we do not
consider here reasoning with uncertain and incomplete knowledge as in the work above using DeLP.
As described above, we are considering extending the type of safety reasoning encoded to also include
uncertainty [9, 10]. DeLP is a method we could consider for modeling such arguments.

9 Conclusion

This paper establishes the first steps towards automated safety (and security) for embedded systems.
We propose a domain-specific language, called SafPat, for safety reasoning on the architectural level
using safety patterns. We encode typical safety reasoning principles as disjunctive logic programs, us-
ing these specification for increasing automated reasoning, namely, on determining controllability and
recommending patterns.

We are currently investigating a number of future directions. We are considering other types of
safety reasoning, e.g., reasoning with uncertainty. Further, as illustrated by the BMS case study, there are
a number of co-analysis reasoning deriving from the use safety and security patterns. It seems possible
to build on the grounds established by this paper to carry out such reasoning in an automated fashion.

The increased automation provided by our methods seems to support incremental methods for safety
(and in the future security). It is possible to identify, e.g., which hazards are no longer controlled when-
ever there is an incremental change to the system. We are currently investigating how to improve the
proposed automated reasoning for this purpose. Finally, we plan to integrate our machinery into the
Model-Based Engineering Tool AutoFOCUS3 [1]. The goal is to enable safety engineers to use our
automated reasoning with models written in AutoFOCUS3. This will also enable the use of automated
methods for building safety cases modeled in GSN [6].

Acknowledgment. This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 830892. Nigam is partially supported by
CNPq grant 303909/2018-8.

References

[1] AF3 – AutoFOCUS 3. Available at https://af3.fortiss.org/.

[2] Fault Tree Analysis – FT +. Available at https://tinyurl.com/faulttreean.

[3] J. P. C. Ardila, B. Gallina & G. Governatori (2018): Lessons Learned while Formalizing ISO 26262 for
Compliance Checking. In: 2nd Workshop on TeReCom - Tech. for Regulatory Compliance, pp. 5–16.

https://af3.fortiss.org/
https://tinyurl.com/faulttreean

Y. G. Dantas, A. Kondeva & V. Nigam 257

[4] C. Baral (2010): Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Uni-
versity Press.

[5] C. Kreiner C. Preschern, N. Kajtazovic (2013): Security Analysis of Safety Patterns. In: 20th Conference on
Pattern Languages of Programs, PLoP ’13, USA, pp. 12:1–12:38.

[6] C. Cârlan, V. Nigam, A. Tsalidis & S. Voss (2019): ExplicitCase: Tool-support for Creating and Maintaining
Assurance Arguments Integrated with System Models. In: WoSoCer, doi:10.1109/ISSREW.2019.00093.

[7] GSN Community (2011): GSN Community Standard Version 1. Available at http://www.

goalstructuringnotation.info/documents/GSN_Standard.pdf.

[8] F. Crawley & B. Tyler, editors (2015): HAZOP: Guide to Best Practice.

[9] L. Duan, S. Rayadurgam, M. P. E. Heimdahl, A. Ayoub, O. Sokolsky & I. Lee (2014): Reasoning About
Confidence and Uncertainty in Assurance Cases: A Survey. In: FHIES, 9062, Springer, pp. 64–80,
doi:10.1007/978-3-319-63194-3 5.

[10] J. Dürrwang, K. Beckers & R. Kriesten (2017): A Lightweight Threat Analysis Approach Intertwining Safety
and Security for the Automotive Domain. In: SAFECOMP, doi:10.1007/978-3-319-66266-4 20.

[11] T. Eiter, G. Gottlob & H. Mannila (1997): Disjunctive Datalog. ACM Trans. Database Syst. 22(3),
doi:10.1145/116825.116838.

[12] M. Gelfond & V. Lifschitz (1990): Logic Programs with Classical Negation. In: ICLP, pp. 579–597.

[13] M. Gleirscher & C. Cârlan (2017): Arguing from Hazard Analysis in Safety Cases: A Modular Argument
Pattern. In: HASE, pp. 53–60, doi:10.1109/HASE.2017.15.

[14] S. A. Gómez, A. Goron & A. Groza (2014): Assuring Safety in an Air Traffic Control System with Defeasible
Logic Programming. In: 15th Argentine Symposium on Articial Intelligence, ASAI.

[15] P. Helle (2012): Automatic SysML-Based Safety Analysis. In: ACES-MB, p. 1924,
doi:10.1145/2432631.2432635.

[16] SAE International (1996): Standard ARP 4761: Guidelines and Methods for Conducting the Safety Assess-
ment. Available at https://www.sae.org/standards/content/arp4761/.

[17] SAE International (2011): ARP 4754a: Guidelines for Development of Civil Aircraft and Systems. Available
at https://www.sae.org/standards/content/arp4754a/.

[18] ISO (2011): ISO 26262, Road vehicles Functional safety - Part 6: Product Development: Software Level.
Available at https://www.iso.org/standard/43464.html.

[19] A. Kondeva, C. Carlan, H. Ruess & V. Nigam (2019): On Computer-Aided Techniques for Supporting Safety
and Security Co-Engineering. In: WoSoCer, doi:10.1109/ISSREW.2019.00095.

[20] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri & F. Scarcello (2006): The DLV
System for Knowledge Representation and Reasoning. ACM Trans. Comput. Logic 7, pp. 499–562,
doi:10.1145/1149114.1149117.

[21] N. Leveson & J. Thomas (2018): STPA Handbook.

[22] H. Martin, Z. Ma, Ch. Schmittner, B. Winkler, M. Krammer, D. Schneider, T. Amorim, G. Macher & Ch.
Kreiner (2020): Combined automotive safety and security pattern engineering approach. Reliability Engi-
neering & System Safety 198(2), pp. 1–35, doi:10.4018/jsse.2012040101.

[23] H. L. V. De Matos, A. M. da Cunha & L. A. V. Dias (2014): Using Design Patterns for Safety Assessment of
Integrated Modular Avionics. In: DASC, doi:10.1109/DASC.2014.6979473.

[24] Defence UK Ministry (2007): Safety Management Requirements for Defence Systems. Available at https:
//www.skybrary.aero/bookshelf/books/344.pdf.

[25] V. Nigam, A. Pretschner & H. Ruess (2018): Model-Based Safety and Security Engineering. Available at
https://arxiv.org/abs/1810.04866. White Paper.

[26] Gomez S.A., Groza A. & Chesnevar C.I. (2014): An Argumentative Approach to Assessing Safety in Medical
Device Software Using Defeasible Logic Programming. In: Meditech.

http://dx.doi.org/10.1109/ISSREW.2019.00093
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
http://dx.doi.org/10.1007/978-3-319-63194-3_5
http://dx.doi.org/10.1007/978-3-319-66266-4_20
http://dx.doi.org/10.1145/116825.116838
http://dx.doi.org/10.1109/HASE.2017.15
http://dx.doi.org/10.1145/2432631.2432635
https://www.sae.org/standards/content/arp4761/
https://www.sae.org/standards/content/arp4754a/
https://www.iso.org/standard/43464.html
http://dx.doi.org/10.1109/ISSREW.2019.00095
http://dx.doi.org/10.1145/1149114.1149117
http://dx.doi.org/10.4018/jsse.2012040101
http://dx.doi.org/10.1109/DASC.2014.6979473
https://www.skybrary.aero/bookshelf/books/344.pdf
https://www.skybrary.aero/bookshelf/books/344.pdf
https://arxiv.org/abs/1810.04866

	1 Introduction
	2 Motivating Examples
	3 Preliminaries
	4 Basic DSL: Functional, Hardware and Safety Patterns
	5 Safety Reasoning using DLV
	6 Automated Pattern Recommendation
	7 Case Studies
	8 Related Work
	9 Conclusion

