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Reversible computing is a paradigm of computation that reflects physical reversibility, one of the fun-
damental microscopic laws of Nature. In this survey, we discuss topics on reversible logic elements
with memory (RLEM), which can be used to build reversible computing systems, and their univer-
sality. An RLEM is called universal, if any reversible sequential machine (RSM) can be realized as a
circuit composed only of it. Since a finite-state control anda tape cell of a reversible Turing machine
(RTM) are formalized as RSMs, any RTM can be constructed froma universal RLEM. Here, we
investigate 2-state RLEMs, and show that infinitely many kinds of non-degenerate RLEMs are “all”
universal besides only four exceptions. Non-universalityof these exceptional RLEMs is also argued.

1 Introduction

A reversible computing system is a one such that every computational configuration of it has at most one
predecessor, i.e., a “backward deterministic” system. Though the definition is thus simple, it is known
that it has a close relation to physical reversibility. Since physical reversibility is one of the fundamental
microscopic laws of Nature, it is important how this property is utilized to construct an efficient reversible
computers. So far, many kinds of reversible computing models have been proposed and investigated. We
should note that there are several levels of models ranging from a microscopic one to a macroscopic one.
In the bottom (i.e., the most microscopic) level, there is a physically reversible model, e.g., the billiard
ball model (BBM) of computing [3]. In the next level, there exist various kinds of reversible logic
elements such as Fredkin gate [3], Toffoli gate [17, 18], andreversible logic elements with memory [6].
In the still higher level, there are reversible logic circuits composed of reversible logic elements, which
can be used as building modules for reversible computers. Inthe top level, there are models of reversible
computers such as reversible Turing machines [1], reversible cellular automata [16], and others.

Here, we focus on the topics of a reversible logic element. Itis a primitive for composing reversible
logic circuits whose function is described by a one-to-one mapping. There are two types of such ele-
ments: one without memory, which is usually called a reversible logic gate, and one with memory. The
conventional design theory of logic circuits has been developed using logic gates as primitives (but in the
study of asynchronous circuits, logic elements with memoryare sometimes used [2, 4]). On the other
hand, in the case of reversible computing, logic elements with memory are also useful. The main reason
is that if we use an appropriate reversible logic element with memory, we can construct several kinds of
reversible computing models, e.g., reversible Turing machines, very simply [6, 9].

In this paper, we give a survey onreversible logic elements with memory(RLEM) based mainly
on the studies of the author and his colleagues. In particular, we focus on the topics of universality of
RLEMs. An RLEM is called universal, if any reversible sequential machine (RSM) can be realized by
it. Since a reversible Turing machine (RTM), which is a universal computing model [1], is composed of
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4 Reversible Logic Elements with Memory

RSMs, we can construct any RTM using a universal RLEM. Here, we investigate 2-state RLEMs, i.e.,
RLEMs with 1-bit memory. There are infinitely many 2-state RLEMs if we do not restrict the numbers
of input/output symbols. We shall see that “all” the non-degenerate 2-state RLEMs except only four
2-symbol RLEMs are universal. We also discuss non-universality of these 2-symbol RLEMs.

2 Reversible logic element with memory (RLEM)

We first give a definition of sequential machine (SM), since a reversible logic element with memory
(RLEM) is a special type of an SM. An SM considered here is a kind of a finite automaton with an
output port as well as an input port, which is often called an SM of Mealy type.

Definition 1 A sequential machine(SM) is a system defined by M= (Q,Σ,Γ,δ ), where Q is a finite set
of internal states,Σ andΓ are finite sets of input and output symbols, andδ : Q×Σ → Q×Γ is a move
function. Ifδ is injective, M is called areversible sequential machine(RSM). Note that if M is reversible,
then|Σ| ≤ |Γ| must hold. Areversible logic elements with memory(RLEM) is an RSM M= (Q,Σ,Γ,δ )
such that|Σ|= |Γ|. In particular, it is called a|Q|-state|Σ|-symbol RLEM.

Hereafter, we mainly discuss 2-state RLEMs. There are infinitely many kinds of RLEMs if we do
not limit the number of symbols. Among them, arotary element(RE) [6] is a typical RLEM with four
symbols. Its behavior can be very easily understood, since it has the following interpretation on its
operation. An RE is depicted by a box that contains a rotatable bar inside (Fig. 1). Two states of an RE
are distinguished by the direction of the bar, and thus they are called state H and state V. There are four
input lines and four output lines corresponding to the sets of input symbols{n,e,s,w} and output symbols
{n′,e′,s′,w′}. The rotatable bar is used to control the move direction of aninput signal (or a particle).
When no particle exists, nothing happens on the RE. If a particle comes from the direction parallel to the
rotatable bar, then it goes out from the output line of the opposite side without affecting the direction of
the bar (Fig. 2 (a)). If a particle comes from the direction orthogonal to the bar, then it makes a right turn,
and rotates the bar by 90 degrees counterclockwise (Fig. 2 (b)). It is reversible in the following sense:
from the next state and the output, the previous state and theinput are uniquely determined. Actually,
an RE is defined as the following RSM:MRE = ({ q , q },{n,e,s,w},{n′ ,e′,s′,w′},δRE), whereδRE is
given in Table 1.
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Figure 1: Two states of a rotary element (RE).
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Figure 2: Operations of a rotary element (RE): (a) the parallel case, and (b) the orthogonal case.
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Table 1: The move functionδRE of a rotary element (RE).
Input

Present state n e s w

State H: q q w′ q w′ q e′ q e′

State V: q q s′ q n′ q n′ q s′

Now, we consider how reversible logic elements can be realized in a reversible physical system.
In our present technology, it is difficult to implement a reversible logic element in a practical system
having physical reversibility in nano-scale level. However, some thought experiments in an idealized
circumstance suggest a possibility of realizing it. Thebilliard ball model(BBM) is a reversible physical
model of computing proposed by Fredkin and Toffoli [3]. It isan idealized mechanical model consisting
of balls and reflectors. They showed a Fredkin gate is realizable in BBM. On the other hand, an RE can
be simulated in BBM as shown in Fig. 3 [8, 10]. It consists of one stationary ball called a state ball, and
many reflectors indicated by small rectangles. A state ball is placed at the position of H or V in Fig. 3
depending on the state of the simulated RE. A moving ball called a signal ball can be given to any one of
the input linesn,e,s, andw. Then, the operation of an RE is correctly simulated by collisions of balls and
reflectors (the details of the movements are found in [9]). In[15], it is shown that anym-statek-symbol
RLEM can be realized in BBM in a systematic way whenk≤ 4.
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Figure 3: A rotary element (RE) realized in BBM [8, 10].

3 Constructing reversible machines by RLEMs

We define universality of an RLEM as the property that any RSM can be composed of it, and show an
RE is universal. We then explain that a reversible Turing machine can also be constructed using REs.

Definition 2 An RLEM is calleduniversalif any RSM is realized by a circuit composed only of copies of
the RLEM.
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We can see that any RSM can be realized by a circuit composed only of REs [7]. We explain it by
an example. Consider an RSMM0 = ({q1,q2,q3},{a1,a2},{b1,b2},δ0}, whereδ0 is given in Table 2.
Then, we can construct a circuit composed only of REs that simulate M0 as shown in Fig. 4. Note
that when constructing a reversible circuit, fan-out of an output is not allowed, and the circuit in Fig. 4
satisfies it. The circuit has three columns of REs, each of which corresponds to a state ofM0. If M0’s
state isq j , then the bottom RE of thej-th column is set to the state H. All other REs are set to V. The REs
of the i-th row corresponds to the input symbolai as well as the output symbolbi . In Fig. 4, the circuit is
in the stateq1. If a particle is given to the line e.g.a2, then after setting the bottom RE of the 1st column
to V, the particle appears on the lineq1a2, i.e., the crossing point of the 2nd row and the 1st column is
found. Sinceδ (q1,q2) = (q3,b2), this line is connected to the RE of the 2nd row of the 3rd column. By
this, the bottom RE of the 3rd column is set to H, and finally theparticle appears on the output lineb2.
By generalizing the above construction method, we see that any RSM can be realized by REs, and thus
we obtain the following theorem (its precise proof is omitted here).

Theorem 1 [7] A rotary element (RE) is universal.

Table 2: The move functionδ0 of an example of an RSMM0.
Input

Present state a1 a2

q1 q2b1 q3b2

q2 q2b2 q1b1

q3 q1b2 q3b1
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Figure 4: The RSMM0 implemented by REs [7]. Here,M0 is in the stateq1 since the bottom RE of the
leftmost column is in the state H.

A reversible Turing machine (RTM) is a TM having backward deterministic property (see, e.g., [1, 8]
for its definition). It is known that for any irreversible TM,there is an RTM that simulates the former and
leaves no garbage information when it halts [1], hence RTMs are computationally universal. We can see
that any RTM can be constructed using only REs relatively easily, since a finite-state control and a tape
cell of an RTM can be formalized as RSMs [6, 9].

Fig. 5 is a circuit that simulates an RTMTparity that accepts the language{12n|n= 0,1, . . .}, whose
move function is specified by the following set of quintuples:

{[ q0,0,1,R,q1 ], [ q1,0,1,L,qacc ], [ q1,1,0,R,q2 ], [ q2,0,1,L,qrej ], [ q2,1,0,R,q1 ]}
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If we give a signal (or a particle) to the input port “Begin,” then it starts to compute. Finally, the particle
comes out from the output port “Accept” or “Reject” depending on the input. Detailed descriptions of
this circuit as well as how it works are given in [9, 10].
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Figure 5: A circuit made of REs that simulates an RTMTparity that accepts{12n|n = 0,1, . . .}. An
example of its whole computing process is shown in 4406 figures in [9].

4 All non-degenerate 2-state RLEMs but four are universal

In the previous section we saw that an RE is universal. On the other hand, since there are infinitely many
RLEMs, there will be many other universal RLEMs. Surprisingly, non-degenerate 2-state RLEMs except
only four are all universal [11]. In this section, we explainhow it is shown.

First, we classify 2-state RLEMs. We can see the total numberof 2-statek-symbol RLEMs is(2k)!,
and they are numbered from 0 to(2k)! −1 in some lexicographic order [12]. To indicate that it is ak-
symbol RLEM, the prefix “k-” is attached to its serial number like RLEM 4-289. Here, we use a pictorial
representation of a 2-state RLEM. Consider, as an example, a2-state 4-symbol RLEM 4-289 with the
input alphabet{a,b,c,d}, the output alphabet{s, t,u,v}, and the move function given in Table 3. Then, it
is represented by Fig. 6, where solid and dotted lines in a boxdescribe the input-output relation for each
state. A solid line shows the state goes to another, and a dotted line shows the state remains unchanged.
For example, if the RLEM 4-289 receives an input symbolc in the stateq0, then it gives the outputs
and enters the stateq1. As in the case of an RE, we interpret that each input/output symbol represents an
occurrence of a signal at the corresponding input/output port.

Table 3: The move function of the 2-state RLEM 4-289.
Input

Present state a b c d

Stateq0 q0s q0t q1s q1t
Stateq1 q0u q0v q1v q1u
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Figure 6: A pictorial representation of the 2-state RLEM 4-289, which is equivalent to RE.
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Figure 7: Representatives of 8 equivalence classes of 24 2-symbol RLEMs (top), and those of 24 equiv-
alence classes of 720 3-symbol RLEMs (bottom) [12]. The indications “eq. to wires” and “eq. to 2-n”
mean it is equivalent to connecting wires, and it is equivalent to RLEM 2-n, respectively. Thus they are
degenerate ones. The numbers of 2- and 3-symbol non-degenerate RLEMs are 4 and 14, respectively.

We can regard two RLEMs areequivalentif one can be obtained by renaming the states and/or the
input/output symbols of the other. It has been shown that thenumbers of equivalence classes of 2-state
2-, 3-, and 4-symbol RLEMs are 8, 24, and 82, respectively [12]. Fig. 7 shows all representative RLEMs
in the equivalence class of 2- and 3-symbol RLEMs. The representatives are so chosen that it has the
smallest number in the class.

Among k-symbol RLEMs, there aredegenerateones, each of which is either equivalent to simple
connecting wires (e.g., RLEM 3-3), or equivalent to ak′-symbol RLEM such thatk′ < k (e.g., RLEM
3-6). Its precise definition is found in [11]. In Fig. 7, they are indicated by “eq. to wires” or “eq. to 2-n”.
Thus,non-degenerate k-symbol RLEMs are the main concern of the study. It is known that the numbers
of non-degenerate 2- 3- and 4-symbol RLEMs are 4, 14, and 55, respectively.
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It has been shown that the following three lemmas hold.

Lemma 1 [5, 11] An RE can be composed of RLEM 3-10.

Lemma 2 [5] RLEM 3-10 can be composed of RLEMs 2-3 and 2-4.

Lemma 3 [11] RLEMs 2-3 and 2-4 can be composed of any one of 14 non-degenerate 3-symbol RLEMs.

By above, we obtain the next lemma that entails universalityof all non-degenerate 3-symbol RLEMs.

Lemma 4 [11] An RE can be constructed by any one of 14 non-degenerate 3-symbol RLEMs.

Lemmas 1–3 are proved by designing circuits composed of given RLEMs which correctly simulate
the target RLEMs. These circuits are shown below. Lemma 1 is proved by a circuit made of RLEMs
3-10 that simulates an RE, which was first given in [5]. Later,a simpler circuit was given in [11], which
is shown in Fig. 8. Next, Lemma 2 is proved by a circuit made of RLEMs 2-3 and 2-4 that simulates
RLEM 3-10 shown in Fig. 9 [5]. Finally, Lemma 3 is proved by 28 circuits composed of each of 14
non-degenerate 3-symbol RLEMS that simulate RLEMs 2-3 and 2-4 as in Fig.10.
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Figure 8: A circuit composed of RLEMs 3-10 that simulates RE [11]. (a) and (b) correspond to the states
H and V of RE, respectively.
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Figure 10: Circuits composed of each of 14 non-degenerate 3-symbol RLEMs that simulate RLEMs 2-3
and 2-4 [11].
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The following lemma gives a relation betweenk-symbol RLEMs and(k−1)-symbol RLEMs.

Lemma 5 [11] Let Mk be an arbitrary non-degenerate k-symbol RLEM (k> 2). Then, there exists a
non-degenerate(k−1)-symbol RLEM Mk−1 that can be simulated by Mk.

Here, we explain only a key idea of the proof of Lemma 5. When ak-symbol RLEM is given, we
choose one output line and one input line, and connect them tomake a feedback loop. By this, we obtain
a (k−1)-symbol RLEM. Fig. 11 shows the case of 4-symbol RLEM 4-23617. If we give an appropriate
feedback loop, we can get a non-degenerate 3-symbol RLEM (upper row of Fig. 11). But, if we give an
inappropriate feedback, then the resulting 3-symbol RLEM is a degenerate one (lower row of Fig. 11). In
[11], it is proved that for a given non-degeneratek-symbol RLEM (k> 2), we can always find a feedback
loop by which a non-degenerate(k−1)-symbol RLEM can be obtained.

4-RLEM Adding a feedback to 4-RLEM Resulting 3-RLEM

4-23617

i j✲ i j✲

0 1 0 1
Appropriate feedback Equivalent to 3-451

4-23617

i

i′

j

j′

✲
i

i′

j

j′

✲
i′

j

i′

j

0 1 0 1
Inappropriate feedback Equivalent to 3-450

(degenerate)

Figure 11: Making a 3-symbol RLEM by adding a feedback loop to4-symbol RLEM 4-23614. If the
feedback is appropriate, the resulting 3-symbol RLEM will be a non-degenerate one (upper row). If not,
it can be a degenerate one (lower row).

By Theorem 1, and Lemmas 4 and 5 we have the next theorem stating that almost all non-degenerate
2-state RLEMs are universal. Note that universal RLEMs can simulate each other.

Theorem 2 [11] Every non-degenerate 2-state k-symbol RLEM is universal ifk> 2.

On the other hand, there are four non-degenerate 2-state 2-symbol RLEMs (Fig. 12). So far, three of
them have been shown to be non-universal.
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Figure 12: Four non-degenerate 2-state 2-symbol RLEMs.

Lemma 6 [14] RLEM 2-2 can simulate neither RLEM 2-3, 2-4, nor 2-17.

We give an outline of the proof of Lemma 6. Assume, on the contrary, RLEM 2-3 is simulated
by a circuitC composed ofm copies of RLEM 2-2 (proofs for 2-4 and 2-17 are similar). Let{ai ,bi}
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and{si , ti} be the sets of input and output ports of thei-th RLEM 2-2 (i ∈ {1, . . . ,m}) in C. Let {a,b}
and{s, t} be those of the circuitC (note that we assumeC simulates a 2-symbol RLEM), and letU =
{a,b} ∪ {si , ti | i ∈ {1, . . . ,m}}, andV = {s, t} ∪ {ai ,bi | i ∈ {1, . . . ,m}} be sets of vertices inC. The
network structure ofC can be described by a bijectionf : U →V, which is called aconnection function.
In the example of Fig. 13,f (a) = b1, f (t1) = b3, etc. We now define a set of verticesW as the smallest set
that satisfies (i)a∈W, (ii) x∈U∩W⇒ f (x)∈W, (iii) ai ∈V∩W⇒ si ∈W, and (iv)bi ∈V∩W⇒ ti ∈W.
Let W = (U ∪V)−W. In Fig. 13, vertices inW are indicated by•, while those inW are by◦. Note
that the setW is determined only by the connection functionf , not by the states of the RLEMs. We
observe thatb∈W, and|{s, t}∩W|= 1 ∧ |{s, t}∩W|= 1, sincef is a bijection. Next, sets of RLEMs
EW,EW,EW,W ⊆{1, . . . ,m} are given as follows:EW = {i | ai ∈W ∧ bi ∈W}, EW = {i | ai ∈W ∧ bi ∈W},
andEW,W = {1, . . . ,m}− (EW ∪EW). In Fig. 13,EW = {1,2}, EW = {5,6}, andEW,W = {3,4}.
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Figure 13: An example of a circuitC composed of 6 copies of RLEM 2-2.

Assume an input signal is given to the porta or b in the circuitC. Then, it visits vertices inC one after
another according to the connection functionf and the move function of RLEM 2-2. By the definitions
of RLEM 2-2,W, W, EW, EW, andEW,W, we can easily see the following claims hold.

1. A signal can move from a vertex inW to a vertex inW, or from a vertex inW to a vertex inW only
at some RLEM inEW,W.

2. Assumei ∈ EW,W, andai ∈W. If the elementi is in q0, then a signal atai ∈W or atbi ∈W will
go tosi ∈W. Thus it is not possible to go fromW to W at the elementi in q0. On the other hand,
if the elementi is in q1, then a signal atai ∈W or atbi ∈W will go to ti ∈ W, and thus it is not
possible to go fromW toW. The casebi ∈W is also similar.

3. Assumei ∈EW,W. If a signal moves from a vertex inW to that inW, or fromW toW at the element
i, then the elementi changes its state, and vice versa.

4. Leto1 ∈ {s, t}∩W ando2 ∈ {s, t}∩W. Starting from some initial state of the circuitC, if a signal
travels froma∈W to o2 ∈W, then the number of times that the signal goes fromW to W is equal
to that fromW toW plus 1. The case where a signal travels fromb∈W to o1 ∈W is also similar.

By above, each time a signal travels froma ∈ W to o2 ∈ W, the number of elements inEW,W that can
make a signal move fromW to W decreases by 1. Similarly, each time a signal travels fromb∈ W to
o1 ∈W, the number of elements inEW,W that can make a signal move fromW toW decreases by 1. Note
that, if a signal goes froma∈W to o1 ∈W, or fromb∈W to o2 ∈W, the above numbers do not change.

Consider RLEM 2-3 (see Fig.12). Starting fromq0, we give an input sequence(bb)n (n= 1,2, . . .) to
the RLEM 2-3. Then, it produces an output sequence(st)n. By the assumption, the circuitC composed
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of RLEMs 2-2 performs this behavior. In either case ofs∈ W∧ t ∈ W or s∈ W∧ t ∈ W, the number
of elements inEW,W that can make a signal move fromW to W decreases indefinitely asn grows large,
since the input is alwaysb∈W. But, this contradicts the assumption thatC is composed ofm RLEMs
2-2, and thusEW,W is finite. Hence, the circuitC cannot simulate RLEM 2-3.

For RLEM 2-4, if we give an input sequence(ba)n, it produces(t t)n. For RLEM 2-17, if we give
(bb)n, it produces(st)n. By a similar argument as above, it is impossible for a circuit composed of
RLEMs 2-2 to do such behaviors, and thus RLEM 2-2 can simulateneither RLEM 2-4 nor 2-17.

Non-universality of RLEMs 2-3 and 2-4 is shown in [14].

Lemma 7 [14] RLEM 2-3 can simulate neither RLEM 2-4, nor 2-17, and RLEM 2-4can simulate neither
RLEM 2-3, nor 2-17.

By Lemmas 6 and 7, we have the following theorem.

Theorem 3 [14] RLEMs 2-2, 2-3, and 2-4 are non-universal.

The following lemma says RLEM 2-2 is the weakest one among non-degenerate 2-state RLEMs,

Lemma 8 [13] RLEM 2-2 can be simulated by any one of RLEMs 2-3, 2-4, and 2-17.

Fig. 14 summarizes the above results. It is not known whetherRLEM 2-17 is universal or not. On the
other hand, it is shown that any two combination among RLEMs 2-3, 2-4, and 2-17 is universal [5, 13].

Every 2-state k-symbol

RLEM k-n (k > 2)

RLEM
2-17

RLEM
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RLEM
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Figure 14: A hierarchy among 2-state RLEMs. Here,A→ B (A 6→ B, respectively) represents thatA can
(cannot) simulateB.

5 Concluding remarks

In this survey, we discussed universality of reversible logic elements with memory (RLEMs), in particular
2-state RLEMs. It is remarkable that all non-degenerate 2-state RLEMs except only four are universal.
Hence, the relation among the capability of them is rather simple as shown in Fig. 14. On the other
hand, in the case of RLEMs with 3 or more states, the situationis very different. Even in the case of 3
states, relation among them seems very complex according toour partial experimental results [13]. In
addition, we can construct many-state many-symbol non-degenerate RLEMs from, e.g., 2-state RLEMs
2-2. By this, we obtain non-universal many-state many-symbol non-degenerate ones, since RLEM 2-2 is
non-universal. Thus, investigation on many-state RLEMs isleft for the future study.
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