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Deadlocks occur in concurrent programs as a consequence of cyclic resource acquisition between
threads. In this paper we present a novel type system that guarantees deadlock freedom for a lan-
guage with references, unstructured locking primitives, and locks which are implicitly associated
with references. The proposed type system does not impose a strict lock acquisition order and thus
increases programming language expressiveness.

1 Introduction

Lock-based synchronization may give rise to deadlocks. Twoor more threads are deadlocked when each
of them is waiting for a lock that is acquired by another thread. According to Coffmanet al. [4], a set of
threads reaches adeadlocked statewhen the following conditions hold:

- Mutual exclusion: Threads claim exclusive control of the locks that they acquire.
- Hold and wait: Threads already holding locks may request (and wait for) new locks.
- No preemption: Locks cannot be forcibly removed from threads; they must bereleased explicitly

by the thread that acquired them.
- Circular wait: Two or more threads form a circular chain, where each threadwaits for a lock held

by the next thread in the chain.

Coffman has identified three strategies that guarantee deadlock-freedom by denying at least one of
the above conditionsbeforeor during program execution:

- Deadlock prevention: At each point of execution,ensurethat at least one of the above conditions
is not satisfied. Thus, programs that fall into this categoryare correct by design.

- Deadlock detection and recovery: A dedicated observer threaddetermineswhether the above con-
ditions are satisfied and preempts some of the deadlocked threads, releasing (some of) their locks,
so that the remaining threads can make progress.

- Deadlock avoidance: Using information that is computed in advance regarding thread resource
allocation,determinewhether granting a lock will bring the program to anunsafestate, i.e., a state
which can result in deadlock, and only grant locks that lead to safe states.

Several type systems have been proposed that guarantee deadlock freedom, the majority of which is
based on the first two strategies. In the deadlock preventioncategory, one finds type and effect systems
that guarantee deadlock freedom by statically enforcing a global lock acquisition order that must be
respected by all threads [6, 2, 10, 12, 13]. In this setting, lock handles are associated with type-level lock
names via the use of singleton types. Thus, handlelkı is of typelk(ı). The same applies to lock handle
variables. The effect system tracks the order of lock operations on handles or variables and determines
whether all threads acquire locks in the same order.
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Using a strict lock acquisition order is a constraint we wantto avoid, as it unnecessarily rejects many
correct programs. It is not hard to come up with an example that shows that imposing a partial order on
locks is too restrictive. The simplest of such examples can be reduced to program fragments of the form:

(lock x in . . . lock y in . . .) || (lock y in . . . lock x in . . .)

In a few words, there are two parallel threads which acquire two different locks,x andy, in reverse order.
When trying to find a partial order≤ on locks for this program, the type system or static analysistool
will deduce thatx≤ y must be true, because of the first thread, and thaty ≤ x must be true, because of
the second. Thus, the program will be rejected, both in the system of Flanagan and Abadi which requires
annotations [5] and in the system of Kobayashi which employsinference [10] as there is no single lock
order for both threads. Similar considerations apply to the more recent works of Suenaga [12] and
Vasconceloset al. [13] dealing with non lexically-scoped locks.

Our work follows the third strategy (deadlock avoidance). It is based on an idea put forward recently
by Boudol, who proposed a type system for deadlock avoidancethat is more permissive than existing
approaches [1]. However, his system is suitable for programs that useexclusivelylexically-scoped lock-
ing primitives. In this paper we present a simple language with functions, mutable references, explicit
(de-)allocation constructs and unstructured (i.e., non lexically-scoped) locking primitives. Our approach
ensures deadlock freedom for the proposed language by preserving exact information about the order of
events, both statically and dynamically. It also forms the basis for a much simpler approach to provid-
ing deadlock freedom, following a quite different path, that is easier to program and amenable to type
inference, which has been implemented for C/pthreads [9].

In the next section, we informally describe Boudol’s idea and present an informal overview of our
type and effect system. In Section 3 we formally define the syntax of our language, its operational
semantics and the type and effect system. In Section 4 we reason about the soundness of our system and
the paper ends with a few concluding remarks.

2 Deadlock Avoidance

Recently, Boudol developed a type and effect system for deadlock freedom [1], which is based ondead-
lock avoidance. The effect system calculates for each expression the set of acquired locks and annotates
lock operations with the “future” lockset. The runtime system utilizes the inserted annotations so that
each lock operation can only proceed when its “future” lockset is unlocked. The main advantage of
Boudol’s type system is that it allows a larger class of programs to type check and thus increases the
programming language expressiveness as well as concurrency by allowing arbitrary locking schemes.

The previous example can be rewritten in Boudol’s language as follows, assuming that the only lock
operations in the two threads are those visible:

(lock{y} x in . . . lock∅ y in . . .) || (lock{x} y in . . . lock∅ x in . . .)

This program is accepted by Boudol’s type system which, in general, allows locks to be acquired inany
order. At runtime, the first lock operation of the first threadmust ensure thaty has not been acquired
by the second (or any other) thread, before grantingx (and symmetrically for the second thread). The
second lock operations need not ensure anything special, asthe future locksets are empty.

The main disadvantage of Boudol’s work is that locking operations have to be lexically-scoped. In
fact, as we show here, even if Boudol’s language hadlock/unlock constructs, instead oflock . . .in . . .,
his type system is not sufficient to guarantee deadlock freedom. The example program inFigure 1(a) will
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let f = λ x.λy.λz. lock{y} x; x := x+1;
lock{z} y; y := y+ x;
unlock x;
lock∅ z; z := z+y;
unlock z;
unlock y

in f a a b

(a) before substitution

lock{a} a; a := a+1;
lock{b} a; a := a+a;
unlock a;
lock∅ b; b := b+a;
unlock b;
unlock a

(b) after substitution

Figure 1: An example program, which is well typed before substitution (a) but not after (b).

help us see why: It updates the values of three shared variables,x, y andz, making sure at each step that
only the strictly necessary locks are held.1

In our naı̈vely extended (and broken, as will be shown) version of Boudol’s system, the program in
Figure 1(a) will type check. The future lockset annotationsof the three locking operations in the body
of f are{y}, {z} and∅, respectively. (This is easily verified by observing the lock operations between a
specificlock/unlock pair.) Now, functionf is used by instantiating bothx andy with the same variable
a, and instantiatingz with a different variableb. The result of this substitution is shown in Figure 1(b).
The first thing to notice is that, if we want this program to work in this case, locks have to bere-entrant.
This roughly means that if a thread holds some lock, it can tryto acquire the same lock again; this will
immediately succeed, but then the thread will have to release the locktwice, before it is actually released.

Even with re-entrant locks, however, the program in Figure 1(b) does not type check with the present
annotations. The firstlock for a now matches with thelast (and not the first)unlock; this means thata
will remain locked during the whole execution of the program. In the meantimeb is locked, so the future
lockset annotation of the firstlock should containb, but it does not. (The annotation of the secondlock
containsb, but blocking there if lockb is not available does not prevent a possible deadlock; locka has
already been acquired.) So, the technical failure of our na¨ıvely extended language is that the preservation
lemma breaks. From a more pragmatic point of view, if a threadrunning in parallel already holdsb and,
before releasing it, is about to acquirea, a deadlock can occur. The naı̈ve extension of Boudol’s system
also fails for another reason: it is based on the assumption that calling a function cannot affect the set of
locks held by a thread. This is obviously not true, if non lexically-scoped locking is to be supported.

The type and effect system proposed in this paper supports unstructured locking, by preserving more
information at the effect level. Instead of treating effects as unordered collections of locks, our type
system precisely tracks effects as an order oflock andunlock operations, without enforcing a strict
lock-acquisition order. Thecontinuation effect of a term represents the effect of the function code suc-
ceeding that term. In our approach, lock operations are annotated with a continuation effect. When a
lock operation is evaluated, the future lockset is calculated byinspecting its continuation effect. The
lock operation succeeds only when both the lock and the future lockset are available.

Figure 2 illustrates the same program as in Figure 1, except that locking operations are now annotated
with continuation effects. For example, the annotation [y+, x−, z+, z−, y−] at the firstlock operation
means that in the future (i.e., after this lock operation)y will be acquired, thenx will be released, and so
on.2 If x andy were different, the runtime system would deduce that between thislock operation onx

1To simplify presentation, we assume here that there is one implicit lock per variable, which has the same name. This is
more or less consistent with our formalization in Section 3.

2In the examples of this section, a simplified version of effects is used, to make presentation easier. In the formalism of
Section 3, the plus and minus signs would be encoded as differences in lock counts, e.g.,y+ would be encoded by ay1,0 (an
unlockedy) followed in time by ay1,1 (a lockedy).
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let f = λ x.λy.λz. lock[y+, x−,z+,z−,y−] x; x := x+1;
lock[x−,z+,z−,y−] y; y := y+ x;
unlock x;
lock[z−,y−] z; z := z+y;
unlock z;
unlock y

in f a a b

(a) before substitution

lock[a+,a−,b+,b−,a−] a; a := a+1;
lock[a−,b+,b−,a−] a; a := a+a;
unlock a;
lock[b−,a−] b; b := b+a;
unlock b;
unlock a

(b) after substitution

Figure 2: The program of Figure 1 with continuation effect annotations; now well typed in both cases.

and the correspondingunlock operation, onlyy is locked, so the future lockset in Boudol’s sense would
be {y}. On the other hand, ifx andy are instantiated with the samea, the annotation becomes [a+, a−,
b+, b−, a−] and the future lockset that is calculated is now the correct{a,b}. In a real implementation,
there are several optimizations that can be performed (e.g., pre-calculation of effects) but we do not deal
with them in this paper.

There are three issues that must be faced, before we can applythis approach to a full programming
language. First, we need to consider continuation effects in an interprocedural manner: it is possible
that a lock operation in the body of functionf matches with an unlock operation in the body of function
g after the point wheref was called, directly or indirectly. In this case, the futurelockset for the lock
operation may contain locks that are not visible in the body of f . We choose to compute function effects
intraprocedurally and to annotate each application term with a continuation effect, which represents the
effect of the code succeeding the application term in the calling function’s body. A runtime mechanism
pushes information about continuation effects on the stack and, if necessary, uses this information to
correctly calculate future locksets, taking into account the continuation effects of the enclosing contexts.

Second, we need to support conditional statements. The tricky part here is that, even in a simple
conditional statement such as

if c then (lock x; ... unlock x) else (lock y; ... unlock y)

the two branches have different effects: [x+, x−] and [y+, y−], respectively. A typical type and effect
system would have to reject this program, but this would be very restrictive in our case. We resolve this
issue by requiring that theoverall effect of both alternatives is the same. This (very roughly) means that,
after the plus and minus signs cancel each other out, we have equal numbers of plus or minus signs for
each lock in both alternatives. Furthermore, we assign thecombinedeffect of the two alternatives to
the conditional statement, thus keeping track of the effect of both branches; in the example above, the
combined effect is denoted by [x+, x−]? [y+, y−].

The third and most complicated issue that we need to face is support for recursive functions. Again,
consider a simple recursive function of the form

fix f . λ x. if c then (... f (y) ...) else ...

Let us callγ f the effect of f andγb the computed effect for the body off . It is easy to see thatγb

mustcontainγ f and, if any lock/unlock operations are present in the body off , γb will be strictly larger
than γ f . Again, a typical type and effect system would require thatγb = γ f and reject this function
definition. We resolve this issue by computing asummaryof γb and requiring that the summary is equal
to γ f . In computing the summary, we can make several simplifications that preserve the calculation of
future locksets for operations residingoutsidefunction f . For instance, we are not interested whether a
lock is acquired and released many times or just once, we are not interested in the exact order in which
lock/unlock pairs occur, and we can flatten branches.
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Expression e ::= x | f | (e e)ξ | (e) [r] | e := e
| deref e | let ρ, x= ref ein e
| share e | release e | lockγ e
| unlock e | () | popγ e | locı
| if ethen eelse e | true | false

Value v ::= f | () | locı | true | false

Function f ::= λx.eas τ
γ
−→τ | Λρ. f | fix x : τ. f

Type τ ::= 〈〉 | τ
γ
−→τ | ∀ρ.τ

| ref(τ, r) | bool

Location r ::= ρ | ı@n | ρ@n

Calling mode ξ ::= seq(γ) | par

Capability κ ::= n,n | n,n

Effect γ ::= ∅ | γ, rκ | γ,γ?γ

Figure 3: Language syntax.

3 Formalism

The syntax of our language is illustrated in Figure 3, wherex andρ range over term and “region” vari-
ables, respectively. Similarly to our previous work [7], a region is thought of as a memory unit that
can be shared between threads and whose contents can be atomically locked. In this paper, we make
the simplistic assumption that there is a one-to-one correspondence between regions and memory cells
(locations), but this is of course not necessary.

The language core comprises of variables (x), constants (the unit value,true andfalse), functions
( f ), and function application. Functions can be location polymorphic (Λρ. f ) and location application
is explicit (e[ρ]). Monomorphic functions (λx.e) must be annotated with their type. The application of
monomorphic functions is annotated with acalling mode(ξ), which isseq(γ) for normal (sequential)
application andpar for parallel application. Notice that sequential application terms are annotated with
γ, thecontinuation effectas mentioned earlier. The semantics of parallel application is that, once the pa-
rameters have been evaluated and substituted, the function’s body is moved to a new thread of execution
and the spawning thread can proceed with the remaining computation in parallel with the new thread.
The termpopγ e encloses a function bodye and can only appear during evaluation. The same applies
to constant locationsı@n, which cannot exist at the source-level. The constructlet ρ, x = ref e1 in e2

allocates a fresh cell, initializes it toe1, and associates it with variablesρ andx within expressione2. As
in other approaches, we useρ as the type-level representation of the new cell’s location. The reference
variablex has the singleton typeref(ρ,τ), whereτ is the type of the cell’s contents. This allows the
type system to connectx andρ and thus to statically track uses of the new cell. As will be explained
later, the cell can be consumed either by deallocation or by transferring its ownership to another thread.
Assignment and dereference operators are standard. The valuelocı represents a reference to a location
ı and is introduced during evaluation. Source programs cannot containlocı.

At any given program point, each cell is associated with acapability (κ). Capabilities consist of two
natural numbers, thecapability counts: thecell referencecount, which denotes whether the cell is live,
and thelock count, which denotes whether the cell has been locked to provide the current thread with ex-
clusive access to its contents. Capability counts determine the validity of operations on cells. When first
allocated, a cell starts with capability (1,1), meaning that it is live and locked, which provides exclusive
access to the thread which allocated it. (This is our equivalent of thread-local data.) Capabilities can be
eitherpure (n1,n2) or impure(n1,n2). In both cases, it is implied that the current thread can decrement
the cell reference countn1 times and the lock countn2 times. Similarly tofractional permissions[3],
impure capabilities denote that a location may be aliased. Our type system requires aliasing information
so as to determine whether it is safe to pass lock capabilities to new threads.

The remaining language constructs (share e, release e, lockγ e and unlock e) operate on a
referencee. The first two constructsincrementanddecrementthe cell reference count ofe respectively.
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Configuration C ::= S;T

Store S ::= ∅ | S, ı 7→ v

Threads T ::= ∅ | T,n:θ;e

Locations ǫ ::= ∅ | ǫ, ı

Access Lists θ ::= ∅ | θ, ı 7→ n;n;ǫ;ǫ

Stack E ::= � | E[F]

Frame F ::= (� e)ξ | (v �)ξ | (�) [r] | let ρ, x = ref � in e
| deref � | � := e | v := � | share � | release �
| lockγ � | unlock � | popγ �

| if � then e1 else e2

Reduction relation C {C′

v′ ≡ λx.e1 as τ1
γa
−→τ2 freshn′ (θ1, θ2) = split(θ , max(γa))

S;T,n:θ;E[(v′ v)par] { S;T,n:θ1;E[()] ,n′ :θ2;�[(v′ v)seq(min(γa))]
(E-SN)

∀ı. θ(ı) = (0,0)

S;T,n:θ; () { S;T
(E-T)

v′ ≡ λx.e1 as τ
′

S;T,n:θ;E[(v′ v)seq(γb)] { S;T,n:θ;E[popγb
e1[v/x]]

(E-A)
S;T,n:θ;E[popγ v] { S;T,n:θ;E[v]

(E-PP)

freshn2

S;T,n:θ;E[(Λρ. f )[ı@n1]]
{ S;T,n:θ;E[ f [ı@n2/ρ]]

(E-RP)
S;T,n:θ;E[(fix x : τ. f v)seq(γa)]
{ S;T,n:θ;E[( f [fix x : τ. f /x] v)seq(γa)]

(E-FX)

S;T,n:θ;E[if true then e1 else e2]
{ S;T,n:θ;E[e1]

(E-IT)
S;T,n:θ;E[if false then e1 else e2]

{ S;T,n:θ;E[e2]

(E-IF)

freshı@n1 S′ = S, ı 7→ v θ′ = θ, ı 7→ 1;1;∅;∅

S;T,n:θ;E[let ρ, x = ref v in e2] { S′;T,n:θ′;E[e2[ı@n1/ρ][locı/x]]
(E-NG)

θ(ı) ≥ (1,1) ı < locked(T)

S;T,n:θ;E[locı := v] { S[ı 7→ v]; T,n:θ;E[()]
(E-AS)

θ(ı) ≥ (1,1) ı < locked(T)

S;T,n:θ;E[deref locı] { S;T,n:θ;E[S(ı)]
(E-D)

θ(ı) ≥ (1,0) θ′ = θ +ı (1,0)

S;T,n:θ;E[share locı] { S;T,n:θ′;E[()]
(E-SH)

θ(ı) ≥ (1,0) θ(ı) = (n1,n2)
n1 = 1⇒ n2 = 0 θ′ = θ +ı (−1,0)

S;T,n:θ;E[release locı] { S;T,n:θ′;E[()]
(E-RL)

ǫ = lockset(ı,1,E[popγ1
�]) θ = θ′′, ı 7→ n1;0;ǫ1;ǫ2

θ′ = θ′′, ı 7→ n1;1;dom(S);ǫ n1 ≥ 1 locked(T)∩ ǫ = ∅

S;T,n:θ;E[lockγ1 locı] { S;T,n:θ′;E[()]
(E-LK0)

θ(ı) ≥ (1,1) θ′ = θ +ı (0,1)

S;T,n:θ;E[lockγ1 locı] { S;T,n:θ′;E[()]
(E-LK1)

θ(ı) ≥ (1,1) θ′ = θ +ı (0,−1)

S;T,n:θ;E[unlock locı] { S;T,n:θ′;E[()]
(E-UL)

Figure 4: Operational semantics.

Similarly, the latter two constructsincrementanddecrementthe lock count ofe. As mentioned earlier,
the runtime system inspects the lock annotationγ to determine whether it is safe to locke.

3.1 Operational Semantics

We define asmall-stepoperational semantics for our language in Figure 4.3 The evaluation relation
transformsconfigurations. A configurationC consists of an abstractstore Sand a thread mapT.4 A store
S maps constant locations (ı) to values (v). A thread mapT associates thread identifiers to expressions
(i.e., threads) and access lists. Anaccess listθ maps location identifiers toreferenceandlock counts.

3Due to space limitations, some of the functions and judgements that are used by the operational and (later) the static
semantics are not formally defined in this paper. Verbal descriptions are given in the Appendix. A full formalization is given in
the companion technical report [8].

4The order of elements in comma-separated lists, e.g., in a storeS or in a list of threadsT, is unimportant; we consider all
list permutations as equivalent.
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A frame F is an expression with ahole, represented as�. The hole indicates the position where
the next reduction step can take place. Athread evaluation context E, is defined as a stack of nested
frames. Our notion of evaluation context imposes a call-by-value evaluation strategy to our language.
Subexpressions are evaluated in a left-to-right order. We assume that concurrent reduction events can
be totally ordered [11]. At each step, arandomthread (n) is chosen from the thread list for evaluation.
Therefore, the evaluation rules arenon-deterministic.

When a parallel function application redex is detected within the evaluation context of a thread, a
new thread is created (ruleE-SN). The redex is replaced with a unit value in the currently executed
thread and a new thread is added to the thread list, with afresh thread identifier. The calling mode of
the application term is changed from parallel to sequential. The continuation effect associated with the
sequential annotation equals the resulting effect of the function being applied (i.e.,min(γa)). Notice,
that θ is divided into two listsθ1 andθ2 using the new thread’s initial effectmax(γa) as a reference for
consuming the appropriate number of counts fromθ. On the other hand, when evaluation of a thread
reduces to a unit value, the thread is removed from the threadlist (rule E-T). This is successfuly only if
the thread has previously released all of its resources.

The rule for sequential function application (E-A ) reduces an application redex to apop expression,
which contains the body of the function and is annotated withthe same effect as the application term.
Evaluation propagates throughpop expressions (ruleE-PP), which are only useful for calculating future
locksets in ruleE-LK0. The rules for evaluating the application of polymorphic functions (E-RP) and
recursive functions (E-FX) are standard, as well as the rules for evaluating conditionals (E-IT andE-IF).

The rules for reference allocation, assignment and dereference are straightforward. RuleE-NG
appends a fresh locationı (with initial value v) and the dynamic count (1,1) to S and θ respectively.
RulesE-AS andE-D require that the location (ı) being accessed is both live and accessible and no other
thread has access toı. Therefore dangling memory location accesses as well as unsynchronized accesses
cause the evaluation to getstuck. Furthermore, the rulesE-SH, E-RL andE-UL manipulate a cell’s
reference or lock count. They are also straightforward, simply checking that the cell is live and (in the
case ofE-UL) locked. RuleE-RL makes sure that a cell is unlocked before its reference countcan be
decremented to zero.

The most interesting rule isE-LK0, which applies when the reference being locked (ı) is initially
unlocked. The future lockset (ǫ) is dynamically computed, by inspecting the preceding stack frames (E)
as well as the lock annotation (γ1). The locksetǫ is a list of locations (and thus locks). The reference
ı must be live and no other thread must hold eitherı or any of the locations inǫ. Upon success, the
lock count ofı is incremented by one. On the other hand, ruleE-LK1 applies whenı has already been
locked by the current thread (that tries to lock it again). This immediately succeeds and the lock count is
incremented by one.

3.2 Static Semantics

We now present our type and effect system and discuss the most interesting parts. Effects are used to
statically track the capability of each cell. An effect (γ) is anordered listof elements of the formrκ and
summarizes the sequence of operations (e.g., locking or sharing) on references. The syntax of types in
Figure 3 (on page 48) is more or less standard: Atomic types consist of base types (the unit type, denoted
by 〈〉, andbool); reference typesref(τ, r) are associated with a type-level cell namer and monomorphic
function types carry aneffect. Figure 5 contains the typing rules. The typing relation is denoted by
M;∆;Γ ⊢ e : τ&(γ;γ′), whereM;∆;Γ is the typing context,e is an expression,τ is the type attributed
to e, γ is the input effect, andγ′ is theoutput effect. In the typing context,M is a mapping of constant
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Typing relation M;∆;Γ ⊢ e : τ&(γ;γ′)

⊢ M;∆;Γ;γ;γ

M;∆;Γ ⊢ () : 〈〉&(γ;γ)
(T-U)

⊢ M;∆;Γ;γ;γ

M;∆;Γ ⊢ true : bool&(γ;γ)
(T-TR)

⊢ M;∆;Γ;γ;γ

M;∆;Γ ⊢ false : bool&(γ;γ)
(T-FL)

⊢ M;∆;Γ;γ;γ
(x : τ′) ∈ Γ τ ≃ τ′

M;∆;Γ ⊢ x : τ&(γ;γ)
(T-V)

⊢ M;∆;Γ;γ;γ τ′ ≡ τ1
γb
−→τ2 M;∆ ⊢ τ′ τ ≃ τ′

seq(∅) ⊢ γb⇒ M;∆;Γ, x : τ1 ⊢ e1 : τ2 &(min(γb);γb)

M;∆;Γ ⊢ λx.e1 as τ
′ : τ&(γ;γ)

(T-F)

M;∆,ρ;Γ ⊢ f : τ&(γ;γ)

M;∆;Γ ⊢ Λρ. f : ∀ρ.τ&(γ;γ)
(T-RF)

M;∆ ⊢ r M ;∆ ⊢ τ[r/ρ] M;∆;Γ ⊢ e1 : ∀ρ.τ&(γ;γ′)

M;∆;Γ ⊢ (e1) [r] : τ[r/ρ]&( γ;γ′)
(T-RP)

M;∆;Γ ⊢ e1 : τ1
γa
−→τ2 &(γ3;γ′) ξ ⊢ γ2 = γ⊕γa

M;∆;Γ ⊢ e2 : τ1 &(γ2;γ3) ξ = par⇒ τ2 = 〈〉

M;∆;Γ ⊢ (e1 e2)ξ : τ2 &(γ;γ′)
(T-A)

M;∆;Γ ⊢ e : τ′&(min(γb);γb) γb ≃ γ
′
b

seq(γ) ⊢ γ′ = γ⊕γ′b τ′ ≃ τ ⊢ M;∆;Γ;γ;γ′

M;∆;Γ ⊢ popγ e : τ&(γ;γ′)
(T-PP)

τ ≡ τ1
γb
−→τ2 τ′ ≡ τ′1

γ′a
−→τ′2 τ ≃ τ′ γa ≃ γ

′
a

M;∆;Γ, x : τ ⊢ f : τ′&(γ;γ) γb = summary(γa)

M;∆;Γ ⊢ fix x : τ. f : τ&(γ;γ)
(T-FX)

⊢ M;∆;Γ;γ;γ
(ı 7→ τ′) ∈ M τ ≃ ref(τ′, ı)

M;∆;Γ ⊢ locı : τ&(γ;γ)
(T-L)

M;∆;Γ ⊢ e1 : τ1 &(γ1 \ρ;γ′) γ1(ρ) = (1,1) M;∆ ⊢ τ M;∆,ρ;Γ, x : ref(τ1,ρ) ⊢ e2 : τ&(γ,ρ0,0;γ1)

M;∆;Γ ⊢ let ρ, x = ref e1 in e2 : τ&(γ;γ′)
(T-NG)

M;∆;Γ ⊢ e1 : ref(τ, r)&(γ1;γ′)
M;∆;Γ ⊢ e2 : τ&(γ;γ1) γ(r) ≥ (1,1)

M;∆;Γ ⊢ e1 := e2 : 〈〉&(γ;γ′)
(T-AS)

γ(r) ≥ (1,1)
M;∆;Γ ⊢ e1 : ref(τ, r)&(γ;γ′)

M;∆;Γ ⊢ deref e1 : τ&(γ;γ′)
(T-D)

M;∆;Γ ⊢ e : ref(τ, r)&(γ, rκ−(1,0);γ′)
κ ≥ (2,0) γ(r) = κ

M;∆;Γ ⊢ share e : 〈〉&(γ;γ′)
(T-SH)

M;∆;Γ ⊢ e : ref(τ, r)&(γ, rκ+(1,0);γ′)
κ = (n1,n2) n1 = 0⇒ n2 = 0 γ(r) = κ

M;∆;Γ ⊢ release e : 〈〉&(γ;γ′)
(T-RL)

M;∆;Γ ⊢ e : ref(τ, r)&(γ, rκ−(0,1);γ′)
κ ≥ (1,1) γ(r) = κ

M;∆;Γ ⊢ lockγ e : 〈〉&(γ;γ′)
(T-LK)

M;∆;Γ ⊢ e : ref(τ, r)&(γ, rκ+(0,1);γ′)
κ ≥ (1,0) γ(r) = κ

M;∆;Γ ⊢ unlock e : 〈〉&(γ;γ′)
(T-UL)

M;∆;Γ ⊢ e1 : bool&(γ,γ2?γ3;γ′) max(γ :: γ2) =max(γ :: γ3)
M;∆;Γ ⊢ e2 : τ&(γ;γ :: γ2) M;∆;Γ ⊢ e3 : τ&(γ;γ :: γ3)

M;∆;Γ ⊢ if e1 then e2 else e3 : τ&(γ;γ′)
(T-IF)

Figure 5: Typing rules.

locations to types,∆ is a set of cell variables, andΓ is a mapping of term variables to types.
Lock operations and sequential application terms are annotated with the continuation effect. This

imposes the restriction that effects must flow backwards. The input effectγ to an expressione is indeed
the continuation effect; it represents the operations that follow the evaluation of e. On the other hand,
the output effect γ′ represents the combined operations ofe and its continuation. The typing relation
guarantees that the input effect is always aprefixof the output effect.

The typing rulesT-U , T-TR, T-FL , T-V , T-L , T-RF andT-RP are almost standard, except for the
occasional premiseτ≃ τ′ which allows the type system to ignore the identifiers used for location aliasing
and, for example, treat the typesı@n1 andı@n2 as equal. The typing ruleT-F checks that, if the effect
γb that is annotated in the function’s type is well formed, it isindeed the effect of the function’s body. On
the other hand, the typing ruleT-A for function application has a lot more work to do. It joins the input
effect γ (i.e., the continuation effect) and the function’s effect γa, which contains the entire history of
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events occurring in the function body; this is performed by the premiseξ ⊢ γ2 = γ⊕γa, which performs
all the necessary checks to ensure that all the capabilitiesrequired in the function’s effectγa are available,
that pure capabilities are not aliased, and, in the case of parallel application, that no lock capabilities are
split and that the resulting capability of each location is zero. RuleT-PP works as a bridge between
the body of a function that is being executed and its calling environment. RuleT-FX uses the function
summary to summarize the effect of the function’s body and to check that the type annotation indeed
contains the right summary. The effect summary is conservatively computed as the set of locks that are
acquired within the function body; the unmatched lock/unlock operations are also taken into account.

Rule T-NG for creating new cells passes the input effect γ to e2, the body oflet, augmented by
ρ0,0. This means that, upon termination ofe2, both references and locks ofρ must have been consumed.
The output effect ofe2 is aγ1 such thatρ has capability (1,1), which implies that whene2 starts being
evaluatedρ is live and locked. The input effect of the cell initializer expressione1 is equal to the output
effect of e2 without any occurrences ofρ. RulesT-AS and T-D check that, before dereferencing or
assigning to cells, a capability of at least (1,1) is held. RulesT-SH, T-RL, T-LK andT-UL are the ones
that modify cell capabilities. In each rule,κ is the capability after the operation has been executed. In the
case ofT-RL , if the reference count for a cell is decremented to zero, then all locks must have previously
been released. The last rule in Figure 5, and probably the least intuitive, isT-IF . Supposeγ is the input
(continuation) effect to a conditional expression. Thenγ is passed as the input effect to both branches.
We know that the outputs of both branches will haveγ as a common prefix; ifγ2 andγ3 are the suffixes,
respectively, thenγ2?γ3 is the combined suffix, which is passed as the input effect to the conditione1.

4 Type Safety

In this section we present proof sketches for the fundamental theorems that prove type safety of our
language.5 The type safety formulation is based on provingprogress, deadlock freedomandpreservation
lemmata. Informally, a program written in our language is safe when for each thread of execution either
an evaluation step can be performed, or the thread is waitingto acquire a lock (blocked). In addition,
there must not exist any threads that have reached a deadlocked state. As discussed in Section 3.1, a
thread may become stuck when it performs an illegal operation, or when it references a location that has
been deallocated, or when it accesses a location that has notbeen locked.

Thread Typing. Let E[e] be the body of a thread and letθ be the thread’saccess list. Thread typing is
defined by the rule:

M;∆;Γ ⊢ e : τ&(γa;γb) M;∆;Γ ⊢ E : τ
γa;γb
−→ 〈〉&(γ1;γ2)

∀rκ ∈ γ1. κ = (0,0) counts ok(E[popγb
�], θ) lockset ok(E[popγb

�], θ)

M;∆;Γ ⊢t θ;E[e] : 〈〉&(γ1;γ2)
(EA)

First of all, thread typing implies the typing ofE[e].
Secondly, thread typing establishes an exact correspondence between counts of the access listθ and

counts ofpop expression annotations that reside in the evaluation context E[popγb
�] (i.e., counts ok

(E[popγb
�], θ)). The typing derivations ofeandE establish an exact correspondence between the anno-

tations ofpop expressions and static effects. Therefore, for each locationı in θ, the dynamic reference
and lock counts ofı are identical to the static counts ofı deduced by the type system.

Thirdly, thread typing enforces the invariant that the future lockset of an acquired lock at any pro-
gram point isalwaysa subset of the future lockset computed when the lock was initially acquired (i.e.,

5The complete proofs are given in the companion technical report [8].
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lockset ok(E[popγb
�], θ)). This invariant is essential for establishing deadlock freedom. Finally, all

locations must be deallocated and released when a thread terminates (∀rκ ∈ γ1. κ = (0,0)).

Process Typing. A collection of threadsT is well typed if each thread inT is well typed and thread
identifiers are distinct:

M ⊢ ∅

M;∅;∅ ⊢t θ;e : 〈〉&(γ;γ′) M ⊢ T n< dom(T)

M ⊢ T,n:θ;e

Store Typing. A storeS is well typed if there is a one-to-one correspondence between S and M and
all stored values are closed and well typed:

dom(M) = dom(S) ∀(ı 7→ τ) ∈ M.M;∅;∅ ⊢ S(ı) : τ&(∅;∅)

M ⊢ S
Configuration Typing. A configurationS;T is well typedwhen bothT andS are well typed, and locks
are acquired by at most one thread (i.e.,mutex(T) holds).

M ⊢ T M ⊢ S mutex(T)

M ⊢ S;T

Deadlocked State. A set of threadsn0, . . . ,nk, wherek> 0, has reached adeadlocked state, when each
threadnı has acquired lockℓ(ı+1)mod (k+1) and is waiting for lockℓı.

Not Stuck. A configurationS;T is not stuckwhen each thread inT can take one of the evaluation steps
in Figure 4 or it is trying to acquire a lock which (either itself or its future lockset) is unavailable (i.e.,
blocked(T,n) holds).

Given these definitions, we can now present the main results of this paper.Progress, deadlock free-
domandpreservationare formalized at theprogramlevel, i.e., for all concurrently executed threads.

Lemma 1 (Deadlock Freedom) If the initial configuration takes n steps, where each step iswell typed,
then the resulting configuration has not reached a deadlocked state.

Proof. Let us assume thatz threads have reached a deadlocked state and letm ∈ [0,z− 1], k = (m+
1) modzando= (k+1) modz. According to definition ofdeadlocked state, threadmacquires lockık and
waits for lockım, whereas threadk acquires lockıo and waits for lockık. Assume thatm is the first of the
z threads that acquires a lock so it acquires lockık, before threadk acquires lockıo.

Let us assume thatSy;Ty is the configuration onceıo is acquired by threadk for the first time,ǫ1y is
the corresponding lockset ofıo (ǫ1y = lockset(ıo,1,E[popγy

�])) and ǫ2y is the set of all heap locations
(ǫ2y = dom(Sy)) at the timeıo is acquired. Then,ık does not belong toǫ1y, otherwise threadk would have
been blocked at the lock request ofıo asık is already owned by threadm.

Let us assume that when threadk attempts to acquireık, the configuration is of the formSx;Tx.
According to the assumption of this lemma that all configurations are well typed soSx;Tx is well-typed
as well. By inversion of the typing derivation ofSx;Tx, we obtain the typing derivation of threadnk :
θk;Ek[lockγ′k locık]: lockγ′k locık is well-typed with input-output effect (γ′k;γ

′′
k ), whereκ = γ′k(ık@n′),

κ ≥ (1,1), γ′′ = γ′k, (ık@n′)κ−(1,0), and lockset ok(Ek[popγ′′k �], θk) holds, whereθk is the access list of
threadk. lockset ok(Ek[popγ′′k �], θk) implies lockset(ıo,n2,Ek[popγ′′k �]) ∩ ǫ1 ⊆ ǫ2, whereθk = θ′k, ıo 7→
n1;n2;ǫ1;ǫ2 (notice thatn2 is positive,ǫ2 = ǫ1y andǫ1 = ǫ2y — this is immediate by the operational steps
from Sy;Ty to Sx;Tx and ruleE-LK0).

We have assumed thatm is the first thread to lockık at some step beforeSy;Ty, thusık ∈ dom(Sy) (the
store can only grow — this is immediate by observing the operational semantics rules). By the definition
of locksetfunction and the definition ofγ′′k we have thatık ∈ lockset(ıo,n2,Ek[popγ′′k �]). Therefore,

ık ∈ lockset(ıo,n2,Ek[popγ′′k �])∩dom(Sy) ⊆ ǫ1y, which is a contradiction. �
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Lemma 2 (Progress) If S;T is a well typed configuration, then S;T is not stuck.

Proof. It suffices to show that for any thread inT, a step can be performed orblockpredicate holds for
it. Let n be an arbitrary thread inT such thatT = T1,n:θ;e for someT1. By inversion of the typing
derivation ofS;T we have thatM;∅;∅ ⊢t θ;e : 〈〉&(γ;γ′), mutex(T), andM ⊢ S.

If e is avaluethen by inversion ofM;∅;∅ ⊢t θ;e : 〈〉&(γ;γ′), we obtain thatγ = γ′, E[e] = �[()] and
∀ı.θ(ı) = (0,0), as a consequence of∀rκ ∈ γ.κ = (0,0) andcounts ok(�[popγ �], θ). Thus, ruleE-T can
be applied.

If e is not a value then it can be trivially shown (by induction on the typing derivation ofe) that there
exists a redexu and an evaluation contextE such thate= E[u]. By inversion of the thread typing deriva-

tion for e we obtain thatM;∅;∅ ⊢ u : τ&(γa;γb), M;∅;∅ ⊢ E : τ
γa;γb
−→ 〈〉&(γ;γ′), counts ok(E[popγb

�], θ)
hold.

Then, we proceed by perfoming a case analysis onu (we only consider the most interesting cases):

Case (λx.e′ as τ v)par: it suffices to show that (θ1, θ2) = split(θ , max(γc)) is defined, whereγc is the
nnotation of typeτ. If max(γc) is empty, then the proof is immediate from the base case ofsplit
function. Otherwise, we must show that for allı, the countθ(ı) is greater than or equal to the
sum of all (ı@n)κ in max(γc). This can be shown by consideringpar ⊢ γb = γa⊕ γc (i.e., themax
counts inγc are less than or equal to themaxcounts inγb), which can be obtained by inversion
of the typing derivation of (λx.e′ as τ v)par, and the exact correspondence between static (γb) and
dynamic counts (i.e,counts ok(E[popγb

�], θ)). Thus, ruleE-SN can be applied to perform a
single step.

Caseshare locı: counts ok(E[popγb
�], θ) establishes an exact correspondence between dynamic and

static counts. The typing derivation implies thatγa(ı@n1) ≥ (2,0), for somen1 existentially bound
in the premise of the derivation. Therefore,θ(ı) ≥ (1,0). It is possible to perform a single step using
rule E-SH. The cases forrelease locı andunlock locı can be shown in a similar manner.

Caselockγa locı: similarly to the case we can show thatθ(ı) = (n1,n2) and n1 is positive. If n2 is
positive, ruleE-LK1 can be applied. Otherwise,n2 is zero. Letǫ be equal tolocked(T1) ∩
lockset(ı,1,E[popγa

�]). If ǫ is empty then ruleE-LK0 can be applied in order to perform a single
step. Otherwise,blocked(T,n) predicate holds and the configuration is not stuck.

Casederef locı: it can be trivially shown (as in the previous case ofshare that we provedθ(ı) ≥
(1,0)), thatθ(ı) ≥ (1,1) and sincemutex(T1,n:θ;E[deref locı]) holds, thenı < locked(T1) and
thus ruleE-D can be used to perform a step. The case oflocı := v can be shown in a similar
manner. �

Lemma 3 (Preservation) Let S;T be a well-typed configuration with M⊢ S;T. If the operational
semantics takes a step S;T { S′;T′, then there exists M′ ⊇ M such that the resulting configuration is
well-typed with M′ ⊢ S′;T′.

Proof. We proceed by case analysis on the thread evaluation relation (we only consider a few cases due
to space limitations):

CaseE-A : RuleE-A impliesS′ =S, T′ = T,n:θ;E[popγa
e1[v/x]] ande= (λx.e1 as τ1

γc
−→τ2 v)

seq(γa)
.

By inversion of the configuration typing assumption we have thatmutex(T,n:θ;E[e]) andM;∅;∅ ⊢t
θ;E[e] : 〈〉&(γ;γ′) hold. It suffices to show thatmutex(T,n:θ;E[popγa

e1[v/x]]) and M;∅;∅ ⊢t
θ;E[popγa

e1[v/x]] : 〈〉&(γ;γ′) hold. The former is immediate frommutex(T,n:θ;E[e]) as no new
locks are acquired. Now we proceed with the latter, which canbe shown by proving thatM;∅;∅ ⊢
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popγa
e1[v/x] : τ′2&(γa;γb) holds. By inversion on the thread typing derivationE[e] we have

M;∅;∅ ⊢ v : τ′1&(γb;γb), seq(γa) ⊢ γb = γa⊕γ
′
c andM;∅;∅ ⊢ λx.e1 as τ1

γc
−→τ2 : τ′1

γ′c
−→τ′2&(γb;γb),

whereτ′1
γ′c
−→τ′2 ≃ τ1

γc
−→τ2. We can use proof by induction on the expression typing relation to

show that ifv is well typed withτ′1, then it is also well typed withτ1 provided thatτ1 ≃ τ′1.
Therefore,M;∅;∅ ⊢ v : τ1&(γb;γb) holds. By inversion of the function typing derivation we ob-
tain thatseq(∅) ⊢ γc⇒ M;∅;∅, x : τ1 ⊢ e1 : τ2 &(min(γc);γc). seq(∅) ⊢ γ′c (premise ofseq(γa) ⊢
γb = γa⊕ γ

′
c) andγc ≃ γ

′
c imply that seq(∅) ⊢ γc holds, thusM;∅;∅, x : τ1 ⊢ e1 : τ2 &(min(γc);γc)

holds. By applying the standard value substitution lemma onthe new typing derivation ofv we
obtain thatM;∅;∅ ⊢ e1[v/x] : τ2 &(min(γc);γc) holds. The application of ruleT-PP implies that
M;∅;∅ ⊢ popγa

e1[v/x] : τ′2 &(γa;γb) holds.

CaseE-LK0, E-LK1, E-UL , E-SH and E-RL: these rules generate side-effects as they modify the
reference/lock count of locationı. We provide a single proof for all cases. Hence, we are as-
suming here thatu (i.e. in E[u]) has one of the following forms:lockγ1 locı, unlock locı
share locı or release locı. RulesE-LK0, E-LK1, E-UL , E-SH andE-RL imply that S′ = S,
T′ = T,n:θ′;E[()], where () replacesu in contextE andθ differs with respect toθ′ only in the one
of the counts ofı (i.e., θ′ = θ[ı 7→ θ(ı)+ (n1,n2)] andγa(r)− κ = (n1,n2) — γa is the input effect of
E[u]).

By inversion of the configuration typing assumption we have that:

- mutex(T,n:θ;E[u]): In the case ofE-UL , E-SH, E-LK1 andE-RL no new locks are acquired.
Thus,mutex(T,n:θ′;E[()]) holds. In the case of ruleE-LK0, a new lockı is acquired (i.e.,
when the lock count ofı is zero) the precondition ofE-LK0 suggests that no other thread
holdsı: locked(T)∩ lockset(ı,1,E[popγa

�]) = ∅. Thus,mutex(T,n:θ′;E[()]) holds.

- M;∅;∅ ⊢t θ;E[u] : 〈〉&(γ;γ′): By inversion we have thatM;∅;∅ ⊢ E : 〈〉
γa;γb
−→ 〈〉&(γ;γ′) and

M;∅;∅ ⊢ u : 〈〉&(γa;γb), whereγb = γa, (ı@n′)κ for somen′. It can be trivially shown from
the latter derivation thatM;∅;∅ ⊢ () : 〈〉&(γa;γa). We can obtain from the typing derivation of

E (proof by induction) thatM;∅;∅ ⊢ E : 〈〉
γa;γa
−→ 〈〉&(γ;γ′′), whereγ′ = γ′′, (ı@n′)κ.

- lockset ok(E[popγb
�], θ) andcounts ok(E[popγb

�], θ): By the definition oflocksetfunc-
tion it can be shown thatlockset(j,nb,E[popγa

�]) ⊆ lockset(j,nb,E[popγb
�]) for all j , ı

in the domain ofθ′ (nb is the lock count ofj in θ). The same applies forj = ı in the case of
rulesE-SH, E-RL as the lock count ofı is not affected. In the case of rulesE-LK0, E-LK1,
E-UL we havelockset(ı,nb±1,E[popγa

�]), but this is identical tolockset(ı,nb,E[popγb
�])

by the definition oflockset. Thereforelockset ok(E[popγa
�], θ′) holds. The predicate

countsok (E[popγb
�], θ) enforces the invariant that the static counts are identical to the

dynamic counts (θ) of ı. The lock count ofθ is modified by±1 andγa differs with respect to
γb by (ı@n′)κ. We can use this fact to show thatcounts ok(E[popγa

�], θ′). �

Lemma 4 (Multi-step Program Preservation) Let S0;T0 be a closed well-typed configurationfor
some M0 and assume that S0;T0 evaluates to Sn;Tn in n steps. Then for allı ∈ [0,n] Mı ⊢ Sı;Tı holds.

Proof. Proof by induction on the number of stepsn using Lemma 3. �

Theorem 1 (Type Safety) Let expression e be the initial program and let the initial typing context M0

and the initial program configuration S0;T0 be defined as follows: M0 = ∅, S0 = ∅, and T0 = {0 : ∅;e}.
If S0;T0 is well-typed in M0 and the operational semantics takes any number of steps S0;T0 {

n Sn;Tn,
then the resulting configuration Sn;Tn is not stuck and Tn has not reached a deadlocked state.
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Proof. The application of Lemma 4 to the typing derivation ofS0;T0 implies that for all steps from zero
to n there exists anMı such thatMı ⊢ Sı;Tı. Therefore, Lemma 1 implies that¬deadlocked(Tn) and
Lemma 2 impliesSn;Tn is not stuck. �

Typing the initial configurationS0;T0 with the empty typing contextM0 guarantees that all functions
in the program are closed and that no explicit location values (locı) are used in the original program.

5 Concluding Remarks

The main contribution of this work is type-based deadlock avoidance for a language with unstructured
locking primitives and the meta-theory for the proposed semantics. The type system presented in this
paper guarantees that well-typed programs will not deadlock at execution time. This is possible by
statically verifying that program annotations reflect the order of future lock operations and using the
annotations at execution time to avoid deadlocks. The main advantage over purely static approaches to
deadlock freedom is that our type system accepts a wider class of programs as it does not enforce a total
order on lock acquisition. The main disadvantages of our approach is that it imposes an additional run-
time overhead induced by the future lockset computation andblocking time (i.e., both the requested lock
and its future lockset must be available). Additionally, insome cases threads may unnecessarily block
because our type and effect system is conservative. For example, when a thread locksx and executes a
lengthy computation (without acquiring other locks) before releasingx, it would be safe to allow another
thread to locky even ifx is in its future lockset.

We have shown that this is a non-trivial extension for existing type systems based on deadlock avoid-
ance. There are three significant sources of complexity: (i)lock acquisition and release operations may
not be properly nested, (ii) lock-unlock pairs may span multiple contexts: function calls that contain lock
operations may not alwaysincreasethe size of lockset, but insteadlimit the lockset size. In addition,
future locksets must be computed in a context-sensitive manner (stack traversal in our case), and (iii) in
the presence of location (lock) polymorphism and aliasing,it is very difficult for a static type system even
to detect the previous two sources of complexity. To addresslock aliasing without imposing restrictions
statically, we defer lockset resolution until run-time.

Acknowledgement

This research is partially funded by the programme for supporting basic research (ΠEBE 2010) of the National
Technical University of Athens, under a project titled “Safety properties for concurrent programming languages.”

References

[1] Gérard Boudol (2009):A Deadlock-Free Semantics for Shared Memory Concurrency. In Martin Leucker &
Carroll Morgan, editors:Proceedings of the International Colloquium on Theoretical Aspects of Computing,
LNCS 5684, Springer, pp. 140–154, doi:10.1007/978-3-642-03466-4_9.

[2] Chandrasekhar Boyapati, Robert Lee & Martin Rinard (2002): Ownership Types for Safe Programming:
Preventing Data Races and Deadlocks. In: Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, ACM Press, New York, NY, USA, pp. 211–
230, doi:10.1145/582419.582440.

http://dx.doi.org/10.1007/978-3-642-03466-4_9
http://dx.doi.org/10.1145/582419.582440


P. Gerakios, N. Papaspyrou, and K. Sagonas 57

[3] John Boyland (2003):Checking Interference with Fractional Permissions. In Radhia Cousot, editor:Static
Analysis: Proceedings of the 10th International Symposium, LNCS2694, Springer, pp. 55–72, doi:10.1007/
3-540-44898-5_4.

[4] Edward G. Coffman, Jr., Michael J. Elphick & Arie Shoshani (1971):System Deadlocks. ACM Comput.
Surv.3(2), pp. 67–78, doi:10.1145/356586.356588.

[5] Cormac Flanagan & Martı́n Abadi (1999):Object Types Against Races. In Jos C. M. Baeten & Sjouke Mauw,
editors: International Conference on Concurrency Theory, LNCS 1664, Springer, pp. 288–303, doi:10.
1007/3-540-48320-9_21.

[6] Cormac Flanagan & Martı́n Abadi (1999):Types for Safe Locking. In: Programming Language and Systems:
Proceedings of the European Symposium on Programming, LNCS 1576, Springer, pp. 91–108, doi:10.
1007/3-540-49099-X_7.

[7] Prodromos Gerakios, Nikolaos Papaspyrou & Konstantinos Sagonas (2010):Race-free and Memory-safe
Multithreading: Design and Implementation in Cyclone. In: Proceedings of the ACM SIGPLAN Interna-
tional Workshop on Types in Languages Design and Implementation, ACM Press, New York, NY, USA, pp.
15–26, doi:10.1145/1708016.1708020.

[8] Prodromos Gerakios, Nikolaos Papaspyrou & Konstantinos Sagonas (2010):A Type System for Unstruc-
tured Locking that Guarantees Deadlock Freedom without Imposing a Lock Ordering. Technical Report,
National Technical University of Athens. Available athttp://softlab.ntua.gr/˜pgerakios/papers/
reglock_deadlock_techrep10.pdf.

[9] Prodromos Gerakios, Nikolaos Papaspyrou & Konstantinos Sagonas (2011):A Type and Effect System for
Deadlock Avoidance in Low-level Languages. In: Proceedings of the ACM SIGPLAN International Work-
shop on Types in Languages Design and Implementation, ACM Press, New York, NY, USA, pp. 15–28,
doi:10.1145/1929553.1929558.

[10] Naoki Kobayashi (2006):A New Type System for Deadlock-Free Processes. In C. Baier & H. Hermanns,
editors: International Conference on Concurrency Theory, LNCS 4137, Springer, pp. 233–247, doi:10.
1007/11817949_16.

[11] Leslie Lamport (1979):A New Approach to Proving the Correctness of Multiprocess Programs. ACM Trans-
actions on Programming Languages and Systems1(1), pp. 84–97, doi:10.1145/357062.357068.

[12] Kohei Suenaga (2008):Type-Based Deadlock-Freedom Verification for Non-Block-Structured Lock Primi-
tives and Mutable References. In G. Ramalingam, editor:Asian Symposium on Programming Languages
and Systems, LNCS 5356, Springer, pp. 155–170, doi:10.1007/978-3-540-89330-1_12.

[13] Vasco Vasconcelos, Francisco Martin & Tiago Cogumbreiro (2010):Type Inference for Deadlock Detection
in a Multithreaded Polymorphic Typed Assembly Language. In Alastair R. Beresford & Simon Gay, editors:
Proceedings of the Workshop on Programming Language Approaches to Concurrency and Communication-
cEntric Software, EPTCS17, pp. 95–109, doi:10.4204/EPTCS.17.8.

Appendix

A.1 Formalism Summary: Operational Semantics

locked(T) takes a list of threadsT and returns a set of locations locked by threads inT.

θ +ı (n1,n2) updates the mapθ so that the reference and lock counts ofθ(ı) are incremented
by n1 andn2 respectively.

θ(ı) returns the reference and lock counts ofθ(ı).

(θ1, θ2) = split(θ , max(γa)) takesγa (the effect of a new thread) andθ and returnsθ1 andθ2, such that the
sum of the counts of each location inθ1 andθ2 equals the counts of the same
location inθ.
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lockset(ı,n,E) traverses the evaluation contextE and returns the future lockset forı acquired
n times, only examining frames of the formpopγ �. The traversal ends when
E is empty orn is zero.

A.2 Formalism Summary: Static Semantics

M;∆ ⊢ τ well-formedness judgement within a typing contextM;∆ for typeτ.

M;∆ ⊢ r well-formedness judgement within a typing contextM;∆ for locationr.

⊢ M;∆;Γ;γ1;γ2 well-formedness judgement for typing contextM;∆;Γ and effect (γ1;γ2).

ξ ⊢ γ ensures that pure capabilities are not aliased withinγ. In the case of parallel
application (i.e.,ξ = par), the ending capability of each location must be zero,
whereas the starting capability of each location must have azero lock count
when that capability is impure.

γ(r) returns the most recent (i.e., rightmost) occurence ofr within effectγ.

max(γ′) returns a subset ofγ′, sayγ such that no duplicate locations or branches exist,
the domain ofγ′ equals the domain ofγ and each element ofγ is equal toγ(r)
for anyr in the domain ofγ.

min(γ′) takesγ′ and returns aprefixγ′ of γ such that no duplicate locations or branches
exist and the domain ofγ′ equals the domain ofγ.

γ \ r takesγ andr and removes all occurences ofr′ from γ such thatr′ is identical
to r modulo the tags of constant locations.

ξ ⊢ γ′ = γ⊕γ1 takesγ, representing the environment effectbeforea function call, the function
effect γ1 and yields the environment effect γ′ representing the environment
effect after the function call. γ is a prefix ofγ′ and the suffix of γ′ is an
adjusted version ofγ1: the order of locations is the same as inγ1 but the counts
may be greater than the ones inγ1 as some counts may have been abstracted
withing the scope of the function. It also enforcesξ ⊢ γ.

κ ≥ κ′ true if both counts ofκ are no smaller than the correspoding counts ofκ′.

κ+ κ′, κ− κ′ calculate the sum and difference of two capabilities (considered here as two-
dimensional vectors).

summary(γ) used primarily for calculating the summarized effects of recursive functions.

τ ≃ τ′ true whenτ andτ′ are structurally equivalent after removing @n annotations
from locations.

M;∆;Γ ⊢ E : τ
γa;γb
−→ τ′&(γ1;γ2) the evaluation typing context judgement that takes the typing contextM;∆;Γ,

the evaluation contextE, the expected effect (γa;γb) and the expected typeτ
(for the innermost hole inE), the input effectγ1 and returns the typeτ′ and the
effectγ2 that will be returned byE when it is filled with an expression of type
τ and effect (γa;γb).

A.3 Formalism Summary: Type Safety

blocked(T,n) true when threadn of thread listT is in a blocked (i.e, waiting for a lock) state.

mutex(T) true when each lock is held by at most one thread ofT.

counts ok(E, θ) takes an evaluation contextE and an access listθ and holds when the sum of all
pop expression annotations inE equal the counts ofθ. It establishes an exact
correspondence between dynamic and static counts.

lockset ok(E, θ) takes an evaluation contextE and an access listθ and holds when the future
lockset (lockset function) of an acquired lock at any program point isalwaysa
subset of the future lockset computed when the lock was initially acquired.
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