
I. Cervesato and M. Fernández (Eds): Fourth International Workshop
on Linearity 2016 (LINEARITY’16)
EPTCS 238, 2017, pp. 33–43, doi:10.4204/EPTCS.238.4

Surface Proofs for Nonsymmetric Linear Logic

Lawrence Dunn
North Florida Community College, USA

dunnl@nfcc.edu

Jamie Vicary
University of Oxford, UK

jamie.vicary@cs.ox.ac.uk

We show that a proof in multiplicative linear logic can be represented as a decorated surface, such
that two proofs are logically equivalent just when their surfaces are geometrically equivalent. This is
an extended abstract for arXiv:1601.05372.

1 Introduction

Multiplicative linear logic [6, 7] is a formal calculus for reasoning about resources, which is similar to
traditional logic, except that resources cannot be duplicated or neglected in the way that propositions
can.

A central problem in logic is determining when two proofs should be considered equivalent. In this
paper, we describe a scheme for interpreting proofs in multiplicative linear logic as geometrical surfaces
embedded in 3d space. We define two surfaces as equivalent just when one can be deformed into the
other, in sense we make precise. Our main theorem then reads as follows.

Theorem 2.2. Two sequent proofs in nonsymmetric multiplicative linear logic have equal interpretations
in the free ∗-autonomous category just when their surfaces are equivalent.

The theory of ∗-autonomous categories [18, 20] is a standard mathematical model for linear logic, so this
theorem says that the notion of proof equality provided by the surface calculus agrees with the standard
one.

Our surfaces are similar in spirit to proof nets [5, 7]; however, we argue that our scheme has several
advantages. In particular, correctness is local; any well-typed composite produces a valid proof-theoretic
object, with no global property, such as the long-trip criterion, to be verified. Also, our notion of
equivalence is broad, establishing some proof equivalences in fewer steps than for proof nets; sometimes
in just a single step. Our scheme also certainly has disadvantages: in particular, we do not present a
decision procedure for equivalence of our 3d diagrams, although we expect such a procedure could be
described. Despite these differences, the formalisms are intimately connected, in the following way: the
proof net is the 2d projection of the 3d surface geometry. From this perspective, we can make sense of
some of the features of proof nets: the long-trip criterion can be interpreted as a non-local check that the
2d shadow is consistent with a valid 3d geometry, and the thinning link decorations indicate the depth at
which a unit is attached in the 3d geometry.

The underlying technical contribution, which we do not describe in this extended abstract, is a direct
algebraic proof of the coherence theorem for Frobenius pseudomonoids, which shows that all diagrams
of a certain sort commute. This is more appropriate for logical purposes, and more flexible, than an
existing topological proof arising from Morse theory [15, 16].

The authors are grateful to Samson Abramsky, Nick Gurski, Sam Staton and the anonymous
reviewers for useful comments. 3d graphics have been written in TikZ, and 2d graphics have been
produced by the proof assistant Globular [2].
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1.1 Related work

It is well-recognized that ideas from topology are relevant for linear logic. The original proof nets of
Girard [7] are topological objects, and Melliès has shown how the topology of ribbons gives a decision
procedure for correctness of proof nets [17]. Proof nets allow reasoning about proofs with units, but the
formalism is complex, requiring a system of thinning links with moving connections [5]. Hughes [10]
gives a variant of proof nets which works well with units, and which has good compositional properties,
but which still requires a long-trip criterion, has non-local jumps, and requires successive individual
re-wirings. Our approach has a local flavour which is shared by the deep-inference model of proof
analysis [8] and the access to monoidal coherence that it allows [9]; however, the coherence property we
make use of is strictly more powerful, as it operates in a fragment that combines the⊗ and ` connectives.
We note also the work of Slavnov [21] on linear logic and surfaces, which involves some similar ideas to
the present article, but is technically quite unrelated.

2 Surface calculus

In this section we develop the 2d string diagram calculus for sequents, and the 3d surface calculus for
proofs. We show how to translate a sequent calculus proof into the surface calculus, and we define the
equivalence relation on surfaces.

2.1 The 2d calculus

The 2d calculus, which we will use to represent individual sequents, is the Joyal-Street calculus for
monoidal categories [13], directed from left to right. We use the standard 2-sided sequent calculus for
nonsymmetric multiplicative linear logic with units [5]: our sequents are pairs Γ ` ∆, where Γ and ∆ are
ordered lists (separated with “,”) of expressions in the following grammar, where V = {A,B,C, . . .} is a
set of atomic variables:

S ::= I | ⊥ |V | S⊗S | S`S | S∗ | ∗S

We have left and right negation, and isomorphisms ∗(S∗)' S' (∗S)∗ are a native part of the calculus (see
Example 3.2); for simplicity, we suppress them at the syntactic level.

Our graphical language for sequents is as follows. Atomic variables are represented as black dots,
pointing in different directions depending on their side of the sequent:

A A

A ` · · · · · · ` A

These diagrams have nonempty boundary, in the sense that not all the ends are terminated by nodes.
The two sides of a sequent are represented graphically by trees, which are drawn connected together

at their roots. The basic connective “,” is denoted as a blue vertex with zero or more branches to the left
or right, as follows:

B

A
C

D

E

A

B

A

B

C

A,B `C,D,E ` A,B A,B,C `
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The connectives ⊗ and `, which are always binary, are drawn in blue on their natural side (left for ⊗,
right for `), and in red on the other side, as we show with the following examples:

A

B

C

D

E

F

G

H

A

B

C

D

E

F

A,(B⊗C),D ` E,(F⊗G),H (A`B),C ` D` (E⊗F)

Note that a blue dot with a binary branching is therefore an overloaded notation; this is a deliberate
feature.

The units I and ⊥ are represented by blue dots on their natural side (left for I, right for ⊥), and red
dots on the other side, as shown:

A

B

C
A

B

A, I,B `C A,⊥ ` B, I,⊥

We represent (−)∗ as turning right by a half-turn, and ∗(−) as turning left by a half-turn, as shown:

A

B

C

D

A∗, ∗B ` ∗∗C,D

Diagrams built from sequents in this way are of a simple kind; as graphs, they are all acyclic and
connected. In general we can allow arbitrary well-typed composites of these components; such diagrams
represent 1-morphisms in the monoidal bicategory F(F ∗), described in the full paper.

2.2 The 3d calculus

Diagrams in the 3d calculus are surfaces embedded in R3. Formally they are expressions in the graphical
calculus for Gray categories, which is by now well-developed [3, 4, 12, 19]. However, the 3d calculus is
quite intuitive, and we take advantage of this to introduce it in an informal way.

Diagrams consist of sheets, bounded on the left and right by edges, which are bounded above and
below by vertices. (Sheets can also be bounded by the sides of the diagram, and edges can also be
bounded by the top or bottom of the diagram.) Diagrams are immersed in 3d space, meaning that sheets
can exist in front or behind other sheets, and wires on sheets of different depths can cross; however,
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components never intersect. Here is an example:

Here we have front and back sheets, each containing an edge, which contains a vertex. Towards the
bottom of the picture, the wires cross: this is called an interchanger.

For our application to linear logic, we allow two types of vertex: coherent vertices and adjunction
vertices.

• Coherent vertices. Say that a 2d calculus diagram is simple when it is connected and acyclic with
nonempty boundary, and in the blue fragment of the calculus, not involving red nodes or black
atomic variable nodes. Then any two simple diagrams can be connected by a coherent vertex,
denoted as follows:

(1)

On the left we give the surface representation, and on the right we give the 2d calculus
representation of the upper and lower boundaries. The coherent vertex is the point in the middle
of the surface diagram where 4 edges meet.

• Adjunction vertices. Listed in Figure 1, these introduce and eliminate red and black edges in the
surface calculus.

We now define equivalence in the graphical language, giving intuitive interpretations of each
generating relation in italics.

Definition 2.1. Two surface diagrams are equivalent when they are related by the least equivalence
relation generated by the following:

• Coherence. Let P,Q be surface diagrams built from coherent vertices, with equal lower boundaries
and equal upper boundaries, with all these boundaries being simple; then P = Q. (All acyclic
equations of coherent vertices hold.)

• Adjunction. The equations listed in Figure 2 hold. (Bent wires can be pulled straight.)

• Isotopy. The equations of a monoidal bicategory hold. (If two diagrams are ambient isotopic, they
are equivalent.)
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[empty]

[empty]

[empty]

Figure 1: The generators of the 3d calculus

= =

= =

= =

= =

= =

Figure 2: The equations of the 3d calculus

• Locality. Suppose surface diagrams P,Q differ only with respect to subdiagrams P′,Q′, with
P′ = Q′. Then P = Q. (Equivalence applies locally in the interior of a diagram.)

It is a fair summary of this definition to say that two diagrams are equivalent just when one can be
deformed into the other. We emphasize that our contribution here is the Coherence axiom, which has
not previously been noted1; the rest follows in principle from the work of Street [22], although it has not
to our knowledge been explicitly described in the literature, and its implications for linear logic unpacked.
However, we note that it is the Coherence axiom that makes the notion of equivalence tractable.

Our presentation here is informal, but we emphasize that our definition of the surface calculus and
its equivalence relation can be made completely precise in terms of the formal development of the full
article: two diagrams are equivalent just when they are equal as 2-morphisms in the monoidal bicategory
F(F ∗).

1In the full version of this paper we give a direct combinatorial proof of the coherence property, which also follows from
topological arguments due to Kerler and Lyubashenko [15] as refined by Lauda [16].
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A A
V

V

V

V

V V
W W

V V
W W

A`A
AXIOM ∗V`∗V AXIOM

V ∗`V ∗ AXIOM
V⊗W`V⊗W

AXIOM
V`W`V`W

AXIOM

∆

∆Γ

Γ A A
∆

∆

V V
Γ

Γ

Γ

Γ

VV
∆

∆

Γ ∆

∆Γ

V V
W W Γ ∆

∆Γ

V V
W W

Γ`A A`∆

Γ`∆
CUT Γ`∗V ∗V`∆

Γ`∆
CUT

Γ`V ∗ V ∗`∆

Γ`∆
CUT

Γ`V⊗W V⊗W`∆

Γ`∆
CUT

Γ`V`W V`W`∆

Γ`∆
CUT

Figure 3: AXIOM and CUT rules for an atomic variable A, and recursively for variables V,W

2.3 Interpreting the sequent calculus

We saw in Section 2.1 how individual sequents in multiplicative linear logic can be interpreted as 2d
diagrams. We now see how proofs can be interpreted as 3d surface diagrams. We view these surfaces as
directed from top to bottom, just like traditional sequent calculus proofs; so for a particular surface, its
hypothesis is the upper boundary, and its conclusion is the lower boundary.

We use a basis for the sequent calculus with a symmetry between introduction and elimination for⊗,
`, I and ⊥; the rules ⊗-R, `-L, I-R and ⊥-L are derivable (see Example 3.1.) Furthermore, we include
only CUT rules with minimal overlapping contexts; the more general CUT rules are derivable using
negation. (These two features account for the differences between our presentations and others in the
literature [1].) The interpretation of AXIOM and CUT rules are given recursively in Figure 3, with black
wires standing for atomic variables and green wires standing for general variables; the interpretation of
the remaining rules, which we call the core fragment of the logic, is given in Figure 4. We now state our
main theorem.

Theorem 2.2. Two sequent proofs in multiplicative linear logic have equal interpretations in the free
∗-autonomous category just when their surface diagrams are equivalent.

It is interesting to analyze the different contributions to proof equivalence made by each part of
Definition 2.1 of surface equivalence. Coherence tells us that any two proofs built in the core part
of the logic given in Figure 4 are equal. Adjunction tells us that AXIOM and CUT cancel each other
out, both for atomic and compound variables. Isotopy tells us that that ‘commutative conversion’ is
possible, where by exchanging heights of disconnected parts of the diagram, we exchange the order of
separate sequent calculus proof steps. Locality tells us that we can apply our equations in the context of
a larger proof, in the manner of deep inference [8].

We give a formal statement of coherence for the core part of the logic, since it is a result of
independent interest. Note that this is not a theorem about the surface calculus, although its proof uses
the surface calculus.
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I

I

⊥

⊥

Γ1, I,Γ2 ` ∆

Γ1,Γ2 ` ∆
I-INT

Γ1,Γ2 ` ∆

Γ1, I,Γ2 ` ∆
I-ELIM

Γ ` ∆1,⊥,∆2

Γ ` ∆1,∆2
⊥-ELIM

Γ ` ∆1,∆2

Γ ` ∆1,⊥,∆2
⊥-INT

A

A

B

B
A

A

B

B
A

A

B

B
A

A

B

B

Γ1,A⊗B,Γ2 ` ∆

Γ1,A,B,Γ2 ` ∆
⊗-INT

Γ1,A,B,Γ2 ` ∆

Γ1,A⊗B,Γ2 ` ∆
⊗-ELIM

Γ ` ∆1,A`B,∆2

Γ ` ∆1,A,B,∆2
`-ELIM

Γ ` ∆1,A,B,∆2

Γ ` ∆1,A`B,∆2
`-INT

Γ

Γ
∆

∆

A

A

∆

∆
Γ

Γ

A

A

A

A

Γ

Γ
∆

∆

A

A

∆

∆
Γ

Γ

Γ ` ∆,A

Γ,∗A ` ∆

∗(−)-R
Γ,A ` ∆

Γ ` ∆,A∗
(−)∗-L

Γ ` A,∆

A∗,Γ ` ∆
(−)∗-R

A,Γ ` ∆

Γ ` ∗A,∆
∗(−)-L

Figure 4: Surface interpretations of the core logical rules

Corollary 2.3. If two sequent proofs in the core fragment of the logic given in Figure 4 have the same
hypotheses and conclusion, then they are equal in the free ∗-autonomous category.

We comment on some interesting features of the translation between the sequent calculus and the surface
calculus. The fundamental simplicity of the surface calculus is clear, from the minimality of the data in
Figure 1, as compared to Figures 3 and 4. Partly this is achieved by the greater degree of locality: for
example, the cut rules for ∗V and V ∗ are both interpreted using the same surface generators, composed
in different ways. But more significantly, the entire core fragment of the sequent calculus is interpreted
in the trivial part of the surface calculus, significantly reducing the bureaucracy of proof analysis, to use
Girard’s phrasing [7]. To make the most of these advantages, we suggest that the surface calculus can
serve directly as a toolkit for logic, not just as a way to visualize sequent calculus proofs.
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A⊗B`A⊗B

A,B`A⊗B

Γ1`∆1,A
A,Γ2`A⊗B,∆2

Γ2`B,∆2

Γ1 ,Γ2`∆1 ,A⊗B,∆2

AXIOM

⊗-INTRO

CUT

CUT

Γ1

Γ1

∆1

∆1

A⊗

A

Γ2

Γ2 B

B
∆2

∆2

=

Γ1

Γ1

∆1

∆1

A

A⊗

Γ2

Γ2 B

B
∆2

∆2

Figure 5: Derivation of the surface representation of the ⊗-R rule

B ⊗
A

A
⊥

B

A,B`⊥,A⊗B
⊥-INT

A,B`A⊗B
⊗-R

A`A
AXIOM

B`B
AXIOM

=

B ⊗
A

A
⊥

B

A,B`⊥,A⊗B
⊗-R

A`A
AXIOM

A`⊥,A
⊥-INT

B`B
AXIOM

Figure 6: Geometrical equivalence of two proofs in involving the unit

3 Examples

In this Section, we look in detail at a number of examples: we derive the surface form of the missing
⊗-R rule; we analyze equivalence of a proof involving units; and we investigate the classic triple-unit
problem.

Example 3.1 (Additional rules). Presentations of multiplicative linear logic usually include the rules
⊗-R, `-L, I-R, ⊥-L, which are missing from Figure 3 and Figure 4; however, they are derivable. We
analyze ⊗-R in detail in Figure 5. On the left-hand side, we derive the rule in our chosen basis for the
the sequent calculus. In the middle image, we interpret it in the surface calculus, using the rules we
have described. In the third image, we simplify the surface calculus interpretation using the rules in
Figure 2. From this simplified diagram, we see that it does not in fact involve the variables, the nontrivial
generators being applied in the central part of diagram only. Elegant interpretations of the other 3 rules
can be derived similarly.

Example 3.2 (Triple-dual problem). Starting with the identity A ( X → A ( X , we can uncurry
on the left to obtain a morphism A⊗ (A ( X)→ X , and curry on the right to obtain a morphism
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A,B ` ⊥,A⊗B
⊗-R

A ` A
AXIOM

A ` ⊥,A
⊥-INT

B ` B
AXIOM

B ⊗
A

A
⊥

B
B

⊗

A⊗B

⊥

A
⊥

Figure 7: A deduction in the sequent calculus, and its surface calculus and proof net representations.

pA : A→ X � (A ( X); in a similar way, we can also define a morphism qA : A→ (X � A) ( X .
Then the triple-dual problem, originally due to Kelly and Mac Lane [14] and generalized here to the
non-symmetric setting, is to determine whether the following equation holds:

X � ((X � A)( X) X � A

X � ((X � A)( X)

X � qA

pX�A
id

(2)

Choosing X =⊥, then qA and pA are the isomorphisms ∗(A∗)' A' (∗A)∗. We give the surfaces for the
clockwise and anticlockwise paths of (2):

A

A

=

A

A

(3)

We conclude that the proofs are equivalent by a single application of the Coherence rule. Contrast this
with the treatment of Blute et al [5, Section 4.2] and Hughes [11, Example 2] in terms of proof nets,
where the proofs require several rewiring steps.

Example 3.3 (Equivalence of two proofs with units). The example is given in Figure 6. We present
two distinct sequent proofs of the tautology A,B ` ⊥` (A⊗B), along with their corresponding surface
proofs. The heights are aligned to help understand how the surface proofs have been constructed. We
make use of the ⊗-R rule derived in the previous example.
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It can be seen by inspection that the surface proofs are equivalent, as follows. Starting with the
surface on the left, we allow the ⊥-introduction vertex to move up and to the left; this is an application
of Coherence and Locality. We also allow the B-introduction vertex at the top of the diagram to move
down, behind both the A-introduction and ⊥-introduction vertices; this is an application of Isotopy.

Example 3.4 (Proof net projection). We argued in the introduction that proof nets can be considered
the 2d ‘shadow’ of the full 3d geometry, with the correctness criterion and thinning links arising to
compensate for the fact that this ‘shadow’ has lost some essential geometrical data. We illustrate this
in Figure 7, which gives a sequent proof alongside its surface diagram and proof net representations. In
particular, in the proof-net picture, the bottom attachment must be ‘hooked’ onto a solid wire, indicated
by the dotted line, a feature which is absent from the 3d image, which contains connectivity data directly
as part of the 3d geometry.
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