
Simon Bliudze and Saddek Bensalem (Eds):

Methods and Tools for Rigorous System Design (MeTRiD 2018)

EPTCS 272, 2018, pp. 39–51, doi:10.4204/EPTCS.272.4

c© P. Han, Z. Zhai B. Nielsen & U. Nyman

This work is licensed under the

Creative Commons Attribution License.

A Compositional Approach for Schedulability Analysis of

Distributed Avionics Systems

Pujie Han Zhengjun Zhai

School of Computer Science and Engineering
Northwestern Polytechnical University

Xi’an, China

{hanpujie,zhaizjun}@mail.nwpu.edu.cn

Brian Nielsen Ulrik Nyman

Department of Computer Science
Aalborg University
Aalborg, Denmark

{bnielsen,ulrik}@cs.aau.dk

This work presents a compositional approach for schedulability analysis of Distributed Integrated

Modular Avionics (DIMA) systems that consist of spatially distributed ARINC-653 modules con-

nected by a unified AFDX network. We model a DIMA system as a set of stopwatch automata in

UPPAAL to verify its schedulability by model checking. However, direct model checking is infeasi-

ble due to the large state space. Therefore, we introduce the compositional analysis that checks each

partition including its communication environment individually. Based on a notion of message inter-

faces, a number of message sender automata are built to model the environment for a partition. We

define a timed selection simulation relation, which supports the construction of composite message

interfaces. By using assume-guarantee reasoning, we ensure that each task meets the deadline and

that communication constraints are also fulfilled globally. The approach is applied to the analysis of

a concrete DIMA system.

1 Introduction

The architecture of Distributed Integrated Modular Avionics (DIMA) has been successfully applied to

the aviation industry. A DIMA system installs standardized computer modules in spatially distributed

locations[19] that are connected by a unified bus system[3] such as an AFDX network. Avionics ap-

plications residing on the modules run in ARINC-653[1] compliant operating systems. The generic

distributed structure of DIMA significantly improves performance and availability as well as reduces

development and maintenance costs, while it also dramatically increases the complexity of schedulabil-

ity analysis. A schedulable DIMA system should fulfil not only the temporal requirements of real-time

tasks in each ARINC-653 module but also communication constraints among the distributed nodes. As

a result, the system integrators need to consider both computation and communication when analyzing

the schedulability of DIMA architecture.

Currently, model checking approaches have been increasingly developed in the schedulability anal-

ysis of complex real-time systems. However, we found no studies that analyzed the schedulability of

distributed avionics systems as a whole including the network by model checking. The related research

isolates computation modules from their underlying network, thereby considering these nodes as inde-

pendent hierarchical scheduling systems or investigating the network in isolation, which possibly leads to

pessimistic results. There have been works using model-checking to analyze the temporal behavior of in-

dividual avionics modules in various formal models such as Coloured Petri Nets (CPN)[10], preemptive

Time Petri Nets (pTPN)[5], Timed Automata (TA)[2], and StopWatch Automata (SWA)[16, 8], and ver-

ify schedulability properties via state space exploration. Unfortunately, when being applied to concrete

avionics systems, all of them suffer from an inevitable problem of state space explosion. For hierarchi-

cal scheduling systems, some studies[6, 18, 4] exploit the inherent temporal isolation of ARINC-653

http://dx.doi.org/10.4204/EPTCS.272.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

40 A Compositional Approach for Schedulability Analysis of Distributed Avionics Systems

partitions[1] and analyze each partition separately, but they ignore the behavior of the underlying net-

work or the interactions among partitions. Thus these methods are not applicable to DIMA environments

in which multiple distributed ARINC-653 partitions communicate through a shared network to perform

an avionics function together.

In this paper, we present a compositional approach for schedulability analysis of DIMA systems that

are modeled as UPPAAL SWA, i.e. the TA extended with stopwatches. Compared with the clocks in

TA, stopwatches can be blocked and resumed at any location and thus are effective in modeling task

preemption. We decompose the system in such a way that we can check each ARINC-653 partition

including a model of its communication environment individually and then assemble the local results

together to derive conclusions about the schedulability of an entire system. Thereby, we verify a number

of smaller, simpler, abstract systems rather than directly verifying a larger, more complex, concrete

system including the details about all the partitions and the network. The main contributions of this

paper are summarized as follows:

• A compositional approach performs assume-guarantee reasoning[12] to reduce the complexity of

symbolic model-checking in the schedulability analysis of DIMA systems.

• An abstraction relation, timed selection simulation relation, allows users to create a set of abstract

models that collectively describe the external behavior of a concrete model, thereby simplifying

the abstraction in assume-guarantee reasoning.

• A notion of message interfaces decouples the communication dependencies between partitions.

By composing any partition with its related message interfaces and verifying safety properties of

the composition, we can conclude that these properties are still preserved at the global level.

The rest of the paper is organized as follows. Section 2 gives the necessary formal notions. The

UPPAAL modeling of DIMA systems is presented in section 3. Section 4 gives the concept of timed

selection simulation and its properties. In section 5, we detail the compositional analysis approach.

Section 6 shows an experiment on a concrete DIMA system, and section 7 finally concludes.

2 Preliminaries

In this section, we present formal definitions including SWA with an input/output extension and its

semantic object Timed I/O Transition Systems(TIOTSs)[9].

Suppose that C is a finite set of clocks and V is a finite set of integer variables. A valuation u(x) with

x∈C∪V denotes a mapping from C to R≥0 and from V to N. Let LC(C,V) be the set of linear constraints.

A guard g ∈ LC(C,V) is a linear constraint which is defined as a finite conjunction of atomic formulae in

the form of c ∼ n, c−c′ ∼ n or v ∼ n with c,c′ ∈C,v ∈V,n ∈ N, and ∼∈ {>,<,=}. Given any valuation

u, we change the values of clocks and integer variables using an update operation r(u) ∈ 2R in the form

of c = 0 or v = n where c ∈ C,v ∈ V and n ∈ N, and R is the set of all possible update operations. In

addition, we define an action set Σ. All the actions can be subsumed under two sets of unicast actions Σu

and broadcast actions Σb. By contrast, τ /∈ Σ denotes an internal action and Στ = Σ∪{τ}.

Definition 1 (Stopwatch Automaton[7]). A stopwatch automaton is a tuple 〈Loc, l0,C,V,E,Σ, Inv,drv〉
where Loc is a finite set of locations, l0 ∈ Loc is the initial location, C is a finite set of clocks, V is a finite

set of integer variables, E ⊆ Loc×LC(C,V)×Στ ×2R ×Loc is a set of edges, Σ = I⊕O is a finite set of

actions divided into inputs(I) and outputs(O), Inv is a mapping Loc → LC(C,V), and drv is a mapping

Loc×C →{0,1}.

P. Han, Z. Zhai B. Nielsen & U. Nyman 41

From a syntactic viewpoint, SWA belongs to the class of TA extended with drv, which can prevent

part of the clocks from changing in specified locations semantically. We now shift the focus to the

semantic object TIOTS of SWA.

In a TIOTS, there are two types of transitions: delay and action transitions. We use the set D =
{ε(d)|d ∈ R≥0} to denote the delay, and refer to the 0-delay ε(0) as 0.

Definition 2 (Timed I/O Transition System). A timed I/O transition system is a tuple T = 〈S,s0,Σ,→〉
where S is an infinite set of states, s0 is the initial state, Σ = I ⊕O is a finite set of actions divided into

inputs(I) and outputs(O), I ∩O ⊆ Σu, and →⊆ S×Στ ∪D×S is a transition relation. s
a
−→ s′ represents

(s,a,s′) ∈→, which has the properties of time determinism, time reflexivity, and time additivity[9].

For any SWA, a state is defined as a pair 〈l,u〉 where l is a location and u is a valuation over clocks

and integer variables. On the basis of TIOTSs, the operational semantics of SWA is defined as follows.

Definition 3. The operational semantics of a stopwatch automaton A = 〈Loc, l0,C,V,E,Σ, Inv,drv〉 is a

timed I/O transition system T A = 〈S,s0,Σ,→〉 where S is the set of states of A, s0 = 〈l0,u0〉 is the initial

state of A, Σ is the same set of actions as A, and → is the transition relation defined by

• 〈l,u〉
a
−→ 〈l′,u′〉 iff ∃〈l,g,a,r, l′〉 ∈ E (u |= g ∧ u′ = r(u) ∧ u′ |= Inv(l′))

• 〈l,u〉
ε(d)
−−→ 〈l′,u′〉 iff l = l′∧ (∀v ∈V u′(v) = u(v)) ∧ (∀c ∈C (drv(l,c) = 0 ⇒ u′(c) = u(c))) ∧

(∀c ∈C (drv(l,c) = 1 ⇒ u′(c) = u(c)+d)) ∧ u′ |= Inv(l′).

For any transition s
a
−→ s′, two symbols a? and a! denote the action a belonging to input I and output

O respectively. Given a ∈ Σ, s
a
−→ iff ∃s′ ∈ S, s.t. s

a
−→ s′.

τ
−→

∗
or

0
==⇒ denotes the reflexive and transitive

closure of
τ
−→. s

ε(d)
==⇒ s′ iff s

ε(d)
−−→ s′, or ∃s1,s2, . . . ,sn ∈ S, s.t. s

α0−→ s1
α1−→ s2

α2−→ ·· ·
αn−1
−−→ sn

αn−→ s′ and

∀i ∈ {0, . . . ,n}, s.t. αi = τ or αi ∈ D and d = ∑{di|αi = ε(di)}.

The definition of parallel composition ‖ of TIOTSs is similar to that in [9]. Given two TIOTSs

Ti = 〈Si,si,0,Σi,→i〉, i ∈ {1,2}, they are compatible iff they satisfy the following conditions:

• (Unique output) O1 ∩O2 =∅.

• (Deterministic-pair unicast) I1 ∩ I2 ∩Σu =∅.

Note that broadcast actions in the composition of TIOTSs are input-enabled: ∀s ∈ Si ∀a ∈ Ii ∩Σb s
a
−→.

Definition 4 (Parallel Composition). Suppose two timed I/O transition systems T1 = 〈S1,s1,0,Σ1,→1〉
and T2 = 〈S2,s2,0,Σ2,→2〉 are compatible. The parallel composition T1||T2 is the timed I/O transition

system 〈S,s0,Σ,→〉 where S = S1 × S2, s0 = 〈s1,0,s2,0〉, Σ = I1||2 ⊕O1||2, I1||2 = (I1 \ (O2 ∩Σb))∪ (I2 \

(O1 ∩Σb)), O1||2 = O1 ∪O2, and → is the largest relation generated by the following rules:

• INDEP-L:
s1

a
−→ s′1 a ∈ {τ}∪Σ1 \Σ2

〈s1,s2〉
a
−→ 〈s′1,s2〉

INDEP-R:
s2

a
−→ s′2 a ∈ {τ}∪Σ2 \Σ1

〈s1,s2〉
a
−→ 〈s1,s′2〉

• DELAY:
s1

ε(d)
−−→ s′1 s2

ε(d)
−−→ s′2 d ∈ R≥0

〈s1,s2〉
ε(d)
−−→ 〈s′1,s

′
2〉

• SYNC-IN:
s1

a
−→ s′1 s2

a
−→ s′2 a ∈ I1||2

〈s1,s2〉
a
−→ 〈s′1,s

′
2〉

• SYNC-BIO:
s1

a
−→ s′1 s2

a
−→ s′2 a ∈ (I1 ∩O2)∪ (O1 ∩ I2)∩Σb

〈s1,s2〉
a
−→ 〈s′1,s

′
2〉

42 A Compositional Approach for Schedulability Analysis of Distributed Avionics Systems

• SYNC-UIO:
s1

a
−→ s′1 s2

a
−→ s′2 a ∈ I1||2 ∩O1||2

〈s1,s2〉
τ
−→ 〈s′1,s

′
2〉

.

We use Ω to denote the set of TA and SWA in our modeling framework. For any A,B ∈ Ω, we define

the composite model C = A‖B iff their TIOTSs satisfy T C = T A||T B.

3 Avionics System Modeling

We focus on a generic DIMA architecture including a set of ARINC-653 modules connected by an

AFDX network, as shown in Fig.1. There is a three-layer structure in the DIMA system that consists of

scheduling, task, and communication layers.

End System 1

Partition 4 Partition 5

�

Partition 1
Tasks

�

Partition 2
Tasks

�

Partition 3
Tasks

Partitioned OS

Port

End System 2 End System 3

Partitioned OS Partitioned OS

Port Port

Port PortPort Port

VL 1 VL 2 VL 3

Core Module 1

Core Module 2 Core Module 3

AFDX

Network

Figure 1: An Example of DIMA systems

The scheduling layer is defined as the scheduling fa-

cilities for generic computation resources of a DIMA sys-

tem, where standardized computer modules execute concur-

rent application tasks in partitioned operating systems. In

this operating system, partitions are scheduled by a Time

Division Multiplexing (TDM) scheduler and each partition

also has its local scheduling policy, preemptive Fixed Pri-

ority (FP), to manage the internal tasks[1]. The schedul-

ing layer is modeled as two TA templates PartitionSupply

and TaskScheduler in UPPAAL
1 . The PartitionSupply de-

picted in Fig.2 provides the service of TDM partitioning for

a particular partition pid. The TaskScheduler implement-

ing FP scheduling allocates processor time to the task layer

only when the partition is active.

The task layer contains all the application tasks execut-

ing avionics functions. A task is regarded as the smallest

scheduling unit, each of which runs concurrently with other

tasks in the same partition. The execution of a task is mod-

elled as a sequence of commands that are either computing

for a duration, locking/unlocking a resource, or sending/re-

ceiving a message. We consider two task types: periodic tasks and sporadic tasks. A periodic task has

a fixed release period, while a sporadic task is characterized by a minimum separation between consec-

utive jobs. The task layer is instantiated from two SWA templates PeriodicTask and SporadicTask in

UPPAAL. Since the tasks in a partition are scheduled by a task scheduler, we use a set of binary channels

as scheduling actions to communicate between task models and TaskScheduler.

The communication layer carries out inter-partition communication over a common AFDX network.

The AFDX protocol stack realized by an End System(ES) interfaces with the task layer through ARINC-

653 ports. Based on the AFDX protocol structure, the communication layer is further divided into

UDP/IP layer and Virtual Link layer, where a Virtual Link (VL) ensures an upper bound on end-to-end

delay. In UPPAAL, the UDP/IP layer is divided into two TA templates IPTx and IPRx, which calculate

the latency of the UDP/IP layer in a transmitting ES and a receiving ES respectively. Similarly, two TA

templates VLinkTx and VLinkRx model the delay of a VL in opposite directions.

From a global view of the system, its schedulability is also affected by the communication layer.

According to the ARINC-653 standard[1], there are two types of ARINC-653 ports, sampling ports

1Models available at http://eptcs.web.cse.unsw.edu.au/paper.cgi?MARSVPT2018:2

http://eptcs.web.cse.unsw.edu.au/paper.cgi?MARSVPT2018:2

P. Han, Z. Zhai B. Nielsen & U. Nyman 43

Figure 2: The UPPAAL Template of an ARINC-653 Partition Scheduler

and queuing ports. A sampling port can accommodate at most a single message that remains until it is

overwritten by a new message. A refresh period is defined for each sampling port. This attribute provides

a specified arrival rate of messages, regardless of the rate of receiving requests from tasks. In contrast, a

queuing port is allowed to buffer multiple messages in a message queue with a fixed capacity. However,

the operating system is not responsible for handling overflow from the message queue.

In this paper, we verify the following three typical schedulability properties:

• All the tasks meet their deadlines in each partition.

• The refresh period of any sampling port is guaranteed.

• The overflow from any queuing ports must be avoided.

The schedulability of an avionics system is described and verified as a safety property of the above

TA/SWA models. We add a set Err of error locations to the templates. Once schedulability is violated,

the related model will lead itself to one of the error locations immediately. Thus, the schedulability is

replaced with this safety property ϕ :

A[] ¬(
∨

loc∈Err
loc), (1)

which belongs to a simplified subset of TCTL used in UPPAAL.

However, since the verification algorithm inside UPPAAL for SWA introduces a slight over-appr-

oximation[7]2, UPPAAL may sometimes give the verification result “Maybe satisfied” or “May not be

satisfied”. To further refine the result in this case we manually analyse the possible counter example using

UPPAAL’s concrete simulator to determine if the system is unschedulable. Alternatively, the statistical

model-checking (SMC) engine could be invoked to attempt an automatic falsification. In our experiences,

the result only appears when the system is on the very borderline of being schedulable.

4 Timed Selection Simulation

We propose a notion of timed selection simulation relation to support assume-guarantee reasoning. Com-

pared with some other abstraction relations like timed simulation[15] and timed ready simulation[14],

timed selection simulation only abstracts a selected subset of actions from the concrete model. Applying

timed selection simulation to the abstraction of a concrete system, one can pay attention to part of the

system, individually model the behavior of each component, and thereby obtain a composite abstract

model rather than a monolithic one.

Considering the semantic object T A of an automaton A ∈ Ω, we denote the error states of T A by the

set E = {〈l,u〉|l ∈ Err} where Err is the error-location set of A. Thus, for any TIOTS T = 〈S,s0,Σ,→〉,

2Exact reachability for SWA with more than 3 stopwatches is known to be undecidable[7].

44 A Compositional Approach for Schedulability Analysis of Distributed Avionics Systems

its error states are defined as a set E ⊆ S, and the following function g : S → {true, false} indicates

whether a state s ∈ S has violated schedulability properties:

g(s) =

{

true if s ∈ E

false if s 6∈ E .
(2)

Given two compatible TIOTSs Ti, i ∈ {1,2} with the error-state set Ei, their composition T1‖T2 has the

error-state set ET1‖T2
= {〈s1,s2〉|s1 ∈ E1 ∨ s2 ∈ E2} and the function g(〈s1,s2〉) = g(s1)∨g(s2).

Based on the function g(s), the formal definition of timed selection simulation is given as follows.

Definition 5 (Timed Selection Simulation). Let T1 = 〈S1,s1,0,Σ1,→1〉 and T2 = 〈S2, s2,0,Σ2,→2〉 be two

timed I/O transition systems with Σ2 ⊆ Σ1. Let R be a relation from S1 to S2. We call R a timed selection

simulation from T1 to T2, written T1 � T2 via R, provided (s1,0,s2,0) ∈ R and for all (s1,s2) ∈ R,

g(s1) = g(s2) and

1. if s1
a?
−→ s′1 for some s′1 ∈ S1, a ∈ Σ2, then ∃s′2 ∈ S2 such that s2

a?
==⇒ s′2 and (s′1,s

′
2) ∈ R

2. if s1
a!
−→ s′1 for some s′1 ∈ S1, a ∈ Σ2, then ∃s′2 ∈ S2 such that s2

a!
==⇒ s′2 and (s′1,s

′
2) ∈ R

3. if s1
a
−→ s′1 for some s′1 ∈ S1, a ∈ (Σ1 \Σ2)∪{τ}, then ∃s′2 ∈ S2 such that s2

0
==⇒ s′2 and (s′1,s

′
2) ∈ R

4. if s1
ε(d)
−−→ s′1 for some s′1 ∈ S1, d > 0, then ∃s′2 ∈ S2 such that s2

ε(d)
==⇒ s′2 and (s′1,s

′
2) ∈ R.

Definition 6. Let Ai, i ∈ {1,2} be stopwatch automata. We say that A1 � A2, if and only if their corre-

sponding timed I/O transition systems Ti satisfy T1 � T2.

We now give some necessary properties of timed selection simulation.

Theorem 1. Timed selection simulation � is a preorder.

For any automaton A ∈ Ω, by construction, the reachability of its error locations is equivalent to

that of the error states in the corresponding TIOTS T A. Hence the following theorem shows that timed

selection simulation can preserve the satisfaction of the safety properties in the form of Eq.(1).

Theorem 2 (Property preservation). Let Ti, i ∈ { 1,2} be timed I/O transition systems and Ei be the set

of error states of Ti. Given a safety property ϕ : ¬reach(Ei) that any error states are not reachable, if

T1 � T2 and T2 |= ϕ , then T1 |= ϕ .

Theorem 3 (Abstraction compositionality). Let Ti, i ∈ {1,2,3} be timed I/O transition systems. If T1 �
T2, T1 � T3, and T2 and T3 are compatible, then T1 � T2‖T3.

Theorem 4 (Compositionality). Let Ti = 〈Si,si,0, Σi,→i〉, i ∈ {1,2,3,4} be timed I/O transition systems.

Suppose T1‖T3 and T2‖T4 are the parallel compositions of compatible timed I/O transition systems. If

(1) T1 � T2,T3 � T4, and (2) O1 ∩ I4 ⊆ Σ2 ⊆ Σb, I2 ∩O3 ⊆ Σ4 ⊆ Σb, then T1‖T3 � T2‖T4.

5 Compositional Analysis

We apply assume-guarantee reasoning to the schedulability analysis, and describe the schedulability

goal as a safety property ϕ (Eq.(1)). As shown in Fig.3, our compositional analysis is comprised of the

following four steps:

1. Decomposition: The system is first decomposed into a set of communicating partitions modeled

by TA and SWA. The global property ϕ is also divided into several local properties, each of which

belongs to one partition.

P. Han, Z. Zhai B. Nielsen & U. Nyman 45

P1 P2 Pn

φ1

φ

…

…

System Model

Abstraction Assumption Abstraction Assumption Abstraction Assumption

φ2 φn

Message Interfaces

Decomposition

Deduction

Model checking Model checking Model checking

1

2

3

4

Figure 3: Compositional Analysis Procedure

2. Construction of message interfaces: We define message interfaces as the assumption and abstrac-

tion of the communication environment for each partition. In general, the templates of message

interfaces should be built manually by the engineers.

3. Model checking: The local properties under the assumptions and the abstraction relations are

verified by model checking.

4. Deduction: From the assume-guarantee rules, we finally derive the global property by combining

all the local results.

The procedure can be performed automatically except for the first construction of message interfaces.

We assume that a task never blocks while communicating with other partitions, which is commonly

used in avionics systems[11, 6]. Otherwise a loop of communication dependency will cause circular

reasoning, because the assumptions of a partition might be based on its own state recursively.

5.1 Decomposition

Assume that there are n constituent partitions in a system. Let Pi, i ∈ {1,2, . . . ,n} be the SWA composite

model of a partition. Let Erri be the error-location set of Pi. The safety property ϕi: A[] ¬(
∨

loc∈Erri
loc)

denotes the schedulability of Pi. The global property ϕ is therefore written as ϕ1 ∧ϕ2 ∧ ·· ·∧ϕn, and the

goal of our schedulability analysis is expressed as the verification problem:

P1‖P2‖· · · ‖Pn |= ϕ (3)

that can be further divided into n satisfaction relations:

P1‖P2‖· · ·‖Pn |= ϕi, i ∈ {1,2, . . . ,n}. (4)

Since the error-location set Erri is only allowed to be manipulated by Pi, we check each partition

model Pi independently for the corresponding local property ϕi instead of the original verification prob-

lem with a large and complex system. However, the communication environment of Pi, which denotes the

behavior that Pi receives messages from other partitions, may affect the satisfaction of the schedulability

property ϕi. Hence when performing the verification for partition Pi, one needs to give the assumptions

of its communication environment and verifies the local property ϕi under these assumptions.

46 A Compositional Approach for Schedulability Analysis of Distributed Avionics Systems

Figure 4: An Example of a Message Interface

5.2 Construction of message interfaces

A set of TA models is created to describe the message-sending behavior of a partition. Each of the TA is

called a message interface of this partition and associated with a particular message type. Suppose there

are a number of messages sent from partition Pj to another partition Pi and their corresponding message

interfaces make up a composite TA model Ai, j. When we analyze Pi in the compositional way, it should

be safe for Ai, j to replace Pj. Hence, we say that a message interface of Pj is an abstraction of Pj.

Our abstraction of the message delivery between a partition and its underlying network is modelled

using broadcast synchronization. A broadcast action represents a specific message types. Let Σi = Ii⊕Oi

be the action set of a composite model for any partition Pi. An action ak ∈ Ii ∩Σb(resp. ak ∈ Oi ∩Σb)

denotes that Pi receives(resp. sends) messages with the type msgk from(resp. to) other partition(s). The

symbol j ⊲ i represents the condition that there exists a partition Pj sending messages to Pi via an action

set O j⇀i ⊆ Ii ∩O j.

Definition 7 (Message Interface). Let Oi be the output action set of a stopwatch automaton Pi ∈ Ω. For

any output action ak ∈ Oi ∩Σb, the timed automaton Ak
i with an action set Σk

i = Ok
i = {ak} is a message

interface of Pi if and only if there exists a timed selection simulation relation � on Ω such that

Pi � Ak
i . (5)

We build the templates of message interfaces in accordance with the characteristics of message-

sending actions. In practice, the structure of an interface can be designed straightforwardly from the task

specification. The template in Fig.4 shows a message interface that sends messages periodically via the

action array pmsg. Then we make an automatized binary search for the interface’s parameters such as

offset in the template and meanwhile check the satisfaction of timed selection simulation relation.

The message interfaces can serve as the assumptions of the communication environment of a parti-

tion. The composition Ai, j of the message interfaces Ak
j for all ak ∈ O j⇀i provides Pi with a “complete”

abstraction of Pj, which models the behavior of all the output actions from Pj to Pi. According to the

abstraction compositionality (Theorem 3) of the preorder �, we have

Pj � Ai, j. (6)

Considering all the partitions except Pi in the system, we describe the communication environment of Pi

as the composite model
∥

∥

n

j=1, j 6=i
Ai, j.

5.3 Model checking

In the third step, the local property ϕi of Pi under assumption
∥

∥

n

j=1, j 6=i
Ai, j can be verified by model

checking. We denote these n subproblems by

Pi ‖ (
∥

∥

∥

n

j=1, j 6=i
Ai, j) |= ϕi i ∈ {1,2, . . . ,n}. (7)

P. Han, Z. Zhai B. Nielsen & U. Nyman 47

Normally, Ai, j in Eq.(7) has a much smaller model size than its corresponding partition model Pj in

Eq.(4). Thus, the compositional approach allows us to verify a simpler abstract partition model instead

of a complex concrete system model including the details about all the partitions.

In addition, we capture the computation time of each task as an interval between a best-case and

worst-case execution time. When analyzing the schedulability of a partition, the model-checker explores

all scheduling decisions that can be made in such an interval, and hence also examines possible cases of

scheduling timing anomalies[17].

5.4 Deduction

We derive the global property ϕ by combining n local results in the last step. For any schedulable

system, each property ϕi should be concluded from the satisfaction of Eq.(7) under assumptions and

all the abstraction relations of Eq.(6). According to the compositionality (Theorem 4) and property

preservation (Theorem 2) of timed selection simulation, we have the following assume-guarantee rule:

∧

{ j| j⊲i}
Pj � Ai, j

Pi ‖ (
∥

∥

∥

n

j=1, j 6=i
Ai, j) |= ϕi

P1‖P2‖· · · ‖Pn |= ϕi

(8)

Note that this assume-guarantee rule only provides a sufficient schedulability condition, for abstract

message interfaces might slightly over-approximate the external behavior of a partition.

A simplified DIMA system exemplifies the reasoning procedure. In the example, the system model

is decomposed into three partitions Pi, i ∈ {1,2,3}. We divide the global property ϕ into three local

properties ϕi, i ∈ {1,2,3}. Accordingly, the goal of the verification problem is to check

P1‖P2‖P3 |= ϕ1 ∧ϕ2 ∧ϕ3. (9)

From Eq.(4), this problem can be replaced with three subproblems:

P1‖P2‖P3 |= ϕi, i ∈ {1,2,3}. (10)

Without loss of generality, we take the verification of ϕ1 for example to show how the model-

checking and deduction are carried out in the following steps.

Assume that P2 sends P1 two types of messages, msg1 and msg2, via two actions a1 and a2 respec-

tively, and P3 sends P1 only a msg3 with action a3. We create one message interface Ak
j, j ∈ {2,3}(like

Eq.(5)) for each message type msgk(k ∈ {1,2,3}) received by P1 in the system. The abstraction relations

from Eq.(5) can be expressed as

P2 � A1
2, P2 � A2

2, P3 � A3
3. (11)

From abstraction compositionality of the preorder �, we can obtain

P2 � A1
2‖A2

2, P3 � A3
3. (12)

Then, from reflexivity and compositionality of the preorder �, the composite model of the system satis-

fies

P1‖P2‖P3 � P1‖A1
2‖A2

2‖A3
3. (13)

Note that when we apply the compositionality to checking a partition Pi, any output actions sent to Pi

will never be removed in abstraction relations (Eq.(12)), which satisfies the condition (2) of theorem 4.

48 A Compositional Approach for Schedulability Analysis of Distributed Avionics Systems

With Eq.(13), we have from property preservation of the abstraction relation � that if

P1‖A1
2‖A2

2‖A3
3 |= ϕ1, then (14)

P1‖P2‖P3 |= ϕ1. (15)

Since Eq.(15) covering all three partitions in the system has a higher complexity than Eq.(14), the

techniques of model checking can be adopted to verify the simpler problem Eq.(14) instead of the original

goal Eq.(15). The same steps will be repeated for local properties ϕ2 and ϕ3.

Consequently, we conclude all the local results of (10) according to the reasoning process from

Eq.(11) to Eq.(15). When we analyze the partition P1 and its communication environment, the local

result of Eq.(15) can be deduced from Eq.(11) and Eq.(14) in the following assume-guarantee rule.

P2 � A1
2 ∧P2 � A2

2 ∧P3 � A3
3

P1‖A1
2‖A2

2‖A3
3 |= ϕ1

P1‖P2‖P3 |= ϕ1

(16)

The local results are then combined to constitute the global result of Eq.(9).

6 Case Study

In this section, we applies the compositional approach to an avionics system which combines the work-

load of [6] and the AFDX configuration of [13]. The workload consists of 5 partitions, and further divided

into 18 periodic tasks and 4 sporadic tasks. Considering the inter-partition messages in the workload, we

assign each message type Msgi, i = {1,2,3,4} a separate VL with the same subscript. The messages of

Msg1 and Msg2 are handled at the refresh period 50ms in sampling ports. Msg3 and Msg4 are configured

to operate in queuing ports, each of which can accommodate a maximum of one message.

As shown in Fig.5, we consider the distributed architecture that comprises 3 ARINC-653 modules

connected by an AFDX network. The module M1 accommodates P1 and P2, the module M2 executes P3

and P5, and the partition P4 is allocated to M3. There are 4 VLs V1-V4 connecting 3 ESs across 2 switches

S1 and S2 in the AFDX network. The arrows above VLs’ names indicate the direction of message flow.

P1 P2

P3

P4

P5

ES1

M1

ES2

M2

ES3

M3

V1

V2

V3

V4

V1 V2 V3

V4

V1

V1 V2 V3

V4
S1 S2

P1 P2

P3

P4

P5

M1

M2

M3

0 5 10 15 20 25

Major Time Frame

Time / ms

Figure 5: The Distributed Avionics Deployment and Partition Schedules (Times in Milliseconds)

The avionics system equips each of its processor cores with a partition schedule. Assume the mod-

ules in the experiment to be single-processor platforms. Fig.5 gives the partition schedules, which fix

a common major time frame Tm f at 25ms and allocate 5ms to each partition within every Tm f . All the

partition schedules are enabled at the same initial instant. The scheduling configuration keeps the tem-

poral order of the partitions in [6]. Hence the partition schedules contain five disjoint windows 〈P1,0,5〉,

P. Han, Z. Zhai B. Nielsen & U. Nyman 49

〈P2,5,5〉, 〈P3,10,5〉, 〈P4,15,5〉, and 〈P5,20,5〉, where the second parameter is the offset from the start of

Tm f and last the duration.

We analyze the schedulability of this avionics system following the procedure in section 5:

(1) Decomposition: The system is first decomposed into five sets of SWA template instances cor-

responding to five partitions. The schedulability of any partition Pi, i = {1,2,3,4,5} is described as the

UPPAAL query qi:

A[] not perror[i], (17)

where the boolean variable perror[i] should be assigned to True once any error locations are reached

in Pi. When analyzing the schedulability of Pi, we only instantiate the set of SWA template instances

of Pi into UPPAAL processes. This set contains two scheduler models coming from PartitionSupply

and TaskScheduler, all the PeriodicTask and SporadicTask models in Pi, and the communication layer

models from which Pi receives messages.

(2) Construction of message interfaces: The message interfaces are constructed from the template

depicted in Fig.4, for all the messages originate in periodic tasks. There are four unknown parameters

period, initOffset, offset, and jitter in the template. Initially, the parameters of a message interface

are set to the same values as these of the source task. Then we employ a binary search to heuristically

refine offset and jitter, meanwhile guaranteeing timed selection simulation relation exists.

(3) Model checking: The schedulability of five partitions is checked individually. After combining

the models of Pi and its message interfaces, we verify the property qi by model checking in UPPAAL.

The verification was repeated for each partition to evaluate the schedulability of a complete system.

The experiment was executed on the UPPAAL 4.1.19 64-bit version and an Intel Core i7-5600U laptop

processor.

(4) Deduction: According to the assume-guarantee rule described in Eq.(8), we conclude the schedu-

lability of the complete system from the results of the verification of five partitions.

Results of the Analysis

The result in Table 1 shows that each partition is separately schedulable (The results “Yes” of Case 1)

except the partition P3 (The result “No”). From a global view, we cannot conclude directly that the system

is non-schedulable, because the compositional approach described in section 5 only provides a sufficient

condition for schedulability. Nevertheless, we find a counter-example by simulation in UPPAAL, and

thus it can be concluded that the current system is not schedulable. The counter-example shows that P3

violates the constraint of the refresh period of Msg2 due to network latency.

Considering the effect of network latency on the scheduling configuration, we updated the partition

schedules by performing a swap of time slots between P1 and P2. The modified partition schedules pro-

vide five windows 〈P1,5,5〉, 〈P2,0,5〉, 〈P3,10,5〉, 〈P4,15,5〉, and 〈P5,20,5〉. The compositional analysis

of the updated system was executed again. The result (Case 2 in Table 1) shows that all the partitions of

the updated system are individually schedulable. Thus, the updated system finally achieves the schedu-

lability at the global level.

Table 1 also shows the performance in terms of execution time and memory usage. In both cases,

the partition P3 contains more instantiated models (19 processes) than the other four partitions. As a

result, model-checking runs evidently slower and requires more memory than the others. Nevertheless,

the compositional analysis could be performed on ordinary computers within an acceptable time.

Compared with the compositional way, global analysis based on the same UPPAAL models would

require 51 processes including all the 22 task models, whose state space is much more complex than

the others. This causes UPPAAL to run out of memory within a few minutes, and thus makes the global

50 A Compositional Approach for Schedulability Analysis of Distributed Avionics Systems

Table 1: The Experiment Results (Result), Execution Time (Time/sec.) and Memory Usage (Mem/MB)

No.
Case 1 Case 2

Result Time Mem Result Time Mem

P1 Yes 7.46 146 Yes 6.07 105

P2 Yes 0.95 46 Yes 1.10 52

P3 No 42.94 664 Yes 256.48 3041

P4 Yes 0.69 43 Yes 0.68 43

P5 Yes 19.41 509 Yes 128.56 2041

analysis infeasible. In contrast, the compositional approach only requires at most 5 task models when

we perform model checking, offering effective state space reduction.

7 Conclusion

In this paper, we present a compositional approach for schedulability analysis of DIMA systems, which

are modeled as a set of stopwatch automata in UPPAAL, describing schedulability as safety properties

of models. We check each ARINC-653 partition including its communication environment individually,

thereby reducing the complexity of model-checking. The techniques presented in this paper are appli-

cable to the design of DIMA scheduling systems. We have applied the compositional approach to a

concrete DIMA system. As future work, we plan to develop a model-based approach to the automatic

optimization and generation of the partition schedules of a DIMA system.

References

[1] AEEC (2010): Avionics application software standard interface: part 1 - required services. ARINC Specifi-

cation 653P1-3, Aeronautical Radio Inc.

[2] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson & Wang Yi: TIMES: a tool for

schedulability analysis and code generation of real-time systems. In: FORMATS 2003, doi:10.1007/

978-3-540-40903-8_6.

[3] Björn Annighöfer & Frank Thielecke (2014): A systems architecting framework for distributed integrated

modular avionics. DGLR, doi:10.1007/s13272-015-0156-1.

[4] Jalil Boudjadar, Kim Guldstrand Larsen, Jin Hyun Kim & Ulrik Nyman: Compositional schedulability anal-

ysis of an avionics system using UPPAAL. In: AASE 2014.

[5] Laura Carnevali, Giuseppe Lipari, Alessandro Pinzuti & Enrico Vicario: A formal approach to design and

verification of two-level hierarchical scheduling systems. In: RST 2011, doi:10.1007/BF00360340.

[6] Laura Carnevali, Alessandro Pinzuti & Enrico Vicario (2013): Compositional verification for hierarchical

scheduling of real-time systems. IEEE Transactions on Software Engineering 39(5), pp. 638–657, doi:10.

1109/TSE.2012.54.

[7] Franck Cassez & Kim Larsen: The impressive power of stopwatches. In: CONCUR 2000, doi:10.1007/

3-540-44618-4_12.

[8] Franco Cicirelli, Angelo Furfaro, Libero Nigro & Francesco Pupo: Development of a schedulability analysis

framework based on pTPN and UPPAAL with stopwatches. In: DSRA 2012, doi:10.1109/DS-RT.2012.

16.

http://dx.doi.org/10.1007/978-3-540-40903-8_6
http://dx.doi.org/10.1007/978-3-540-40903-8_6
http://dx.doi.org/10.1007/s13272-015-0156-1
http://dx.doi.org/10.1007/BF00360340
http://dx.doi.org/10.1109/TSE.2012.54
http://dx.doi.org/10.1109/TSE.2012.54
http://dx.doi.org/10.1007/3-540-44618-4_12
http://dx.doi.org/10.1007/3-540-44618-4_12
http://dx.doi.org/10.1109/DS-RT.2012.16
http://dx.doi.org/10.1109/DS-RT.2012.16

P. Han, Z. Zhai B. Nielsen & U. Nyman 51

[9] Alexandre David, Kim G Larsen, Axel Legay, Ulrik Nyman & Andrzej Wasowski: Timed I/O automata: a

complete specification theory for real-time systems. In: HSCC 2010, doi:10.1145/1755952.1755967.

[10] RB Dodd (2006): Coloured petri net modelling of a generic avionics mission computer. Technical Report,

DTIC.

[11] Arvind Easwaran, Insup Lee, Oleg Sokolsky & Steve Vestal: A compositional scheduling framework for

digital avionics systems. In: RTCSA 2009, doi:10.1109/RTCSA.2009.46.

[12] Orna Grumberg & David Long (1994): Model checking and modular verification. Toplas 16(3), pp. 843–871,

doi:10.1145/177492.177725.

[13] J Javier Gutiérrez, J Carlos Palencia & Michael González Harbour (2014): Holistic schedulability analysis for

multipacket messages in AFDX networks. Real-Time Systems 50(2), doi:10.1007/s11241-013-9192-2.

[14] Henrik Jensen (1999): Abstraction-based verification of distributed systems. Ph.D. thesis, Aalborg university.

[15] Henrik Jensen, Kim Larsen & Arne Skou: Scaling up UPPAAL. In: FTRFS 2000, doi:10.1007/

3-540-45352-0_4.

[16] Marius Mikučionis, Kim Larsen, Jacob Rasmussen, Brian Nielsen, Arne Skou, Steen Palm, Jan Pedersen

& Poul Hougaard: Schedulability analysis using UPPAAL: Herschel-Planck case study. In: ISoLA 2010,

doi:10.1007/978-3-642-16561-0_21.

[17] Jan Reineke, Björn Wachter & Stefan Thesing et al.: A definition and classification of timing anomalies. In:

WCET 2006.

[18] Youcheng Sun, Giuseppe Lipari, Romain Soulat, Laurent Fribourg & Nicolas Markey: Component-based

analysis of hierarchical scheduling using linear hybrid automata. In: RTCSA 2014, doi:10.1109/RTCSA.

2014.6910502.

[19] Guoqing Wang & Qingfan Gu: Research on distributed integrated modular avionics system architecture

design and implementation. In: DASC 2013, doi:10.1109/dasc.2013.6712647.

http://dx.doi.org/10.1145/1755952.1755967
http://dx.doi.org/10.1109/RTCSA.2009.46
http://dx.doi.org/10.1145/177492.177725
http://dx.doi.org/10.1007/s11241-013-9192-2
http://dx.doi.org/10.1007/3-540-45352-0_4
http://dx.doi.org/10.1007/3-540-45352-0_4
http://dx.doi.org/10.1007/978-3-642-16561-0_21
http://dx.doi.org/10.1109/RTCSA.2014.6910502
http://dx.doi.org/10.1109/RTCSA.2014.6910502
http://dx.doi.org/10.1109/dasc.2013.6712647

	1 Introduction
	2 Preliminaries
	3 Avionics System Modeling
	4 Timed Selection Simulation
	5 Compositional Analysis
	5.1 Decomposition
	5.2 Construction of message interfaces
	5.3 Model checking
	5.4 Deduction

	6 Case Study
	7 Conclusion

