Rewriting Modulo S in the AT1-Calculus Modulo

Ronan Saillard
MINES ParisTech, PSL Research University, France

ronan.saillard@mines-paristech.fr

The AlM-calculus Modulo is a variant of the-calculus with dependent types wheeconversion is
extended with user-defined rewrite rules. It is an expredsigical framework and has been used
to encode logics and type systems in a shallow way. Basicepties such as subject reduction or
unigueness of types do not hold in general in Aié-calculus Modulo. However, they hold if the
rewrite system generated by the rewrite rules together @itleduction is confluent. But this is
too restrictive. To handle the case where non confluence €drom the interference between the
B-reduction and rewrite rules with-abstraction on their left-hand side, we introduce a notbn
rewriting modulof for the AM-calculus Modulo. We prove that confluence of rewriting miodgi

is enough to ensure subject reduction and uniqueness of .ty achieve our goal by encoding the
Al-calculus Modulo into Higher-Order Rewrite System (HRS3.@8consequence, we also make the
confluence results for HRSs available for thid-calculus Modulo.

1 Introduction

The AT-calculus Modulo is a variant of th&-calculus with dependent typea [(-calculus or LF)
where 3-conversion is extended with user-defined rewrite rulesic&its introduction by Cousineau
and Dowek[[8], it has been used as a logical framework to espddferent logics and type systems. A
key advantage of rewrite rules is that they allow desigrshgllowembeddings, that is embeddings that
preserve the computational content of the encoded systdras been used, for instance, to encode func-
tional Pure Type Systems|[8], First-Order Lodi¢ [9], Higl@@der Logic [2], the Calculus of Inductive
Constructions [4], resolution and superposition proofsdfd the¢-calculus [7].

The expressive power of thel-calculus Modulo comes at a cost: basic properties suchkdsctu
reduction or uniqueness of types do not hold in general. &bex, one has to prove these properties
for each particular set of rewrite rules considered. Thelusay to do so is to prove that the rewriting
relation generated by the rewrite rules together vtheduction is confluent. This entails a property
called product compatibility (also known Blinjectivity or injectivity of function types) which, in tun,
implies both subject reduction and uniqueness of types.thfemamportant consequence of confluence
is that, together with termination, it implies the decidipiof the corresponding congruence. Indeed,
for confluent and terminating relations, checking congeeeboils down to a syntactic equality check
between normal forms. As a direct corollary, we get the daliy of type checking in tha M-calculus
Modulo for the corresponding rewrite relations.

One case where confluence is easily lost is if one allows tewuiles withA -abstractions on their
left-hand side. For instance, consider the following résuwnile (which reflects the mathematical equality
(ef) = f'xef):

D (Ax:RExp (f X)) — fMult (D (Ax: R.f X)) (Ax: RExp (f X)).
This rule introduces a non-joinable critical peak when cmat with 3-reduction:

I. Cervesato and K. Chaudhuri (Eds.): Tenth Internationatk&hop © R. Saillard
on Logical Frameworks and Meta-Languages: Theory and iBeact This work is licensed under the
EPTCS 185, 2015, pp. 8§7=101, d0i:10.4204/EPTCS.185.6 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.185.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

88 Rewriting Modulof3 in the AM-calculus Modulo

xy,z € YV (Variable)
c f € %o (Object Constant)
CF e % (Type Constant)
tLuv o= X|cluv|[Ax:Ut (Object)
UV == C|Uv|Ax:UV |Nx:UV (Type)
K = Type|Mx:U.K (Kind)
t,uv = u|U|K]|Kind (Term)
Figure 1: The terms of th&-calculus Modulo

D (Ax:RExp ((Ay: RYy) X))

L T

fMult (D (Ax:R(Ay:RYy) X)) (Ax:R.(Exp ((Ay:RY) Xx))) D (AX: RExp X)

A way to recover confluence is to consider a generalized tiagrelation where matching is done
modulo B-reduction. In this setting (Ax: RExp X) is reducible because it §-equivalent to the redex
D (Ax:RExp((Ay:RYy) X)) and, as we will see, this allows closing the critical peak.

In this paper, we formalize the notion ofwriting modulof in the context of theAM-calculus
Modulo. We achieve this by encoding tiid¢1-calculus Modulo into Nipkow’s Higher-Order Rewrite
Systems|[[14]. This encoding allows us, first, to properly rdefinatching modul@ using the notion
of higher order rewriting and, secondly, to make availalilghe A M-calculus Modulo, confluence and
termination criteria designed for higher-order rewritinthen we prove that the assumption of conflu-
ence for the rewriting modul@ relation can be used, in most proofs, in place of standarfiuance.

In particular this implies subject reduction (for both stard rewriting and rewriting modul@) and
uniqueness of types.

The paper is organized as follows. First, we define_in Seditre A M-calculus modulo for which
we prove subject reduction and uniqueness of types undexsthemption of product compatibility and
we show that confluence implies this latter property In ®adl, we show that a naive definition of
rewriting moduloB does not work in a typed setting. This leads us to use HighdeRewrite Systems
which we present ih Section 4 and in which we encodeAtRlecalculus Modulo i Section 5. Then, we
use this encoding to properly define rewriting modflan and generalize the results of the
previous sections. We discuss possible applicatiohs ifiddet before concluding in_Section 8.

2 TheAl-Calculus Modulo

The AT-calculus Modulo is an extension of the dependently-typethlculus @ M-calculus) where the
B-conversion is extended by user-defined rewrite rules.

2.1 Terms

The terms of the\M-calculus Modulo are the same as the terms ofAhkecalculus. Their syntax is

given in[Figure 1.

R. Saillard 89

A = O]A(Xx:U) (Local Context)
r == 0|lc:U)|FC:K)|TFTu—=vVv)|lFU<=V) (Global Context)

Figure 2: Syntax for contexts

Definition 2.1 (Object, Type, Kind, Term)A termis either anobject atype akind or the symboKind .

An object is either avariablein the set?’, or anobject constanin the setéo, or anapplicationu v
of two objects, or ambstractiom x : A.t where A is a type andis an object.

A type is either &ype constantn the seté7, or an applicationU v where U is a type and is an
object, or anabstractiom x: U.V where U and V are types, or@oductlx:U.V where U and V are
types.

A kind is either goroductlx: U.K where U is a type and K is a kind or the symBgpe.

Type andKind are calledsorts

The sets/’, ¥o and %t are assumed to be infinite and pairwise disjoint.

Definition 2.2. A term isalgebraicif it is not a variable, it is built from constants, variablesd appli-
cations and variables do not have arguments.

Notation 2.1. In addition to the naming convention[of Figure 1, we use A amal denote types or kinds;
T to denote a type, a kind ¢find ; s for Type or Kind.

Moreover, we writel to denote the application of t to an arbitrary number of arggnts y, ..., up.
We write ux/V| for the usual (capture-avoiding) substitution of x by v ilnNe write A— B for MNx: A.B
when B does not depend on x.

2.2 Contexts

We distinguish two kinds of context: local and global comgeXA local context is a list of typing decla-
rations corresponding to variables. The syntax for costexgiven irff Figure|2.

Definition 2.3 (Local Context) A local contexts a list of variable declarations (variables together with
their type).

Following our previous work([17], we give a presentation lo¢ A [N-calculus Modulo where the
rewrite rules are internalized in the system as part of tbbajlcontext. This is a difference with earlier
presentations [8] where the rewrite rules liveatsidethe system and were typed in an external system
(either the simply-typed calculus or th€l-calculus). The main benefit of this approach is that theypi
of the rewrite rules is made explicit and becomes an itexgiiocess: rewrite rules previously added in
the system can be used to type new ones.

Definition 2.4. A rewrite ruleis a pair of terms. We distinguisbbject-level rewrite rulegpairs of
objects) fromtype-level rewrite rulegpairs of types).

These are the only allowed rewrite rules. We wfite— v) for the rewrite rule(u, v).

It is left-algebraicif u is algebraic andeft-linearif no free variable occurs twice in u.

Definition 2.5 (Global Context) A global contextis a list of object declarations (an object constant
together with a type), type declarations (a type constagetioer with a kind), object-level rewrite rules
and type-level rewrite rules.

90 Rewriting Modulof3 in the AM-calculus Modulo

(Sort ;A Type: Kind
(Variable) (xAen

MAEX:IA
(Constant) (eAel

MAFC:A

inati ARt TIX:AB MAFuU:A
Application ’ :
(e) M AFtu:Bix/ul
(Abstractiony _ATA:Type TAX:A)Ft:B B#Kind
MAFAXIAL:TIX:AB

(Product) MA-A:Type TAX:A)FB:s

MAFTX:AB:s
MAFt:A MNAFB:s A=pr B
MA-t:B

(Conversion)

Figure 3: Typing rules for terms in thel-calculus Modulo.

2.3 Rewriting

Definition 2.6 (B-reduction) The-reductionrelation — g is the smallest relation on terms containing
(AX:Au)v—g ulx/Vv], for all terms Au and v, and closed by subterm rewriting.

Definition 2.7 (-reduction) Let be a global context. ThE-reductionrelation —r is the smallest
relation on terms containing w>r v for every rewrite rulelu < v) € I, closed by substitution and by
subterm rewriting. We say thatr is left-algebraic(respectivelyeft-lineal) if the rewrite rules inl are
left-algebraic (respectively left-linear).

Notation 2.2. We write —gr for —g U —r, =g for the congruence generated byg and =g the
congruence generated bygr.

It is important to notice that these notions of reduction éeéined as relations on all (untyped)
terms. In particular, we do not require the substitutionseavell-typed. This allows defining the notion
of rewriting independently from the notion of typing (seddvd. This makes the system closer from
what we would implement in practice.

Since the rewrite rules are either object-level or typelevewriting preserves the three syntactic
categories (object, type, kind). Moreover, sorts are onlyertible to themselves.

2.4 Type System

We now give the typing rules for th&lM-calculus Modulo. We begin by the inference rules for terms,
then for local contexts and finally for global contexts.

Definition 2.8 (Well-Typed Term) We say that a termhas typeA in the global context and the local
contextA if the judgment’; At : Ais derivable by the inference ruleg/of Figufe 3. We say thetma is
well-typedif such A exists.

R. Saillard 91

(Empty Local Context) [cxgp

XA MAFU:Type x¢ domA)
I EEXA(x:U)

(\Variable Declaration)

Figure 4: Typing rules for local contexts

The typing rules only differ from the usual typing rules fbef M-calculus by th¢Conversion)rule
where the congruence is extended frBresonversion tg3I -conversion allowing taking into account the
rewrite rules in the global context.

Definition 2.9 (Well-Formed Local Context)A local contextA is well-formedwith respect to a global
contextr” if the judgment” - A is derivable by the inference rules[of Figure 4.

Well-formed local contexts ensure that local declaratiarsunique and well-typed.

Besides the new conversion relation, the main differendevdren theATl-calculus and the\Tl-
calculus Modulo is the presence of rewrite rules in globaitexts. We need to take this into account
when typing global contexts.

A key feature of any type system is the preservation of tygipgeduction: the subject reduction

property.
Definition 2.10 (Subject Reduction)Let ' be a global context. We say that a rewriting relatien

satisfies theubject reductioproperty inl" if, for all terms #,to, T and local contexf such that™ -9 A,
MAFt :Tandg =t implylN; At T.

In the A M-calculus Modulo, we cannot allow adding arbitrary rewritkes in the context, if we want
to preserve subject reduction. In particular, to prove estthjeduction for the8-reduction we need the
following property:

Definition 2.11 (Product-Compatibility) We say that a global contekt satisfies thgroduct compati-
bility property (and we noteC(I")) if the following proposition is verified:

if Mx: A;.By andlx: Ay.B, are two well-typed product types in the same well-formedlloontext such
thatMx: A1.By =gr MNx: Az.Bx then A =gr A2 and B, =gr Bo.

On the other hand, subject reduction for fheeduction requires rewrite rules to be well-typed in the
following sense:

Definition 2.12 (Well-typed Rewrite Rules)

e Arewrite rule(u — v) is well-typedfor a global contexf if, for any substitutiono, well-formed
local contextA and term T ;AR o(u) : T impliesl ;A o(v) : T.

e A rewrite rule ispermanently well-typedbr a global context if it is well-typed for any extension
o D I that satisfies product compatibility. We wrife- u < v when(u < v) is permanently
well-typed inl".

The notion of permanently well-typed rewrite rule makessiule to typecheck rewrite rules only
once and not each time we make new declarations or add othetereules in the context.
We can now give the typing rules for global contexts.

Definition 2.13 (Well-formed Global Context)A global context isvell-formedif the judgment” wf is
derivable by the inference rules|of Figure 5.

92 Rewriting Modulof3 in the AM-calculus Modulo

(Empty Global Context) 0 wf

I wf MOFU : Type c¢ dom)
M(c:U)wf
r wi M0FK:Kind PC(r'(C:K)) C¢domT)
I(C:K) wf
I wf Vil Fui = v PC(I(ug <= V1) ... (Un = Vp))
M(ug <= vi)...(Up <= vy) WF

(Object Declaration)

(Type Declaration)

(Rewrite Rules)

Figure 5: Typing rules for global contexts

The rules(Object Declaration) and(Type Declaration) ensure that constant declarations are well-
typed. One can remark that the premi®&e(I"(c: U)) is missingin the (Object Declaration) rule. This
is becaus®C(I"(c: U)) can be proved frorPC(I"); to prove product compatibility far (c:U) it suffices
to emulate the constanty a fresh variable and use the product compatibility priypefrl”. This cannot
be done for type declarations since type-level variablesad@xist in theA M-calculus Modulo. The rule
(Rewrite Rules) permits adding rewrite rules. Notice that we can add severadite rules at once. In
this case, only product compatibility for the whole systameiquired. On the other hand, when a rewrite
rule is added it needs to be well-typed independently fragrother rules that are added at the same time.
Well-formed global contexts satisfy subject reduction an@jueness of types. Proofs can be found
in the long version of this paper at the author's webpage.
Theorem 2.1(Subject Reduction)Letl” be a well-formed global context. Subject reduction holds fo
—pr inT.
Theorem 2.2(Uniqueness of Types)Letl be a well-formed global context and ietbe a local context
well-formed forl™. If ARt Ty andl ARt To then | =pr To.
Remark that strong normalization of well-typed terms far télations—r and— g is not guaranteed.

2.5 Criteria for Product Compatibility and Well-typedness of Rewrite Rules

We now give effective criteria for checking product compdity and well-typedness of rewrite rules.

The usual way to prove product compatibility is by showing donfluence of the rewrite system.
Theorem 2.3(Product Compatibility from Confluence).etl” be a global context. If- g is confluent
then product compatibility holds fdr.

One could think that we can weaken the assumption of conflueaguiring only confluence for
well-typed terms. This is not a viable option since, withpubduct compatibility, we do not know if
reduction preserves typing (subject reduction) and if #teogwell-typed terms is closed by reduction.
Therefore, it seems unlikely to be able to prove confluendyg fon well-typed terms before proving the
product compatibility property.

The confluence of+gr can be obtained from the confluence-of .

Theorem 2.4(Mdller [12]). If —r is left-algebraic, left-linear and confluent, themgr is confluent.

To show that a rewrite rule is well-typed, one can use the@vatig result:

Theorem 2.5. Letl” be a well-formed global context arid — v) be a rewrite rule. If u is algebraic and
there existA and T such thaf’ F** A, dom(A) = FV(u), I;AFu: T andl;AFv: T then(u = v) is
permanently well-typed fdr.

R. Saillard 93

2.6 Example

As an example, we define the map function on lists of inted&fsfirst define the type dPeano integers
by the three successive global declarations:

Nat : Type.
0 : Nat.

S ! Nat — Nat.)
n times

-y . . . /_/H . .
For readability, we will writen instead ofS(S ... (S 0)). We now define a type for lists:
List : Type.
Nil : List.
Cons : Nat — List — List.
and the function map on lists:

Map : (Nat — Nat) — List — List.
Map f Nil < Nil.
Map f (Cons hd tl) < Cons (f hd) (Map f tI).

For instance, we can use this function to add some value telémeents of a list. First, we define addi-
tion;

plus : Nat —> Nat — Nat.
plusOn <= n.
plus (Sng) N2 < S (plus ng Ny).

Then, we have the following reduction:
Map (plus 3) (Cons 1 (Cons 2 (Cons 3Nil))) —f Cons 4 (Cons 5 (Cons 6 Nil)).

This global context is well-formed. Indeed, one can cheek #ach global declaration is well-
typed. Moreover, each time we add a rewrite rule, it veriftes hypotheses ¢f Theorem 2.5 and it
preserves the confluence of the relatieryr. Therefore, the rewrite rules are permanently well-typed
and, by Theorem 2.3, product compatibility is always gutsaa.

3 A Naive Definition of Rewriting Modulo 3

As already mentioned, our goal is to give a notion of rewgitmodulo in the setting ofA M-calculus
Modulo. We first exhibit the issues arising from a naive d&finiof this notion.

In an untyped setting, we could define rewriting mod8lim this mannert; rewrites ta if, for some
rewrite rule(u — v) and substitutioro, o(u) =g t; ando(v) =g to. This definition is not satisfactory
for several reasons.

It breaks subject reduction. For the rewrite rule df Section 1, takimg= {f — Ay: Q.y} whereQ is
some ill-typed term, we have

D (AX: RExp X) — fMult (D (AX: R(Ay: Q.y) X) (AX: RExp ((Ay: Q.y) X)))

and, even iD (Ax: RExp x) is well-typed, its reduct is ill-typed since it contains #drtyped subterm.

94 Rewriting Modulof3 in the AM-calculus Modulo

It may introduce free variables. In the example abové&) has no reason to be closed.

It does not provide confluence. If we consider the following variant of the rewrite rule
D (AX: RExp (f X)) < fMult (D f) (Ax: RExp (f x))

and takeo; = {f — Ay: Ay.y} andos = {f — Ay: Ay.y} whereA; andA; are two non convertible types
then we have:
D (Ax:RExp ((Ay:RYy) X))

DL D92
fMult (D (Ay:AY)) (AX: R(Exp ((Ay:Asy) X)) fMult (D (Ay:A2Y)) (AX: R(Exp ((Ay: Azy) X)))

and the peak is not joinable.
Therefore, we need to find a definition that takes care of thesses. We will achieve this using an
embedding ofA IM-calculus Modulo into Higher-Order Rewrite Systems.

4 Higher-Order Rewrite Systems

In 1991, Nipkow [14] introduced Higher-Order Rewrite Syste(HRS) in order to lift termination and
confluence results from first-order rewriting to rewritingeoA -terms. More generally, the goal was to
study rewriting over terms with bound variables such as f@nog, theorem and proofs.

Unlike the ATl-calculus Modulo, in HRS$-reduction and rewriting do not operate at the same
level. Rewriting is defined as a relation between rp-equivalence classes of simply typaeterms:
the A-calculus is used as a meta-language.

Higher-Order Rewrite Systems are based upon the (pre)tefriie simply-typedA -calculus built
from a signature. A signature is a set of base tygeand a set of typed constants. A simple type is
either a base typle € & or an arrowA — B whereA andB are simple types.

Definition 4.1 (Preterm) A pretermof type A is

e either avariablex of type A (we assume given for each simple type A an infinitdauof variables
of this type),

e Or aconstantf of type A,
e or anapplicationt(u) where t is a preterm of type B— A and u is a preterm of type B,
e or, if A=B — C, anabstractiom x.t where x is a variable of type B and t is a preterm of type C.

In order to distinguish the abstraction of HRSs from the ralatibn ofA N-calculus Modulo, we use
the underlined symbol instead ofA. Similarly, we write the applicatiot(u) for HRSs (instead afu).
We use the abbreviatidrfuy, ..., u,) for t(up)... (uy). If Ais a simple type, we writé! for A andA™?
for A— A",

Notice also that HRSs abstractions do not have type anaontaliecause variables are typed.

B-reduction and)-expansion are defined as usual on preterms. We gyg'rtéor the longBn-normal
form oft.

Definition 4.2 (Term). Atermis a preterm in long3n-normal form.

R. Saillard 95

Definition 4.3 (Pattern) A term t is apatternif every free occurrence of a variable F is in a subterm of
t of the form R such thatl is n-equivalent to a list of distinct bound variables.

The crucial result about patterns (due to Miller|[11]) is thexidability of higher-order unification
(unification modulgB3n) of patterns. Moreover, if two patterns are unifiable thenasingeneral unifier
exists and is computable.

The notion of rewrite rule for HRSs is the following:

Definition 4.4 (Rewrite Rules) A rewrite ruleis a pair of terms(l < r) such that | is a pattern not
n-equivalent to a variable, F¢#) C FV(l) and | and r have the same base type.

The restriction to patterns for the left-hand side ensunas tnatching is decidable but also that,
when it exists, the resulting substitution is unique. Thagywthe situation is very close to first-ordee(
syntactic) matching.

Definition 4.5 (Higher-Order Rewriting System (HRS)A Higher-Order Rewriting Systelis a set R of
rewrite rules.

The rewrite relation—g is the smallest relation on terms closed by subterm revgisiach that, for
any (I < r) € R and any well-typed substitutian 3§ o (1) —rJj o(r).

The standard example of an HRS is the untypedalculus. The signature involves a single base
type Term and two constants:

Lam: (Term — Term) — Term

App : Term — Term — Term

and a single rewrite rule fg8-reduction:

(beta) App(Lam(Ax.X(X)),Y) < X(Y)

5 An Encoding of the ATl-calculus Modulo into Higher-Order Rewrite
Systems

5.1 Encoding of Terms

We now mimic the encoding of the untypddcalculus as an HRS and encode the terms ofAthie
calculus Modulo. First we specify the signature.
Definition 5.1. The signatureSig(A) is composed of a single base typerm, the constantSype and
Kind of atomic typeTerm, the constantipp of typeTerm —> Term — Term, the constant&am and
Pi of typeTerm — (Term — Term) — Term and the constants of typeTerm for every constant
CE boU%DT.

Then we define the encoding af1-terms.
Definition 5.2 (Encoding ofAM-term). The function||.|| from AM-terms to HRS-terms in the signature
Sig(A M) is defined as follows:

IKind|| ~ := Kind IType| = Type

[I1X] := X (variable of typeTerm) ||c|| = <

[Juv] = App(/ull, [IvIl) [Ax:At] = Lan([|A]l, Ax[[t]})
IMx:ABJ| = Pi(]|All,Ax[[B]])

Lemma 5.1. The function||.|| is a bijection from the\ M-terms to HRS-terms of ty[ferm.

Note that this is a bijection between the untyped terms ofAtliecalculus Modulo and well-typed
terms of the corresponding HRS.

96 Rewriting Modulof3 in the AM-calculus Modulo

5.2 Higher-Order Rewrite Rules

We have faithfully encoded the terms. The next step is to @mte rewrite rules. The following rule
corresponds t@-reduction at the HRS level:

(beta) App(Lan(X,AX.Y(X)),Z) < Y(Z)

We have the following correspondence:
Lemma 5.2.
o Ifty —p ta then||ty]| — ety ||t2]-
o Ifty —(pety t2 @nd t,t have typelerm then||ti ||~ — g [tz]| ~* (where]|.|| " is the inverse of .||).

By encoding rewrite rules in the obvious way (translating— v) by (||ul| < ||v||)), we would get
a similar result forl-reduction. But, since we want to incorporate rewriting miod3, we proceed
differently.

First, we introduce the notion of uniform terms. These an@severifying an arity constraint on their
free variables.

Definition 5.3 (Uniform Terms) A term t isuniform for a set of variables V if all occurrences of a
variable free int not inV is applied to the same number of arguts.

Now, we define an encoding for uniform terms.

Definition 5.4 (Encoding of uniform terms)Let V be a set of variables and t be a term uniform in V.
The HRS-ternju||y of typeTern is defined as follows:

||Kind [Jv = Kind

I Typellv = Type

|I1X[|v = x if xeV (variable of typeTerm)
Iclv = c

[Ax:Aully = Lam(||Allv, A [[ullyiix)

IMx:ABlly = Pi(||Allv, AX[[Bllvugqg)
[|XV|[v/ = x(||V|v) if x¢ V (x of type Term"** wheren = |V))
[Juvilv = App([[ullv,[[V]lv) if uv#x W for x ¢V

Now, we define an equivalent of patterns for fhid-calculus Modulo.

Definition 5.5 (AM-patterns) Let \p be a set of variablesgZ be a function giving an arity to variables
and letV= (Vp,). The subset?, of Al-terms is defined inductively as follows:

e if cis a constant, then € Ay;
e if p,ge Ay, then p ge Hy;
e if X € Vp, then xe Hy;
o if pe Py, x¢ Vo andy is a vector of pairwise distinct variables i guch thaty| = <7 (x), then
p (XY) € Av;
o if pe Py, FV(A) CVoand g€ Pyyupq,0), then p(Ax: Aq) € Ay,
Atermt is aATl-patternif, for some arity functions, t € Z g).

Remark that the encoding of&d1-pattern as a uniform term is a pattern.
We now define the encoding of rewrite rules.

R. Saillard 97

Definition 5.6 (Encoding of Rewrite Rules)Let (u < v) be a rewrite rule such that

e U is aAll-pattern;

o FV(v) C FV(u);

e all free occurrences of a variable in u and v are applied to shene number of arguments.
The encoding ofu < v) is ||u < V|| = ||ullo < [|V]lo.

Remark that the first assumption ensures that the left-hidedssa pattern and the third assumption
ensures that the HRS-term is well-typed.

Definition 5.7 (HRS(")). Letl aglobal context whose rewrite rules satisfy the conditiffpefinition 5.6.
We write HRS() for the HRS({||u — V|| | (u— v) € '} and HRSBI") for HRST) U {(beta)}.

6 Rewriting Modulo 8

6.1 Definition

We are now able to properly define rewriting modylo As for usual rewriting, rewriting modulg is
defined on all (untyped) terms.
Definition 6.1 (Rewriting Modulof). Letl be a global context. We say thatrewrites tot, modulof3
(written ty —ro to) if [[t1]| rewrites tol|tz|| in HRS(). Similarly, we write { — gro to if [|ty || rewrites to
|Itz2|| iIn HRSET).
Lemma 6.1.

° —)Brb:—>rb U —)B

e Ift; —>rtrthent —ro .

6.2 Example

Let us look at the example from the introduction. Now we have :
D (AX: RExp X) —pb £fMult (D (AX:RX)) (AX: RExp X)
Indeed, foro = {f — Ay.y} we have
ID (Ax: RExp X)|| = App(D, Lan(R, Ax.App(Exp,X))) =13 0(App(D,Lan(R, Ax.App(Exp, f ()))))
and
||IfMult (D (Ax:RX)) (AX:RExpX)| = App(fMult App(D,Lam(R;Ax.X)),Lam(R,AX.App(Exp, X)))
=17} o (App(£Mult, App(D, Lan(R Ax. f(x))), Lam(R, AX.App(Exp, f(¥)))))

Therefore, the peak is now joinable.
D (Ax:RExp ((Ay:RYy) X

/\

fMult (D (AX:R(Ay:RY) X)) (AX: R (Exp ((Ay:RY) X D (AX: RExp X)

\/

fMult (D (Ax:RX)) (AX: RExp X)

98 Rewriting Modulof3 in the AM-calculus Modulo

In fact the rewriting relation can be shown confluent [15].

6.3 Properties

Rewriting modulo also preserves typing.

Theorem 6.1(Subject Reduction for-rb). Letl™ a well-formed global context anfi a local context
well-formed forl. If ARt : T and§ —potathenl; ARt 0 T.

It directly follows from the following lemma:
Lemma 6.2. If t; — b tp then, for somejtand ¢, we have ¢ <—2§ t —rt) —>2§ t,. Moreover, if § is
well-typed then we can choogesuich that it is well-typed in the same context.

Proof. The idea is to lift theB-reductions that occur at the HRS level to thEl-calculus Modulo.
Supposd; —rb to. For some rewrite rul¢u — v) and (HRS) substitutiow, we haveig o(u) = ||ta]]

andig o(v) = |tz||. We define theXM) substitutiong as follows: 6(x) = ||a(x)||~* if a(x) has type

Term; 6(x) = AX: A.||lul| "1 if 0(x) = AX.u has typeTerm” — Term where theA; are arbitrary types.
We have, at tha T level, 5(u) —r 6(v), G(u) =5ty andd(v) —5 to. If tp is well-typed then théy can
be chosen so that(u) is also well-typed. O

Another consequence of this lemma is that the rewriting fwfAudoes not modify the congruence.
Theorem 6.2. The congruence generated by is equal to=pr-.

Proof. Follows from[Lemma6]1 arld Lemma6.2. O

6.4 Generalized Criteria for Product Compatibility and Well-Typedness of Rewrite Rules

Using our new notion of rewriting modulB, we can generalize the criteria[of Section| 2.5.
Theorem 6.3. Letl" be a global context. If HRB() is confluent, then product compatibility holds far
Proof. Assume thaflx: A1.B; =gr MNx: Az.B> then, by Theorem 6lZ]x : A1.B; =pro Mx: A2.Bz. By

confluence, there exigty andBg such thatA; —>Erb Ag, Ao —>Erb Ao, B1 —>Erb By and B> —>Erb Bo. It
follows, by[Theorem 612, tha; =gr A, andBy =pr Bo.

To prove the confluence of a HRS, one can use van Oostrom’sopevent-closed theorern [15].
can also be generalized to deal wlthpatterns.

Theorem 6.4. Letl" be a well-formed global context arfd — v) be a rewrite rule. If u is a M-pattern
and there exish and T such thaf XA, FV(u) =domA), ;A u: T andl ;A v: T then(u < v)
is permanently well-typed far.

This theorem is a corollary of the following lemma.

Lemma 6.3. Letl" C I'; be two well-formed global contexts. &t Zyqys), domo) = domA), for
all (x:A)eZ gA)=AT,AZt:T andl2;A22 - o(t) : T then B =gr, 0(T) and, for all xe
FV(t)ndomA), I'2;A2F o(X) : Ty for Ty =gr, a(A(X)).

Proof. We proceed by induction dne Zyons)-

e if t =cis aconstant, theRV (t) = 0 and, by inversion ofi;AZ -t : T, there exists a (closed term)
Asuchthatfc: A) el C T, T =pr AandT, =gr, A. SinceA= o(A), we haved (T) =gr, To.

R. Saillard 99

e if t =xcdomZ), then, by inversion, there exiséssuch thatx: A) € Z, T =gr Aand T, =gr, A.
SinceA = g (A), we haveo (T) =gr, T>.
e if t = pq, then, by inversion, on the one hafidA> - p: Mx: A.B, I AZ - q: AandT =gr B[x/q].
On the other hand;2;A2Z - a(p) : Mx: A2.Bp, 2,422+ 0(q) - A2 and T, =pr, B2[x/0(q)].
By induction hypothesis op, we havea (Mx: A.B) =gr, Mx: A2.B; and for allx € FV(p) N
domA), 2,82+ a(X) : Ty with Ty =gr, 0(A(X)).
By product-compatibility ofl"2, o(A) =pr, A2 and d(B) =gr, B,. It follows that o(T) =g,
o (B[x/d]) =gr, B2[x/0(a)] =gr, T2-
Now, we distinguish three sub-cases:
— eitherq € Pyomz) and by induction hypothesis ap for all x € FV (q) ndom(A), I'2;4;
0 (x) : Ty with Ty =gr, 0(A(X)).
— Org=Ax:Ado with FV(A) € domZ) andqo € Pgonis(xa)) @nd by induction hypothesis
ondp, for all x e FV(go) ndomA), M2, A2 - o(x) : Ty with Ty =g, 0(A(X)).
— Org=xy with x¢ domZ) andy C dom(Z). By inversion, on the one hand(x) =gr My:
Z(y).C for C =gr A. On the other hand;2; Az - a(x) : My : 2(¥).C; for C; =pr, A2. Since
0(A) =gr, A2, we havelly: 2(Y).Cz =gr, Ny : Z(¥).0(C) = a(A(X)).
]

Proof ofiTheorem 6l4Let I, be a well-formed extension &f. Suppose thdiz; Ay - o(u) : To.

By Lemma 6.8 andrV (u) = dom(A), we have, for alk € domA), I'2;A2 - o (x) : Ty for Ty =pr,
o(A(x)) andT, =g, a(T).

By induction onl";A-v: T, we deducd 2,42 - o (v) : Tg, for T3 =gr, 0(T) =gr, T2. It follows, by
conversion, thal ;A F o (v) : To. O

7 Applications

7.1 Parsing and Solving Equations

The context declarations and rewrite rule§ of Figure 6 defifumctionto_expr which parses a function
of typeNat to Nat into an expression of the forae x+ b (represented by the tertk_expr a b) where
a andb are constants. The left-hand sides of the rewrite rulescaaxpr areAl-patterns. This allows
definingto_expr by pattern matching in a way which looks under the binders.
The functionsolve can then be used to solve the linear equatiexx+ b = 0. The answer is either
None if there is no solution, oA11 if any X is a solution o0ne m nif —m/(n+ 1) is the only solution.
For instance, we have (writinghe — 1 for One 1 2):

solve (to_expr(AX:Nat.plus X (plus X (S X)))) —pr One — 2

By [Theorem 6.8 and Theorem 6.4 the global contekt of Fighsevéell-formed.

7.2 Universe Reflection

In [1], Assaf defines a version of the calculus of constructigth explicit universe subtyping thanks to
an extended notion of conversion generated by a set of eevulgs. This work can easily be adapted to
fit in the framework of theA M-calculus Modulo. However, the confluence of the rewritedesysholds
only for rewriting modulog.

100 Rewriting Modulof3 in the AM-calculus Modulo

expr : Type.
mk_expr : Nat — Nat — expr.
expr._S : exXpr — expr.
expr_S (mk_expr ab) — mk_expra(sSh).
expr_P . eXpr —» eXpr —» expr.
expr P (mk_expr @ by) (mk_expr ap by) < mk_expr (plus @y @) (plus by by).
to_expr : (Nat — Nat) — expr.
to_expr (AX:Nat.0) — mk_expr 00.
to_expr (AX:Nat.S (f x)) — expr_S (to_expr (AX:Nat.f x)).
to_expr (AX:Nat.X) — mk_expr (S0)0.
to_expr (AX:Nat.plus (f X) (g X)) —
expr_P (to_expr (AX:Nat.f X)) (to_expr (AX:Nat.g X)).
Solution : Type.
All : Solution.
One : Nat — Nat —> Solution.
None : Solution.
solve (mk_expr 0 0) — All.
solve (mk_expr 0 (S n) — None.
solve (mk_expr (S n m) <~ Onemn

Figure 6: Parsing and solving linear equations

8 Conclusion

We have defined a notion of rewriting modyBofor the AM-calculus Modulo. We achieved this by en-
coding theA lNM-calculus Modulo into the framework of Higher-Order Rewi8ystems. As a consequence
we also made available for thd1-calculus Modulo the confluence criteria designed for theSHIisee
for instance [[14] or[[15]). We proved that rewriting modybopreserves typing. We generalized the
criterion for product compatibility, by replacing the asgution of confluence by the confluence of the
rewriting relation modulg3. We also generalized the criterion for well-typedness wfrte rules to al-
low left-hand to be\ M-patterns. These generalizations permit proving subgshtiation and uniqueness
of types for more systems.

A natural extension of this work would be to consider rewgtimodulofn as in Higher-Order
Rewrite Systems. This requires extending the conversiagh gdreduction. But, as remarked in_[10]
(attributed to Nederpelt);» g, is not confluent on untyped terms as the following examplevsho

AY:BY < AX:A(AYy:By)X =g AX:AX

Therefore properties such as product compatibility nedaktproved another way. We leave this line of
research for future work.

For the AT-calculus a notion of higher-order pattern matching hasih@eposed[[16] based on
Contextual Type Theory (CTT)[13]. This notion is similar ear. However, it is defined using the
notion of meta-variable (which is native in CTT) instead d@fanslation into HRSs.

In [3], Blanqui studies the termination of the combinatidnBereduction with a set of rewrite rules
with matching modulg3n in the polymorphicA-calculus. His definition of rewriting modulfn is

R. Saillard 101

direct and does not use any encoding. This leads to a sligtitirent notion a rewriting modul@. For
instancep(A : R.Exp Xx) would reduce tdMult (D (AX: R(Ay:RY) X)) (AXx: RExp ((Ay: Ry) X)) in-
stead offMult (D (Ax: RX)) (Ax: RExp X). It would be interesting to know whether the two definitions
are equivalent with respect to confluence.

We implemented rewriting modulB in Dedukti [5], our type-checker for th&ll-calculus Modulo.

Acknowledgments. The author thanks very much Ali Assaf, Olivier Hermant, Rsefouvelot and the
reviewers for their very careful reading and many suggestio

References

[1] A. Assaf (2015):A calculus of constructions with explicit subtypidg: The 20th International Conference
on Types for Proofs and Programs (TYPES '14)

[2] A. Assaf & G. Burel (2014): Translating HOL to Dedukti Available at
https://hal.archives-ouvertes.fr/hal-01097412.

[3] F. Blanqui (2015)Termination of rewrite relations on lambda-terms based @ma@'s notion of reducibility.
Theoretical Computer Scienc€o appeatr.

[4] M. Boespflug & G. Burel (2012)CogInE : Translating the calculus of inductive construnganto theA M-
calculus moduloln: The Second International Workshop on Proof Exchange fooiiéra Proving (PXTR)

[5] M. Boespflug, Q. Carbonneaux, O. Hermant & R. Saillard:Dedukti Available at
http://dedukti.gforge.inria.fr

[6] G. Burel (2013):A Shallow Embedding of Resolution and Superposition Piotdsthe A M-Calculus Mod-
ulo. In: The Third International Workshop on Proof Exchange for TeeoProving (PxTP '13)

[7]1 R. Cauderlier & C. Dubois (2015Dbjects and Subtyping in thd1-Calculus Modulo

[8] D. Cousineau & G. Dowek (2007): Embedding Pure Type Systems M1-Calculus Modulo
In: The 8th International Conference on Typed Lambda Calculi #pplications (TLCA '07)
doi{10.1007/978-3-540-732289)

[9] A. Dorra: Equivalence de Curry-Howard entre le lambda-Pi calcul eibigique intuitionniste Report.

[10] H. Geuvers (1992)The Church-Rosser Property for beta-eta-reduction in @ylaenbda-Calculi In: The

Seventh Annual Symposium on Logic in Computer Science (L82% doil10.1109/LICS.1992.185556.

[11] D. Miller (1991): A Logic Programming Language with Lambda-Abstraction, &ion Variables, and Simple
Unification Journal of Logic and Computatipdoii10.1093/logcom/1.4.497.

[12] F. Muller (1992): Confluence of the Lambda Calculus with Left-Linear AlgebRewriting Information
Processing Lettersloi{10.1016/0020-0190(92)90155-0.

[13] Aleksandar Nanevski, Frank Pfenning & Brigitte Piean{R008):Contextual modal type thearACM Trans.
Comput. Log9(3), d0i:10.1145/1352582.1352591.

[14] T. Nipkow (1991):Higher-Order Critical Pairs In: The Sixth Annual Symposium on Logic in Computer
Science (LICS '91)d0i(10.1109/LICS.1991.151658.

[15] V. van Oostrom (1995)Development Closed Critical Pairsin: The Second International Workshop on
Higher-Order Algebra, Logic, and Term Rewriting, (HOA '98pi[10.1007/3-540-61254-36.

[16] Brigitte Pientka (2008):A type-theoretic foundation for programming with higheder abstract syn-
tax and first-class substitutionsin: Symposium on Principles of Programming Languages, (PORB), '0
doii10.1145/1328438.1328483.

[17] R. Saillard (2013):Towards explicit rewrite rules in thaM-calculus modulo In: The 10th International
Workshop on the Implementation of Logics (IWIL '13)

https://hal.archives-ouvertes.fr/hal-01097412
http://dedukti.gforge.inria.fr
http://dx.doi.org/10.1007/978-3-540-73228-0_9
http://dx.doi.org/10.1109/LICS.1992.185556
http://dx.doi.org/10.1093/logcom/1.4.497
http://dx.doi.org/10.1016/0020-0190(92)90155-O
http://dx.doi.org/10.1145/1352582.1352591
http://dx.doi.org/10.1109/LICS.1991.151658
http://dx.doi.org/10.1007/3-540-61254-8_26
http://dx.doi.org/10.1145/1328438.1328483

	1 Introduction
	2 The -Calculus Modulo
	2.1 Terms
	2.2 Contexts
	2.3 Rewriting
	2.4 Type System
	2.5 Criteria for Product Compatibility and Well-typedness of Rewrite Rules
	2.6 Example

	3 A Naive Definition of Rewriting Modulo
	4 Higher-Order Rewrite Systems
	5 An Encoding of the into Higher-Order Rewrite Systems
	5.1 Encoding of Terms
	5.2 Higher-Order Rewrite Rules

	6 Rewriting Modulo
	6.1 Definition
	6.2 Example
	6.3 Properties
	6.4 Generalized Criteria for Product Compatibility and Well-Typedness of Rewrite Rules

	7 Applications
	7.1 Parsing and Solving Equations
	7.2 Universe Reflection

	8 Conclusion

