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In this work, we develop a polymorphic record calculus with extensible records. Extensible records
are records that can have new fields added to them, or preexisting fields removed from them. We also
develop a static type system for this calculus and a sound and complete type inference algorithm.
Most ML-style polymorphic record calculi that support extensible records are based on row variables.
We present an alternative construction based on the polymorphic record calculus developed by Ohori.
Ohori based his polymorphic record calculus on the idea of kind restrictions. This allowed him to
express polymorphic operations on records such as field selection and modification. With the addition
of extensible types, we were able to extend Ohori’s original calculus with other powerful operations
on records such as field addition and removal.

1 Introduction

A record is a basic data structure that provides a flexible way to aggregate data and which is present
in several programming and specification languages. Record polymorphism has been studied using ap-
proaches based on subtyping [7, 5], kinded quantification [17, 18] and, most commonly, on the mecha-
nism of row variables [23, 13, 21, 24], among others. Row variables range over finite sets of field types,
which are constructed by extension starting from the empty row {||}. With the aim of developing a
sound polymorphic programming language that supported labelled records and variants, while providing
efficient compilation, Ohori [17] followed an approach based on the notion of a kind. In Ohori’s system,
variables ranging over record types, are annotated with a specification that represents the fields the record
is expected to contain. This refines ML-type quantification to what is called kinded quantification, of the
form ∀α :: κ.σ , where type variable α is constrained to range only over the set of types denoted by kind
κ . A kind κ is either the universal kind U , denoting the set of all types, or a record kind of the form
{{l1 : τ1, . . . , ln : τn}}, denoting the set of all record types that contain fields l1, . . . , ln, with types τ1, . . . ,τn,
respectively.

The type inference algorithm in [17] provides a sound extension of ML’s let-polymorphism [8], which
allows for a polymorphic treatment of record-based operations such as field selection and modification,
but with the limitation of lacking support for extensible records. This limitation is often accepted in
practical implementations of languages with record types, in a trade for efficiency, or due to the difficulty
in guaranteeing the correctness of types for more flexible operations.

Nevertheless, record types, and in particular polymorphic record types, are most relevant not only
in the context of ML-style programming languages, but also due to its relevance to areas were data
aggregation and manipulation is a key feature. The style of record polymorphism developed by Ohori
was recently explored in the context of event processing, through the development of a domain specific
higher-order functional language for events [1], with a typing system that was both a restriction and an
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extension of Ohori’s polymorphic record calculus. Although this domain specific language proved to be
adequate to deal with the notion of generic events, with the potential of providing a formal semantics
to Complex Event Processing (CEP) systems, the lack of support for extensibility was once more a
limitation, since the ability to extend a record with a new field or remove an existing field from a record
is often useful in the context of CEP.

In this paper we address this limitation and develop a polymorphic record calculus with extensible
records, that is, records that can have new fields added to them, or preexisting fields removed from them.
To that end, we refine the notion of record kind, such that, a kind is of the form

{{l1 : τ1, . . . , ln : τn || l′1 : τ
′
1, . . . , l

′
m : τ

′
m}}

and denotes the set of all record types that contain the fields before || and do not contain the fields
after ||. This system allows us to represent polymorphic versions of various types of record operations,
such as field selection and modification, just as before, but is also powerful enough to represent field
extension (the operation that adds a new field to a record) and field removal (the operation that removes a
preexisting field from a record). The notion of record types is also extended to accommodate the notion
of extensible record types. We refine the notion of kinded restrictions, using the refined notion of record
kind, so that we can impose conditions on the extension and removal operations: a record can only be
extended with a field that it does not already contain, and one can only remove existing fields from
records. We extend Ohori’s calculus with two new operations on records: M \\ l removes field l from
term M, provided that M is a record with that field, and extend(M1, l,M2) extends term M1 with a field
labelled l with value M2, provided that M1 is a record not containing l. These restrictions are imposed by
the type system. We present a sound and complete ML-style type inference algorithm for our extended
calculus.

The main contributions of this paper are:

• The design definition of an ML-style record calculus with operations for field extension and field
removal.

• An ML-style type system for this calculus based on the notion of extensible types.

• A sound and complete type inference algorithm, that extends the ML-style record calculus in [17].

Overview In Section 2 we define our ML-style record calculus with extensible records. In Section 3
we define a type system for our calculus and in Section 4 we present a type inference algorithm, which
is proved to be sound and complete. We discuss related work in Section 5 and we finally conclude and
discuss further work in Section 6.

2 An ML-style Record Calculus with Extensible Records

In this section we introduce an ML-style record calculus with extensible records. Our set of terms follows
the one used by Ohori in [17], except for the exclusion of variants and the addition of two new terms:
one for adding a new field to a record; and another for removing a preexisting field from a record. We
assume some familiarity with the λ -calculus (see [2] for a detailed reference).
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2.1 Terms

We start by formally defining the set of terms. In the following, let k range over a countable set of
constants, x,y,z, . . . range over a countable set of variables and l, l1, . . . range over a countable set L of
labels. Additionally we assume a finite set of base types B, ranged by b.

Definition 2.1. The set of terms is given by the following grammar:

M ::= x | kb | λx.M |MM | let x = M in M
{l = M, . . . , l = M} |M.l | modify(M, l,M) |M \\ l | extend(M, l,M)

2.2 Types and Kinds

We now define the set of types and kinds. Following Damas and Milner’s presentation of ML [8], we
divide the set of types into monotypes (ranged over by τ) and polytypes (ranged over by σ ). Monotypes
can be base types (represented by b, which is obtained from a given set of base types), extensible types
(ranged over by χ), and arrow types (of the form τ → τ). Polytypes can be monotypes, or quantified
types of the form ∀α :: κ.σ , where κ is a kind restriction and α is a type variable quantified over the
set of types denoted by κ . Extensible types can be type variables (represented by α , which is obtained
from a given countably infinite set of type variables), record types (of the form {l : τ, . . . , l : τ}, where l
is obtained from a given set of labels), type extensions (of the form χ +{l : τ}), or type contractions (of
the form χ−{l : τ}). Type extensions of the form χ +{l : τ} are the type of records of type χ that are
extended with a new field with label l and type τ and type contractions of the form χ −{l : τ} are the
type of records of type χ that have a preexisting field with label l and type τ removed.

Definition 2.2. The set of types σ and kinds κ are specified by the following grammar:

σ ::= τ | ∀α :: κ.σ

τ ::= b | χ | τ → τ

χ ::= α | {l : τ, . . . , l : τ} | χ +{l : τ} | χ−{l : τ}
κ ::= U | {{l : σ , . . . , l : σ || l : σ , . . . , l : σ}}

All empty records are typed with the same type: the empty record type {}. Note that a type variable
kinded with the universal kind can be instantiated with any type, while a type variable kinded with the
empty kind restriction {{||}} can only be instantiated with a record type. Also, note that extensible types
are defined recursively and can either have type variables or records types as base cases. To a type that
appears as the base case of an extensible type we will call the base type of the extensible type (or just
base type, if the context makes this clear). Also, if χ is an extensible type, then B(χ) is its base type.

Labels that appear in types and kinds must always be pairwise distinct and each label can only be
assigned one type during its existence. Also, the order in which labels occur is insignificant. Finally, if
two extensible types have the same base type and have the same kind restrictions, we will consider them
equal. This will made precise in Section 4, when we introduce a type reduction mechanism for extensible
types.

Example 2.3. The following extensible types are equal:

α +{l1 : τ1}−{l2 : τ2} ≡ α−{l2 : τ2}+{l1 : τ1} (1)

α +{l1 : τ1}−{l2 : τ2}−{l1 : τ1} ≡ α +{l1 : τ1}−{l1 : τ1}−{l2 : τ2} (2)
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(1) Clearly, despite the order of their type extensions and contractions, both types have the same base
type and tell us that records with type α must not have the field {l1 : τ1} and must have the field
{l2 : τ2}.

(2) Here, we know that both types are equal because, despite the order of their type extensions and
contractions, both have the same base type and tell us that records with type α must have the field
{l2 : τ2} and must not have the field {l1 : τ1}.

The two following extensible types are not equal:

α1 +{l1 : τ1}−{l2 : τ2} 6≡ α2−{l1 : τ1}+{l2 : τ2} (3)

α1−{l1 : τ1}+{l2 : τ2}+{l1 : τ1} 6≡ α2 +{l1 : τ1}−{l1 : τ1}+{l2 : τ2} (4)

(3) Clearly, these two types are not equal, and not just because they have syntactically different base
types, but because the type on the left tells us that α1 must not have the field {l1 : τ1} and must
have the field {l2 : τ2}, while the type on the right tells us that α2 must have the field {l1 : τ1} and
must not have the field {l2 : τ2}.

(4) Here, we also have two types that are not equal, because they must have two syntactically different
base types. The reason is that the type on the left tells us that its base type must have the field
{l1 : τ1} and the type on the right tells us that its base type must not have that same field.

Note that we can only ignore the order of type extensions and contractions with different labels since
changing the ordering between a type extensions and type contraction of a type will render it “ill” formed,
as can be seen in Example 2.3. This property is enforced by the kinding rules in Definition 2.8.

Definition 2.4. The set of free type variables of a type σ or a kind κ are denoted by FTV(σ) and FTV(κ),
respectively. For second-order types, it is defined as FTV(∀α :: κ.σ) = FTV(κ)∪ (FTV(σ)\{α}). FTV
for other types and kinds are defined as expected.

We say that a type σ is closed if FTV(σ) = /0. We assume that all bounded type variables are distinct
and different from any free type variables, and that this property is preserved by substitution through
α-equivalence. The type construct ∀α :: κ.σ binds the type variable α in σ , but not in κ .

Definition 2.5. We write {α1 :: κ1, . . . ,αn :: κn} for the kind assignment that binds αi to κi, (1 ≤ i ≤ n)
and /0 for the empty kind assignment. We will also write K{α :: κ} for K ∪{α :: κ} provided that K
is well formed, α 6∈ dom(K), and FTV(κ) ⊆ dom(K). Note that K{α1 :: κ1, . . . ,αn :: κn} implies that
αi 6∈ FTV(κ j) for any 1≤ j < i≤ n.

Any type variables that appear in K must also be properly kinded by K itself.

Definition 2.6. A kind assignment K is well formed if for all α ∈ dom(K),FTV(K(α))⊆ dom(K), where
dom( f ) denotes the domain of a function f .

From now on, we assume that every kind assignment is well formed.

Definition 2.7. A type σ is well formed under a kind assignment K if FTV(σ)⊆ dom(K).

Definition 2.7 is naturally extended to other syntactic constructs containing types except substitutions
(see Definition 2.12).



S. Alves & M. Ramos 5

2.3 Kind Restrictions

Definition 2.8. Type τ has kind restriction κ , that we denote as K  τ :: κ , if it can be derived from the
following kinding rules:

i) K  τ :: U for any τ well formed under K

ii) K  {ll
1 : τ

l
1, . . . , l

l
n : τ

l
n, . . .} :: {{ll

1 : τ
l
1, . . . , l

l
n : τ

l
n || lr

1 : τ
r
1, . . . , l

r
m : τ

r
m}}

if {ll
1, . . . , l

l
n, . . .}∩{lr

1, . . . , l
r
m}= /0,

both {ll
1 : τ

l
1, . . . , l

l
n : τ

l
n, . . .} and τ

r
i (1≤ i≤ m) are well formed under K

iii) K  α :: {{ll
1 : τ

l
1, . . . , l

l
n : τ

l
n || lr

1 : τ
r
1, . . . , l

r
m : τ

r
m}}

if K(α) = {{ll
1 : τ

l
1, . . . , l

l
n : τ

l
n, . . . || lr

1 : τ
r
1, . . . , l

r
m : τ

r
m, . . .}}

iv) K  χ +{l : τ} :: {{ll
1 : τ

l
1, . . . , l

l
n : τ

l
n, [l : τ] || lr

1 : τ
r
1, . . . , l

r
m : τ

r
m}}

if K  χ :: {{ll
1 : τ

l
1, . . . , l

l
n : τ

l
n || lr

1 : τ
r
1, . . . , l

r
m : τ

r
m, l : τ}}

v) K  χ−{l : τ} :: {{ll
1 : τ

l
1, . . . , l

l
n : τ

l
n || lr

1 : τ
r
1, . . . , l

r
m : τ

r
m, [l : τ]}}

if K  χ :: {{ll
1 : τ

l
1, . . . , l

l
n : τ

l
n, l : τ || lr

1 : τ
r
1, . . . , l

r
m : τ

r
m}}

where [l : τ] means that the inclusion of l : τ in its respective kind is optional.

Note that if K  τ : κ , then both κ and τ are well formed under K.

Example 2.9. Consider the type τ = {l1 : τ1}+{l2 : τ2}−{l1 : τ1} and the empty kind assignment K = /0.
These are some possible derivations of kind restrictions for τ and its subtypes:

/0  {l1 : τ1} :: {{||}}
/0  {l1 : τ1} :: {{l1 : τ1 ||}}
/0  {l1 : τ1}+{l2 : τ2} :: {{l2 : τ2 ||}}
/0  {l1 : τ1}+{l2 : τ2} :: {{|| l3 : τ3}}
/0  {l1 : τ1}+{l2 : τ2}−{l1 : τ1} :: {{l2 : τ2 || l1 : τ1}}

Note that we cannot derive any kind restrictions for τ where {l1 : τ1} appears on the left of the ||.

Proposition 2.10. The kinding rules ensure the two following properties:

1. If K  τ :: {{l : τ ′, . . . || . . .}}, then K 6 τ :: {{. . . || l : τ ′, . . .}};

2. If K  τ :: {{. . . || l : τ ′, . . .}}, then K 6 τ :: {{l : τ ′, . . . || . . .}}.

2.4 Kinded Substitutions

Definition 2.11. A type substitution is a function from a finite set of type variables to types. We write
[σ1/α1, . . . ,σn/αn] for the substitution that maps each αi to σi. A substitution S is extended to the set
of all type variables by letting S(α) = α for all α 6∈ dom(S), where dom( f ) denotes the domain of a
function f , and is extended uniquely to polytypes, record types, function types and extensible types as
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follows:

S(∀α :: κ.σ) = ∀α :: S(κ).S(σ)

S({l1 : τ1, . . . , ln : τn}) = {l1 : S(τ1), . . . , ln : S(τn)})
S(τ1→ τ2) = S(τ1)→ S(τ2)

S(χ−{l : τ}) = S(χ)−{l : S(τ)}
S(χ +{l : τ}) = S(χ)+{l : S(τ)}

Definition 2.12. A substitution S is well formed under a kind assignment K if for any α ∈ dom(S), S(α)
is well formed under K.

Since all type variables are kinded by a kind assignment, the conventional notion of substitution (see
Definition 2.11) must be refined by also taking into consideration kind constraints.

Definition 2.13. A kinded substitution is a pair (K,S) of a kind assignment K and a substitution S that
is well formed under K. A kinded substitution (K,S) is ground if K = /0. We will write S for a ground
kinded substitution ( /0,S).

Definition 2.14. A kinded substitution (K1,S) respects a kind assignment K2 if for any α ∈ dom(K2),
K1  S(α) :: S(K2(α)).

This notion specifies the condition under which a substitution can be applied, i.e., if (K1,S) respects
K then it can be applied to a type σ kinded by K, yielding a type S(σ) kinded by K1.

Lemma 2.15. If K  τ :: κ and a kinded substitution (K1,S) respects K, then K1  S(τ) :: S(κ).

Corollary 2.16. If (K1,S1) respects K and (K2,S2) respects K1, then (K2,S2 ◦S1) respects K.

Proof. Since (K1,S1) respects K, we know that ∀α ∈ dom(K),K1  S1(α) :: S1(K(α)). Since (K2,S2)
respects K1, we also know that ∀α ∈ dom(K1),K2  S2(α) :: S2(K1(α)). But, since we know that (K2,S2)
respects K1, we have that K2  S2 ◦S1(α) :: S2 ◦S1(K(α)). Therefore, ∀α ∈ dom(K),K2  S2 ◦S1(α) ::
S2 ◦S1(K(α)) and (K2,S2 ◦S1) respects K.

A kind assignment is a constraint on possible substitutions of type variables. Furthermore, since types
may depend on type variables other than their own free type variables, we need to take into consideration
kind assignments and extend the notion of free type variables of a type.

Definition 2.17. For a type σ well formed under K, the set of essentially-free type variables of σ under
K, denoted EFTV(K,σ), is the smallest set satisfying:

(i) FTV(σ)⊆ EFTV(K,σ).

(ii) If α ∈ EFTV(K,σ), then FTV(K(α))⊆ EFTV(K,σ).

3 Type System

Before going into the typing rules, we first need to define what are generic instance of monotypes and
closures of polytypes. To define the closure of a type, we first need to define what is a type assignment.

Definition 3.1. We write {x1 : σ1, . . . ,xn : σn} for the type assignment that binds xi to σi, (1≤ i≤ n) and
/0 for the empty type assignment. We will also write Γ{x : σ} for Γ∪{x : σ} provided that x 6∈ dom(Γ).
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Definition 3.2. We say that a type assignment Γ is well formed under a kind assignment K, if ∀x ∈
dom(Γ), Γ(x) is well formed under K.
Definition 3.3. Let Γ and τ be well formed under K. The closure of τ under Γ, K, denoted by Cls(K,Γ,τ),
is a pair (K′,∀α1 :: κ1 · · ·∀αn :: κn.τ) such that K′{α1 :: κ1, . . . ,αn :: κn} = K and {α1, . . . ,αn} =
EFTV(K,τ)\EFTV(K,Γ).
Definition 3.4. Let σ1 be a polytype well formed under K. We say that σ2 is a generic instance of
σ1 under K, written K  σ1 ≥ σ2, if σ1 = ∀α1

1 :: κ1
1 · · ·α1

n :: κ1
n .τ1, σ2 = ∀α2

1 :: κ2
1 · · ·α2

1 :: κ2
m.τ2, and

there is a substitution S such that dom(S) = {α1
1 , . . . ,α

1
n}, (K{α2

1 :: κ2
1 , . . . ,α

2
m :: κ2

m},S) respects K{α1
1 ::

κ1
1 , . . . ,α

1
n :: κ1

n} and τ2 = S(τ1).
Lemma 3.5. If K  σ1 ≥ σ2 and K  σ2 ≥ σ3, then K  σ1 ≥ σ3.

Proof. Without loss of generality, let us assume that σ1 = ∀α1
1 :: κ1

1 · · ·α1
n :: κ1

n .τ1, σ2 = ∀α2
1 :: κ2

1 · · ·α2
m ::

κ1
m.τ2, and σ3 = ∀α3

1 :: κ3
1 · · ·α3

k :: κ3
k .τ3. Since K  σ1 ≥ σ2, we know that there exists a substitution S1

such that dom(S1) = {α1
1 , . . . ,α

1
n}, (K{α2

1 :: κ2
1 , . . . ,α

2
m :: κ2

m},S1) respects K{α1
1 :: κ1

n :: κ1
n} and τ2 =

S1(τ1). Since K  σ2≥ σ3, we know that there exists a substitution S2 such that dom(S2) = {α2
1 , . . . ,α

2
m},

(K{α3
1 :: κ3

1 , . . . ,α
3
k :: κ3

k },S2) respects K{α2
1 :: κ2

n :: κ2
m} and τ3 = S2(τ2). To show that K  σ1 ≥ σ3,

we just need to find a substitution S3, such that dom(S3) = {α1
1 , . . . ,α

1
n}, (K{α3

1 :: κ3
1 , . . . ,α

3
k :: κ3

k },S3)
respects K{α1

1 :: κ1
n :: κ1

n} and τ3 = S3(τ1). If we choose S3 = S2 ◦ S1, then dom(S3) = dom(S1) =
{α1

1 , . . . ,α
1
n}, by Corollary 2.16, (K{α3

1 :: κ3
1 , . . . ,α

3
k :: κ3

k },S2 ◦ S1) respects K, and τ3 = S3(τ1) = S2 ◦
S1(τ1) = S2(S1(τ1)) = S2(τ2).

The type assignment system is given in Figure 1. We use K,Γ `M : σ to denote that term M has type
σ given the type and kind assignments Γ and K, respectively.
Example 3.6. Let K = {α1 :: {{|| l : α2}},α2 :: U } and Γ = {x : α1,y : α2}. Then we can construct the
following type derivation for extend(x, l,y).l:

K  Γ(x)≥ α1 (Var)
K,Γ ` x : α1

K  Γ(y)≥ α2 (Var)
K,Γ ` y : α2 K  α1 :: {{|| l : α2}} α1 6∈ FTV(α2)

∆ = (Ext)
K,Γ ` extend(x, l,y) : α1 +{l : α2}

∆ K  α1 +{l : α2} :: {{l : α2 ||}} (Sel)
K,Γ ` extend(x, l,y).l : α2

The following lemma allows us to strengthen the type assignment.
Lemma 3.7. If K,Γ{x : σ1} `M : τ and K  σ2 ≥ σ1, then K,Γ{x : σ2} `M : τ .

The following lemma shows that typings are closed under kind-respecting kinded substitutions.
Lemma 3.8. If K1,Γ `M : σ and (K2,S) respects K1, then K2,S(Γ) `M : S(σ).

4 Type Inference

If we add a field to a record and then immediately remove it, we end up with a record with the same set
of fields and the same kind restrictions, but with a different type. The same thing happens if we remove
a preexisting field from a record and then immediately add it again. This means that extensible types
can have different forms, but represent the same set of record types and records. This induces a set of
identities on extensible types that can be interpreted as rewrite rules and used to define a type reduction
system.
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Γ is well formed under K K  Γ(x)≥ τ
(Var)

K,Γ ` x : τ

Γ is well formed under K (Const)
K,Γ ` kb : b

K,Γ{x : τ1} `M : τ2 (Abs)
K,Γ ` λx.M : τ1→ τ2

K,Γ `M1 : τ1→ τ2 K,Γ `M2 : τ1 (App)
K,Γ `M1 M2 : τ2

K,Γ `M1 : σ K,Γ{x : σ} `M2 : τ
(Let)

K,Γ ` let x = M1 in M2 : τ

K,Γ `Mi : τi (1≤ i≤ n)
(Rec)

K,Γ ` {l1 = M1, . . . , ln = Mn} : {l1 : τ1, . . . , ln : τn}

K,Γ `M : τ1 K  τ1 :: {{l : τ2 ||}} (Sel)
K,Γ `M.l : τ2

K,Γ `M1 : τ1 K,Γ `M2 : τ2 K  τ1 :: {{l : τ2 ||}} (Modif)
K,Γ `modify(M1, l,M2) : τ1

K,Γ `M : τ Cls(K,Γ,τ) = (K′,σ)
(Gen)

K′,Γ `M : σ

K,Γ `M : τ1 K  τ1 :: {{l : τ2 ||}} (Contr)
K,Γ `M \\ l : τ1−{l : τ2}

K,Γ `M1 : τ1 K,Γ `M2 : τ2 K  τ1 :: {{|| l : τ2}} B(τ1) 6∈ FTV(τ2) (Ext)
K,Γ ` extend(M1, l,M2) : τ1 +{l : τ2}

Figure 1: Typing rules for ML-style record calculus with extensible records
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Definition 4.1. Let χ be well formed under some kind assignment K. The rewrite rules for the type
reduction system depend on the form of χ and are the following:

i) {l1 : τ1, . . . , li : τi, . . . , ln : τn}−{li : τi}±{l′ : τ
′}· · · ⇒χ {l1 : τ1, . . . , ln : τn}±{l′ : τ

′}· · ·

ii) {l1 : τ1, . . . , ln : τn}+{l : τ}±{l′ : τ
′}· · · ⇒χ {l1 : τ1, . . . , ln : τn, l : τ}±{l′ : τ

′}· · ·

iii) α±1 {l1 : τ1}· · ·−i {l : τ}· · ·+ j {l : τ}· · · ⇒χ

α±1 · · ·±i−1 {li−1 : τi +1}±i+1 {li+1 : τi+1}· · ·± j−1 {l j−1 : τ j−1}± j+1 {l j+1 : τ j+1}· · ·

iv) α±1 {l1 : τ1}· · ·+i {l : τ}· · ·− j {l : τ}· · · ⇒χ

α±1 · · ·±i−1 {li−1 : τi−1}±i+1 {li+1 : τi+1}· · ·± j−1 {l j−1 : τ j−1}± j+1 {l j+1 : τ j+1}· · ·

To ensure that⇒χ is confluent without considering the order of type extensions and/or contractions, we
are going to assume that, in rules iii) and iv), i and j are the positions of the two first occurrences of those
same-labelled type contraction and extension, in the case of rule iii), or type extension and contraction,
in the case of rule ix).

We can show that the type reduction system is convergent, i.e. that normal forms are unique. This
fact in conjunction with the fact that each reduction step preserves the set of kind restrictions of a type
(see Proposition 4.4), allows us to replace any type with its normal form. Having types in their normal
forms allows us to to identify types that correspond to records that are constructed from a particular
record by adding and removing fields in different orders but that end up having the same set of fields.
Proposition 4.2. ⇒χ is convergent.

It is obvious that ⇒χ is terminating, since the number of type extensions and type contractions
diminishes with each reduction step. Also, note that⇒χ is confluent by construction.
Definition 4.3. Let⇒∗χ be the reflexive and transitive closure of⇒χ . (i) We say that σ2 is a normal form
of σ1 if, and only if, σ1⇒∗χ σ2 and there is no σ3 such that σ2⇒χ σ3. (ii) We write σ1 for the (unique)
normal form of σ1. (iii) We write σ1 ↓ σ2 if σ1 = σ2.

Now we show that each reduction step⇒χ preserves kind restrictions.
Proposition 4.4. Every rewrite rule ⇒χ , transforms a type χ1 into a χ2, such that K  χ1 :: κ if, and
only if, K  χ2 :: κ .

Every field that appears in an extensible type that is a subtype of a type in normal form occurs exactly
once.
Proposition 4.5. If χ is in normal form, then every label that appears in it occurs exactly once.

Note that if a type is in normal form, then every extensible type that appears as its subtype will have
a type variable base type and each field that appears in it will occur exactly once.
Proposition 4.6. Let S be a substitution and τ be a type. Then S(τ) = S(τ).

Proof. Let τ = τ . Then there exists an extensible type χ in τ that can be normalized to its normal form
χ . Let α ∈ dom(S) appear in χ , but not in χ . then α only appears in type operations of χ that were
removed by normalization. Clearly, S(α) will appear in S(χ), but not in S(χ). But then, since α only
appeared in type operations of χ that were removed by normalization, S(α) will only appear in those
same type operations. Therefore, S(α) will not appear in S(χ). Thus S(α) will neither appear in S(χ)
nor in S(χ). Let α ∈ dom(S) appear in χ and in χ . Then α must not appear in any type operations of χ

that can be removed by normalization. Then S(α) will appear both in S(χ) and S(χ):
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• If S(χ) is in normal form, then S(α) is in normal form and will appear in both S(χ) and S(χ);

• If S(χ) is not in normal form, then either S(α) is not in normal form, S(α) is in normal form, but
type operations that can be cancelled out by preexisting type operations in χ were added to χ , or
both. In any case, these operations will not appear in S(χ) or S(χ).

This means we can conclude that type type operations that appear in S(χ) and S(χ) are precisely the
same, i.e. S(χ) = S(χ).

To account for normal forms, we need to redefine what it means for two substitutions to be equal.

Definition 4.7. Let S1 and S2 be two substitutions. We say that S1 = S2 if, for any type τ , S1(τ) ↓ S2(τ).

Note that if two substitutions are syntactically equal, then they are also equal in the sense of Defini-
tion 4.7.

Proposition 4.8. Let S1, S2, S′1, and S′2 be substitutions, such that S1 = S2 and S′1 = S′2. Then S1 ◦S′1 =
S2 ◦S′2.

Proof. Since S1 = S2 and S′1 = S′2, we know that S1(τ) = S2(τ) and S′1(τ) = S′2(τ) for any type τ . But
then S′1(τ) = S′2(τ). Therefore, S1(S′1(τ)) = S2(S′2(τ)) and, by Proposition 4.6, S1(S′1(τ)) = S2(S′2(τ)).
Thus, S1 ◦S′1 = S2 ◦S′2.

4.1 Kinded Unification

We are going to extend the kinded unification algorithm used by Ohori in [17] with rules for unifying
extensible types with type variables and other extensible types.

Definition 4.9. A kinded set of equations is a pair (K,E) consisting of a kind assignment K and a set E
of pairs of types such that E is well formed under K.

Definition 4.10. A substitution S satisfies E if S(τ1) ↓ S(τ2), for all (τ1,τ2) ∈ E.

Definition 4.11. A kinded substitution (K1,S) is a unifier of a kinded set of equations (K,E) if it respects
K and if S satisfies E.

Definition 4.12. (K1,S) is a most general unifier of (K2,E) if it is a unifier of (K2,E) and if for any
unifier (K3,S2) of (K2,E), there is some substitution S3 such that (K3,S3) respects K1 and S2 = S3 ◦S.

The unification algorithm U is defined by transformation. Each rule transforms a 4-tuple of the form
(E,K,S,SK) consisting of a set E of type equations, a kind assignment K, a substitution S, and a (not
necessarily well-formed) kind assignment SK. E keeps the set of equations to be unified; K specifies
kind constraints to be verified; S records “solved” equations in the form of a substitution; and SK records
“solved” kind constraints that have already been verified for S.

In specifying rules, we treat K, SK, and S as sets of pairs. We also use the following notations. Let F
range over functions from a finite set of labels to types. We write {F} and {{Fl ||Fr}} to denote the record
type identified by F and the record kind identified by Fl and Fr, respectively. For two functions F1 and
F2 we write F1 +F2 for the function F such that dom(F) = dom(F1)∪dom(F2) and, for l ∈ dom(F), if
l ∈ dom(F1), then F(l) = F1(l); otherwise, F(l) = F2(l). For those same two functions, we write F1−F2
for the function F such that dom(F) = dom(F1) \ dom(F2) and, for l ∈ dom(F), F(l) = F1(l). For an
extensible type χ , we write Fe(χ) and Fc(χ) for the functions that represent the set of type extensions and
contractions of χ , respectively.

Example 4.13. Let χ = α +{l1 : τ1}−{l2 : τ2}+{l3 : τ3}. Then Fe(χ) is the function (of domain {l1, l3})
that sends l1 to τ1 and l3 to τ3 and Fc(χ) is the function (of domain {l2}) that sends l2 to τ2.
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Definition 4.14. Let (K,E) be a given kinded set of equations. Algorithm U first transforms the system
(E,K, /0, /0) into (E ′,K′,S,SK) until no more rules can be applied. It then returns the pair (K′,S), if
E ′ = /0; otherwise, it fails. Its rules can be found in Figure 2.

Since the constructions present in rule vii) from Definition 4.14 are somewhat intricate, we will state
the following facts in hope that they will help the reader better understand this rule. Let α be type
variable and χ an extensible type, both well formed under some kind assignment K, such that B(χ) =
αχ , K(α) = {{Fl

1 || Fr
1}}, K(αχ) = {{Fl

2 || Fr
2}}. Also, let us assume that dom(Fl

1)∩ dom(Fc(χ)) = /0,
dom(Fr

1)∩dom(Fr
2 +(Fl

2−Fc(χ))) = /0 and α 6∈ FTV(χ):

• Any field that appears in Fl
2 was either introduced by the (Sel), (Modif) or (Contr) rule. This means

that the set of the labels that appear in type contractions of χ is dom(Fc(χ))⊆ dom(Fl
2).

• Any field that appears on Fr
2 was introduced by the (Ext) rule. This means that the set of the labels

that appear in type extensions of χ is dom(Fr
2)⊆ dom(Fe(χ)).

• The set of fields that are guaranteed to appear in a record typed with χ is represented by the
function Fr

2 +(Fl
2−Fc(χ)) and the set of fields that are guaranteed to not appear in a record typed

with χ is represented by the function Fc(χ).

• The set of fields that are guaranteed to exist by K(α), but not by χ , is represented by the function
Fl

1− (Fr
2 +(Fl

2−Fc(χ)))) and the set of fields that are guaranteed not to exist by K(α), but not by
χ , is represented by the function Fr

1−Fc(χ).
Note that we use χ instead of χ in Fc(χ) so that constructing this function is more straightforward. That
being said, to keep proofs simpler, we do not normalize extensible types during unification.
Theorem 4.15. Algorithm U takes any kinded set of equations and computes a most general unifier, if
one exists; otherwise it fails.
Example 4.16. Let K = {α :: {{|| l : α ′′}},α ′ :: {{l : α ′′ ||}},α ′′ :: U }. Then U (K,{(α +{l : α ′′}−{l :
α ′′},α ′−{l : α ′′})}= ({α :: {{l : α ′ ||}}},{(α ′,α +{l : α ′′})}):

({(α +{l : α
′′}−{l : α

′′},α ′−{l : α
′′})},K, /0, /0)

viii)⇒({(α +{l : α
′′},α ′)},K, /0, /0)

vii)⇒( /0,{α :: {{|| l : α
′′}},α ′′ :: U },{(α ′,α +{l : α

′′})},{(α ′,{{l : α
′′ ||}})})

Note that the first transformation is given by rule viii) and not by rule ix). This is the case because
the latter rule can only be applied whenever two extensible types have no matching type extensions or
contractions.

It is true that our unification algorithm introduces an overhead associated with the search of matching
type extensions and contraction (see rules viii) and ix)) when compared with Ohori’s original algorithm.
That being said, we believe that with some care during the algorithm’s implementation this overhead
should be negligible.

4.2 Type Inference

Using the kinded unification, we extend Ohori’s type inference algorithm to the cases of record field
extension and record field removal. The type inference algorithm, WK(K,Γ,M), is defined in Fig-
ure 3. Given a kind assignment K, a type assignment Γ, and a term M, the Type Inference Algorithm
WK(K,Γ,M) returns a tuple (K′,S,σ). It is implicitly assumed that the algorithm fails if unification or
any of the recursive calls fail.
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i) (E ∪{(τ1,τ2)},K,S,SK)⇒ (E,K,S,SK) if τ1 ↓ τ2

ii) (E ∪{(α,τ)},K∪{(α,U )},S,SK)⇒ ([τ/α]E, [τ/α]K, [τ/α](S)∪{(α,τ)}, [τ/α](SK)∪{(α,U )})
if α 6∈ FTV(τ)

iii) (E ∪{(α1,α2)},K∪{(α1,{{Fl
1 || Fr

1}}),(α2,{{Fl
2 || Fr

2}})},S,SK)⇒
([α2/α1](E ∪{(Fl

1(l),F
l
2(l)) | l ∈ dom(Fl

1)∩dom(Fl
2)}∪{(Fr

1(l),F
r
2(l)) | l ∈ dom(Fr

1)∩dom(Fr
2)}),

[α2/α1](K)∪{(α2, [α2/α1]({{Fl
1 +Fl

2 || Fr
1 +Fr

2}}))},
[α2/α1](S)∪{(α1,α2)}, [α2/α1](SK)∪{(α1,{{Fl

1 || Fr
1}})})

if dom(Fl
1)∩dom(Fr

2) = /0 and dom(Fr
1)∩dom(Fl

2) = /0

iv) (E ∪{(α,{F2})},K∪{(α,{{Fl
1 || Fr

1}})},S,SK)⇒
([{F2}/α](E ∪{(Fl

1(l),F2(l)) | l ∈ dom(Fl
1)}),

[{F2}/α](K), [{F2}/α](S)∪{(α,{F2)})}, [{F2}/α](SK)∪{(α,{{Fl
1 || Fr

1}})})
if dom(Fl

1)⊆ dom(F2),dom(Fr
1)∩dom(F2) = /0, and α 6∈ FTV({F2})

v) (E ∪{({F1},{F2})},K,S,SK)⇒ (E ∪{(F1(l),F2(l)) | l ∈ dom(F1)},K,S,SK)

if dom(F1) = dom(F2)

vi) (E ∪{(τ1
1 → τ

2
1 ,τ

1
2 → τ

2
2},K,S,SK)⇒ (E ∪{(τ1

1 ,τ
1
2 ),(τ

2
1 ,τ

2
2 )},K,S,SK)

vii) (E ∪{(α,χ)},K∪{(α,{{Fl
1 || Fr

1}}),(B(χ),{{Fl
2 || Fr

2}})},S,SK)⇒
([χ/α](E ∪{(Fl

1(l),(F
r
2 +(Fl

2−Fc(χ)))(l)) | l ∈ dom(Fl
1)∩dom(Fr

2 +(Fl
2−Fc(χ)))}

∪{(Fr
1(l),Fc(χ)(l)) | l ∈ dom(Fr

1)∩dom(Fc(χ))}),

[χ/α](K)∪{(B(χ), [χ/α]({{Fl
2 +(Fl

1− (Fr
2 +(Fl

2−Fc(χ)))) || Fr
2 +(Fr

1−Fc(χ))}}))},

[χ/α](S)∪{(α,χ)}, [χ/α](SK)∪{(α,{{Fl
1 || Fr

1}})})
if dom(Fl

1)∩dom(Fc(χ)) = /0,dom(Fr
1)∩dom(Fr

2 +(Fl
2−Fc(χ))) = /0, and α 6∈ FTV(χ)

viii) (E ∪{(α1±1
1 {l1

1 : τ
1
1}· · ·±1

i {l1
i : τ

1
i }· · ·±1

n {l1
n : τ

1
n},

α
2±2

1 {l2
1 : τ

2
1}· · ·±2

j {l2
j : τ

2
j }· · ·±2

m {l1
m : τ

2
m})},K,S,SK)⇒

(E ∪{(τ1
i ,τ

2
j ),(α

1±1
1 {l1

1 : τ
1
1}· · ·±1

i−1 {l1
i−1 : τ

1
i−1}±1

i+1 · · ·±1
n {l1

n : τ
1
n},

α
2±2

1 {l2
1 : τ

2
1}· · ·±2

j−1 {l2
j−1 : τ

2
j−1}±2

j+1 · · ·±2
m {l2

m : τ
2
m})},K,S,SK)

if (±1
i =±2

j ∧ l1
i = l2

j ),∀i < k ≤ n : l1
k 6= l2

i , and ∀ j < r ≤ m : l2
r 6= l2

j

ix) (E ∪{(α1±1
1 {l1

1 : τ
1
1}· · ·±1

n {l1
n : τ

1
n},α2±2

1 {l2
1 : τ

2
1}· · ·±2

m {l2
m : τ

2
m})},

K∪{(α1,{{Fl
1 || Fr

1}}),(α2,{{Fl
2 || Fr

2}})},S,SK)⇒
(Six)(E ∪{(Fl

1(l),F
l
2(l)) | l ∈ dom(Fl

1)∩dom(Fl
2)}∪{(Fr

1(l),F
r
2(l)) | l ∈ dom(Fr

1)∩dom(Fr
2)}),

Six)(K)∪{(α,Six)({{Fl
1 +Fl

2 || Fr
1 +Fr

2}})},
Six)(S)∪{(α1,α±2

1 {l2
1 : τ

2
1}· · ·±2

m {l2
m : τ

2
m}),(α2,α±1

1 {l1
1 : τ

1
1}· · ·±1

n {l1
n : τ

1
n})}

Six)(SK)∪{(α1,{{Fl
1 || Fr

1}}),(α2,{{Fl
2 || Fr

2}})})
where Six) = [α±2

1 {l2
1 : τ

2
1}· · ·±2

m {l2
m : τ

2
m}/α1,α±1

1 {l1
1 : τ

1
1}· · ·±1

n {l1
n : τ

1
n}/α2]

if dom(Fl
1)∩dom(Fr

2) = /0,dom(Fr
1)∩dom(Fl

1) = /0,α1 6∈ FTV(α2±2
1 {l2

1 : τ
2
1}· · ·±2

m {l2
m : τ

2
m}),

α2 6∈ FTV(α1±1
1 {l1

1 : τ
1
1}· · ·±1

n {l1
n : τ

1
n}),∀1≤ i≤ n,1≤ j ≤ m, l1

i 6= l1
j and α is fresh

Figure 2: Kinded Unification
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i) WK(K,Γ,x) = if x 6∈ dom(Γ) then fail

else let ∀α1 :: κ1 · · ·∀αn :: κn.τ = Γ(x),

S = [β1/α1, . . . ,βn/αn] (β1, . . . ,βn are fresh)

in (K{β1 :: S(κ1), . . . ,βn :: S(κn)}, id,S(τ))
ii) WK(K,Γ,λx.M) = let (K1,S1,τ1) = WK(K{α :: U },Γ{x : α},M) (α fresh)

in (K1,S1,S1(α)→ τ1)

iii) WK(K,Γ,M1 M2) = let (K1,S1,τ1) = WK(K,Γ,M1)

(K2,S2,τ2) = WK(K1,S1(Γ),M2)

(K3,S3) = U (K2{α :: U },{(S2(τ1),τ2→ α)}) (α fresh)

in (K3,S3 ◦S2 ◦S1,S3(α))

iv) WK(K,Γ, let x = M1 in M2) = let (K1,S1,τ1) = WK(K,Γ,M1)

(K′1,σ) = Cls(K1,S1(Γ),τ1)

(K2,S2,τ2) = WK(K′1,(S1(Γ)){x : σ},M2)

in (K2,S2 ◦S1,τ2)

v) WK(K,Γ,{l1 = M1, . . . , ln = Mn}) =
let (K1,S1,τ1) = WK(K,Γ,M1)

(Ki,Si,τi) = WK(Ki−1,Si−1 ◦ · · · ◦S1(Γ),Mi) (2≤ i≤ n)

in (Kn,Sn ◦ · · · ◦S2 ◦S1,{l1 : Sn ◦ · · · ◦S2(τ1), . . . , li : Sn ◦ · · · ◦Si+1(τi), . . . , ln : τn})
vi) WK(K,Γ,M.l) = let (K1,S1,τ1) = WK(K,Γ,M)

(K2,S2) = U (K1{α1 :: U ,α2 :: {{l : α1 ||}}},{(α2,τ1)}) (α1,α2 fresh)

in (K2,S2 ◦S1,S2(α1))

vii) WK(K,Γ,modify(M1, l,M2)) =

let (K1,S1,τ1) = WK(K,Γ,M1)

(K2,S2,τ2) = WK(K1,S1(Γ),M2)

(K3,S3) = U (K2{α1 :: U ,α2 :: {{l : α1 ||}}},{(α1,τ2),(α2,S2(τ1))}) (α1,α2 fresh)

in (K3,S3 ◦S2 ◦S1,S3(α2))

viii) WK(K,Γ,M \\ l) = let (K1,S1,τ1) = WK(K,Γ,M)

(K2,S2) = U (K1{α1 :: U ,α2 :: {{l : α1 ||}}},{(α2,τ1)}) (α1,α2 fresh)

in (K2,S2 ◦S1,S2(α2−{l : α1}))
ix) WK(K,Γ,extend(M1, l,M2)) =

let (K1,S1,τ1) = WK(K,Γ,M1)

(K2,S2,τ2) = WK(K1,S1(Γ),M2)

in if B(τ1) ∈ FTV(τ2) then fail

else let (K3,S3) = U (K2{α1 :: U ,α2 :: {{|| l : α1}}},{(α1,τ2),(α2,S2(τ1))}) (α1,α2 fresh)

in (K3,S3 ◦S2 ◦S1,S3(α2 +{l : α1}))

Figure 3: Type inference algorithm
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Proposition 4.17. If WK(K,Γ,M) = (K′,S,τ), then τ is in normal form.

Theorem 4.18. The Type Inference Algorithm is sound and complete:

• (Soundness) If WK(K,Γ,M) = (K′,S,τ), then (K′,S) respects K, K′,S(Γ) `M : τ .

• (Completeness)

– If WK(K,Γ,M) = (K′,S,τ) and K0,S0(Γ)`M : τ0, for some (K0,S0) and τ0 such that (K0,S0)
respects K, then there is some S′, such that (K0,S′) respects K′, S′(τ) ↓ τ0, and S0(Γ) =
S′ ◦S(Γ);

– If WK(K,Γ,M) = fail, then there is no (K0,S0) and τ0 such that (K0,S0) respects K and
K0,S0(Γ) `M : τ0.

Example 4.19. Let K = {α1 :: {{|| l : α2}},α2 :: U } and Γ = {x : α1,y : α2}. Then we can apply the type
inference algorithm to extend(x, l,y).l and get the following results:

WK(K,Γ,extend(x, l,y).l) = (K,{(α3,α2),(α4,α1),(α5,α2),(α6,α1 +{l : α2})},α2)

WK(K,Γ,extend(x, l,y)) = (K,{(α3,α2),(α4,α1)},α1 +{l : α2})
WK(K,Γ,x) = (K, id,α1)

WK(K,Γ,y) = (K, id,α2)

5 Related Work

There are several alternative type systems in the literature that deal with polymorphic records with some
form of extensibility. The most common approaches are based on subtyping [5, 13] or row variables [23,
11, 21, 24], but there are also others based on flags [20, 22], predicates [12, 9] and scope variables [16],
to name a few.

The approaches using subtyping [4, 7, 13, 19] have been widely used to build polymorphic type sys-
tems with records, in particular for object-oriented programming languages. However, there are several
issues that arise when combining record polymorphism with a strong mechanism of subtyping. In the the
presence of a subtyping relation (r1 ≤ r2), meaning that r1 contains at least the fields in r2, a selection
operator (_.l) can have a type ∀α.∀β ≤{l : α}.β → α , meaning that a label l can be selected for a record
with type β , if β is a subtype of {l : α}. This leads to additional information on the remaining fields
of β being lost, making it harder to define operations dealing with extensibility. This was overcome
by moving to a second-order type system [5, 6], however the resulting type system relied on explicitly
typed extensible records, yielding a system where type-checking and subtyping are decidable, but type-
inference is not addressed. The existence of a subtyping relation also complicates compilation, (again)
because information on the exact type of a record can be lost, leading to the need of incorporating some
degree of dynamic typing at runtime.

Several approaches dealing with extensibility use Wand’s notion of row variables [23], which are
variables that range over sets of field types, allowing for incremental construction of records. However,
unlike the approach followed in our paper, operations in [23] are unchecked, meaning that, when extend-
ing a row with a field l, one does not check if this introduces a new field or replaces an existing one,
leading to programs for which a principal type does not exist. Flexible systems with extensible records
have been constructed over the mechanism of row variables [20, 22], extended with the notion of flags,
yielding a system with extensible records and principal types. Flags are used to provide information on
which fields the record must have, and which it cannot have. However, despite the flexibility to define
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various powerful operations on records, compilation is not dealt efficiently in the presence of flags, due
in part to the ability to support some unchecked operations.

Harper and Pierce [12] have studied type systems for extensible records where presence and absence
of fields is given by predicates on types, thus leading to a system with checked operations, but without
dealing with type inference or compilation. The use of predicates was further developed by Jones in
his general theory of qualified types [15, 14], where extensible records are presented has a special case.
Building on that is the approach by Gaster and Jones [10, 9] that combines the notion of row variables
with the notion of qualified types, and is perhaps the work that is more closely related to ours. In this
approach, row extension is used to capture positive information about the fields, while predicates are
used to capture negative information, thus avoiding duplicated labels. In our approach both negative and
positive information is given by the kind restrictions, resulting in a type system where constraints on
label addition and label removal are treated in a uniform way.

Building on the work of Wand, Rémy and Gaster and Jones [23, 22, 10], Leijen has developed a
polymorphic type system with extensible records based on scoped labels [16]. In this approach, duplicate
labels are allowed and retained, and an appropriate scoping mechanism is provided to prevent ambiguity
and still allow for safe operations. This provides a notion of free extension where update and extension
operations are clearly separated, yielding a system that is flexible from the user’s point of view. Our
approach does not allow for duplicated labels and uses the kinding restrictions to implement a strict
notion of extensibility.

In addition to record extension, there are several systems that deal with other powerful record oper-
ations such as concatenation [12, 21, 24], or the natural join [3] (an operation largely used in database
programming, where labeled records play an important role). We choose not to include these operation
as they tend to complicate both the implementation and the typing analysis, and simply follow Ohori’s
approach [17], which efficiently supports the basic operations on records, extending it with two basic
operations that support extensibility. Nevertheless, Rémy [21] has developed an encoding of record con-
catenation via record extension, thus proving that a system supporting checked record extension can also
support some form of record concatenation.

Our decision to build our work on Ohori’s record calculus was highly motivated by the existence of
an efficient compilation for such a calculus. This was achieved by translating the polymorphic record
calculus into an implementation calculus, in which records are represented as vectors whose elements
are accessed by direct indexing based on a total order � on the set of labels. Polymorphic functions
containing polymorphic record operations are compiled through the insertion of appropriate index ab-
stractions, indicated by the kinded quantifiers given by the type of the function. Ohori then shows that
this algorithm preserves types and that the compilation calculus has the subject reduction property, thus
showing that the compilation algorithm preserves the operational behaviour of the original polymorphic
record calculus. We believe that an efficient compilation algorithm can also be defined for the calculus
developed in this work because variables still range over complete record types and the negative infor-
mation that was added to kinds only affects type inference, not compilation. For these reasons, it should
be possible to extend the compilation method in [17] to our extensible records.

6 Conclusions and Future Work

We have presented an ML-style polymorphic record calculus with extensible records, developed a typing
system based on the notion of kinded quantification and a sound and complete type inference algorithm,
based on kinded unification. While records are a basic commodity in a variety of programming lan-
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guages, regarding the use of more powerful operations on records, there is still a gap between the theory
and the practice, with no consensus on what is the best approach. With this work, we hope to contribute
to that discussion.

Ohori’s main goal was to support the most common operations dealing with polymorphic records,
while maintaining an efficient compilation method. As already stated in the related work, although we
do not deal with compilation in this paper, this is something that we would like to address in future work.
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