
S. Alves and M. Pagani (Eds.): DCM 2018 and ITRS 2018

EPTCS 293, 2019, pp. 7–27, doi:10.4204/EPTCS.293.2

c© P. Parys

This work is licensed under the

Creative Commons Attribution License.

Intersection Types for Unboundedness Problems∗

Paweł Parys

Institute of Informatics, University of Warsaw, Poland

parys@mimuw.edu.pl

Intersection types have been originally developed as an extension of simple types, but they can also be

used for refining simple types. In this survey we concentrate on the latter option; more precisely, on

the use of intersection types for describing quantitative properties of simply typed lambda-terms. We

present two type systems. The first allows to estimate (by appropriately defined value of a derivation)

the number of appearances of a fixed constant a in the beta-normal form of a considered lambda-

term. The second type system is more complicated, and allows to estimate the maximal number of

appearances of the constant a on a single branch.

1 Introduction

Intersection types have been originally developed as an extension of simple types, but they can also be

used for refining simple types. In this survey we concentrate on the latter option; more precisely, on the

use of intersection types for describing quantitative properties of simply typed lambda-terms.

We consider lambda-terms as generators of trees. To this end, we assume a unique ground sort1

o describing trees, and we assume some uninterpreted constants, which are functions of order at most

1. Then, a beta-normal form of a closed lambda-term of the ground sort does not contain any lambda-

binders—it is just an applicative term composed of the uninterpreted constants, and thus can be seen as

a tree. In other words, in the effect of calling a function a with some trees as arguments, we obtain a new

tree with a root labeled by a, and with the arguments attached in the children of the root.

Suppose now that we have a closed lambda-term M of the ground sort, and we want to estimate some

quantities concerning its beta-normal form T . As a first example of such a quantity we can take the

number of appearances of some fixed constant a in T . How can we read this number from the original

lambda-term M? As a first approach, we can look at the number of appearances of the constant a in M.

This can be completely inappropriate, though, for two reasons. First, we can have in M some appearances

of the constant a that will be removed during beta-reductions. Second, maybe the constant a appears in

M only once, but it will be replicated a lot of times during beta-reductions. In order to take into account

these two phenomena we design an appropriate type system; a type derivation for the lambda-term M

identifies the places in M that are really responsible for producing some constants a in the beta-normal

form T , so that these places can be counted. The type system realizing this goal is presented in Section 3.

Another quantity of the tree T is the largest number of appearances of some fixed constant a on a

single branch in T . While the quantity of the first kind can be called deterministic, this one is slightly

more complicated, and can be called nondeterministic. The justification of such a name is that while

looking locally at some fragment of T we do not know whether the constants a appearing in this fragment

should be counted or not (i.e., whether they are located on the branch of T containing the largest number

∗Work supported by the National Science Centre, Poland (grant no. 2016/22/E/ST6/00041).
1Following the convention in this area, we use the word “sort” for simple types, and the word “type” for intersection types

refining them.

http://dx.doi.org/10.4204/EPTCS.293.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

8 Intersection Types for Unboundedness Problems

of constants a). We thus have to non-locally (nondeterministically) choose some branch of T on which

the constants a should be counted. A type system that allows to estimate the above quantity is presented

in Section 4.

The following quantity is even more involved: what is the largest number n such that the binary tree

with all nodes labeled by a and all branches of length n embeds homeomorphically in the considered tree

T ? In a sense, this quantity combines three elements: taking the maximum, taking the minimum, and

counting. Indeed, we take here the maximum over all embeddings of trees with all nodes labeled by a of

the minimum of lengths of paths in the chosen tree (and internally, we count the number of constants a

on the chosen path). Unfortunately, the presented methods do not allow to estimate this quantity; it is an

open problem to construct a type system concerning this quantity.

One may wonder why we want to have the aforementioned type systems, instead of just expanding

the lambda-term M into its beta-normal form T , and computing the quantity there. The answer is:

compositionality. Suppose that M is an application K L. If we know types derivable for K and for L, we

can determine types derivable for K L. Moreover, knowing the quantities assigned to type derivations

for K and for L we can determine the quantity assigned to type derivations for K L. We thus have a

composable abstraction of every lambda-term: a set of its types, and a tuple of numbers (with a bound

on the size of this set and on the length of this tuple that depends only on the sort of the lambda-term,

not on its size). Existence of such an abstraction has some interesting implications.

In particular, the research presented here is motivated by applications in the area of higher-order

recursion schemes. Recursion schemes, or equivalently terms of the λY -calculus, form an extension

of the simply typed lambda-calculus by a fixed-point operator Y [11, 17, 22, 21]. Trees generated by

recursion schemes can be used to faithfully represent the control flow of programs in languages with

higher-order functions [18]. We remark that the same class of trees can be generated by collapsible

pushdown systems [15] and ordered tree-pushdown systems [7].

Intersection type systems were intensively used in the context of recursion schemes, for several

purposes like model-checking [18, 21, 5, 29], pumping [19, 2], transformations of HORSes [20, 1, 8], etc.

Interestingly, constructions very similar to intersection types were used also on the side of collapsible

pushdown systems; they were alternating stack automata [4], and types of stacks [23, 16]. The type

systems are also closely connected to linear logic [14, 13].

The type system of Section 3 is based on the type system from Parys [24]. A similar type system

was used to prove that some trees generated by recursion schemes cannot be generated by so-called

safe recursion schemes [23]. The type system of Section 4 comes from Parys [25, 26]. It implies

decidability of the model-checking problem for trees generated by recursion schemes against formulae of

the WMSO+U logic [28]. It also allows to solve the simultaneous unboundedness problem (aka. diagonal

problem) for recursion schemes, which was first solved in a different way [8].

2 Preliminaries

The set of sorts is constructed from a unique basic sort o using a binary operation →. Thus o is a sort

and if α ,β are sorts, so is (α →β). The order of a sort is defined by: ord(o) = 0, and ord(α →β) =
max(1+ord(α),ord(β)); in other words, ord(α1 →···→αk →o) = 1+maxi∈{1,...,k} ord(αi) whenever

k ≥ 1.

A signature is a set of constants, that is, symbols with associated sorts. For simplicity, in this paper

we use a signature consisting of three constants: a of sort o→ o, and b of sort o→ o→ o, and e of sort

o (it is easy to generalize the methods to an arbitrary signature, assuming that sorts of constants are of

P. Parys 9

order at most 1).

The set of (simply typed) lambda-terms is defined by induction as follows:

• constants (node constructors)—a constant of sort α is a lambda-term of sort α ;

• variables—for each sort α there is a countable set of variables xα ,yα , . . . that are also lambda-terms

of sort α ;

• lambda-binders—if K is a lambda-term of sort β and xα a variable of sort α then λxα .K is a

lambda-term of sort α →β ;

• applications—if K is a lambda-term of sort α →β and L is a lambda-term of sort α then K L is a

lambda-term of sort β .

As usual, we identify lambda-terms up to alpha-conversion (renaming of bound variables). We often

omit the sort annotation of variables, but please keep in mind that every variable is implicitly sorted.

A term is called closed when it does not have free variables. The order of a lambda-term M, denoted

ord(M), is defined as the order of the sort of M, while the complexity of M is defined as the maximum of

orders of subterms of M.

A sort α1 →···→αk → o is homogeneous if ord(α1) ≥ ·· · ≥ ord(αk) and all α1, . . . ,αk are homo-

geneous (defined by induction). A lambda-term is homogeneous if all its subterms have homogeneous

sorts. In order to avoid some technicalities, in this paper we only consider homogeneous lambda-terms.

This is without loss of generality, since there is a simple syntactic transformation converting every closed

lambda-term of sort o into a homogeneous lambda-term having the same beta-normal form [27].

We use the usual notion of beta-reduction: we have M →β N if N can be obtained from M by replac-

ing some of its subterms of the form (λx.K)L by K[L/x]. We recall that simply typed lambda-calculus

has the properties of strong normalization and confluence, that is, every sequence of beta-reductions from

a lambda-term M eventually terminates in a unique lambda-term N such that no more beta-reductions

can be performed from N; the lambda-term N is called the beta-normal form of M. Observe that the

beta-normal form of a closed lambda-term of sort o is an applicative term build of constants (it does not

contain variables nor lambda-binders), and thus can be seen as a tree (generated by the lambda-term).

In this paper we are interested in two particular reduction strategies (i.e., strategies of choosing

a redex that should be reduced next). In the OI strategy, we always reduce an outermost redex, that

is, a redex that is not located inside another redex. Notice that if M is closed and of sort o, then every

outermost redex in M is also closed. A redex (λx.K)L is a redex of order m if ord(λx.K) = m. Assuming

that the lambda-term is homogeneous, we have ord(λx.K) = m if and only if ord(x) = m−1. In the RMF

strategy we always reduce a rightmost redex of the maximal order, that is, a redex (λx.K)L of some order

m such that in the lambda-term there is no redex of a higher order, and in L there are no redexes of order

m, and the redex is not located inside K′ for some order-m redex (λx′.K′)L′. In other words, whenever

we see an order-m redex (λx.K)L, we first reduce all order-m redexes in L, then the redex itself, and

then we continue reducing the resulting lambda-term. We also write RMF(m) to make it explicit that the

order of the considered redex is m. When a closed lambda-term M of sort o has complexity m (and is

not in the beta-normal form), then an RMF(m) reduction always exist; thus following the RMF strategy

we first reduce all redexes of order m (until reaching a term of complexity m− 1), then all redexes of

order m− 1, and so on. Moreover, for an RMF(m) redex (λx.K)L in such a lambda-term, all variables

appearing in L are of order at most m−2.

Suppose that we have two functions f ,g : X → N, over some domain X . We want to define when

f estimates g. To this end, we say that f is dominated by g, written f � g, if there exists a function

η : N→ N such that f (x) ≤ η(g(x)) for all x ∈ X , and we say that f estimates g, written f ≈ g, if f � g

and g � f . It is easy to see that f estimates g if and only if on every subset Y of the domain X , the

functions f and g are either both bounded or both unbounded. The above relation between functions is

10 Intersection Types for Unboundedness Problems

widely used in the area of regular cost functions (see, e.g., Colcombet [9]).

One may also consider infinite lambda-terms. Clearly they do not reduce to a normal form in a finite

number of steps, but we can consider the (unique) normal form reached in the limit, called the Böhm

tree. As in the finite case, the Böhm tree of a closed lambda-term of sort o is a (potentially infinite) tree

build out of constants. A recursion scheme is a finite description of a regular (i.e., having finitely many

different subterms) infinite lambda-term.

3 Deterministic Quantities

In this section we present a type system that allows to estimate the number of appearances of the constant

a in the beta-normal form of a lambda-term. The type system should be such that a type derivation for

a closed lambda-term M of sort o identifies the places in M that are responsible for producing some a-

labeled nodes in the beta-normal form T of M. To this end, we extend the notion of sorts by a productivity

flag, which can be pr (standing for productive) and np (standing for nonproductive).

It may happen that a single lambda-term K has multiple types; for example, λy.y(ae) is productive

when the function (substituted for) y uses its argument, and nonproductive otherwise. Because of that,

we need intersection types (i.e., the ability of assigning multiple types to the same lambda-term).

In effect, our types differ from sorts in that on the left side of →, instead of a single type, we have a

set of pairs (f ,τ), where τ is a type, and f is a flag from {pr,np}. The unique atomic type is denoted o.

More precisely, for each sort α we define the set T α of types of sort α as follows:

T
o = {o}, T

α→β = P({pr,np}×T
α)×T

β ,

where P denotes the powerset. A type (T,τ) ∈ T α→β is denoted as
∧

T → τ , or
∧

i∈I(fi,τi)→ τ when

T = {(fi,τi) | i ∈ I}. The empty intersection is denoted by ⊤. To a lambda-term of sort α we assign not

only a type τ ∈ T α , but also a flag f ∈ {pr,np} (which together form a pair (f ,τ)).
Intuitively, a lambda-term has type

∧
T → τ when it can return τ , while taking an argument for

which we can derive all pairs (of a flag and a type) from T ; simultaneously, while having such a type, the

lambda-term is obligated to use its arguments in all ways described by type pairs from T . And, we assign

the flag pr (productive), when this term (while being a subterm of a closed term of sort o) increases the

number of constants a in the resulting tree. To be more precise, a term is productive in two cases. First,

when it uses the constant a. Notice however that this a has to be really used: there exist terms which

syntactically contain a, but the result of this a is then ignored, like in (λx.e)a. Second, a term which

takes a productive argument and uses it at least twice is also productive (for example, the productive

argument may be a function that creates an a-labeled node; when a lambda-term uses such an argument

twice, the lambda-term is itself responsible for increasing the number of constants a in the resulting tree).

A type judgment is of the form Γ ⊢ M : (f ,τ), where we require that the type τ and the term M are

of the same sort. The type environment Γ is a set of bindings of variables of the form xα : (f ,τ), where

τ ∈ T α . In Γ we may have multiple bindings for the same variable. By dom(Γ) we denote the set of

variables x that are bound by Γ, and by Γ↾pr we denote the set of those binding from Γ that use flag pr.

We now gradually present rules of the type system. We begin with rules for node constructors:

⊢ a : (pr,(f ,o)→ o) ⊢ b : (np,(f1,o)→ (f2,o)→ o) ⊢ e : (np,o)

Since we aim at counting constants a, we say here that a is productive, while b and e are nonproductive.

Notice that productivity of a node constructor does not depend on productivity of the argument; flags of

the arguments (f , f1, f2) can be arbitrary.

P. Parys 11

Then we have a rule for a variable:

x : (f ,τ) ⊢ x : (np,τ)

The type of the variable is taken from the environment. The flag is always np, though; by just using a

variable we are not productive at all (and in the productivity flag we want to cover productivity of the

lambda-term itself, not of lambda-terms that may be potentially substituted for free variables).

The rule that talks about lambda-binders is very natural; it just moves type pairs from the argument

to the environment:

Γ∪{x : (fi,τi) | i ∈ I} ⊢ K : (f ,τ) x 6∈ dom(Γ)

Γ ⊢ λx.K : (f ,
∧

i∈I
(fi,τi)→ τ)

(λ)

Finally, we have the most complicated rule, for application:

Γ ⊢ K : (f ′,
∧

i∈I
(f •i ,τi)→ τ) Γi ⊢ L : (f ◦i ,τi) for each i ∈ I

Γ∪
⋃

i∈I
Γi ⊢ K L : (f ,τ)

(@)

where we assume that

• every pair (f •i ,τi) is different (where i ∈ I),

• for each i ∈ I, f •i = pr if and only if f ◦i = pr or Γi↾pr 6= /0, and

• f = pr if and only if f ′ = pr, or f ◦i = pr for some i ∈ I, or |Γ↾pr|+∑i∈I |Γi↾pr|> |(Γ∪
⋃

i∈I Γi)↾pr|.

Let us explain the above conditions. The first condition is technical: we need to provide exactly one

derivation for every needed type pair. The second condition says that when K requires a “productive”

argument, either we can apply an argument L that is itself productive, or we can apply a nonproductive

L that uses a productive variable; in the latter case, after substituting something for the variable, L will

become productive. The third condition says that K L is productive if K is productive, or if L is productive,

or if some productive free variable is duplicated (i.e., used in at least two subderivations simultaneously).

Notice that weakening of type environments is disallowed: Γ ⊢ M : (f ,τ) does not necessarily imply

Γ,x : (g,σ) ⊢ M : (f ,τ); in other words, every binding x : (g,σ) in the type environment (and thus every

pair (g,σ) assigned to an argument) has to be really used somewhere in the type derivation. This property

of the type system is very expected, if we recall that we want to distinguish lambda-terms that really

use their (productive) arguments from those in which the arguments are discarded. On the other hand,

contraction is allowed: we may say that Γ,x : (g,σ),x : (g,σ) ⊢M : (f ,τ) implies Γ,x : (g,σ) ⊢M : (f ,τ),
since a type environment is a set of type bindings. As we see in the (@) rule, such contractions (for

productive type binding) cause productivity of lambda-terms.

A derivation is defined as usual: it is a tree labeled by type judgments, such that each node together

with its children fit to one of the rules of the type system.

We now define a value of every node of a derivation, saying how much this node is productive. In a

node using the rule for the constant a, the value is 1. In a node using the (@) rule with type environments

Γ and Γi for i ∈ I, the value is

|Γ↾pr|+∑i∈I
|Γi↾pr|− |(Γ∪

⋃
i∈I

Γi)↾pr| .

Spelling this out, the value in such a node equals the number of productive type bindings together in

all the type environments Γ, (Γi)i∈I , minus the number of such type bindings in their union. In other

12 Intersection Types for Unboundedness Problems

words, it says how many times we have to duplicate some productive type bindings before splitting them

between type environments of subderivations. In all other nodes the value is 0.

For a derivation D, the value of D, denoted val(D), is the sum of values of all nodes in D. We can

easily see that the value of a derivation D is positive if and only if D is productive (i.e., the flag in the

derived type judgment is pr). The main theorem says that val(D) can be used to estimate the the number

of constants a in normal forms of lambda-terms.

Theorem 1. The following holds for the type system introduced above:

(D1) for every m∈N there is a function ηm : N→N such that if M is a homogeneous and closed lambda-

term of sort o and complexity at most m, and D is a derivation for ⊢ M : (f ,o), then the number of

constants a in the normal form of M is

(D1A) at least val(D), and

(D1B) at most ηm(val(D));
(D2) for every closed lambda-term M of sort o one can derive ⊢ M : (f ,o) (for some f ∈ {pr,np}).2

Example 1. Observe how the type system behaves for the lambda-term M = (λy.N (N (N y))(ae))a,

where N = λy.λx.y(yx). We start with a derivation concerning N, where we write τpr

y for (pr,o)→o:

y : (pr,τpr

y) ⊢ y : (np,τpr

y)

y : (pr,τpr

y) ⊢ y : (np,τpr

y) x : (pr,o) ⊢ x : (np,o)

y : (pr,τpr

y), x : (pr,o) ⊢ yx : (np,o)
(@)

y : (pr,τpr

y), x : (pr,o) ⊢ y(yx) : (pr,o)
(@)

y : (pr,τpr

y) ⊢ λx.y(yx) : (pr,τpr

y)
(λ)

⊢ N : (pr,(pr,τpr

y)→ τpr

y)
(λ)

Notice that the type τpr

y requires a productive argument, but (in both the (@) rules above) we apply an

argument that is not productive itself. This is possible, because the type judgments for the arguments

have productive type bindings in the type environments (and hence for the purposes of the (@) rule they

are assumed to be productive). The lower use of the (@) rule has value 1 (and in effect the productivity

flag is set to pr), because the productive type binding y : (pr,τpr

y) is taken to both children.

Below, we have another derivation concerning N, where we write τ
np

y for (np,o)→ o:

y : (pr,τpr

y) ⊢ y : (np,τpr

y)

y : (pr,τnp

y) ⊢ y : (np,τnp

y) x : (np,o) ⊢ x : (np,o)

y : (pr,τnp

y), x : (np,o) ⊢ yx : (np,o)
(@)

y : (pr,τpr

y), y : (pr,τnp

y), x : (np,o) ⊢ y(yx) : (np,o)
(@)

y : (pr,τpr

y), y : (pr,τnp

y) ⊢ λx.y(yx) : (np,τnp

y)
(λ)

⊢ N : (np,(pr,τpr

y)∧ (pr,τnp

y)→ τnp

y)
(λ)

This time the value of all nodes is 0, because every type binding is used in exactly one place. Likewise,

it is possible to derive five other type pairs for the lambda-term N:

(np,(pr,τpr

y)∧ (np,τpr

y)→ τpr

y) , (np,(np,τpr

y)→ τpr

y) ,

(np,(pr,τnp

y)∧ (np,τnp

y)→ τnp

y) , (np,(np,τnp

y)→ τnp

y) .

(np,(np,τpr

y)∧ (pr,τnp

y)→ τnp

y) ,

2Actually, one can even prove that there is a unique derivation concerning M (assuming that M is closed and of sort o).

P. Parys 13

While deriving a type for M, we only need one type pair for N: the type pair (pr,(pr,τpr

y)→ τpr

y) derived

at the beginning. But we remark that if the lambda-term was M′ = (λy.N (N (N y))e)a (we have replaced

here ae by e, and thus the first call to N receives a nonproductive argument as x), it would be necessary

to use both the above derivations for N.

Denoting the type (pr,τpr

y)→ τ
pr

y as τN , we continue the derivation for M:

⊢ N : (pr,τN)

⊢ N : (pr,τN)

⊢ N : (pr,τN) y : (pr,τpr

y) ⊢ y : (np,τpr

y)

y : (pr,τpr

y) ⊢ N y : (pr,τpr

y)
(@)

y : (pr,τpr

y) ⊢ N (N y) : (pr,τpr

y)
(@)

y : (pr,τpr

y) ⊢ N (N (N y)) : (pr,τpr

y)
(@)

y : (pr,τpr

y) ⊢ N (N (N y)) : (pr,τpr

y)

⊢ a : (pr,τnp

y) ⊢ e : (np,o)

⊢ ae : (pr,o)
(@)

y : (pr,τpr

y) ⊢ N (N (N y))(ae) : (pr,o)
(@)

⊢ λy.N (N (N y))(ae) : (pr,(pr,τpr

y)→o)
(λ)

⊢ a : (pr,τpr

y)

⊢ M : (pr,o)
(@)

The total value of this derivation is 5 (2 in the two nodes concerning a, and 3 in the three subderiva-

tions concerning N), while the normal form of M contains 9 appearances of the constant a. Notice that

while adding any further N to the sequence N (N (N y)), we increase the value by 1, while we almost

double the number of a’s in the normal form.

Proofs. Let us now sketch the proof of Theorem 1. While proving Condition (D1), it is convenient to

consider the RMF strategy of reductions (defined on Page 9). We have the following subject-reduction

lemma for reductions of this kind.

Lemma 2. If D0 is a derivation for ⊢ M0 : (f ,o), where M0 is homogeneous, closed, and of complexity

m (and of sort o), and M0 →β M1 →β . . .→β Mn is a sequence of RMF(m) beta-reductions, then there

exists a derivation Dn for ⊢ Mn : (f ,o) such that val(D0)≤ val(Dn) and val(Dn)≤ 2val(D0).

Because the maximal complexity m of the lambda-term M considered in Theorem 1 is fixed, using

Lemma 2 m times (for complexities m,m−1, . . . ,1) we obtain a derivation DT for the normal from T of

M such that val(D)≤ val(DT) and val(DT) is bounded by a function of val(D), that is, val(D) estimates

val(DT). It remains to notice that val(DT) is exactly the number of a-labeled nodes in the tree T .

Proof sketch (Lemma 2). We proceed by induction: for every i ∈ {1, . . . ,n} out of the derivation Di−1 for

⊢ Mi−1 : (f ,o) we construct a derivation Di for ⊢ Mi : (f ,o). To this end, we consider every subderiva-

tion D of Di−1 starting with a type judgment Γ ⊢ (λx.K)L : (g,τ) concerning the redex involved in the

reduction Mi−1 →β Mi; we need to replace it by a derivation D′ for Γ ⊢ K[L/x] : (g,τ). We obtain D′ by a

surgery on D: we take the subderivation of D concerning K, we replace every leaf deriving a type σ for x

by the subderivation of D deriving this type σ for L, and we update type environments and productivity

flags appropriately.

Notice that every subderivation concerning L is moved to at least one leaf concerning x (nothing can

disappear). The only reason why the value of the derivation can decrease is that potentially a productive

type binding x : (pr,σ) was duplicated (say, k times) in the derivation concerning K. In D′ this binding

is no longer present (in K[L/x] there is no x) so the value gets decreased by k, but in this situation the

14 Intersection Types for Unboundedness Problems

subderivation deriving σ for L becomes inserted in k+1 leaves. This subderivation is either productive

itself, or uses a productive type binding in the environment; in both cases by creating k additional copies

of this subderivation we increase the value at least by k, compensating the loss caused by elimination of

x. This implies that val(D)≤ val(D′), hence val(Di−1)≤ val(Di) (and, in effect, val(D0)≤ val(Dn)).
Conversely, the only reason why the value can grow is that some derivation concerning L (that is

either productive itself or uses some productive type bindings for its free variables) becomes inserted in

k+ 1 leaves, for some k ≥ 1. In the worst case, this may cause that the value (of the whole derivation

for M) gets multiplied by k+1. But, simultaneously, in the subderivation concerning K, the productive

type bindings for x are removed, which decreases the value by k in some nodes of this subderivation.

The point is now that these nodes were never copied in the reduction sequence from D0 to the considered

Di−1; this is because all the reductions are RMF(m) reductions. Indeed, looking from the other side,

all variables appearing in (the copied subderivation for) L are of order at most m− 2—as observed on

Page 9—but all variables involved in future order-m reductions (i.e., all variables that we remove from

type environments) are of order m−1—because of homogeneity of the lambda-term. Thus, whenever we

multiply the value of the current derivation by at most k+1, we subtract k from the value of the original

derivation D0. The worst case is when val(D0) times we decrease the value by 1, and val(D0) times we

multiply it by 2. It follows that val(Dn) ≤ val(D0) · 2
val(D0); a slightly more careful analysis shows that

actually val(Dn)≤ 2val(D0).

In the proof of Condition (D2), saying that we can derive a type for every closed lambda-term M of

sort o, we proceed backwards: it is easy to derive a type for a tree (i.e., for the normal form of M), and

thus it is enough to have a subject expansion lemma saying that out of a derivation for a lambda-term

after a beta-reduction we can construct a derivation for the lambda-term before the beta-reduction. This

time we follow the OI reduction strategy. Because outermost redexes are closed, it is thus enough to have

the following lemma.

Lemma 3. If we can derive ⊢ K[L/x] : (g,τ), then we can also derive ⊢ (λx.K)L : (g,τ).

Proof sketch. In the derivation D for K[L/x] we replace every subderivation concerning L by a leaf rule

for the variable x, and we correct type environments and productivity flags in the rest of the derivation.

This way we obtain a derivation for K with type environment requesting some types for x. Simultane-

ously, each of these types was derived for L in some subderivation of D (there may be multiple such

subderivations, because L may appear in many places in K[L/x], but we choose only one subderivation

for every type). It is not difficult to combine these derivations into a derivation concerning (λx.K)L.

We remark that by applying the above surgery to a derivation for Γ ⊢ K[L/x] : (g,τ) (i.e., for an arbi-

trary redex, having some free variables) we only obtain a derivation for Γ′ ⊢ (λx.K)L : (g,τ) with some

Γ′ ⊆ Γ, but not necessarily with Γ′ = Γ. The reason is that we remove some subderivations concerning

L (we leave only one for every type), and possibly some type bindings from Γ were used only in the

removed subderivations.

Bibliographic Note. As already mentioned in the introduction, the idea of the type system presented

above originates from Parys [23]. In that paper, a similar type system was introduced for configurations

of collapsible pushdown systems. It was then used to prove that a restricted variant of these systems

(systems without the so-called collapse operation) are less powerful than general collapsible pushdown

systems. The type system was then transferred to the setting of lambda-terms in Parys [24]. Their

type system is slightly more complicated than ours, and allows to obtain a stronger version of Condi-

tion (D1B), where the function ηm does not depend on the complexity m of considered lambda-terms.

P. Parys 15

4 Nondeterministic Quantities

Suppose now that we want to estimate another quantity: the maximal number of appearances of the

constant a on a single branch in the beta-normal form T of a lambda-term M. It seems that in order to

describe this quantity, it is enough to take the type system from Section 3, and replace the rule for the

constant b by two rules:

⊢ b : (np,(f ,o)→⊤→o) ⊢ b : (np,⊤→ (f ,o)→ o)

In these rules we ignore one of the arguments, and we descend only to the other one. This way, every

type derivation D for a tree T follows one branch in T , and in effect val(D) equals to the number of

constants a on that branch. By arguments like in the previous section we obtain the following, rather

useless, properties of the modified type system:

(N1) for every m∈N there is a function ηm : N→N such that if M is a homogeneous and closed lambda-

term of sort o and complexity at most m, and D is a derivation for ⊢ M : (f ,o), then the number of

constants a on some branch of the normal form of M is

(N1A) at least val(D), and

(N1B) at most ηm(val(D));
(N2) for every closed lambda-term M of sort o one can derive ⊢ M : (f ,o) (for some f ∈ {pr,np}).

These properties are not satisfactory for us, because they only say that there exists a branch with the

number of constants a estimated by val(D), for some derivation D. We, however, are interested in the

branch on which the number of constants a is maximal. In other words: if in the beta-normal form T of

M there are two branches, one with just a few constants a, and the other with a lot of them, we expect

to have two derivations D and D′, where val(D) is small (corresponds to the first branch), and val(D′) is

large (corresponds to the second branch). But Condition (N2) gives us only one derivation, and we do

not know which one. Thus, we rather need to have the following property:

(N2′) for every m ∈ N there is a function ηm : N → N such that if M is a homogeneous and closed

lambda-term of sort o and complexity at most m and on some branch of the beta-normal form of

M there are n appearances of the constant a, then there is a derivation D for ⊢ M : (f ,o) such that

n ≤ ηm(val(D)).

In the light of Condition (N2′), Condition (N1B) becomes redundant, and thus we can restate Condi-

tion (N1A) as follows:

(N1′) if M is a homogeneous and closed lambda-term of sort o, and D is a derivation for ⊢ M : (f ,o),
then the number of constants a on some branch of the normal form of M is at least val(D).

It is, though, an open problem whether Condition (N2′) holds.

Open Problem 1. Does the modified type system satisfy Condition (N2′)?

In order to prove Condition (N2′), we should probably proceed backward: we should start with a

derivation concerning (the branch with the maximal number of constants a in) the normal form of M,

and then, successively, from a derivation for a lambda-term after a beta-reduction obtain a derivation for

the lambda-term before the beta-reduction. We have a subject expansion lemma (Lemma 3) only for

redexes without free variables (and it seems difficult to generalize it to arbitrary redexes, as explained

at the end of the previous section); we should thus assume that we always reduce the outermost redex.

In effect, in the considered sequence of beta-reductions from M to its normal form we have to mix

reductions concerning redexes of different orders. For such a sequence of reductions it is not clear how

to estimate the value of the derivation for the beta-normal form T by the value of the derivation for M.

16 Intersection Types for Unboundedness Problems

We remark that a modified type system, in which one allow weakening of type environments, satisfies

a subject expansion lemma (like Lemma 3). But with unrestricted weakening of type environments

Condition (N1′) no longer holds. Indeed, if weakening was allowed, we could use a derivation D (with

an arbitrary large value) for a lambda-term M as a part of a derivation for a lambda-term like (λx.e)M,

whose normal form contains no a. The reason why weakening is forbidden is exactly this: we want to

have subderivations only for subterms that really participate to the normal form.

The life is thus not so simple: because we want both Conditions (N1′) and (N2′), we have to introduce

a more complicated type system. In this type system, instead of one kind of values of nodes, we have

values of order k (or k-values) for every k ∈ {1, . . . ,m+1} (where m is the complexity of the considered

lambda-term). We also mark some nodes as belonging to a zone of order k (or k-zone) for every order

k ∈ {0, . . . ,m}.

Before defining the type system, let us first give some idea how Condition (N2′) can be shown. Then,

we give details of a type system motivated by this idea.

Consider thus a lambda-term Mm that is of complexity m, and reduces to a tree M0. Following

the RMF reduction strategy, we can find lambda-terms Mm−1,Mm−2, . . . ,M1 such that every Mi is of

complexity i and all reductions between Mi and Mi−1 are of order i. Our aim is to estimate the number

of constants a located on some branch in M0. We thus mark all nodes of this branch as the 0-zone, and

we say that the order-1 value is 1 in all nodes of the 0-zone that are labeled by a. Next, we proceed

back to M1. Every node constructor in the 0-zone in M0 originates from some particular node constructor

appearing already in M1. We thus mark these node constructors in M1 as belonging to the 0-zone (notice

that in M1 they no longer form a branch); and again those of them that are a-labeled get 1-value 1. The

crucial observation is that no two node constructors from the 0-zone in M0 can originate from a single

node constructor of M1. Indeed, all the beta-reductions between M1 and M0 are RMF(1). In such a beta-

reduction we take a whole subtree (i.e., a lambda-term of sort o) of M1, and we replace it somewhere,

possibly replicating it. But since the considered nodes of M0 lie on a single branch, they may belong to

at most one copy of the replicated subtree. In effect, the total 1-value in M1 is the same as in M0.

We cannot directly repeat the same reasoning to move 1-values from M1 back to M2, since now

there is a problem: a single node constructor in M2 may result in multiple (uncontrollably many) node

constructors with a 1-value in M1. We rescue ourselves in the following way. We choose some branch of

M1 (included in the 0-zone) as the 1-zone. Then, for every node of M1 with positive 1-value, we look for

the closest ancestor of this node that lies in the 1-zone, and in this ancestor we set the 2-value to 1. Notice

that for multiple nodes with positive 1-value, their closest ancestor lying in the 1-zone may be the same

(and then we set its 2-value to 1, not to the number of these nodes). Thus, in general, the total 2-value

may be smaller than the total 1-value. We can, however, ensure that it is smaller only logarithmically; to

do so, we choose a branch forming the 1-zone in a clever way: staring from the root, we always proceed

to the subtree with the largest total 1-value. In effect, the total 2-value of M1 estimates the total 1-value

of M1.

Once all nodes of M1 with positive 2-value lie on a single branch (which is chosen as the 1-zone), we

can transfer them back to M2 without changing their number: because reductions between M2 and M1 are

RMF(2), every node of the 1-zone in M1 originates from a different node of M2. Then in M2 we again

choose a branch as the 2-zone, we assign 3-value to some its nodes, and so on. At the end we obtain

some labeling of Mm by zones and values of particular orders. The goal of the type system presented

below is, roughly speaking, to ensure that a labeling of Mm actually is obtainable in the process as above.

In fact, we do not label nodes of Mm itself, but rather nodes of a type derivation for Mm.

We now come to a formal definition of the type system.

P. Parys 17

Type Judgments. For every sort α we define the set T α of types of sort α , and the set T̂ α
m of type

triples of sort α . This is done as follows, where P denotes the powerset:

T
α→β = P(T̂ α

ord(α))×T
β , T

o = {o} ,

T̂
α

m = {(Z,F,τ) ∈ {0, . . . ,m}2 ×T
α | F ≤ Z +1} .

Notice that the sets T α and T̂ α
m are finite. A type (T,τ) ∈ T α→β is denoted as T → τ . A type triple

τ̂ = (Z,F,τ)∈ T̂ α
m consists of a zone order Z, a productivity order F , and a type τ . In order to distinguish

types from type triples, the latter are denoted by letters with a hat, like τ̂ .

A type judgment is of the form Γ ⊢m M : τ̂ , where Γ, called a type environment, is a set of bindings

of the form xα : σ̂ with σ̂ ∈ T̂ α
ord(α), and M is a lambda-term, and τ̂ is a type triple of the same sort as M

(i.e., τ̂ ∈ T̂
β

m when M is of sort β). We assume that M is homogeneous.

As previously, the intuitive meaning of a type
∧

T → τ is that a lambda-term having this type can

return a lambda-term having type τ , while taking an argument for which we can derive all type triples

from T . Moreover, in T o there is just one type o, which can be assigned to every lambda-term of sort

o. Suppose that a node of a type derivation for a closed and homogeneous lambda-term Mm of sort o is

labeled by a type judgment Γ ⊢m M : τ̂ with τ̂ = (Z,F,τ). Then

• τ is the type derived for M;

• Γ contains type triples that could be used for free variables of M in the derivation;

• m is an upper bound for the complexity of M (this bound is not strict: in the proofs, it is useful

to temporarily allow also lambda-terms M of complexity m+1), and simultaneously for orders of

considered zones and values;

• Z ∈ {0, . . . ,m} is the largest number such that for every k ∈ {0, . . . ,Z}, the considered node of the

derivation belongs to the k-zone;

• F ∈ {0, . . . ,m} is the largest number such that for every k ∈ {1, . . . ,F}, in the imaginary lambda-

term Mk obtained from Mm by reducing all redexes of order greater than k, the order-k value will

be positive in the subderivation starting in the considered node.

Notice that we always have that Z ≥ 0, which means that every node of every derivation belongs at

least to the 0-zone. We choose zones in a derivation in such a way that for every node the set of orders

k of zones to which the node belongs is always of the form {0, . . . ,Z}. For this reason in a type triple

it is enough to have a number Z (representing the set {0, . . . ,Z}), instead of an arbitrary set of orders of

zones. Moreover, if a node of a derivation belongs to a k-zone, then its parent as well; in effect, the zone

order in the type triple labeling a parent cannot be smaller than in its child. Likewise, the set of orders k

for which the k-value is positive (after appropriate reductions) is always of the form {1, . . . ,F}, so it is

enough to remember its maximum. Moreover, if k-value is positive is some subderivation, then it is also

positive in a larger subderivation, hence also the productivity order in the type triple labeling a parent

cannot be smaller than in a child.

Type System. We now give the first four rules, concerning node constructors:

⊢m b : (Z,0,(0,0,o)→⊤→o) ⊢m a : (Z,min(Z +1,m),(0,0,o)→ o)

⊢m b : (Z,0,⊤→ (0,0,o)→ o) ⊢m e : (Z,0,o)

18 Intersection Types for Unboundedness Problems

We say that the k-value in a node using the rule for the constant a is 1 for all k ∈ {1, . . . ,Z +1}; for

k > Z +1, and for the other constants the k-value is 0.

In the above rules we can choose Z arbitrarily (from the set {0, . . . ,m}), which amounts to deciding

to which zones the node constructor should belong: it belongs to the k-zone for k ∈ {0, . . . ,Z}. For the

constant b we descend only to one argument (because we want to count constants a only on a single

branch of the normal form). For the constant a we have set the k-value to 1 for all k ∈ {1, . . . ,Z + 1},

hence we set the productivity order to Z + 1. There is an exception for Z = m: by definition of T̂ α
m ,

the productivity order can be at most m, so although the (m+ 1)-value is 1 as well, this information

is not covered by the productivity order. Notice that the type (0,0,o) assigned to arguments of node

constructors is the only element of T̂ o

ord(o); node constructors do not receive information about zones or

values from their arguments.

Next, we have a rule for a variable (in nodes using this rule, the k-value is 0 for all k):

(Z′ = Z)∨ (Z′ ≥ ord(x) = Z)

x : (Z,F,τ) ⊢m x : (Z′,F,τ)
(VAR)

In order to understand this rule, suppose that it labels a node of a type derivation for a closed lambda-

term M of sort o. Take some k ∈ {0, . . . ,m}, and consider the lambda-term Mk obtained from our lambda-

term by reducing all redexes of orders greater than k. According to the proof idea presented above, we

create the k-zone as a branch of Mk (and then we transfer it back to M). Moreover, as the productivity

order we should take at least k if in Mk the k-value is positive in the subtree starting in the considered

node. If k ≤ ord(x), the variable x will be no longer present in Mk, and some lambda-term (described

by the type environment) will be substituted for it. For this reason, the information about the k-zone and

about positivity of the k-value is taken from the type environment. Conversely, if k > ord(x), the node

(leaf) concerning x will be still present in Mk, and thus we can start the branch forming the k-zone there.

But this is possible only if the node belongs to the (k−1)-zone; in particular for k = ord(x)+1 we need

to be in the ord(x)-zone, which is the case if Z = ord(x). Moreover, the total k-value in (the subtree

starting in) the considered leaf is 0, and thus the productivity order is taken from the environment (unlike

in the previous type system).

The rule for lambda-binders realizes a restricted variant of type weakening: we may ignore arguments

that do not contain leaves of zones. This is formalized in the notion of balanced and unbalanced type

triples, defined by induction on their structure. For k ∈ {0, . . . ,m}, a type triple (Z,F,
∧

T1→···→
∧

Tn→
o) is k-unbalanced if Z ≥ k and all elements of the sets T1, . . . ,Tn are k-balanced; otherwise, the type triple

is k-balanced. A type triple is unbalanced if it is k-unbalanced for some k ∈ {0, . . . ,m}; otherwise it is

balanced. Intuitively, a subderivation derives a k-unbalanced type triple if the unique leaf of the k-zone

is contained either in this subderivation, or in an imaginary subderivation that will be substituted for a

free variable. Indeed, the subderivation contains the leaf of the k-zone if it belongs to the k-zone, but

none of the arguments provides the leaf.

We can now give the rule; for nodes using this rule, the k-value is 0 for all k.

Γ∪{x : σ̂ | σ̂ ∈ T ′} ⊢m K : (Z,F,τ) {σ̂ ∈ T | σ̂ unbalanced} ⊆ T ′ ⊆ T x 6∈ dom(Γ)

Γ ⊢m λx.K : (Z,F,
∧

T → τ)
(λ)

P. Parys 19

As previously, the rule for application is the most complicated one:

Γ0 ⊢m K : (Z0,F0,τ0) Γi ⊢m L : (Zi,Fi,τi) for each i ∈ I

τ0 =
∧

i∈I
(min(Zi,ord(L)),min(Fi,ord(L)),τi)→ τ Z = maxi∈{0}∪I Zi

∀k ∈ {0, . . . ,m}. |{i ∈ {0}∪ I | (Zi,Fi,τi) k-unbalanced}| ≤ 1
⋃

i∈{0}∪I
Γi ⊢m K L : (Z,F,τ)

(@)

where

• we assume that 0 6∈ I;

• if there is i ∈ {0}∪ I such that ord(L)≤ Zi < Fi ≤ Z, then we set F to min(Z +1,m), and we say

that the k-value in the node using such a rule is 1 for all k ∈ {Fi+1, . . . ,Z+1} (if there are multiple

such i, we consider the one for which Fi is the smallest);

• otherwise we set F to maxi∈{0}∪I Fi, and the k-value to 0 for all k.

Let us comment on the above conditions. First, notice that to the subderivation concerning K we pass

the information about k-values and k-zones from the subderivations concerning L only for k ≤ ord(L)
(i.e., we write min(Zi,ord(L)) and min(Fi,ord(L)) instead of simply Zi and Fi). This is because, while

thinking about k-values and about the k-zone, we should imagine the lambda-term Mk obtained from

the lambda-term under consideration by reducing all redexes of orders greater than k. If k ≤ ord(L),
the application (for which we write the rule) is no longer present in Mk (it gets reduced in some of the

reductions leading to Mk), so we should pass the information from L to K. Conversely, if k > ord(L),
the application is still present in Mk; this means K and L are independent subterms there, and hence the

information from L should not be passed to K. This is complementary to what we said on the (VAR) rule.

Second, we also say for every k that only one child can be k-unbalanced. Under the intuitive meaning

that a conclusion of a subderivation is k-unbalanced if the subderivation contains the leaf of the k-zone

(that remains a leaf in Mk), this condition ensures that the k-zone has at most one leaf, and thus forms a

branch in Mk.

Third, observe that the (k+1)-value in our node is set to 1 if, in Mk, it is the closest ancestor of some

node with positive k-value that lies in the k-zone. Indeed, suppose that the current node is still present in

Mk (i.e., that k > ord(L)), and that it belongs to the k-zone (i.e., that k ≤ Z). Moreover, suppose that in

Mk the k-value is positive in some node of the subderivation number i (i.e., that k ≤ Fi), where i ∈ {0}∪ I.

If k ≤ Zi, then the closest ancestor being in the k-zone is already in the subderivation (because its root

belongs to the k-zone). Conversely, if k > Zi, the closest ancestor being in the k-zone is in our node.

Recall that (by definition of type triples) we always have Fi ≤ Zi + 1. All the inequalities hold when

ord(L)+ 1 ≤ Zi + 1 = k = Fi ≤ Z, and this is exactly the situation when we set the (k+ 1)-value of the

current node to 1. If the node is also in the (k+ 1)-zone (i.e., if k + 1 ≤ Z), then the closest ancestor

being in the (k+1)-zone is in the node itself. It thus makes sense that we also set the (k+2)-value of the

current node to 1. Repeating this again, we should set to 1 the values of all orders in {k+1, . . . ,Z +1}.

Denoting the k-value of a derivation D by valk(D), we can state the desired properties of our type

system.

Theorem 4. The following holds for the type system introduced above:

(N1′′) if M is a homogeneous and closed lambda-term of sort o, and D is a derivation for ⊢m M :

(m,m,o), then the number of constants a on some branch of the normal form of M is at least

valm+1(D);

20 Intersection Types for Unboundedness Problems

(N2′′) for every m ∈ N there is a function ηm : N → N such that if M is a homogeneous and closed

lambda-term of sort o and complexity at most m, and on some branch of the beta-normal form of

M there are n ≥ 1 appearances of the constant a, then there is a derivation D for ⊢m M : (m,m,o)
such that n ≤ ηm(valm+1(D)).

Example 2. Let us consider the same lambda-term as in Example 1, namely M = (λy.N (N (N y))(ae))a

with N = λy.λx.y(yx). As m we take its complexity, that is, 2. Notice that after performing all beta-

reductions of order 2, we obtain the lambda-term M1 = (λx.N2 (N2 x))(ae) with N2 = λx.N1 (N1 x) and

N1 = λx.a(ax). In this term, the 1-zone, which has to be a branch, can descend into one of the subterms

N2, then into one of the subterms N1, and then it can finish in one of the constants a. In effect, while

typing M, we need two derivations for N, one where the lambda-term belongs to the 1-zone, and one

where it does not. Denote τy = (0,0,o)→ o. Outside of the 1-zone, we only pass (from the argument)

the information that the 1-value is positive:

y : (0,1,τy) ⊢2 y : (0,1,τy)

y : (0,1,τy) ⊢2 y : (0,1,τy) x : (0,0,o) ⊢2 x : (0,0,o)

y : (0,1,τy), x : (0,0,o) ⊢2 yx : (0,1,o)
(@)

y : (0,1,τy), x : (0,0,o) ⊢2 y(yx) : (0,1,o)
(@)

y : (0,1,τy) ⊢2 λx.y(yx) : (0,1,τy)
(λ)

⊢2 N : (0,1,(0,1,τy)→ τy)
(λ)

Notice that in the second (i.e., lower) node using the (@) rule, the function of type τy, that is (0,0,o)→ o,

accepts an argument with type triple (0,1,o). This is correct, because according to the (@) rule, the

function receives the information only about zones and values of order not greater than the order of the

argument, which is 0 in our case, and indeed we have (min(0,0),min(1,0),o) = (0,0,o).
Let us now see what happens inside the 1-zone:

y : (0,1,τy) ⊢2 y : (0,1,τy)

y : (1,1,τy) ⊢2 y : (1,1,τy) x : (0,0,o) ⊢2 x : (0,0,o)

y : (1,1,τy), x : (0,0,o) ⊢2 yx : (1,1,o)
(@)

y : (0,1,τy), y : (1,1,τy), x : (0,0,o) ⊢2 y(yx) : (1,2,o)
(@)

y : (0,1,τy), y : (1,1,τy) ⊢2 λx.y(yx) : (1,2,τy)
(λ)

⊢2 N : (1,2,(0,1,τy)∧ (1,1,τy)→ τy)
(λ)

In the second (i.e., lower) node using the (@) rule, the information about a positive 1-value (coming from

the left subderivation) meets the 1-zone (coming from the right subderivation), and thus the 2-value of

this node is 1.

Denoting the type (0,1,τy)→ τy as τ0
N and (0,1,τy)∧ (1,1,τy)→τy as τ1

N , we continue the derivation

for M. We choose to start the 2-zone in a leaf concerning y.

⊢2 N : (1,2,τ1
N) y : (0,1,τy) ⊢2 y : (0,1,τy) y : (1,1,τy) ⊢2 y : (2,1,τy)

y : (0,1,τy), y : (1,1,τy) ⊢2 N y : (2,2,τy)
(@)

This results in having a node with 3-value 1. As we want to continue in the same way with N (N y) and

N (N (N y)), we need to derive (0,1,τy) for N y and N (N y) (which describes the situation outside of the

1-zone):

⊢2 N : (0,1,τ0
N)

⊢2 N : (0,1,τ0
N) y : (0,1,τy) ⊢2 y : (0,1,τy)

y : (0,1,τy) ⊢2 N y : (0,1,τy)
(@)

y : (0,1,τy) ⊢2 N (N y) : (0,1,τy)
(@)

P. Parys 21

We continue as follows, obtaining two more nodes with 3-value 1:

⊢2 N : (1,2,τ1
N) y : (0,1,τy) ⊢2 N y : (0,1,τy) y : (0,1,τy), y : (1,1,τy) ⊢2 N y : (2,2,τy)

y : (0,1,τy), y : (1,1,τy) ⊢2 N (N y) : (2,2,τy)
(@)

⊢2 N : (1,2,τ1
N) y : (0,1,τy) ⊢2 N (N y) : (0,1,τy) y : (0,1,τy), y : (1,1,τy) ⊢2 N (N y) : (2,2,τy)

y : (0,1,τy), y : (1,1,τy) ⊢2 N (N (N y)) : (2,2,τy)
(@)

Next we apply the argument ae, obtaining one more node with 3-value 1:

y : (0,1,τy), y : (1,1,τy) ⊢2 N (N (N y)) : (2,2,τy)

⊢2 a : (0,1,τy) ⊢2 e : (0,0,o)

⊢2 ae : (0,1,o)
(@)

y : (0,1,τy), y : (1,1,τy) ⊢2 N (N (N y))(ae) : (2,2,τy)
(@)

In the last part of the derivation we also have a node with 3-value 1:

y : (0,1,τy), y : (1,1,τy) ⊢2 N (N (N y))(ae) : (2,2,τy)

⊢2 λy.N (N (N y))(ae) : (2,2,(0,1,τy)∧ (1,1,τy)→o)
(λ)

⊢2 a : (0,1,τy) ⊢2 a : (1,2,τy)

⊢2 M : (2,2,o)
(@)

As in Example 1, the total 3-value of the derivation is 5, and by adding any further N to the sequence

N (N (N y)), we can increase the 3-value by 1.

Example 3. Let us also illustrate on a very simple example how the rule for the constant b behaves:

⊢2 b : (0,0,(0,0,o) →⊤→ o) ⊢2 M : (2,2,o)

⊢2 bM : (2,2,⊤→ o)
(@)

⊢2 bM e : (2,2,o)
(@)

We thus simply ignore one of the arguments of b. Notice that in the second use of the application rule

does not require any subderivations for the argument.

Proofs. Let us now sketch the proof of Theorem 4. Condition (N1′′) is based on the following two

lemmata.

Lemma 5. Let M be a closed lambda-term of sort o and complexity at most m+1. If Dm+1 is a derivation

for ⊢m+1 M : (m+1,m+1,o), then there exists a derivation Dm for ⊢m M : (m,m,o) with valm+1(Dm)≥
valm+2(Dm+1).

Lemma 6. Let M be a homogeneous and closed lambda-term of sort o, and let M →β N be an RMF(m+
1) reduction. If D is a derivation for ⊢m M : (m,m,o), then there exists a derivation E for ⊢ N : (m,m,o)
with the same (m+1)-value.

Condition (N2′′) is based on two symmetric lemmata.

Lemma 7. Let M be a homogeneous and closed lambda-term of sort o, and let M →β N be an RMF(m+
1) reduction. If E is a derivation for ⊢m N : (m,m,o), then there exists a derivation D for ⊢ M : (m,m,o)
with the same (m+1)-value.

Lemma 8. If Dm is a derivation for ⊢m M : (m,m,o), then there exists a derivation Dm+1 for ⊢m+1 M :

(m+1,m+1,o) with valm+2(Dm+1)≥ log3(valm+1(Dm)).

22 Intersection Types for Unboundedness Problems

Theorem 4 is easily implied. Indeed, consider a homogeneous and closed lambda-term Mm = M of

sort o and complexity at most m, its normal-form M0, and lambda-terms Mm−1,Mm−2, . . . ,M1 such that

all reductions between Mi and Mi−1 are RMF(i).
In Condition (N1′′) we start with a derivation Dm for ⊢m Mm : (m,m,o). Then, repeatedly for every

i = m− 1,m − 2, . . . ,0 we first apply Lemma 5 to Di+1 (with conclusion ⊢i+1 Mi+1 : (i+ 1, i + 1,o))
obtaining a derivation D′

i for ⊢i Mi+1 : (i, i,o) with (i+1)-value not smaller than the (i+2)-value of Di+1,

and next we apply Lemma 6 to every RMF(i)-reduction between Mi+1 and Mi, obtaining a derivation Di

for ⊢i Mi : (i, i,o) with the same (i+1)-value as D′
i. In effect, we obtain a derivation D0 for ⊢0 M0 : (0,0,o)

with 1-value not smaller than the (m+1)-value of the original derivation Dm. We conclude by observing

that D0 simply follows some branch of M0, and that its 1-value equals the number of constants a on that

branch.

Conversely, while proving Condition (N2′′), at the beginning we construct a derivation D0 for ⊢0

M0 : (0,0,o), following some branch of M0; the 1-value of this derivation equals the number of constants

a on the considered branch. Then, repeatedly for every i ∈ {0, . . . ,m− 1} we first apply Lemma 7 for

every RMF(i)-reduction between Mi+1 and Mi, obtaining a derivation D′
i for ⊢i Mi+1 : (i, i,o) with the

same (i+1)-value as Di, and next we apply Lemma 8 to D′
i obtaining a derivation Di+1 for ⊢i+1 Mi+1 :

(i+ 1, i+ 1,o) with (i+ 2)-value at most logarithmically smaller than the (i+ 1)-value of Di. In effect,

we obtain a derivation Dm for ⊢m Mm : (m,m,o) with (m+1)-value dominating the number of constants

a on the selected branch of the beta-normal form M0.

It remains to prove the lemmata. In Lemma 5 we are given a derivation Dm+1 (of order m + 1)

concerning a lambda-term of complexity at most m+1. In such a derivation, a node has positive (m+2)-
value (equal 1) if it is the closest ancestor of a node with positive (m+1)-value that is in the (m+1)-zone

(because all variables are of order at most m, the information about positive (m+1)-values is not passed

through type environments). Of course every node has only one closest ancestor that is in the (m+ 1)-
zone, thus the total (m+ 2)-value is not greater than the total (m+ 1)-value. Having this, we decrease

the order of the derivation to m, by simply forgetting about (m+ 2)-values and about the (m+ 1)-zone;

the total (m+1)-value remains unchanged.

Lemmata 6 and 7 can be shown by performing appropriate surgeries on the derivations, like in Sec-

tion 3. One has to observe there that if a subderivation (for a lambda-term of order m) derives a balanced

type triple, then its (m+1)-value is 0, and its type environment can contain only bindings with balanced

type triples. In effect, we can treat subderivations deriving balanced and unbalanced type triples differ-

ently. Namely, subderivations deriving balanced type triples can be harmlessly removed or duplicated.

Indeed, on the one hand, these operations do not change the total (m+1)-value. On the other hand, while

removing such a subderivation, only bindings with balanced type triples are removed from type environ-

ments; this does not cause problems in nodes using the (λ) rule, because this rule allows to drop some

balanced type triples. On the other hand, for every k the surgery wants to move at most one subderivation

deriving a k-unbalanced type triple, so no removal or duplication is needed for such subderivations.

In Lemma 8, we have to add an (m+ 1)-zone to a derivation of order m. Starting from the root of

the derivation, we repeatedly descend to the subderivation in which the total (m+1)-value is the greatest

(arbitrarily in the case of a tie); the branch created in this way is taken as the (m+1)-zone.

If, while descending from some node to its child, the total (m+ 1)-value decreases (i.e., either the

node itself has (m+1)-value 1, or a subderivation starting in some other child also has a positive (m+1)-
value), then the node gets positive (m+ 2)-value: it is the closest ancestor of some node with positive

(m+ 1)-value that is in the (m+ 2)-zone. This can happen only in the case of the (@) rule. In the (@)

rule one may observe that if a subderivation derives an m-balanced type triple for the argument, then its

total (m+1)-value is 0. We can thus have at most two subderivations (among those starting in children)

P. Parys 23

with positive (m+1)-value: one for the operand, and one concerning an m-unbalanced type triple for the

argument. In consequence, while descending to a subderivation, the total (m+1)-value decreases at most

three times (with the exception that it can decrease from 1 to 0). It follows that the total (m+2)-value is

at least logarithmic in the total (m+1)-value.

Extension to Recursion Schemes. Theorem 4 can be also stated for infinite lambda-terms (hence,

in particular, for regular infinite lambda-terms represented in a finite way by recursion schemes). The

assumption is that we consider there only finite type derivations, and only finite branches of the generated

tree (i.e., branches ending in a leaf). Notice that a type derivation for an infinite lambda-term can be finite,

because a derivation does not need to descend to every subterm of the lambda-term. We claim that, under

these assumptions, Theorem 4 is true for infinite lambda-terms.

To see this, consider a new constant ⊥ of sort o; it differs from e in that we do not have a typing rule

for ⊥. A cut of a lambda-term M is a lambda-term obtained from M by replacing some its subterms with

lambda-terms of the form λx1. · · · .λxk.⊥ (the number of the variables and their sorts are chosen so that

the sort of the subterm does not change). It is easy to see that there is a finite derivation for ⊢m M : τ̂ if

and only if for some its finite cut M′ there is a derivation for ⊢m M′ : τ̂ , having the same values (we can

cut off subterms not involved in the derivation). Likewise, the tree generated by a closed lambda-term

M of sort o contains some finite branch B, if and only if the tree generated by some finite cut M′ of M

contains the same branch B (the finite branch is generated after finitely many beta-reductions, concerning

only a top part of M, and subterms located deeper in M can be cut off). This way, the infinitary version

of Theorem 4 can be reduced to the original statement concerning finite lambda-terms.

Because in a single infinite tree we can have branches with arbitrarily many constants a, it makes

sense to give the following direct corollary of Theorem 4.

Corollary 9. The following conditions are equivalent for a homogeneous and closed (potentially infinite)

lambda-term M of sort o:

• for every n ∈N, in the tree generated by M there exists a branch with at least n appearances of the

constant a, and

• for every n ∈ N, there exists a derivation for ⊢m M : (m,m,o) with (m+1)-value at least n.

Because the latter condition is easily decidable for lambda-terms represented by recursion schemes,

the corollary implies decidability of the former condition.

Bibliographic Note. The type system presented in this section is essentially taken from Parys [25]; we

have applied some cosmetic changes, though.

In Parys [26] the type system is extended to the task of counting multiple constants: the (m+1)-value

is not a number, but a tuple, where each coordinate of the tuple estimates the number of appearances of

a particular constant. In particular, Corollary 9 is extended there to the property “for every n ∈ N, in the

tree generated by M there exists a branch with at least n appearances of every constant from a set A”,

giving its decidability. Deciding this property is known under the names simultaneous unboundedness

problem (SUP) and diagonal problem (these are two different names for the same problem).

SUP for recursion schemes was first solved in Clemente, Parys, Salvati, and Walukiewicz [8], in a

different way. The advantage of solving SUP using the type system presented here is twofold. First, the

solution via the type system allows to obtain the optimal complexity, while the complexity of the original

solution was much worse. Second, using the type system we can obtain so-called SUP reflection: we

can solve SUP simultaneously for all subtrees of the generated tree. More precisely, out of a recursion

scheme we can create a new recursion scheme that generates a tree of the same shape as the original one,

24 Intersection Types for Unboundedness Problems

but such that the label of every node contains additionally the answer to SUP in the subtree starting in that

node (i.e., the information whether in that node there start branches with arbitrarily many appearances

of every constant from a set A). SUP reflection allowed to solve the model-checking problem for trees

generated by recursion schemes against formulae of the WMSO+U logic [28]. This logic extends WMSO

(a fragment of MSO in which one can quantify only over finite sets) by the unbounding quantifier, U.

A formula using this quantifier, UX .ϕ , says that ϕ holds for arbitrarily large finite sets X . Let us also

remark that decidability of SUP implies that given a language defined by a nondeterministic recursion

scheme, it is possible to compute its downward closure [30], and given two such languages, it is possible

to decide whether they can be separated by a piecewise testable language [10].

The type system presented here is also used by Asada and Kobayashi [2] in their work on a pumping

lemma for recursion schemes.

The type system was inspired by the previous solution of SUP by Clemente et al. [8]. The idea of

having balanced and unbalanced type triples, and treating them differently in type environments, comes

from Asada and Kobayashi [1].

5 Branching Quantities

Finally, we shortly mention one more quantity to be considered. In this part, suppose that the constant

a is of sort o→ o→ o, that is, nodes with label a have two children. For n ∈ N, let An be the full binary

tree of height n, with all internal nodes labeled by a, and all leaves labeled by e. We say that An embeds

homeomorphically in a tree T if T has a subtree of the form T = aT1 T2 such that An−1 embeds in both T1

and T2 (defined by induction); A0 = e embeds homeomorphically in every tree having a leaf labeled by e.

Having a tree T one may want to find the maximal height n of a tree An that embeds homeomorphically

in T . It is an open problem how to estimate this quantity using a type system (or in any other way).

Open Problem 2. Design a type system such that the maximal value (appropriately defined) of a type

derivation for a closed lambda-term M of sort o estimates the maximal number n such that An embeds

homeomorphically in the beta-normal form of M.

Like in Section 4 (cf. Corollary 9), existence of such a type system would solve the following problem

concerning infinite lambda-terms represented by recursion schemes.

Open Problem 3. Given a recursion scheme, decide whether for every n the tree An embeds homeomor-

phically in the (infinite) tree generated by the scheme.

A naive idea is to take the type system from Section 4, and to change the rule for a constant a into

⊢m a : (Z,min(Z + 1,m),(0,0,o)→ (0,0,o)→ o). Notice, though, that if we derive a type for a tree T

using such a type system, the value of the derivation counts the maximal number of constants a in a tree

that embeds homeomorphically in T . This is not what we want since, for example, if all a are located

on a single branch, then their number can be arbitrarily large while only A1 can be embedded. In other

words, we add values from the two children of an a-labeled node, while we should take their minimum.

It seems that Open Problems 2 and 3 are closely related to the problem of computing the downward

closures of languages of finite trees generated by nondeterministic recursion schemes (we remark that

the downward closure of every language of finite trees is a regular language, due to the Kruskal’s tree

theorem). If we want to compute the downward closure of a language, we have to decide in particular

whether it contains trees An for all n ∈ N, that is, whether all An embed homeomorphically in trees

from the language. Like in the case of words, downward closures are also related to the problem of

deciding whether two languages can be separated by a piecewise testable language. Goubault-Larrecq

P. Parys 25

and Schmitz [12] derive a general framework for solving the piecewise testable separability for languages

of trees.

It is highly probable that Open Problem 3 can be solved for a subclass of recursion schemes, called

safe recursion schemes, using methods from Blumensath, Colcombet, Kuperberg, Parys, and Vanden

Boom [3]. This requires further investigation.

References

[1] Kazuyuki Asada & Naoki Kobayashi (2016): On Word and Frontier Languages of Unsafe Higher-Order

Grammars. In Chatzigiannakis et al. [6], pp. 111:1–111:13, doi:10.4230/LIPIcs.ICALP.2016.111.

[2] Kazuyuki Asada & Naoki Kobayashi (2017): Pumping Lemma for Higher-order Languages. In Ioannis

Chatzigiannakis, Piotr Indyk, Fabian Kuhn & Anca Muscholl, editors: 44th International Colloquium on Au-

tomata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, LIPIcs 80, Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 97:1–97:14, doi:10.4230/LIPIcs.ICALP.2017.97.

[3] Achim Blumensath, Thomas Colcombet, Denis Kuperberg, Paweł Parys & Michael Vanden Boom (2014):

Two-Way Cost Automata and Cost Logics over Infinite Trees. In Thomas A. Henzinger & Dale Miller,

editors: Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL)

and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS

’14, Vienna, Austria, July 14 - 18, 2014, ACM, pp. 16:1–16:9, doi:10.1145/2603088.2603104.

[4] Christopher H. Broadbent, Arnaud Carayol, Matthew Hague & Olivier Serre (2012): A Saturation Method

for Collapsible Pushdown Systems. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts & Roger Wattenhofer,

editors: Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick,

UK, July 9-13, 2012, Proceedings, Part II, Lecture Notes in Computer Science 7392, Springer, pp. 165–176,

doi:10.1007/978-3-642-31585-5_18.

[5] Christopher H. Broadbent & Naoki Kobayashi (2013): Saturation-Based Model Checking of Higher-Order

Recursion Schemes. In Simona Ronchi Della Rocca, editor: Computer Science Logic 2013 (CSL 2013), CSL

2013, September 2-5, 2013, Torino, Italy, LIPIcs 23, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

pp. 129–148, doi:10.4230/LIPIcs.CSL.2013.129.

[6] Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani & Davide Sangiorgi, editors (2016): 43rd In-

ternational Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,

Italy. LIPIcs 55, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.

[7] Lorenzo Clemente, Paweł Parys, Sylvain Salvati & Igor Walukiewicz (2015): Ordered Tree-Pushdown

Systems. In Prahladh Harsha & G. Ramalingam, editors: 35th IARCS Annual Conference on Foun-

dation of Software Technology and Theoretical Computer Science, FSTTCS 2015, December 16-18,

2015, Bangalore, India, LIPIcs 45, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 163–177,

doi:10.4230/LIPIcs.FSTTCS.2015.163.

[8] Lorenzo Clemente, Paweł Parys, Sylvain Salvati & Igor Walukiewicz (2016): The Diagonal Problem for

Higher-Order Recursion Schemes is Decidable. In Martin Grohe, Eric Koskinen & Natarajan Shankar, edi-

tors: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New

York, NY, USA, July 5-8, 2016, ACM, pp. 96–105, doi:10.1145/2933575.2934527.

[9] Thomas Colcombet (2013): Regular Cost Functions, Part I: Logic and Algebra over Words. Logical Methods

in Computer Science 9(3), doi:10.2168/LMCS-9(3:3)2013.

[10] Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen & Marc Zeitoun (2015): A Note on Decid-

able Separability by Piecewise Testable Languages. In Adrian Kosowski & Igor Walukiewicz, edi-

tors: Fundamentals of Computation Theory - 20th International Symposium, FCT 2015, Gdańsk, Poland,

August 17-19, 2015, Proceedings, Lecture Notes in Computer Science 9210, Springer, pp. 173–185,

doi:10.1007/978-3-319-22177-9_14.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.111
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.97
http://dx.doi.org/10.1145/2603088.2603104
http://dx.doi.org/10.1007/978-3-642-31585-5_18
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.129
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.163
http://dx.doi.org/10.1145/2933575.2934527
http://dx.doi.org/10.2168/LMCS-9(3:3)2013
http://dx.doi.org/10.1007/978-3-319-22177-9_14

26 Intersection Types for Unboundedness Problems

[11] Werner Damm (1982): The IO- and OI-Hierarchies. Theor. Comput. Sci. 20, pp. 95–207,

doi:10.1016/0304-3975(82)90009-3.

[12] Jean Goubault-Larrecq & Sylvain Schmitz (2016): Deciding Piecewise Testable Separability for Regular

Tree Languages. In Chatzigiannakis et al. [6], pp. 97:1–97:15, doi:10.4230/LIPIcs.ICALP.2016.97.

[13] Charles Grellois & Paul-André Melliès (2015): Finitary Semantics of Linear Logic and Higher-Order

Model-Checking. In Giuseppe F. Italiano, Giovanni Pighizzini & Donald Sannella, editors: Mathematical

Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015, Milan, Italy, Au-

gust 24-28, 2015, Proceedings, Part I, Lecture Notes in Computer Science 9234, Springer, pp. 256–268,

doi:10.1007/978-3-662-48057-1_20.

[14] Charles Grellois & Paul-André Melliès (2015): Relational Semantics of Linear Logic and Higher-order

Model Checking. In Stephan Kreutzer, editor: 24th EACSL Annual Conference on Computer Science Logic,

CSL 2015, September 7-10, 2015, Berlin, Germany, LIPIcs 41, Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, pp. 260–276, doi:10.4230/LIPIcs.CSL.2015.260.

[15] Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong & Olivier Serre (2008): Collapsible Pushdown

Automata and Recursion Schemes. In: Proceedings of the Twenty-Third Annual IEEE Symposium on Logic

in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, IEEE Computer Society, pp. 452–

461, doi:10.1109/LICS.2008.34.

[16] Alexander Kartzow & Paweł Parys (2012): Strictness of the Collapsible Pushdown Hierarchy. In Branislav

Rovan, Vladimiro Sassone & Peter Widmayer, editors: Mathematical Foundations of Computer Science

2012 - 37th International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings,

Lecture Notes in Computer Science 7464, Springer, pp. 566–577, doi:10.1007/978-3-642-32589-2_50.

[17] Teodor Knapik, Damian Niwiński & Paweł Urzyczyn (2002): Higher-Order Pushdown Trees Are Easy. In

Mogens Nielsen & Uffe Engberg, editors: Foundations of Software Science and Computation Structures,

5th International Conference, FOSSACS 2002. Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002, Proceedings, Lecture Notes in

Computer Science 2303, Springer, pp. 205–222, doi:10.1007/3-540-45931-6_15.

[18] Naoki Kobayashi (2013): Model Checking Higher-Order Programs. J. ACM 60(3), pp. 20:1–20:62,

doi:10.1145/2487241.2487246.

[19] Naoki Kobayashi (2013): Pumping by Typing. In: 28th Annual ACM/IEEE Symposium on Logic in Com-

puter Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, IEEE Computer Society, pp. 398–407,

doi:10.1109/LICS.2013.46.

[20] Naoki Kobayashi, Kazuhiro Inaba & Takeshi Tsukada (2014): Unsafe Order-2 Tree Languages Are Context-

Sensitive. In Anca Muscholl, editor: Foundations of Software Science and Computation Structures - 17th

International Conference, FOSSACS 2014, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, Lecture Notes in Com-

puter Science 8412, Springer, pp. 149–163, doi:10.1007/978-3-642-54830-7_10.

[21] Naoki Kobayashi & C.-H. Luke Ong (2009): A Type System Equivalent to the Modal Mu-Calculus Model

Checking of Higher-Order Recursion Schemes. In: Proceedings of the 24th Annual IEEE Symposium on

Logic in Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, IEEE Computer Soci-

ety, pp. 179–188, doi:10.1109/LICS.2009.29.

[22] C.-H. Luke Ong (2006): On Model-Checking Trees Generated by Higher-Order Recursion Schemes. In:

21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA,

Proceedings, IEEE Computer Society, pp. 81–90, doi:10.1109/LICS.2006.38.

[23] Paweł Parys (2012): On the Significance of the Collapse Operation. In: Proceedings of the 27th Annual

IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, IEEE

Computer Society, pp. 521–530, doi:10.1109/LICS.2012.62.

[24] Paweł Parys (2016): A Characterization of Lambda-terms Transforming Numerals. J. Funct. Program. 26, p.

e12, doi:10.1017/S0956796816000113.

http://dx.doi.org/10.1016/0304-3975(82)90009-3
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.97
http://dx.doi.org/10.1007/978-3-662-48057-1_20
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.260
http://dx.doi.org/10.1109/LICS.2008.34
http://dx.doi.org/10.1007/978-3-642-32589-2_50
http://dx.doi.org/10.1007/3-540-45931-6_15
http://dx.doi.org/10.1145/2487241.2487246
http://dx.doi.org/10.1109/LICS.2013.46
http://dx.doi.org/10.1007/978-3-642-54830-7_10
http://dx.doi.org/10.1109/LICS.2009.29
http://dx.doi.org/10.1109/LICS.2006.38
http://dx.doi.org/10.1109/LICS.2012.62
http://dx.doi.org/10.1017/S0956796816000113

P. Parys 27

[25] Paweł Parys (2016): Intersection Types and Counting. In Naoki Kobayashi, editor: Proceedings Eighth

Workshop on Intersection Types and Related Systems, ITRS 2016, Porto, Portugal, 26th June 2016., EPTCS

242, pp. 48–63, doi:10.4204/EPTCS.242.6.

[26] Paweł Parys (2017): The Complexity of the Diagonal Problem for Recursion Schemes. In Satya V. Lokam

& R. Ramanujam, editors: 37th IARCS Annual Conference on Foundations of Software Technology and

Theoretical Computer Science, FSTTCS 2017, December 11-15, 2017, Kanpur, India, LIPIcs 93, Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 45:1–45:14, doi:10.4230/LIPIcs.FSTTCS.2017.45.

[27] Paweł Parys (2018): Homogeneity Without Loss of Generality. In Hélène Kirchner, editor: 3rd In-

ternational Conference on Formal Structures for Computation and Deduction, FSCD 2018, July 9-12,

2018, Oxford, UK, LIPIcs 108, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 27:1–27:15,

doi:10.4230/LIPIcs.FSCD.2018.27.

[28] Paweł Parys (2018): Recursion Schemes and the WMSO+U Logic. In Rolf Niedermeier & Brigitte Vallée,

editors: 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March

3, 2018, Caen, France, LIPIcs 96, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 53:1–53:16,

doi:10.4230/LIPIcs.STACS.2018.53.

[29] Steven J. Ramsay, Robin P. Neatherway & C.-H. Luke Ong (2014): A Type-Directed Abstraction Refinement

Approach to Higher-Order Model Checking. In Suresh Jagannathan & Peter Sewell, editors: The 41st Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA,

USA, January 20-21, 2014, ACM, pp. 61–72, doi:10.1145/2535838.2535873.

[30] Georg Zetzsche (2015): An Approach to Computing Downward Closures. In Magnús M. Halldórsson, Kazuo

Iwama, Naoki Kobayashi & Bettina Speckmann, editors: Automata, Languages, and Programming - 42nd

International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, Lecture Notes

in Computer Science 9135, Springer, pp. 440–451, doi:10.1007/978-3-662-47666-6_35.

http://dx.doi.org/10.4204/EPTCS.242.6
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2017.45
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.27
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.53
http://dx.doi.org/10.1145/2535838.2535873
http://dx.doi.org/10.1007/978-3-662-47666-6_35

	1 Introduction
	2 Preliminaries
	3 Deterministic Quantities
	4 Nondeterministic Quantities
	5 Branching Quantities

