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Answer set programming (ASP) is a problem-solving approach, which has been strongly supported

both scientifically and technologically by several solvers, ongoing active research, and implementa-

tions in many different fields. However, although researchers acknowledged long ago the necessity

of epistemic operators in the language of ASP for better introspective reasoning, this research venue

did not attract much attention until recently. Moreover, the existing epistemic extensions of ASP in

the literature are not widely approved either, due to the fact that some propose unintended results

even for some simple acyclic epistemic programs, new unexpected results may possibly be found,

and more importantly, researchers have different reasonings for some critical programs. To that end,

Cabalar et al. have recently identified some structural properties of epistemic programs to formally

support a possible semantics proposal of such programs and standardise their results. Nonetheless,

the soundness of these properties is still under debate, and they are not widely accepted either by

the ASP community. Thus, it seems that there is still time to really understand the paradigm, have

a mature formalism, and determine the principles providing formal justification of their understand-

able models. In this paper, we mainly focus on the existing semantics approaches, the criteria that

a satisfactory semantics is supposed to satisfy, and the ways to improve them. We also extend some

well-known propositions of here-and-there logic (HT) into epistemic HT so as to reveal the real be-

haviour of programs. Finally, we propose a slightly novel semantics for epistemic ASP, which can

be considered as a reflexive extension of Cabalar et al.’s recent formalism called autoepistemic ASP.

1 Introduction

Answer set programming (ASP) has been proposed by Gelfond and Lifschitz (GL) [11] as an approach to

declarative programming. Its reduct-based GL-semantics is given by answer sets (alias, stable models)—

consistent sets A of ground literals1 (referred to as valuations) in which p /∈ A or ∼p /∈ A for every atom

p, roughly described as the smallest per subset relation, and supported classical models of a program.

ASP provides a successful, and relatively simple way of solving problems: first, a problem is encoded

as a logic program whose answer sets correspond to solutions. Then, by means of efficient ASP-solvers

computing these models, we obtain solutions in the form of answer sets. As a result, currently, ASP has a

wide range of applications in science and technology. However, as first recognised by Gelfond [8], ASP

is not strong enough to correctly reason about the global situation in the presence of multiple answer sets

of a program and then to derive new results out of the incomplete information these answer sets convey

altogether. One reason for this drawback is the local performance of the ASP’s negation as failure (NAF)

operator (aka, default negation): note that NAF can only reflect incomplete information of each answer

*I sincerely thank the anonymous reviewers for taking the time and effort to give some useful comments and suggestions

about the earlier draft. I also wish to thank the program chairs for their help and understanding in submitting the final version.
1The use of variables in ASP-programs is understood as abbreviations for the collection of their ground (variable-free)

instances. Thus, for simplicity, in this paper we restrict the language of (epistemic) ASP to the propositional case. In ASP, a

ground literal is a propositional variable (here, referred to as an atom) p or a strongly-negated propositional variable ∼p.
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set individually, but in order to extend the issue to the whole range of answer sets for global reasoning,

we need epistemic modal operators, which are able to quantify over a collection of answer sets.

The first approach of this line of research is Gelfond’s epistemic specifications (ES91) [8, 9]: he

extended ASP with epistemic constructs called subjective literals. Indeed, with the inclusion of the

epistemic modalities K and M (respectively having the literal readings “known” and “may be believed”

in ES91), he could encode information of answer set collections. The interpretation of this new language

was in terms of world-views—collections A of valuations A, each of which constitutes a minimal pointed

classical S5-model2 (A ,A) of a program Π w.r.t. truth and knowledge. Similarly to answer sets, world-

views are also reduct-based. The reduct definition of the former eliminates default-negated constructs

(i.e., NAF) w.r.t. a candidate answer set A so that the reduct is a positive ASP-program, excluding NAF;

whereas the goal of the latter in ES91 is, in principle, to remove epistemic constructs w.r.t. a candidate

world-view A . Thus, the resulting program ΠA appears to be a regular ASP-program, possibly including

NAF (but excluding K and M). Then, we generate the collection A ′ of all answer sets of this reduct ΠA .

Finally, if A ′ equals our candidate model A , then we call A a world-view of the original program Π.

Researchers have soon realised that ES91 allows unsupported world-views. Then, not only Gelfond

himself [10], but also many others have come up with several different semantics proposals for epistemic

specifications (ES); one following the other in order to get rid of newly-appearing unintended results.

The majority [12, 21, 14, 13, 25, 26] are reduct-based world-view semantics. The rest [29, 23, 28, 4]

are inspired by Pearce’s equilibrium-model approach [19], characterising answer sets on a purely logical

domain through minimal model reasoning. They are based on epistemic extensions of equilibrium logic.

Up to recently, novel formalisms of ES were basically tested in terms of an increasing list of examples

where some previous approaches gave unsatisfactory results. However, this informal comparison method

started to be confusing as other critical programs were found after each time a new proposal had been

suggested. In the end, it appeared that none could provide intended results for the entire list, and worse,

some disagreement on the understanding of programs occurred. To that end, Cabalar et al. [4] introduced

some formal criteria, that are inherited from ASP, so as to facilitate the search of a successful semantics.

Although there are newly-emerging objections [22] to their soundness (even at the ASP level), to us,

that was a significant initiative to extend ASP’s some well-known structural properties to the epistemic

case in order to formally support a possible semantics proposal. We here slightly discuss ASP’s possible

foundational problems, and accordingly, the validity of these properties. We mainly aim at enhancing

ASP’s expressivity by epistemic modalities, and while doing so, we basically accept GL’s answer sets

as our underlying semantics. However, we partly agree that especially the epistemic extensions of such

properties are under debate and had better be improved, which is the subject of another work. Briefly,

here, we are not in search of a new semantics, compatible with the standards offered by Cabalar et al.

In this paper, we basically make a comprehensive analysis of the previous semantics approaches of

ES, revealing their (dis)advantageous points. We think that this search is important to lead the way for a

successful semantics. Particularly, we propose reflexive autoepistemic ASP (RAEASP) as an alternative

to Cabalar et al.’s recent approach called autoepistemic ASP (AEASP). Thus, we also use Schwarz’s [20]

minimal model techniques, but propose a formalism closer in spirit to the other approaches because in

RAEASP, the epistemic operator K formalises knowledge, while in AEASP, it represents belief. We also

extend the well-known propositions of here-and-there logic (HT) to the epistemic case and use them to

simplify some complex programs in order to clarify their correct meaning. We also very roughly discuss

paracoherent reasoning for epistemic logic programs, similarly to regular ASP-programs [1].

The rest of the paper is organised as follows: Section 2 introduces epistemic specifications (ES) and

2Particularly here, we regard S5-models as cluster structures in which every world is related to any other, including itself.
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its relatively successful semantics approaches. Section 2.5 proposes a reflexive extension of autoepis-

temic ASP in order to reason about a rational agent’s own knowledge rather than self-belief. Section 3

provides some formal tools, ensuring the reasonable behaviour of epistemic programs: in particular, Sec-

tion 3.1 recalls formal properties of ES, suggested recently. Section 3.2 provides epistemic extensions of

some useful equivalences of HT. Section 3.3 gives a detailed comparison between semantics approaches

discussed in the paper by means of examples. Section 4 concludes the paper with future work plan.

2 Background and Related Work

In this section, we introduce epistemic specifications (ES) and the semantics approaches, proposed so

far. Since Gelfond’s first version, named ES91 here, was slightly and successively refined by several

authors as ES94 [9], ES11 [10], ES14 [12], ES′16 [14], and finally ES18 [13], we begin with recalling the

latest version: the language of ES (LES) comprises four kinds of literals; objective literals (l), extended

objective literals (L), subjective literals (g), and extended subjective literals (G) as identified below:

l L g G

p | ∼p l | not l K l | M l g | notg

where p ranges over an infinite set P of atoms. LES has 2 negations. Strong negation, symbolised by ‘∼’,

represents direct and explicit falsity. Weaker negation as failure (NAF), denoted by ‘not’, helps us partly

encode incomplete information: ∼p implies notp for an atomic p, but not vice versa. So, if notp holds,

then either ∼p is the case (i.e., p is false), or p is assumed false since the truth of p cannot be justified

due to lack of evidence. Consequently, while double ∼ vanishes, notnot does not. Also note that notp

can be defined as a shorthand for ⊥←p, but ∼p is not a shorthand. notp reads “p is false by default”,

and notnotp means “p is not false, but its truth cannot be guaranteed”. Different from intuitionistic

modal logics, in ES, the belief operator M is the dual of the knowledge operator K, i.e., M
def
= notKnot.

A rule is a logical statement of the form head←body. In particular, a rule r of ES has the structure

l1or . . . or lm← e1 , . . . , en

in which body(r) viz. e1, . . . ,en is made up of arbitrary (i.e., extended objective or extended subjective)

literals of ES, and head(r) viz. l1or . . . or lm is composed of only objective literals. Note that ‘or’,

‘←’, and ‘,’ respectively represent disjunction, reversed implication and conjunction. When m = 0, we

suppose head(r) to be ⊥ and call the rule r a constraint (headless rule). In particular, when body(r) is

composed of exclusively extended subjective literals, we call it a subjective constraint. When n = 0, we

suppose body(r) to be ⊤ and call r a fact (bodiless rule). We usually disregard ⊥ and ⊤ in such special

rules. An (epistemic) logic program, abbreviated as (E)LP, is a finite collection of (epistemic) rules.

2.1 Kahl et al.’s semantics approach (ES18): modal reduct w.r.t. a classical S5-model

Given a non-empty collection A of valuations, let A ∈ A be arbitrary. Then, satisfaction of literals is
defined as follows: for an objective literal l, an extended objective literal L, and a subjective literal g,

A ,A |=ES l if l ∈ A; A ,A |=ES not l if l /∈ A.

A ,A |=ES KL if A ,A′ |=ES L for every A′ ∈A ; A ,A |=ES notg if A ,A 6|=ES g.
A ,A |=ES ML if A ,A′ |=ES L for some A′ ∈A ;
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Table 1: Kahl et al.’s original definition of reduct, and SE’s implicitly inferred reduct definition.
Original reduct definition of ES18 Implicit reduct definition of ES16

literal G if A |=ES G if A 6|=ES G if A |=ES G if A 6|=ES G

Kl replace by lll replace by ⊥ replace by notnotlnotnotlnotnotl replace by ⊥
Ml replace by ⊤ replace by notnotl replace by ⊤ replace by notnotl

notKl replace by ⊤ replace by notl replace by ⊤ replace by notl

notMl replace by notl replace by ⊥ replace by notl replace by ⊥

Satisfaction of an objective literal l is independent of A , and satisfaction of a subjective literal g is

independent of A. So, we can safely write A |=ES g or A |=ES l. Satisfaction of an ELP Π is defined by:

A ,A |=ES Π if A ,A |=ES r (i.e., “A ,A |=ES body(r) implies A ,A |=ES head(r)
′′)

for every rule r ∈Π. When A ,A |=ES Π for every A ∈A , we say that A is a classical S5-model of Π. In

order to decide if A is further a world-view of Π, we first compute the (modal) reduct ΠA ={rA : r∈Π}
of Π w.r.t. A , where we eliminate the modal operators K and M according to Table 1. Therefore, ΠA

is a regular (nonepistemic) ASP-program. Then, we generate the set Ep(Π) of epistemic negations

(literals having the form of notK l or M l) of Π by transforming each extended subjective literal appear-

ing in Π into one of these sorts. As an illustration, Ep(Π′)={notKp,Mq,notKs,Mt} for the program

Π′={t ← Kp,Mq,notKs,notMt}. Next, we take the elements of Ep(Π), satisfied by A and form the

set Ep(Π)|
A
={G ∈ Ep(Π) : A |=ESG}. Finally, A is a world-view of Π if3 A

fp
= AS(ΠA ), and

there is no classical S5-model A
′ of Π such that A

′ fp=AS(ΠA
′
) and

(knowledge-minimisation property w.r.t. epistemic negation) Ep(Π)|
A ′⊃ Ep(Π)|

A

where AS(Π) refers to the set of all answer sets of a nonepistemic program Π. However, knowledge-

minimisation w.r.t. Ep(Π) may suggest an ambiguity when Π’s classical S5-models A1 and A2, satisfying

A1
fp
= AS(ΠA1) and A2

fp
= AS(ΠA2), give rise to

∣∣Ep(Π)|
A1

∣∣ 6=
∣∣Ep(Π)|

A2

∣∣, but Ep(Π)|
A1

and Ep(Π)|
A2

are not comparable w.r.t. subset relation [13]: for such A1 and A2, it is potential to have, for instance,

Ep(Π)|
A1

={notKp,notKq} and Ep(Π)|
A2

={notKs}. So, both A1 and A2 are world-views of Π while

A1 makes more atoms unknown, compared to A2. Another point is that we do not follow a similar

truth-minimisation attitude for NAF in ASP, e.g., AS(pornotp) = {{p}, /0}. While we have /0 |= notp

and {p} 6|= notp for the unique default-negated atom notp, we do not prefer /0 rather than {p} as it

minimises truth “more” than {p}. Hence, to us, knowledge-minimality per Ep(Π) had better be revised.

The main contribution of ES18 over its pioneer ES′
16

as a final follow-up is world-view constructs: ES18

introduces the symbol
wv
← which reads “it is not a world-view if”. This gives us a chance to transform

subjective constraints←G1, . . . ,Gn into
wv
←G1, . . . ,Gn so that they perform analogously to how constraints

affect answer-sets in ASP: they (at most) rule out world-views, violating them. Note that the semantics

of ES′
16

has lost this property while trying to guarantee intended results for certain other programs.

3The fixed point equation
fp
= is basically to ensure stability of truth-minimisation, but, in essence, it also accommodates kind

of knowledge-minimisation: e.g., given the rule porq, it only holds for {{p},{q}}; yet, it does not hold for {{p}} or {{q}}.
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2.2 Shen&Eiter’s approach (ES16): modal reduct w.r.t. a set of epistemic negations

Another reduct-based semantics for ES has been proposed by Shen and Eiter (SE) [21]: given an ELP

Π, let A be its classical S5-model, and let Ep(Π)|
A

be the set of all its epistemic negations, satisfied

by A (see Sect. 2.1). We first transform Π into its reduct ΠEp(Π)|
A w.r.t. Ep(Π)|

A
by replacing every

G ∈ Ep(Π)|
A

with ⊤, and every G ∈ Ep(Π) \ Ep(Π)|
A

with notl if G=notKl and with notnotl if

G=Ml. Then, A is a world-view of Π if A
fp
= AS(ΠEp(Π)|

A ), and there is no classical S5-model A ′ of Π

such that A ′ fp= AS(ΠEp(Π)|
A ′ ) and Ep(Π)|

A ′ ⊃ Ep(Π)|
A
. Clearly, the reduct definitions are where ES18

and ES16 only differ. However, as Table 1 shows above, it is possible to arrange an equivalent version of

SE’s reduct definition, and this allows us to compare the approaches of ES18 and ES16 more easily.

Note that Ep(Π) includes all extended subjective literals of Π to be taken into the reduct transforma-

tion of ES18, but as encoded in the form of an epistemic negation. So, given a candidate world-view A

and a subjective literal Kl appearing in Π (but not in the scope of NAF), assume that A |=ES Kl. Note that

Ep(Π) contains Kl in the form of notKl, and notKl 6∈ Ep(Π)|
A

since A 6|=ES notKl. As a result, notKl

is transformed into notl w.r.t. SE’s reduct definition; yet the literal appears as Kl in the program Π. SE

considers Kl and notnotKl to be equivalent, so since they can transform not(notKl) into not(notl),
they also accept the reduct of Kl into notnotl to be legitimate. Moreover, in their original definition,

notnotl is reduced to l in this case. To sum up, when A |=ES Kl, the SE-reduct transforms Kl into l.

While the other cases are reasonable, this case is not cogent for us. There are two problematic issues

here: first, the original language of ES16 does not contain the modal operators as primitives, instead it has

three negations; ∼, not, and NOT, where the last denotes epistemic negation notK. Thus, K and M exist

as derived operators respectively in the form of notNOT and NOTnot. Such derivations use the equiva-

lence between Kl and notnotKl. In our opinion, Kl and notnotKl are classically equivalent, similarly

to the ASP-literals, l and notnotl; yet, they cannot be considered strongly equivalent, allowing above

transitions. In one sense, SE’s language includes notnotKl instead of Kl, and there is no formal way to

produce Kl as a derived formula. Second, while it is questionable to reduce notnotl to l while taking

the reduct of Kl, replacing Kl by notnotl in the reduct definition of ES16 is probably harder to accept.

Generally speaking, taking the reduct of a positive construct Kl may be dangerous. We discuss the issue

in [25] and propose an alternative reduct definition of ES, oriented only to remove NAF, aligning with the

approach of ASP. In particular, we do not take the reduct of Kl. To sum up, although ES18 and ES16 look

different, they are similar structurally and give the same results under SE’s original reduct definition.

The following semantics for ELPs are a lot different from the reduct-based approaches, mentioned

above. They are defined on a purely logical domain as extensions of equilibrium models4.

2.3 Fariñas et al.’s approach (ES15): autoepistemic equilibrium models (AEEMs)

Here-and-there logic (HT) is a 3-valued monotonic logic, which is intermediate between classical logic

and intuitionistic logic. An HT-model is an ordered pair (H,T ) of valuations H,T ⊆ P, satisfying H ⊆ T .

Equilibrium logic (EL) is a general purpose nonmonotonic formalism, whose semantics is based on a

truth-minimality condition over HT-models. Pearce [19] basically proposed EL in order to provide a

purely logical foundation of ASP. Inspired by its success as ASP’s general framework, Fariñas et al.

[23, 6, 28] introduced an epistemic extension of EL, named ES15 here, in order to suggest an alternative

semantics not only for ES, but also for nested ELPs. This section briefly recalls the approach of ES15.

4A first step towards epistemic equilibrium logic belongs to [29], which embeds ES94, but ES94 is obselete today.
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2.3.1 Epistemic here-and-there logic (EHT) and its equilibrium models

EHT extends HT with nondual epistemic modalities K and K̂: both operators are primitive; while K is

identical to K∈LES, the belief operator K̂ (read “believed”) is so different from M∈LES. This is justified

by the fact that M is derived as notKnot in ES and so translated to EHT as ¬K¬ where ¬ refers to

EHT-negation. As will be shown later in Sect. 3.3, ¬K¬ϕ , ¬¬K̂ϕ , and K̂¬¬ϕ are all equivalent in

EHT. Thus, M∈LES corresponds to notnotK̂ or K̂notnot in an extension of ES with K̂. Notice that

the difference between Mp and K̂p in ES resembles that of notnotp and p in ASP. As a result, in an

extended language, we expect Mp not to have a world-view, whereas { /0,{p}} is one understandable

world-view for K̂p. The language of EHT (LEHT) is given by the following grammar: for p ∈ P,

ϕ ::= p | ⊥ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ | Kϕ | K̂ϕ .

As usual, ¬ϕ , ⊤, and ϕ↔ψ respectively abbreviate ϕ→⊥, ⊥→⊥, and (ϕ→ψ)∧(ψ→ϕ). A theory is

a finite set of formulas. An ELP Π is translated into the corresponding EHT-theory Π∗ via a map (.)∗:
given a prototypical program Π=

{
r1,r2

}
where r1 = por∼q←Mr,nots and r2 = q←notKp, we have:

Π∗ =
(
(¬K¬r∧¬s)→ (p∨ q̃)

)
∧

(
¬Kp→ q

)
∧ ¬

(
q∧ q̃

)

where ∼q is evaluated as a new atom q̃ ∈ P, entailing the formula ¬
(
q∧ q̃) to be inserted into Π∗.

An EHT-model 〈A ,s〉 is a refinement of a classical S5-model A in which valuations A ∈ A are

replaced by HT-models (s(A),A) w.r.t. a function s : A → 2P, assigning to each A∈A one of its subsets,

i.e., s(A) ⊆ A. We call s a subset function. Thus, 〈A ,s〉 is represented explicitly by
{(
s(A),A

)}
A∈A

.

Satisfaction of a formula ϕ ∈LEHT is defined recursively w.r.t. to the following truth conditions:

〈A ,s〉,A |=EHT p if p ∈ s(A);
〈A ,s〉,A |=EHT ϕ→ψ if

(
〈A ,s〉,A 6|=EHTϕ or 〈A ,s〉,A|=EHTψ

)
and

(
〈A , id〉,A 6|=EHTϕ or 〈A , id〉,A|=EHTψ

)
;

〈A ,s〉,A |=EHT Kϕ if 〈A ,s〉,A′ |=EHT ϕ for every A′ ∈A ;

〈A ,s〉,A |=EHT K̂ϕ if 〈A ,s〉,A′ |=EHT ϕ for some A′ ∈A ;

where id denotes the identity function. Those of ⊥, ∧ and ∨ are standard. The EHT-model 〈A , id〉
is called total and identical to the classical S5-model A . Then, A is an epistemic equilibrium model

(EEM) of ϕ ∈LEHT if A is a classical S5-model ϕ and satisfies the following truth-minimality condition:

for every possible subset function s on A with s 6= id, there is A ∈A s.t. 〈A ,s〉,A 6|=EHT ϕ . (1)

EEMs can only minimise truth (similarly to that of EL). They do not involve a knowledge-minimisation

criterion. So, the EEM approach may bring out undesired results, especially in the presence of disjunc-

tion. To overcome this problem, ES15 uses a selection process over EEMs by comparing them with each

other according to set inclusion⊆, and a ϕ-indexed preorder≤ϕ defined as follows: for A ,A ′ ∈ EEM(ϕ),

A ≤ϕ A
′ iff for every A0 ∈

⋃
EEM(ϕ), if A ∪{A0},A |=

∗ ϕ then A
′∪{A0},A

′ |=∗ ϕ

where EEM(ϕ) denotes the set of all EEMs of ϕ , and
⋃
EEM(ϕ) is their union. Moreover5, A ∪{A0},A |=

∗

ϕ means A ∪{A0},A |=S5 ϕ for every A ∈A , and 〈A ∪{A0},s〉,A 6|=EHT ϕ for every s 6= id such that

s(A0) = A0. Then, the strict version of ≤ϕ is standard: A <ϕ A ′ if A ≤ϕ A ′ and A �ϕ A ′. An au-

toepistemic equilibrium model (AEEM) of ϕ is the maximal EEM of ϕ w.r.t. these orderings. However,

5Given A ⊆ B, the pair (B,A ) denotes a multipointed S5-model where each A ∈ A is a designated (actual) world.

Similarly, (〈B,s〉,A ) denotes a multipointed EHT-model where 〈A ,s〉 is the collection of designated HT-models of 〈B,s〉.
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choosing AEEMs w.r.t. simultaneously performing two orderings may be dangerous. So, ES15 should

guarantee via a formal proof that these orderings do not contradict each other because it seems possible,

in principle, to have A1,A2 ∈ EEM(ϕ), satisfying both A1 ⊂ A2 and A2 <ϕ A1. Moreover, the defi-

nition of ≤ϕ is too heavy to grasp the intuition behind. While the preorder ≤ϕ gets inspiration from

Moore’s autoepistemic logic [17] and Levesque’s all-that-I-know logic [15], it does not use the exact

techniques of these formalisms to maximise ignorance. Instead, ES15 checks its candidate S5-models

A1,A2 ∈ EEM(ϕ) in doubles by first enlarging them with a possible world A0 appearing in some model

of EEM(ϕ) and then comparing their behaviour relative to ϕ . Note that while testing them, if the enlarged

model (A1∪{A0},A1) is a multipointed EEM of ϕ , then this is an advantage for A1 on the way to jump

the maximality test, but it also means that A1 is not stable w.r.t. knowledge in one sense. Thus, while

this tool eliminates undesired models in many cases, it does not fulfill the requirement of being under-

standable in my opinion and appears a bit ad hoc. Still, ES15 is the first formalism that has provided a

“standard” epistemic extension of EL and together with [29], leads the way to more successful follow-ups

such as ES20. The following section introduces Cabalar et al.’s recent semantics proposal called ES20.

2.4 Cabalar et al.’s approach (ES20): founded autoepistemic equilibrium models

Autoepistemic logic (AEL) [17] is one of the major types of nonmonotonic reasoning, allowing a rational

agent to reason about her own beliefs. Inspired by AEL6, ES15 adds a valuation to EEMs and examines

the behavior of augmented models to determine AEEMs. However, this method does not coincide with

KD45’s minimal-model techniques because the AEEM-selection process takes place in an S5-setting.

From this respect, Cabalar et al.’s approach [4], named ES20 here, is the first to formally combine EL and

AEL with the purpose of inserting the introspective reasoning of the latter into the former. To distinguish

the similar concepts of ES15 and ES20, when necessary, we respectively add the subscripts 15 and 20.

The language LEHT20
is a fragment of LEHT15

, excluding K̂, but also Kϕ reads differently: ϕ is the

agent’s belief. Semantically, it is straightforward to extend EHT20 with K̂, but its meaning is not obvious.

There are two important differences of EHT20-models from functional EHT15-models defined above:

First, EHT20-models are almost the same as relational EHT15-models (see [28], Sect. 8) when we con-

sider them simply as nonempty collections of arbitrary HT-models, but disregard the relations between

these HT-models. Probably, the only (negligible) difference is that the latter can be formed as a multiset

of HT-models. In order to achieve this, instead of a subset function s, EHT20 employs a serial subset

relation (i.e., a multivalued subset function) sr, relating each A ∈ A to at least one element from 2A.

So, using the S5-model A and sr, we can produce the HT-model collections {(H,A) : HsrA}A∈A . For

instance, while the S5-model {A}, for A = {p,q}, can give rise to the functional EHT15-models {( /0,A)},
{({p},A)}, {({q},A)}, and {(A,A)}, in EHT20, we can additionally obtain the following nontotal EHT20-

models {({p},A),({q},A)}, {( /0,A),({p},A),({q},A)}, {( /0,A),(A,A)}, etc. We represent EHT20-models

with a similar notation (A ,sr) where sr refers to a multivalued subset function on a domain A .

Second, EHT20-models are in the form of KD45-models, while EHT15-models are special S5-models.
Given nonempty collections A ,B ⊆ 2P of valuations with A ⊆B and a multivalued subset function
sr defined on a domain B, a KD45-model 〈B,sr〉 is a weaker form of an S5-model 〈A , sr|A 〉 as it
may contain an additional world (sr(B),B) for B 6∈A , outside the maximal-cluster structure 〈A , sr|A 〉.
Note that sr|{B} is an ordinary (singlevalued) subset function. Furthermore, while (sr(B),B) relates

exclusively to all worlds of the maximal-cluster 〈A , sr|A 〉 and so is irreflexive, no world in 〈A , sr|A 〉
can relate to (sr(B),B). In other words, an EHT20-model is a refinement of a classical KD45-model, whose

6Schwarz [20] showed that the nonmonotonic extensions of modal logic KD45 and modal logic SW5 under the minimal-

model semantics respectively correspond to AEL and reflexive AEL (RAEL), interpreted by stable expansions.
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valuations are replaced by HT-models w.r.t. the multivalued subset function sr. Hence, when sr = id,
〈B,sr〉 corresponds to the classical KD45-model B. When A⊂B where A is a maximal cluster, we
say that 〈B, id〉 is a proper KD45-extension of 〈A , id〉. Truth conditions of EHT20 only differ from those

of EHT15 for Kϕ and K̂ϕ at the world (sr(B),B): (in an explicit representation, we underline the world
(sr(B),B) in the EHT20-model 〈B,sr〉 to separate it from the elements of the maximal cluster 〈A , sr|A 〉.)

〈B,sr〉,B |=EHT20
Kϕ if (A , sr|A ),A |=EHT20

ϕ for every A ∈A ;

〈B,sr〉,B |=EHT20
K̂ϕ if (A , sr|A ),A |=EHT20

ϕ for some A ∈A .

Notice that since sr is a multivalued function on the domain A , the designated world A in the above

compact representation of the (pointed) EHT20-model (〈A , sr|A 〉,A) is regarded as a shorthand for all

possible HT-models (H,A) ∈ sr. The truth-minimality condition of ES20 is so more restricted than that

of ES15 (see 1): for every possible multivalued subset function sr on the domain B satisfying sr 6= id,

there exists T ∈B such that 〈B,sr〉,T 6|=EHT ϕ (2)

which amounts to saying that ϕ is not satisfied at the world (H,T ) where HsrT in an explicit represen-

tation of the model 〈B,sr〉. To distinguish the similar definitions, we call the condition (2) relational

truth-minimality and the condition (1) functional truth-minimality. Then, an epistemic equilibrium model

(EEM20) of ϕ∈LEHT is its classical KD45-model satisfying the truth-minimality condition (2). Thus, when

we restrict EEM20(ϕ) to S5-models, EEM15(ϕ) is a superset of EEM20(ϕ) as the former has a more tolerant

truth-minimality condition. However, in general, they are incomparable since the latter may additionally

include members in the KD45-model form, still remember that world-views are S5-models. Finally, to

guarantee knowledge-minimisation, ES20 selects S5-models in EEM20(ϕ), which has no proper KD45-

extension in EEM20(ϕ) and calls them (founded) autoepistemic equilibrium models7 (AEEM20) of ϕ∈LEHT.

2.5 Our slightly new approach (ES21): reflexive autoepistemic equilibrium models

Modal logic SW5 is a reflexive closure of the modal logic KD45 [24, 27]. Schwarz proposed RAEL

(aka, nonmonotonic SW5 under the minimal-model semantics) as an alternative to AEL in a way that it

has AEL’s all attractive properties. Differently, RAEL defines the modality K so as to model knowledge

(which limits cyclic arguments) rather than self-belief (which allows them) as in AEL. Moreover, [16]

discusses that RAEL captures the default reasoning of ASP much better than AEL. Thus, ES20 requires

a more thorough analysis for the choice of KD45 rather than SW5 to ensure knowledge-minimisation.

This section addresses this issue and presents reflexive autoepistemic equilibrium models (RAEEMs).
We first describe the underlying base of the new formalism ES21. Similarly to EHT20, HT and SW5

are incorporated into a monotonic formalism, referred to as EHT21 hereafter. The only difference of an
EHT21-model from an EHT20-model is that now any HT-model (H,T ) in the collection is reflexive, i.e.,
every such (H,T) can see (access) its own information. Relatedly, an EHT21-model 〈A ,sr〉 is formed
from an SW5-model by modifying its classical models (valuations) with HT-models. When 〈A ,sr〉 is
total, i.e., sr equals the identity function id, we identify the EHT21-model 〈A ,sr〉 with the classical SW5-

model A . As a result, different from EHT20, Kϕ→ϕ (reflexivity) is an axiom of EHT21. The proper8

SW5-extension of a maximal-cluster to an SW5-model is defined straightforwardly. Given that B is a
proper SW5-extension of a cluster A , viz. B is not a cluster, truth conditions of EHT21 only vary from

those of EHT20 for Kϕ and K̂ϕ at (s(B),B) for B∈B\A , located outside the maximal cluster 〈A , s|
A
〉.

〈B,s〉,B |=EHT21
Kϕ if (B,s),T |=EHT21

ϕ for every T ∈B;

〈B,s〉,B |=EHT21
K̂ϕ if (B,s),T |=EHT21

ϕ for some T ∈B.

7We describe the special models of the ES20-semantics in a slightly different but equivalent way for ease of comparison.
8Extending a cluster 〈A ,sr〉 to an SW5-model with an HT-model, already existing in 〈A ,sr〉 does not affect satisfaction.
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The definition of (A)EEM is adjusted to the SW5-setting straightforwardly: an epistemic equilibrium

model (EEM21) of ϕ ∈LEHT is the classical SW5-model A of ϕ , satisfying the truth-minimality condition

(2), when viewed as a total EHT21-model 〈A , id〉. Similarly to ES20, to minimise knowledge (in other

words, to maximise ignorance), ES21 also selects S5-models of EEM21(ϕ), which has no proper SW5-

extension in EEM21(ϕ) and calls them reflexive autoepistemic equilibrium models (AEEM21) of ϕ .

3 Some formal tools towards a well-formed epistemic extension of ASP

This section first recalls the fundamental principles of ES, which are still under question. Then, we

demonstrate some validities of EHT15 that will be useful for deciding understandable models of ELPs.

3.1 Foundational properties of ES establishing a formal base for successful semantics

Since its introduction in 1991, plenty of semantics proposals have emerged for ES. However, debates and

struggles to overcome unintended results still continue. This shows that finding a satisfactory semantics

of ES is a challenging task, and therefore, as first realised by Cabalar et al., we need some formal support

so as to reveal understandable results and wipe out undesired ones. To this end, they proposed epistemic

splitting property (ESP), subjective constraint monotonicity (SCM), foundedness property (FP), supra-

ASP, and supra-S5. Expectedly, ES20 is compatible with all these properties, whereas each ESX for

x ∈ {15,16,18}, satisfies the last two only. We do not reproduce the definitions here due to space

restrictions, and the reader is referred to [4]. Some researchers come up with opposing arguments against

their robustness [22], so a thorough examination of these tools is left to another paper. We here check

their solidity only roughly, and before doing so, we introduce these principles shortly and informally.

ESP allows for a kind of modularity that guarantees a reasonable behaviour of programs whose

subjective literals are stratified. The idea is to separate a program Π into two disjoint subprograms (if

possible), top and bottom, such that top queries bottom through its subjective literals, and bottom never

refers to the objective literals of top. If splitting is the case w.r.t. a set U of literals (called splitting set),

then we calculate the world-views of Π in four steps: first, we compute the world-views Ab of bottom;

second, for each Ab, we take a kind of partial reduct Π
Ab

U by replacing the subjective literals g (whose

literals are included in U ) of top with their truth values in Ab (i.e., ⊤ if A |=ES g; ⊥ otherwise); third,

we find the world-views At of Π
Ab

U and end with a solution 〈Ab,At〉 for Π; finally, we concatenate the

components of 〈Ab,At〉 in a specific way, resulting in the world-views of the original program Π.

SCM is a special case of ESP and regulates the functioning of subjective constraints: when a subjec-

tive constraint r is added to a program Π, it at most rules out the world-views of Π, but never generates

new solutions, i.e., Π∪{r} cannot have a world-view A , where A is not a world-view of Π per SCM.

FP provides a derivability condition, ensuring self-supported world-views of a program to be rejected.

Supra-ASP means that the unique world-view of a (nonepistemic) regular ASP program Π is the set

of all its answer sets, if they exist; otherwise, Π has no world-views. Supra-S5 says that any world-view

of an epistemic logic program is an S5-model. Below is an example, illustrating them all.

Example 1 (discussed by Cabalar et al. [4] and Shen&Eiter [22] with opposing claims)

Let Ψ = {r1,r2,r3} and C = {r4} be the epistemic logic programs (ELPs), consisting of the rules:

r1 = aorb. r2 = a← Kb. r3 = b← Ka. r4 =⊥← notKa.

As agreed by the majority, Ψ has a unique world-view {{a},{b}} due to knowledge-minimisation. Note

that {{a},{b}} fails to satisfy r4. Thus, with SCM being applied, Ψ′=Ψ∪C has no world-view. How-

ever, each ESX for x ∈ {15,16,18}, produces the unique world-view/AEEM A ={{a,b}} for Ψ′. As



122 Refining the semantics of ES

SCM is a special case of ESP, their result contradicts both properties. Moreover, A also conflicts with

FP since
{
〈{a},A 〉,〈{b},A 〉

}
is an unfounded set. On the other hand, Cabalar et al. have already

proved in separate papers that ES20 satisfies all three properties above. Thus, ES20 follows their result

and yields no AEEMs for (Ψ′)∗. Thanks to its relational minimality condition (2), ES21 does not pro-

duce an AEEM for (Ψ′)∗ either: note that the only candidate A is not truth-minimal as the weaker per

(2) S5-model {({a},A),({b},A)} also satisfies (Ψ′)∗ where A = {a,b}, so the knowledge-minimality

check is redundant. However, if we replace (2) with the functional minimality (1) in ES21, then A

becomes truth-minimal for both (Ψ′)∗ and (Ψ)∗ as none of the weaker per (1) S5-models {({a},A)},
{({b},A)}, and {( /0,A} satisfies (Ψ′)∗ or (Ψ)∗. As for knowledge-minimality, neither A ∈ EEM21((Ψ

′)∗)
nor A ∈ EEM21((Ψ)∗) has a proper SW5-extension in the same sets, so that makes A an AEEM21-model

for (Ψ′)∗ and (Ψ)∗: note that among all possible proper SW5-extensions {{a,b},{a}}, {{a,b},{b}} and

{{a,b}, /0} of A , none of them is in EEM21((Ψ
′)∗) because they are not EHT21-models of (Ψ′)∗ or (Ψ)∗.

At this point, we need to evaluate formally if such properties (in their original form) may indeed be

too restrictive to reveal desired solutions. For a similar informal analysis of Ψ′, we refer the reader to [22].

To begin with, we translate Ψ′ into the corresponding EHT-formula (Ψ′)∗=(a∨b)∧ (Kb→ a)∧ (Ka→
b)∧ (¬¬Ka), where the last conjunct r∗4 is EHT-equivalent to K¬¬a, i.e., K(¬a→⊥) by Coroll. 1 in

[28]. So, one can interpret r4 in the way of applying the constraint ⊥←nota everywhere. Note that

world-views are S5-models in which any world is designated (actual). Thus, replacing K¬¬a by ¬¬a

in (Ψ′)∗ normally should not alter the result. If our main priority is to propose a conservative extension

of ASP, then {r1,r4} is expected to derive a everywhere since it performs similarly to {r1,notnota}
in essence. So, a automatically appears in every world of a possible model. Then, r3 and r4 guarantee

A as a world-view of Ψ′. Here, the tricky point is that ES20’s underlying monotonic base EHT20 uses

KD45-models, and Kϕ → ϕ (the knowledge or truth axiom) is not a theorem of KD45. Thus, replacing

Knotnota by notnota may result in serious changes in ES20 and is not allowed. However, the relational

truth-minimality (2) does not allow us to produce A even for the program {r1,r2,r3,notnota} either,

while functional truth-minimality (1) does. Then, may the condition (2) be eliminating understandable

results? To say the least, it is questionable to have no model for {r1,r2,r3,notnota}.

Generally speaking, K represents belief in ES20, whereas it formalises knowledge or being provable

in the other semantics of ES. As their major distinguishing feature, we can believe a statement to be true

when it is false, but it is impossible to know/prove a false statement. Thus, Kp has no world-views in

ES20 as {{p}, /0} is a proper KD45-extension of {{p}}. Expectedly, {{p}} is its unique AEEM21-model.

However, this result is understandable as belief on p does not imply its truth. As a result, it may not be a

good idea to compare ES20 with the other formalisms of ES, including ES21. Instead, we can categorise

it separately. As for the suitable epistemic extension of ES, traces from autoepistemic logic also exist

in ASP. Remember that notp reads: p is believed not to hold under the lack of evidence to drive

p. Moreover, characterisation of stable models in nonmonotonic KD45 is well-known, and there exists

translations between AEL and reflexive AEL, preserving the notion of expansion [16]. However, the latter

reflects default reasoning better. In our opinion, Kp is expected to mean in ES: p is derived in all worlds.

So, interpreting K as known may be more appropriate to us, but it should be further discussed.

From a different perspective, we can also argue that r4 and r1 are not strong enough to generate

Ka, which also seems reasonable. Then, we cannot expect to have a world-view. However, we can

trigger paracoherent reasoning for ES, as studied in ASP [1] if we really need to obtain an answer for

the program. In this case, the literal readings of these rules are: a is assumed to hold everywhere in

the possible model, and also a or b is minimally the case in each world of this model. Thus, the EHT-
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model9 {{a},({b},{a,b})}, in which the total HT-model ({a},{a}) is simplified into the valuation {a},
precisely captures the meaning of this statement, further making r3 and r4 inapplicable as desired. We

leave the use of nontotal EHT-models as a relaxation of world-views to be discussed in future work.

Apart from being reliable tools for ES, first, ESP is not a conservative extension of ASP’s standard

splitting property (SSP), i.e., a regular ASP-program that can be nontrivially split w.r.t. SSP may not be

splittable w.r.t. ESP. Second, FP is designed to weed out unsupported world-views of ES91 and cannot

guarantee that a founded S5-model of an ELP is also its world-view. Remember that the set of founded

classical models of an ASP-program equals the set of its answer sets. What if ES91 does not provide

a world-view for an ELP, but this result is unintended? Moreover, FP cannot ensure the well-founded

classical S5-models w.r.t. knowledge-minimisation. Note that {{a}} is a founded S5-model of aorb

w.r.t. FP; yet it is unintended. Briefly, in our opinion, these properties at least need to be strengthened

before we regard them as the mandatory criteria that a semantics of ES should comply with.

3.2 Some interesting validities of EHT that are inherited from HT

Now, we extend some well-known propositions of HT to EHT, which we use later for a correct under-

standing of the real behaviour of complex programs. First, recall that a formula ϕ ∈LEHT is satisfiable if

it has an EHT-model. If every EHT-model satisfies ϕ , then it is valid (‘|=EHT ϕ’). Given ϕ ,ψ ∈LEHT, ψ

is a logical consequence of ϕ in EHT (‘ϕ |=EHT ψ’) if every EHT-model of ϕ satisfies ψ . When ϕ |=EHT ψ

and ψ |=EHT ϕ (i.e., they have the same EHT-models), we call them logically equivalent in EHT.

Proposition 1 (de Morgan laws and the weak law of the excluded middle both hold in EHT.)

|=EHT ¬(ϕ ∧ψ)↔¬ϕ ∨¬ψ |=EHT ¬ϕ ∨¬¬ϕ

|=EHT ¬(ϕ ∨ψ)↔¬ϕ ∧¬ψ |=EHT ¬¬¬ϕ↔¬ϕ

Proposition 2 For ϕ ,χ ,ψ ∈LEHT, the following formulas are logically equivalent in EHT:

i.) |=EHT (¬¬ϕ ∧ χ→ ψ)↔ (χ →¬ϕ ∨ψ) ii.) |=EHT (¬ϕ ∧ χ→ ψ)↔ (χ →¬¬ϕ ∨ψ)

Corollary 1 As an immediate consequence of Prop. 2 (hint: take χ =⊤), we have: for ϕ ,ψ ∈LEHT,

i.) |=EHT (¬¬ϕ→ ψ)↔ (¬ϕ ∨ψ) ii.) |=EHT (¬ϕ→ ψ)↔ (ψ ∨¬¬ϕ)

3.3 Comparison between semantics proposals of ES via some critical examples

As mentioned above, AEEMs are in the form of classical S5-models. ES15 chooses the AEEMs of a

formula ϕ from the set EEM15(ϕ) of the candidates. Differently from ES20 and ES21, ES15 executes a

pairwise comparison to the members of this set to guarantee knowledge minimisation: for instance,

when EEM15(ϕ)={A1,A2}, we eliminate A1 if A1⊂A2 or A1<ϕA2, and so we get A2 ∈ AEEM15(ϕ).
This strategy fails when we add a constraint which A2 violates because then A1 ∈ AEEM15(ϕ) rather than

having no AEEMs. On the other hand, ES20 tests the members of EEM20(ϕ) according to whether they

have a proper KD45-extension in EEM20(ϕ), and so adding constraints do not cause inconsistencies. More

explicitly, AEEM20(ϕ)={A2}when EEM20(ϕ)={A1,A2,A3} where A3 is a proper KD45-extension of A1.

However, adding a subjective constraint which is not satisfied by A2 causes the lack of AEEMs for ϕ .

The case for arbitrary constraints should further be checked. Note that ES16 and ES18 also suffer from a

similar pairwise comparison of possible candidates. The following example illustrates this discussion.

9When we use no subscript such as EHT20 , EHT is accepted to be EHT15 by default, i.e., the combination of S5 and HT.
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Example 2 (given by Cabalar et al. [4] to show that ES15, ES16, and ES18 violate epistemic splitting)

Let Σ = {r1,r2,r3} be the epistemic logic program (ELP), consisting of the rules given below:

r1 = aorb. r2 = c← Ka. r3 =⊥← notc. ( or, r′3 = notnotc.)

First take Σ1={r1,r2}: it has a unique and clearly understandable world-view A1={{a},{b}} in ES16

and ES18. Note that A2={{a,c}} does not occur as a truth-minimal model of Σ1 in ES16 and ES18, thanks

to their fixed point equations
fp
=. However, in ES15 and ES20, we have both A1 and A2 as truth-minimal

EEMs respectively according to the tools 1 and 2. Fortunately, they eliminate A2 w.r.t. their knowledge-

minimisation properties. Then, consider the whole program Σ: now, ES15, ES16 and ES18 all withdraw A1

since it violates the constraint r3 and instead choose A2 as the unique world-view/AEEM: for Σ and A2,

the fixed point equations of ES16 and ES18 hold, and now there is no rival. To us, this result provided by

A2 is unsupported: while an agent disjunctively has two alternative information, a and b, about a world,

she cannot justify Ka. So, r2 becomes inapplicable and the existence of c is unfounded. Further inserting

the constraint r3 can guarantee neither Ka nor c. Thus, Σ should have no world-views/AEEMs as is the

case in ES20 because {{a,c}} ∈ EEM20(Σ) has the proper KD45-extension {{a,c},{b,c}} in EEM20(Σ).
As expected, Cabalar et al.’s principle of ESP aligns with the result of ES20. As AEEM21(Σ) = {A2}, we

show by this counterexample that ESP does not hold for ES21. Note that A2 ∈ EEM21(Σ) has no proper

SW5-extension in the same set: the only candidate does not hold as {{a,c},({b},{b,c})} satisfies Σ.

Example 3 (used by Kahl as a motivating example for his new modal reduct first given in [12])

Take the ELP ∆={r1,r2}where r1=aorb and r2=b←Ma, and then translate it into the corresponding

EHT-formula ∆∗=(a∨b)∧ (¬K¬a→ b). We know that ¬¬K̂, K̂¬¬ and ¬K¬ are all equivalent in EHT

(see Prop. 5; [28]) So, using Coroll. 1, we deduce that ∆∗ is equivalent to (a∨ b)∧ (b∨¬K̂a) in EHT,

and again by Prop. 5 [28], even further to b∨ (a∧K¬a). Note that the last disjunct yields a contradiction

in EHT15 and EHT21, making ∆∗ and b EHT-equivalent. Thus, ∆ has the unique AEEM {{b}} in ES15 and

ES21; yet ES20 gives no AEEMs as {{b}} has a proper KD45-extension {{b},{a}} in EEM20(∆). ∆ cannot

be split w.r.t. ESP. However, {{b}} is a founded model of ∆ w.r.t. FP. So, a semantics satisfying FP is

supposed to have this world-view. Semantics like ES20 and ES91 jump over this test since they do not have

world-views for ∆. This is why we find it essential to reinforce FP so as to guarantee that a successful

semantics should be able to bring out all founded S5-models of an ELP as its world-views/AEEMs.

Example 4 (discussed by Cabalar et al. [4] to show that ES15, ES16, and ES18 violate epistemic splitting)

Let ϒ = {r1,r2,r3,r4} be the epistemic logic program (ELP), composed of the following rules:

r1 = aorb. r2 = cord← notKa. r3 =⊥← c. r4 =⊥← d.

Then, ϒ∗ = (a∨ b)∧ (¬Ka→ c∨ d)∧ (¬c)∧ (¬d). By Prop. 1 and Coroll. 1, ϒ∗ is equivalent to (a∨
b)∧ ((c∨d)∨¬¬Ka)∧¬(c∨d). Using Coroll. 1 in [28], we further simplify ϒ∗ into (a∨b)∧ (K¬¬a)∧
¬(c∨ d). Thus, this formula, in essence, has the same meaning as (a∨ b)∧ (¬¬a)∧¬c∧¬d, whose

unique world-view/AEEM is {{a}} in each ESX for x ∈ {15,16,18,20,21} w.r.t. supra-ASP. So, for a

semantics of ES with classical S5-models (i.e., according to supra-S5), {{a}} is expected to be the only

world-view/AEEM for ϒ. Nonetheless, ES20 has no AEEMs for ϒ because the unique possibility {{a}}
has the proper KD45-extension {{a},{b}}∈ EEM20(ϒ). Of course, this result is normal because reflexivity

is not valid in EHT20, and so it is not legal to make such transitions in it. However, we can assert that

the knowledge-minimisation technique of AEL may not be the best choice to be employed in ES. Note

that ES21, using the reasoning of RAEL, obtains the AEEM {{a}} for ϒ∗ as {{a},{b}} 6|=EHT21
ϒ∗. As

an advantage, extending ES21 with world-view constructs [13] will then make ES21 more expressive than

ES20. Also, SCM is useful in problem descriptions of some domains like conformant planning [13, 4].
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4 Conclusion

The main purpose of this paper is to carefully revise the competing approaches of ES, among which are

ESX for x ∈ {15,16,18,20}. We systematically bring to light the (dis)advantages of these formalisms. In

doing so, we discuss how we can reach a more suitable epistemic extension of ASP. We also propose

a slightly new formalism called ES21, which can also be regarded as reflexive ES20. We do so because

ES20 uses a well-studied technique of knowledge minimisation, but it is a nonmonotonic epistemic logic

of belief, while all the rest can be considered as epistemic formalisms of knowledge. As future work,

we will first establish a strong equivalence characterisation of ELPs under the ES21-semantics, which is

identified as EHT21-equivalence. Then, we also would like to study paracoherent semantics of ELPs.
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