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Theλ Π-calculus Modulo is a variant of theλ -calculus with dependent types whereβ -conversion is
extended with user-defined rewrite rules. It is an expressive logical framework and has been used
to encode logics and type systems in a shallow way. Basic properties such as subject reduction or
uniqueness of types do not hold in general in theλ Π-calculus Modulo. However, they hold if the
rewrite system generated by the rewrite rules together withβ -reduction is confluent. But this is
too restrictive. To handle the case where non confluence comes from the interference between the
β -reduction and rewrite rules withλ -abstraction on their left-hand side, we introduce a notionof
rewriting moduloβ for theλ Π-calculus Modulo. We prove that confluence of rewriting modulo β
is enough to ensure subject reduction and uniqueness of types. We achieve our goal by encoding the
λ Π-calculus Modulo into Higher-Order Rewrite System (HRS). As a consequence, we also make the
confluence results for HRSs available for theλ Π-calculus Modulo.

1 Introduction

The λΠ-calculus Modulo is a variant of theλ -calculus with dependent types (λΠ-calculus or LF)
whereβ -conversion is extended with user-defined rewrite rules. Since its introduction by Cousineau
and Dowek [8], it has been used as a logical framework to express different logics and type systems. A
key advantage of rewrite rules is that they allow designingshallowembeddings, that is embeddings that
preserve the computational content of the encoded system. It has been used, for instance, to encode func-
tional Pure Type Systems [8], First-Order Logic [9], Higher-Order Logic [2], the Calculus of Inductive
Constructions [4], resolution and superposition proofs [6], and theς -calculus [7].

The expressive power of theλΠ-calculus Modulo comes at a cost: basic properties such as subject
reduction or uniqueness of types do not hold in general. Therefore, one has to prove these properties
for each particular set of rewrite rules considered. The usual way to do so is to prove that the rewriting
relation generated by the rewrite rules together withβ -reduction is confluent. This entails a property
called product compatibility (also known asΠ-injectivity or injectivity of function types) which, in turn,
implies both subject reduction and uniqueness of types. Another important consequence of confluence
is that, together with termination, it implies the decidability of the corresponding congruence. Indeed,
for confluent and terminating relations, checking congruence boils down to a syntactic equality check
between normal forms. As a direct corollary, we get the decidability of type checking in theλΠ-calculus
Modulo for the corresponding rewrite relations.

One case where confluence is easily lost is if one allows rewrite rules withλ -abstractions on their
left-hand side. For instance, consider the following rewrite rule (which reflects the mathematical equality
(ef )′ = f ′ ∗ef ):

D (λx : R.Exp ( f x)) →֒ fMult (D (λx : R. f x)) (λx : R.Exp ( f x)).

This rule introduces a non-joinable critical peak when combined withβ -reduction:
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x,y,z ∈ V (Variable)
c, f ∈ CO (Object Constant)
C,F ∈ CT (Type Constant)
t,u,v ::= x | c | u v | λx : U.t (Object)
U,V ::= C |U v | λx : U.V | Πx : U.V (Type)
K ::= Type | Πx : U.K (Kind)
t,u,v ::= u |U | K | Kind (Term)

Figure 1: The terms of theλΠ-calculus Modulo

D (λx : R.Exp ((λy : R.y) x))

fMult (D (λx : R.(λy : R.y) x)) (λx : R.(Exp ((λy : R.y) x))) D (λx : R.Exp x)

D β

A way to recover confluence is to consider a generalized rewriting relation where matching is done
moduloβ -reduction. In this settingD (λx : R.Exp x) is reducible because it isβ -equivalent to the redex
D (λx : R.Exp((λy : R.y) x)) and, as we will see, this allows closing the critical peak.

In this paper, we formalize the notion ofrewriting moduloβ in the context of theλΠ-calculus
Modulo. We achieve this by encoding theλΠ-calculus Modulo into Nipkow’s Higher-Order Rewrite
Systems [14]. This encoding allows us, first, to properly define matching moduloβ using the notion
of higher order rewriting and, secondly, to make available,in theλΠ-calculus Modulo, confluence and
termination criteria designed for higher-order rewriting. Then we prove that the assumption of conflu-
ence for the rewriting moduloβ relation can be used, in most proofs, in place of standard confluence.
In particular this implies subject reduction (for both standard rewriting and rewriting moduloβ ) and
uniqueness of types.

The paper is organized as follows. First, we define in Section2 theλΠ-calculus modulo for which
we prove subject reduction and uniqueness of types under theassumption of product compatibility and
we show that confluence implies this latter property. In Section 3, we show that a naive definition of
rewriting moduloβ does not work in a typed setting. This leads us to use Higher-Order Rewrite Systems
which we present in Section 4 and in which we encode theλΠ-calculus Modulo in Section 5. Then, we
use this encoding to properly define rewriting moduloβ in Section 6 and generalize the results of the
previous sections. We discuss possible applications in Section 7 before concluding in Section 8.

2 The λ Π-Calculus Modulo

TheλΠ-calculus Modulo is an extension of the dependently-typedλ -calculus (λΠ-calculus) where the
β -conversion is extended by user-defined rewrite rules.

2.1 Terms

The terms of theλΠ-calculus Modulo are the same as the terms of theλΠ-calculus. Their syntax is
given in Figure 1.
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∆ ::= /0 | ∆(x : U) (Local Context)
Γ ::= /0 | Γ(c : U) | Γ(C : K) | Γ(u →֒ v) | Γ(U →֒V) (Global Context)

Figure 2: Syntax for contexts

Definition 2.1 (Object, Type, Kind, Term). A term is either anobject, a type, a kind or the symbolKind .
An object is either avariablein the setV , or anobject constantin the setCO, or an applicationu v

of two objects, or anabstractionλx : A.t where A is a type and tis an object.
A type is either atype constantin the setCT , or an applicationU v where U is a type and vis an

object, or anabstractionλx : U.V where U and V are types, or aproductΠx : U.V where U and V are
types.

A kind is either aproductΠx : U.K where U is a type and K is a kind or the symbolType.
Type andKind are calledsorts.
The setsV , CO andCT are assumed to be infinite and pairwise disjoint.

Definition 2.2. A term isalgebraicif it is not a variable, it is built from constants, variablesand appli-
cations and variables do not have arguments.

Notation 2.1. In addition to the naming convention of Figure 1, we use A and Bto denote types or kinds;
T to denote a type, a kind orKind ; s for Type or Kind .

Moreover, we write t~u to denote the application of t to an arbitrary number of arguments u1, . . . ,un.
We write u[x/v] for the usual (capture-avoiding) substitution of x by v in u.We write A−→B for Πx : A.B
when B does not depend on x.

2.2 Contexts

We distinguish two kinds of context: local and global contexts. A local context is a list of typing decla-
rations corresponding to variables. The syntax for contexts is given in Figure 2.

Definition 2.3 (Local Context). A local contextis a list of variable declarations (variables together with
their type).

Following our previous work [17], we give a presentation of the λΠ-calculus Modulo where the
rewrite rules are internalized in the system as part of the global context. This is a difference with earlier
presentations [8] where the rewrite rules livedoutsidethe system and were typed in an external system
(either the simply-typed calculus or theλΠ-calculus). The main benefit of this approach is that the typing
of the rewrite rules is made explicit and becomes an iterative process: rewrite rules previously added in
the system can be used to type new ones.

Definition 2.4. A rewrite rule is a pair of terms. We distinguishobject-level rewrite rules(pairs of
objects) fromtype-level rewrite rules(pairs of types).

These are the only allowed rewrite rules. We write(u →֒ v) for the rewrite rule(u,v).
It is left-algebraicif u is algebraic andleft-linear if no free variable occurs twice in u.

Definition 2.5 (Global Context). A global contextis a list of object declarations (an object constant
together with a type), type declarations (a type constant together with a kind), object-level rewrite rules
and type-level rewrite rules.
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(Sort) Γ;∆ ⊢ Type : Kind

(Variable) (x : A) ∈ ∆
Γ;∆ ⊢ x : A

(Constant) (c : A) ∈ Γ
Γ;∆ ⊢ c : A

(Application) Γ;∆ ⊢ t : Πx : A.B Γ;∆ ⊢ u : A
Γ;∆ ⊢ tu : B[x/u]

(Abstraction)
Γ;∆ ⊢ A : Type Γ;∆(x : A) ⊢ t : B B 6= Kind

Γ;∆ ⊢ λx : A.t : Πx : A.B

(Product) Γ;∆ ⊢ A : Type Γ;∆(x : A) ⊢ B : s
Γ;∆ ⊢Πx : A.B : s

(Conversion)
Γ;∆ ⊢ t : A Γ;∆ ⊢ B : s A≡βΓ B

Γ;∆ ⊢ t : B

Figure 3: Typing rules for terms in theλΠ-calculus Modulo.

2.3 Rewriting

Definition 2.6 (β -reduction). Theβ -reductionrelation→β is the smallest relation on terms containing
(λx : A.u)v→β u[x/v], for all terms A,u and v, and closed by subterm rewriting.

Definition 2.7 (Γ-reduction). Let Γ be a global context. TheΓ-reductionrelation→Γ is the smallest
relation on terms containing u→Γ v for every rewrite rule(u →֒ v) ∈ Γ, closed by substitution and by
subterm rewriting. We say that→Γ is left-algebraic(respectivelyleft-linear) if the rewrite rules inΓ are
left-algebraic (respectively left-linear).

Notation 2.2. We write→βΓ for →β ∪ →Γ, ≡β for the congruence generated by→β and≡βΓ the
congruence generated by→βΓ.

It is important to notice that these notions of reduction aredefined as relations on all (untyped)
terms. In particular, we do not require the substitutions tobe well-typed. This allows defining the notion
of rewriting independently from the notion of typing (see below). This makes the system closer from
what we would implement in practice.

Since the rewrite rules are either object-level or type-level, rewriting preserves the three syntactic
categories (object, type, kind). Moreover, sorts are only convertible to themselves.

2.4 Type System

We now give the typing rules for theλΠ-calculus Modulo. We begin by the inference rules for terms,
then for local contexts and finally for global contexts.

Definition 2.8 (Well-Typed Term). We say that a term thas typeA in the global contextΓ and the local
context∆ if the judgmentΓ;∆ ⊢ t : A is derivable by the inference rules of Figure 3. We say that aterm is
well-typedif such A exists.
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(Empty Local Context) Γ ⊢ctx /0

(Variable Declaration)
Γ ⊢ctx ∆ Γ;∆ ⊢U : Type x /∈ dom(∆)

Γ ⊢ctx ∆(x : U)

Figure 4: Typing rules for local contexts

The typing rules only differ from the usual typing rules for theλΠ-calculus by the(Conversion)rule
where the congruence is extended fromβ -conversion toβΓ-conversion allowing taking into account the
rewrite rules in the global context.

Definition 2.9 (Well-Formed Local Context). A local context∆ is well-formedwith respect to a global
contextΓ if the judgmentΓ ⊢ctx ∆ is derivable by the inference rules of Figure 4.

Well-formed local contexts ensure that local declarationsare unique and well-typed.
Besides the new conversion relation, the main difference between theλΠ-calculus and theλΠ-

calculus Modulo is the presence of rewrite rules in global contexts. We need to take this into account
when typing global contexts.

A key feature of any type system is the preservation of typingby reduction: the subject reduction
property.

Definition 2.10 (Subject Reduction). Let Γ be a global context. We say that a rewriting relation→
satisfies thesubject reductionproperty inΓ if, for all terms t1, t2,T and local context∆ such thatΓ ⊢ctx ∆,
Γ;∆ ⊢ t1 : T and t1→ t2 imply Γ;∆ ⊢ t2 : T.

In theλΠ-calculus Modulo, we cannot allow adding arbitrary rewriterules in the context, if we want
to preserve subject reduction. In particular, to prove subject reduction for theβ -reduction we need the
following property:

Definition 2.11 (Product-Compatibility). We say that a global contextΓ satisfies theproduct compati-
bility property (and we notePC(Γ)) if the following proposition is verified:
if Πx : A1.B1 andΠx : A2.B2 are two well-typed product types in the same well-formed local context such
that Πx : A1.B1≡βΓ Πx : A2.B2 then A1≡βΓ A2 and B1≡βΓ B2.

On the other hand, subject reduction for theΓ-reduction requires rewrite rules to be well-typed in the
following sense:

Definition 2.12 (Well-typed Rewrite Rules).

• A rewrite rule(u →֒ v) is well-typedfor a global contextΓ if, for any substitutionσ , well-formed
local context∆ and term T,Γ;∆ ⊢ σ(u) : T impliesΓ;∆ ⊢ σ(v) : T.

• A rewrite rule ispermanently well-typedfor a global contextΓ if it is well-typed for any extension
Γ0 ⊃ Γ that satisfies product compatibility. We writeΓ ⊢ u →֒ v when(u →֒ v) is permanently
well-typed inΓ.

The notion of permanently well-typed rewrite rule makes possible to typecheck rewrite rules only
once and not each time we make new declarations or add other rewrite rules in the context.

We can now give the typing rules for global contexts.

Definition 2.13 (Well-formed Global Context). A global context iswell-formed if the judgmentΓ wf is
derivable by the inference rules of Figure 5.
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(Empty Global Context) /0 wf

(Object Declaration)
Γ wf Γ; /0⊢U : Type c /∈ dom(Γ)

Γ(c : U) wf

(Type Declaration)
Γ wf Γ; /0⊢ K : Kind PC(Γ(C : K)) C /∈ dom(Γ)

Γ(C : K) wf

(Rewrite Rules)
Γ wf (∀i)Γ ⊢ ui →֒ vi PC(Γ(u1 →֒ v1) . . . (un →֒ vn))

Γ(u1 →֒ v1) . . . (un →֒ vn) wf

Figure 5: Typing rules for global contexts

The rules(Object Declaration) and(Type Declaration) ensure that constant declarations are well-
typed. One can remark that the premisePC(Γ(c : U)) is missingin the (Object Declaration) rule. This
is becausePC(Γ(c :U)) can be proved fromPC(Γ); to prove product compatibility forΓ(c :U) it suffices
to emulate the constantc by a fresh variable and use the product compatibility property of Γ. This cannot
be done for type declarations since type-level variables donot exist in theλΠ-calculus Modulo. The rule
(Rewrite Rules)permits adding rewrite rules. Notice that we can add severalrewrite rules at once. In
this case, only product compatibility for the whole system is required. On the other hand, when a rewrite
rule is added it needs to be well-typed independently from the other rules that are added at the same time.

Well-formed global contexts satisfy subject reduction anduniqueness of types. Proofs can be found
in the long version of this paper at the author’s webpage.
Theorem 2.1(Subject Reduction). Let Γ be a well-formed global context. Subject reduction holds for
→βΓ in Γ.
Theorem 2.2(Uniqueness of Types). Let Γ be a well-formed global context and let∆ be a local context
well-formed forΓ. If Γ;∆ ⊢ t : T1 andΓ;∆ ⊢ t : T2 then T1≡βΓ T2.

Remark that strong normalization of well-typed terms for the relations→Γ and→β is not guaranteed.

2.5 Criteria for Product Compatibility and Well-typedness of Rewrite Rules

We now give effective criteria for checking product compatibility and well-typedness of rewrite rules.
The usual way to prove product compatibility is by showing the confluence of the rewrite system.

Theorem 2.3(Product Compatibility from Confluence). Let Γ be a global context. If→βΓ is confluent
then product compatibility holds forΓ.

One could think that we can weaken the assumption of confluence requiring only confluence for
well-typed terms. This is not a viable option since, withoutproduct compatibility, we do not know if
reduction preserves typing (subject reduction) and if the set of well-typed terms is closed by reduction.
Therefore, it seems unlikely to be able to prove confluence only for well-typed terms before proving the
product compatibility property.

The confluence of→βΓ can be obtained from the confluence of→Γ.
Theorem 2.4(Müller [12]). If →Γ is left-algebraic, left-linear and confluent, then→βΓ is confluent.

To show that a rewrite rule is well-typed, one can use the following result:
Theorem 2.5. LetΓ be a well-formed global context and(u →֒ v) be a rewrite rule. If u is algebraic and
there exist∆ and T such thatΓ ⊢ctx ∆, dom(∆) = FV(u), Γ;∆ ⊢ u : T andΓ;∆ ⊢ v : T then(u →֒ v) is
permanently well-typed forΓ.
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2.6 Example

As an example, we define the map function on lists of integers.We first define the type ofPeano integers
by the three successive global declarations:

Nat : Type.
0 : Nat.
S : Nat−→ Nat.

For readability, we will writen instead of

n times
︷ ︸︸ ︷

S(S . . . (S 0)). We now define a type for lists:

List : Type.
Nil : List.
Cons : Nat −→ List −→ List.

and the function map on lists:

Map : (Nat −→ Nat) −→ List −→ List.
Map f Nil →֒ Nil.
Map f (Cons hd tl) →֒ Cons ( f hd) (Map f tl).

For instance, we can use this function to add some value to theelements of a list. First, we define addi-
tion:

plus : Nat−→ Nat−→ Nat.
plus 0 n →֒ n.
plus (S n1) n2 →֒ S (plus n1 n2).

Then, we have the following reduction:

Map (plus 3) (Cons 1 (Cons 2 (Cons 3 Nil)))→∗Γ Cons 4 (Cons 5 (Cons 6 Nil)).

This global context is well-formed. Indeed, one can check that each global declaration is well-
typed. Moreover, each time we add a rewrite rule, it verifies the hypotheses of Theorem 2.5 and it
preserves the confluence of the relation→βΓ. Therefore, the rewrite rules are permanently well-typed
and, by Theorem 2.3, product compatibility is always guaranteed.

3 A Naive Definition of Rewriting Modulo β

As already mentioned, our goal is to give a notion of rewriting moduloβ in the setting ofλΠ-calculus
Modulo. We first exhibit the issues arising from a naive definition of this notion.

In an untyped setting, we could define rewriting moduloβ in this manner:t1 rewrites tot2 if, for some
rewrite rule(u →֒ v) and substitutionσ , σ(u) ≡β t1 andσ(v) ≡β t2. This definition is not satisfactory
for several reasons.

It breaks subject reduction. For the rewrite rule of Section 1, takingσ = { f 7→ λy : Ω.y} whereΩ is
some ill-typed term, we have

D (λx : R.Exp x)−→ fMult (D (λx : R.(λy : Ω.y) x) (λx : R.Exp ((λy : Ω.y) x)))

and, even ifD (λx : R.Exp x) is well-typed, its reduct is ill-typed since it contains an ill-typed subterm.
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It may introduce free variables. In the example above,Ω has no reason to be closed.

It does not provide confluence. If we consider the following variant of the rewrite rule

D (λx : R.Exp ( f x)) →֒ fMult (D f ) (λx : R.Exp ( f x))

and takeσ1 = { f 7→ λy : A1.y} andσ2 = { f 7→ λy : A2.y} whereA1 andA2 are two non convertible types
then we have:

D (λx : R.Exp ((λy : R.y) x))

fMult (D (λy : A1.y)) (λx : R.(Exp ((λy : A1.y) x))) fMult (D (λy : A2.y)) (λx : R.(Exp ((λy : A2.y) x)))

Dσ1 Dσ2

and the peak is not joinable.
Therefore, we need to find a definition that takes care of theseissues. We will achieve this using an

embedding ofλΠ-calculus Modulo into Higher-Order Rewrite Systems.

4 Higher-Order Rewrite Systems

In 1991, Nipkow [14] introduced Higher-Order Rewrite Systems (HRS) in order to lift termination and
confluence results from first-order rewriting to rewriting over λ -terms. More generally, the goal was to
study rewriting over terms with bound variables such as programs, theorem and proofs.

Unlike the λΠ-calculus Modulo, in HRSsβ -reduction and rewriting do not operate at the same
level. Rewriting is defined as a relation between theβη-equivalence classes of simply typedλ -terms:
theλ -calculus is used as a meta-language.

Higher-Order Rewrite Systems are based upon the (pre)termsof the simply-typedλ -calculus built
from a signature. A signature is a set of base typesB and a set of typed constants. A simple type is
either a base typeb∈B or an arrowA−→ B whereA andB are simple types.

Definition 4.1 (Preterm). A pretermof type A is

• either avariablex of type A (we assume given for each simple type A an infinite number of variables
of this type),

• or a constantf of type A,

• or an applicationt(u) where t is a preterm of type B−→ A and u is a preterm of type B,

• or, if A = B−→C, anabstractionλx.t where x is a variable of type B and t is a preterm of type C.

In order to distinguish the abstraction of HRSs from the abstraction ofλΠ-calculus Modulo, we use
the underlined symbolλ instead ofλ . Similarly, we write the applicationt(u) for HRSs (instead oftu).
We use the abbreviationt(u1, . . . ,un) for t(u1) . . . (un). If A is a simple type, we writeA1 for A andAn+1

for A−→ An.
Notice also that HRSs abstractions do not have type annotations because variables are typed.
β -reduction andη-expansion are defined as usual on preterms. We writelη

β t for the longβη-normal
form of t.

Definition 4.2 (Term). A term is a preterm in longβη-normal form.
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Definition 4.3 (Pattern). A term t is apatternif every free occurrence of a variable F is in a subterm of
t of the form F~u such that~u is η-equivalent to a list of distinct bound variables.

The crucial result about patterns (due to Miller [11]) is thedecidability of higher-order unification
(unification moduloβη) of patterns. Moreover, if two patterns are unifiable then a most general unifier
exists and is computable.

The notion of rewrite rule for HRSs is the following:

Definition 4.4 (Rewrite Rules). A rewrite rule is a pair of terms(l →֒ r) such that l is a pattern not
η-equivalent to a variable, FV(r) ⊂ FV(l) and l and r have the same base type.

The restriction to patterns for the left-hand side ensures that matching is decidable but also that,
when it exists, the resulting substitution is unique. This way, the situation is very close to first-order (i.e.
syntactic) matching.

Definition 4.5 (Higher-Order Rewriting System (HRS)). A Higher-Order Rewriting Systemis a set R of
rewrite rules.

The rewrite relation→R is the smallest relation on terms closed by subterm rewriting such that, for
any(l →֒ r) ∈R and any well-typed substitutionσ , lη

β σ(l)→Rl
η
β σ(r).

The standard example of an HRS is the untypedλ -calculus. The signature involves a single base
typeTerm and two constants:

Lam : (Term−→ Term)−→ Term

App : Term−→ Term−→ Term

and a single rewrite rule forβ -reduction:

(beta) App(Lam(λx.X(x)),Y) →֒ X(Y)

5 An Encoding of the λ Π-calculus Modulo into Higher-Order Rewrite
Systems

5.1 Encoding of Terms

We now mimic the encoding of the untypedλ -calculus as an HRS and encode the terms of theλΠ-
calculus Modulo. First we specify the signature.

Definition 5.1. The signatureSig(λΠ) is composed of a single base typeTerm, the constantsType and
Kind of atomic typeTerm, the constantApp of typeTerm −→ Term −→ Term, the constantsLam and
Pi of typeTerm −→ (Term −→ Term) −→ Term and the constantsc of typeTerm for every constant
c∈ CO∪CT.

Then we define the encoding ofλΠ-terms.

Definition 5.2 (Encoding ofλΠ-term). The function‖.‖ from λΠ-terms to HRS-terms in the signature
Sig(λΠ) is defined as follows:

‖Kind ‖ := Kind ‖Type‖ := Type

‖x‖ := x (variable of typeTerm) ‖c‖ := c

‖uv‖ := App(‖u‖,‖v‖) ‖λx : A.t‖ := Lam(‖A‖,λ x.‖t‖)
‖Πx : A.B‖ := Pi(‖A‖,λ x.‖B‖)

Lemma 5.1. The function‖.‖ is a bijection from theλΠ-terms to HRS-terms of typeTerm.

Note that this is a bijection between the untyped terms of theλΠ-calculus Modulo and well-typed
terms of the corresponding HRS.
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5.2 Higher-Order Rewrite Rules

We have faithfully encoded the terms. The next step is to encode the rewrite rules. The following rule
corresponds toβ -reduction at the HRS level:

(beta) App(Lam(X,λx.Y(x)),Z) →֒Y(Z)

We have the following correspondence:

Lemma 5.2.

• If t1→β t2 then‖t1‖ →(beta) ‖t2‖.

• If t1→(beta) t2 and t1, t2 have typeTerm then‖t1‖−1→β ‖t2‖
−1 (where‖.‖−1 is the inverse of‖.‖).

By encoding rewrite rules in the obvious way (translating(u →֒ v) by (‖u‖ →֒ ‖v‖)), we would get
a similar result forΓ-reduction. But, since we want to incorporate rewriting modulo β , we proceed
differently.

First, we introduce the notion of uniform terms. These are terms verifying an arity constraint on their
free variables.

Definition 5.3 (Uniform Terms). A term t isuniform for a set of variables V if all occurrences of a
variable free in t not in V is applied to the same number of arguments.

Now, we define an encoding for uniform terms.

Definition 5.4 (Encoding of uniform terms). Let V be a set of variables and t be a term uniform in V .
The HRS-term‖u‖V of typeTerm is defined as follows:

‖Kind ‖V := Kind

‖Type‖V := Type

‖x‖V := x if x∈V (variable of typeTerm)
‖c‖V := c

‖λx : A.u‖V := Lam(‖A‖V , λx.‖u‖V∪{x})
‖Πx : A.B‖V := Pi(‖A‖V , λx.‖B‖V∪{x})
‖x~v‖V := x(‖~v‖V) if x /∈V (x of typeTermn+1 wheren= |~v|)
‖uv‖V := App(‖u‖V ,‖v‖V ) if uv 6= x ~w for x /∈V

Now, we define an equivalent of patterns for theλΠ-calculus Modulo.

Definition 5.5 (λΠ-patterns). Let V0 be a set of variables,A be a function giving an arity to variables
and let V= (V0,A ). The subsetPV of λΠ-terms is defined inductively as follows:

• if c is a constant, then c∈PV ;

• if p,q∈PV , then p q∈PV ;

• if x ∈V0, then x∈PV ;

• if p ∈PV , x /∈V0 and~y is a vector of pairwise distinct variables in V0 such that|~y|= A (x), then
p (x~y) ∈PV ;

• if p ∈PV , FV(A)⊂V0 and q∈P(V0∪{x},A ), then p(λx : A.q) ∈PV ;

A term t is aλΠ-patternif, for some arity functionA , t ∈P( /0,A ).

Remark that the encoding of aλΠ-pattern as a uniform term is a pattern.
We now define the encoding of rewrite rules.
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Definition 5.6 (Encoding of Rewrite Rules). Let (u →֒ v) be a rewrite rule such that
• u is aλΠ-pattern;

• FV(v)⊂ FV(u);

• all free occurrences of a variable in u and v are applied to thesame number of arguments.
The encoding of(u →֒ v) is ‖u →֒ v‖= ‖u‖ /0 →֒ ‖v‖ /0.

Remark that the first assumption ensures that the left-hand side is a pattern and the third assumption
ensures that the HRS-term is well-typed.
Definition 5.7 (HRS(Γ)). LetΓ a global context whose rewrite rules satisfy the condition of Definition 5.6.
We write HRS(Γ) for the HRS{‖u →֒ v‖ | (u →֒ v) ∈ Γ} and HRS(βΓ) for HRS(Γ)∪{(beta)}.

6 Rewriting Modulo β

6.1 Definition

We are now able to properly define rewriting moduloβ . As for usual rewriting, rewriting moduloβ is
defined on all (untyped) terms.
Definition 6.1 (Rewriting Moduloβ ). Let Γ be a global context. We say that t1 rewrites tot2 moduloβ
(written t1→Γb t2) if ‖t1‖ rewrites to‖t2‖ in HRS(Γ). Similarly, we write t1→βΓb t2 if ‖t1‖ rewrites to
‖t2‖ in HRS(βΓ).
Lemma 6.1.
• →βΓb=→Γb ∪→β .

• If t1→Γ t2 then t1→Γb t2.

6.2 Example

Let us look at the example from the introduction. Now we have :

D (λx : R.Exp x)→Γb fMult (D (λx : R.x)) (λx : R.Exp x)

Indeed, forσ = { f 7→ λy.y} we have

‖D (λx : R.Exp x)‖ = App(D,Lam(R,λ x.App(Exp,x))) =lη
β σ(App(D,Lam(R,λx.App(Exp, f (x)))))

and

‖fMult (D (λx : R.x)) (λx : R.Exp x)‖ = App(fMult,App(D,Lam(R,λx.x)),Lam(R,λx.App(Exp,x)))
=lη

β σ(App(fMult,App(D,Lam(R,λ x. f (x))),Lam(R,λx.App(Exp, f (x)))))

Therefore, the peak is now joinable.
D (λx : R.Exp ((λy : R.y) x))

fMult (D (λx : R.(λy : R.y) x)) (λx : R.(Exp ((λy : R.y) x))) D (λx : R.Exp x)

fMult (D (λx : R.x)) (λx : R.Exp x)

D β

Dββ ∗
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In fact the rewriting relation can be shown confluent [15].

6.3 Properties

Rewriting moduloβ also preserves typing.

Theorem 6.1(Subject Reduction for→Γb). Let Γ a well-formed global context and∆ a local context
well-formed forΓ. If Γ;∆ ⊢ t1 : T and t1→Γb t2 thenΓ;∆ ⊢ t2 : T.

It directly follows from the following lemma:

Lemma 6.2. If t1→Γb t2 then, for some t′1 and t′2, we have t1←∗β t ′1→Γ t ′2→
∗
β t2. Moreover, if t1 is

well-typed then we can choose t′
1 such that it is well-typed in the same context.

Proof. The idea is to lift theβ -reductions that occur at the HRS level to theλΠ-calculus Modulo.
Supposet1→Γb t2. For some rewrite rule(u →֒ v) and (HRS) substitutionσ , we havelη

β σ(u) = ‖t1‖

andlη
β σ(v) = ‖t2‖. We define the (λΠ) substitutionσ̂ as follows: σ̂(x) = ‖σ(x)‖−1 if σ(x) has type

Term; σ̂(x) = λ~x : ~A.‖u‖−1 if σ(x) = λ~x.u has typeTermn −→ Term where theAi are arbitrary types.
We have, at theλΠ level, σ̂(u)→Γ σ̂(v), σ̂(u)→∗β t1 andσ̂(v)→∗β t2. If t1 is well-typed then theAi can
be chosen so that̂σ(u) is also well-typed.

Another consequence of this lemma is that the rewriting modulo β does not modify the congruence.

Theorem 6.2. The congruence generated by→βΓb is equal to≡βΓ.

Proof. Follows from Lemma 6.1 and Lemma 6.2.

6.4 Generalized Criteria for Product Compatibility and Wel l-Typedness of Rewrite Rules

Using our new notion of rewriting moduloβ , we can generalize the criteria of Section 2.5.

Theorem 6.3.LetΓ be a global context. If HRS(βΓ) is confluent, then product compatibility holds forΓ.

Proof. Assume thatΠx : A1.B1 ≡βΓ Πx : A2.B2 then, by Theorem 6.2,Πx : A1.B1 ≡βΓb Πx : A2.B2. By
confluence, there existA0 andB0 such thatA1→∗βΓb A0, A2→∗βΓb A0, B1→∗βΓb B0 andB2→∗βΓb B0. It
follows, by Theorem 6.2, thatA1≡βΓ A2 andB1≡βΓ B2.

To prove the confluence of a HRS, one can use van Oostrom’s development-closed theorem [15].
Theorem 2.5 can also be generalized to deal withλΠ-patterns.

Theorem 6.4. LetΓ be a well-formed global context and(u →֒ v) be a rewrite rule. If u is aλΠ-pattern
and there exist∆ and T such thatΓ ⊢ctx ∆, FV(u) = dom(∆), Γ;∆ ⊢ u : T andΓ;∆ ⊢ v : T then(u →֒ v)
is permanently well-typed forΓ.

This theorem is a corollary of the following lemma.

Lemma 6.3. Let Γ ⊂ Γ2 be two well-formed global contexts. If t∈Pdom(Σ), dom(σ) = dom(∆), for
all (x : A) ∈ Σ, σ(A) = A, Γ;∆Σ ⊢ t : T and Γ2;∆2Σ ⊢ σ(t) : T2 then T2 ≡βΓ2

σ(T) and, for all x∈
FV(t)∩dom(∆), Γ2;∆2 ⊢ σ(x) : Tx for Tx≡βΓ2

σ(∆(x)).

Proof. We proceed by induction ont ∈Pdom(Σ).

• if t = c is a constant, thenFV(t) = /0 and, by inversion onΓ;∆Σ ⊢ t : T, there exists a (closed term)
A such that(c : A) ∈ Γ⊂ Γ2, T ≡βΓ A andT2≡βΓ2

A. SinceA= σ(A), we haveσ(T)≡βΓ2
T2.



R. Saillard 99

• if t = x∈ dom(Σ), then, by inversion, there existsA such that(x : A) ∈ Σ, T ≡βΓ A andT2≡βΓ2
A.

SinceA= σ(A), we haveσ(T)≡βΓ2
T2.

• if t = p q, then, by inversion, on the one hand,Γ;∆Σ ⊢ p : Πx : A.B, Γ;∆Σ⊢ q : A andT ≡βΓ B[x/q].
On the other hand,Γ2;∆2Σ ⊢ σ(p) : Πx : A2.B2, Γ2;∆2Σ ⊢ σ(q) : A2 andT2≡βΓ2

B2[x/σ(q)].

By induction hypothesis onp, we haveσ(Πx : A.B) ≡βΓ2
Πx : A2.B2 and for all x ∈ FV(p)∩

dom(∆), Γ2;∆2 ⊢ σ(x) : Tx with Tx≡βΓ2
σ(∆(x)).

By product-compatibility ofΓ2, σ(A) ≡βΓ2
A2 and σ(B) ≡βΓ2

B2. It follows that σ(T) ≡βΓ2

σ(B[x/q])≡βΓ2
B2[x/σ(q)] ≡βΓ2

T2.

Now, we distinguish three sub-cases:

– eitherq∈Pdom(Σ) and by induction hypothesis onq, for all x∈ FV(q)∩dom(∆), Γ2;∆2 ⊢
σ(x) : Tx with Tx≡βΓ2

σ(∆(x)).
– Or q= λx : A.q0 with FV(A) ∈ dom(Σ) andq0 ∈Pdom(Σ(x:A)) and by induction hypothesis

onq0, for all x∈ FV(q0)∩dom(∆), Γ2;∆2 ⊢ σ(x) : Tx with Tx≡βΓ2
σ(∆(x)).

– Or q= x~y with x /∈ dom(Σ) and~y⊂ dom(Σ). By inversion, on the one hand,∆(x) ≡βΓ Π~y :
Σ(~y).C for C≡βΓ A. On the other hand,Γ2;∆2 ⊢ σ(x) : Π~y : Σ(~y).C2 for C2 ≡βΓ2

A2. Since
σ(A)≡βΓ2

A2, we haveΠ~y : Σ(~y).C2≡βΓ2
Π~y : Σ(~y).σ(C) = σ(∆(x)).

Proof of Theorem 6.4.Let Γ2 be a well-formed extension ofΓ. Suppose thatΓ2;∆2 ⊢ σ(u) : T2.
By Lemma 6.3 andFV(u) = dom(∆), we have, for allx ∈ dom(∆), Γ2;∆2 ⊢ σ(x) : Tx for Tx ≡βΓ2

σ(∆(x)) andT2≡βΓ2
σ(T).

By induction onΓ;∆ ⊢ v : T, we deduceΓ2;∆2 ⊢ σ(v) : T3, for T3≡βΓ2
σ(T)≡βΓ2

T2. It follows, by
conversion, thatΓ2;∆2 ⊢ σ(v) : T2.

7 Applications

7.1 Parsing and Solving Equations

The context declarations and rewrite rules of Figure 6 definea functionto expr which parses a function
of typeNat to Nat into an expression of the forma∗x+b (represented by the termmk expr a b) where
a andb are constants. The left-hand sides of the rewrite rules onto expr areλΠ-patterns. This allows
definingto expr by pattern matching in a way which looks under the binders.

The functionsolve can then be used to solve the linear equationa∗x+b= 0. The answer is either
None if there is no solution, orAll if any x is a solution orOne m n if −m/(n+1) is the only solution.

For instance, we have (writingOne − 1
3 for One 1 2):

solve (to expr(λx : Nat.plus x (plus x (S x))))→∗βΓ One −
1
3
.

By Theorem 6.3 and Theorem 6.4 the global context of Figure 6 is well-formed.

7.2 Universe Reflection

In [1], Assaf defines a version of the calculus of construction with explicit universe subtyping thanks to
an extended notion of conversion generated by a set of rewrite rules. This work can easily be adapted to
fit in the framework of theλΠ-calculus Modulo. However, the confluence of the rewrite system holds
only for rewriting moduloβ .
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expr : Type.
mk expr : Nat−→ Nat−→ expr.
expr S : expr−→ expr.
expr S (mk expr a b) →֒ mk expr a (S b).
expr P : expr−→ expr−→ expr.
expr P (mk expr a1 b1) (mk expr a2 b2) →֒ mk expr (plus a1 a2) (plus b1 b2).

to expr : (Nat−→ Nat)−→ expr.
to expr (λx : Nat.0) →֒ mk expr 0 0.
to expr (λx : Nat.S ( f x)) →֒ expr S (to expr (λx : Nat. f x)).
to expr (λx : Nat.x) →֒ mk expr (S 0) 0.
to expr (λx : Nat.plus ( f x) (g x)) →֒

expr P (to expr (λx : Nat. f x)) (to expr (λx : Nat.g x)).

Solution : Type.
All : Solution.
One : Nat−→ Nat−→ Solution.
None : Solution.
solve (mk expr 0 0) →֒ All.
solve (mk expr 0 (S n)) →֒ None.
solve (mk expr (S n) m) →֒ One m n.

Figure 6: Parsing and solving linear equations

8 Conclusion

We have defined a notion of rewriting moduloβ for theλΠ-calculus Modulo. We achieved this by en-
coding theλΠ-calculus Modulo into the framework of Higher-Order Rewrite Systems. As a consequence
we also made available for theλΠ-calculus Modulo the confluence criteria designed for the HRSs (see
for instance [14] or [15]). We proved that rewriting moduloβ preserves typing. We generalized the
criterion for product compatibility, by replacing the assumption of confluence by the confluence of the
rewriting relation moduloβ . We also generalized the criterion for well-typedness of rewrite rules to al-
low left-hand to beλΠ-patterns. These generalizations permit proving subject reduction and uniqueness
of types for more systems.

A natural extension of this work would be to consider rewriting moduloβη as in Higher-Order
Rewrite Systems. This requires extending the conversion with η-reduction. But, as remarked in [10]
(attributed to Nederpelt),→βη is not confluent on untyped terms as the following example shows:

λy : B.y←η λx : A.(λy : B.y)x→β λx : A.x

Therefore properties such as product compatibility need tobe proved another way. We leave this line of
research for future work.

For theλΠ-calculus a notion of higher-order pattern matching has been proposed [16] based on
Contextual Type Theory (CTT) [13]. This notion is similar toour. However, it is defined using the
notion of meta-variable (which is native in CTT) instead of atranslation into HRSs.

In [3], Blanqui studies the termination of the combination of β -reduction with a set of rewrite rules
with matching moduloβη in the polymorphicλ -calculus. His definition of rewriting moduloβη is
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direct and does not use any encoding. This leads to a slightlydifferent notion a rewriting moduloβ . For
instance,D(λ : R.Exp x) would reduce tofMult (D (λx : R.(λy : R.y) x)) (λx : R.Exp ((λy : R.y) x)) in-
stead offMult (D (λx : R.x)) (λx : R.Exp x). It would be interesting to know whether the two definitions
are equivalent with respect to confluence.

We implemented rewriting moduloβ in Dedukti [5], our type-checker for theλΠ-calculus Modulo.

Acknowledgments. The author thanks very much Ali Assaf, Olivier Hermant, Pierre Jouvelot and the
reviewers for their very careful reading and many suggestions.
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