
S. Escobar (Ed.): XIV Jornadas sobre Programación
y Lenguajes, PROLE 2014, Revised Selected Papers
EPTCS 173, 2015, pp. 1–15, doi:10.4204/EPTCS.173.1

© Adalid, Gallardo & Titolo
This work is licensed under the
Creative Commons Attribution License.

Modeling Hybrid Systems in the Concurrent Constraint
Paradigm

Damián Adalid Marı́a del Mar Gallardo Laura Titolo
Dept. Lenguajes y Ciencias de la Computación

E.T.S.I. Informática University of Málaga∗

[damian,gallardo,laura.titolo]@lcc.uma.es

Hybrid systems, which combine discrete and continuous dynamics, require quality modeling lan-
guages to be either described or analyzed. The Concurrent Constraint paradigm (ccp) is an expres-
sive declarative paradigm, characterized by the use of a common constraint store to communicate
and synchronize concurrent agents. In this paradigm, the information is stated in the form of con-
straints, in contrast to the variable/value style typical of imperative languages. Several extensions of
ccphave been proposed in order to model reactive systems. One ofthese extensions is the Timed
Concurrent Constraint Language (tccp) that adds toccpa notion of discrete time and new features to
model time-out and preemption actions.

The goal of this paper is to explore the expressive power oftccpto describe hybrid systems. We
introduce the languageHy-tccpas a conservative extension oftccp, by adding a notion of continuous
time and new constructs to describe the continuous dynamicsof hybrid systems. In this paper, we
present the syntax and the operational semantics ofHy-tccptogether with some examples that show
the expressive power of our new language.

1 Introduction

In the last years, concurrent, reactive and hybrid systems have become essential to model a large number
of modern applications. Often, systems of this kind are classified as critical, i.e., an error in the software
can have tragic consequences in terms of human lives or money. This is the case of avionic or automotive
software, e-banking, or financial applications.

Description, verification and analysis of concurrent and reactive systems are very hard tasks, due
to the concurrent execution of different agents and to issues of synchronization. In the case of hybrid
systems, these phases are even harder due to the combinationof discrete and continuous dynamics and
the presence of real-valued variables. Therefore, it is important to develop high-level description lan-
guages that allow these systems to be modeled with enough precision and at the same time that ease the
application of formal methods techniques.

Many formalisms have been developed to describe concurrentsystems. One of these is theCon-
current Constraint paradigm(ccp) [10], a simple but powerful model for concurrent systems. It differs
from other paradigms mainly due to the notion of store-as-constraint that replaces the classical store-
as-valuation model. In this paradigm, the agents running inparallel communicate by means of a global
constraint store. TheTimed Concurrent Constraint Language[2] (tccp in short) is a concurrent logic lan-
guage obtained by extendingccpwith the notion of time and a suitable mechanism to model time-outs
and preemptions.

∗This work has been supported by the Andalusian Excellence Project P11-TIC7659 and the Spanish Ministry of Economy
and Competitiveness project TIN2012-35669

http://dx.doi.org/10.4204/EPTCS.173.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Modeling Hybrid Systems in the Concurrent Constraint Paradigm

In this paper, we present the languageHy-tccp: an extension oftccp over continuous time.Hy-
tccp is a non-deterministic and synchronous language that incorporates continuous variables that follow
dynamics determined by an ordinary differential equation (ODE). Its declarative nature facilitates a high
level description of hybrid systems in the style of hybrid automata [8]. Furthermore, its logical nature
facilitates the development of semantics based program manipulation tools for hybrid systems (verifiers,
analyzers, debuggers. . .). Parallel composition of hybridautomata is naturally supported inHy-tccp
due to the existence of a global shared store and to the synchronization mechanism inherited fromtccp.
By defining Hy-tccp, we show that the extension of a declarative constraint language with continuous
dynamics is not only possible, but it leads to a powerful and expressive language able to describe complex
hybrid systems.

In this paper, we have only considered the modeling of multi-rated [5] hybrid systems, i.e., systems
whose continuous variables follow a constant dynamics. However, in the future we aim to relax this
restriction in order to describe more complex dynamics suchas those defined by rectangular sets.

The paper is organized as follows. In Section 2, we briefly introduce the languagetccp and the
essential aspects of hybrid automata. In Section 3, we introduce the new languageHy-tccp together with
its operational semantics, and we describe the new featuresthat have been added totccp in order to
model hybrid systems. Section 4 contains some examples to highlight the expressive power ofHy-tccp.
Section 5 presents some related work and, finally, Section 6 concludes the paper and outlines future
work.

2 Background

In this section we present some background to clarify the contributions of the paper. In Subsection 2.1,
we introduce the languagetccp, the starting point for the definition ofHy-tccp. In Subsection 2.2, we
introduce the basic notions of hybrid automata, which is theformalism commonly used to describe hybrid
systems.

2.1 The Timed Concurrent Constraint Language

The Timed Concurrent Constraint Language(tccp, [2]) is a time extension ofccp. It adds toccp the
notion of time and the ability to capture the absence of information. With these features, one can specify
behaviors typical of concurrent and reactive systems.

The computation intccpproceeds as the concurrent execution of several agents thatcan monotoni-
cally add constraints in a globalstoreor query information from it. As are all the languages from the cc
paradigm,tccp is parametric w.r.t. acylindric constraint system.

DEFINITION 2.1 (CYLINDRIC CONSTRAINT SYSTEM [2]) A cylindric constraint system is an alge-
braic structure of the form:

C = ⟨C, ⪯, ∧, true, false, Var, ∃⟩

such that:

1. ⟨C, ⪯, ∧, true, false⟩ is a complete lattice where∧ is the least upper bound (lub) operator, and true
and false are, respectively, the least and the greatest elements ofC. We often use the inverse order
⊢ (theentailmentrelation) instead of⪯ over constraints. Formally∀c,d ∈ C c⪯ d⇔ d ⊢ c.

2. Var is a denumerable set of variables.

Adalid, Gallardo & Titolo 3

3. For each element x∈Var, a function (also called cylindric operator)∃x∶C→ C is defined such that,
for any c,d ∈ C the following axioms hold:

(a) c⊢ ∃xc

(b) if c⊢ d then∃xc⊢ ∃xd

(c) ∃x(c∧∃xd) = ∃xc∧∃xd

(d) ∃x(∃yc) = ∃y(∃xc)

The entailment relation⊢ intuitively states that ifc contains more information thand thenc⊢ d. The
lub operator∧ merges the information from two constraints (e.g.x> 0∧x> 5∧y= 9 ∶= x> 5∧y= 9 and
x = 0∧ x = 7 ∶= false). Thecylindrification (or hiding) operator is defined in terms of a general notion
of existential quantifier. It is used to project away information about the considered variable in order to
make it local to the constraint and hide it from the context (e.g. ∃x(x= 0∧y= x∧z> 7) ∶= y= 0∧z> 7).

The tccpglobal store ismonotonicin the sense that once a constraint is added to the store, it cannot
be removed. Thus, given the storex > 0∧ y > 2 we can add the informationx > 5 and obtain the store
x> 5∧y> 2. Furthermore, by addingx= 0 we obtain the inconsistent storefalsesince the constraintx= 0
is in contradiction with the information already present inthe store.

The syntax oftccpagents is given by the grammar:

A ∶∶= stop ∣ tell(c) ∣ A∥A ∣ ∃xA ∣∑n
i=1ask(ci)→A ∣ now c then A elseA ∣ p(x⃗)

wherec, c1, . . . ,cn are finite constraints inC, p is a process symbol, and⃗x∈Var× ⋅ ⋅ ⋅×Var. A tccpprogram
is a pairD .A, whereA is the initial agent andD is a set ofprocess declarationsof the formp(x⃗) ∶ −A.

Theoperational semanticsof tccp [2] is described by a transition systemT = (Conf,→). Configura-
tions inConf are pairs⟨A, c⟩ representing the agentA to be executed in the current global storec. The
transition relation→ ⊆Conf×Conf is the least relation satisfying the rules in Figure 1. Each transition
step takes exactly one time-unit. The notion of time is introduced by defining a global clock which
synchronizes all agents.

As can be seen from the rules, thestop agent represents the successful termination of the computa-
tion. Thetell(c) agent adds the constraintc to the current store by means of the∧ operator and then stops.
It takes one time-unit, thus the constraintc is visible to the other agents from the following time instant.
The choice agent∑n

i=1ask(ci)→Ai consults the store and non-deterministically executes (atthe following
time instant) one of the agentsAi whose corresponding guardci is entailed by the current store; other-
wise, if no guard is entailed by the store, the agent suspends. The conditional agentnow c then A else B
behaves (in the current time instant) likeA (respectivelyB) if c is (respectively is not) entailed by the
store. This conditional agent is able to processnegative information(lack of some information): it can
capture when some information is not present in the store since the agentB is executed both when¬c is
satisfied, but also when neitherc nor¬c are satisfied.A∥B models the parallel composition ofA andB in
terms of maximal parallelism, i.e., all the enabled agents of A andB are executed at the same time. The
agent∃xA makes variablex local toA, to this end, it uses the∃ operator of the constraint system. More
specifically, it behaves likeA with x considered local, i.e., the information onx provided by the external
environment is hidden toA, and the information onx produced byA is hidden to the external world.
In the corresponding rule, the storel in the agent∃l xA represents the store local toA. This auxiliary
operator is linked to the hiding construct by setting the initial local store totrue, thus∃xA ∶= ∃truexA.
Finally, the agentp(x⃗) takes fromD a declaration of the formp(x⃗) ∶ −A and then executesA.

4 Modeling Hybrid Systems in the Concurrent Constraint Paradigm

⟨tell(c), d⟩→ ⟨stop, c∧d⟩

∃1≤ j ≤ n.d ⊢ c j

⟨∑n
i=1ask(ci)→Ai, d⟩→ ⟨A j , d⟩

⟨A, d⟩→ ⟨A′, d′⟩, d ⊢ c

⟨now c then A else B, d⟩→ ⟨A′, d′⟩

⟨A, d⟩ /→, d ⊢ c

⟨now c then A elseB, d⟩→ ⟨A, d⟩

⟨B, d⟩→ ⟨B′, d′⟩, d ⊬ c
⟨now c then A else B, d⟩→ ⟨B′, d′⟩

⟨B, d⟩ /→, d ⊬ c
⟨now c then A elseB, d⟩→ ⟨B, d⟩

⟨A, d⟩→ ⟨A′, d′⟩ ⟨B, d⟩→ ⟨B′, c′⟩

⟨A∥B, d⟩→ ⟨A′ ∥B′, d′∧c′⟩

⟨A, d⟩→ ⟨A′, d′⟩ ⟨B, d⟩ /→

⟨A∥B, d⟩→ ⟨A′ ∥B, d′⟩
⟨B∥A, d⟩→ ⟨B∥A′, d′⟩

⟨A, l ∧∃xd⟩→ ⟨B, l ′⟩

⟨∃l xA, d⟩→ ⟨∃l ′xB, d∧∃x l ′⟩

p(x⃗) ∶−A ∈D

⟨p(x⃗), d⟩→ ⟨A, d⟩

Figure 1: The transition system fortccp.

2.2 Introduction to hybrid automata

Many real systems have complex behaviors and evolve following both discrete and continuous dynam-
ics. These systems are called hybrid systems. For instance,a cooler system is a hybrid system: it has
two discrete states (on or off) that are chosen according to the temperature of the room, which evolves
continuously over time.

Hybrid automata[8] are an extension of finite-state automata used to describe hybrid systems. Intu-
itively, the discrete behavior of a hybrid automaton is defined by means of a finite set of discrete states
(calledlocations) and a set of (instantaneous)discrete transitionsfrom one location to another. The con-
tinuous behavior of hybrid automata is described at each location by means of some Ordinary Differential
Equations (ODEs) which describe how continuous variables evolve over time (continuous transitions).

DEFINITION 2.2 (HYBRID AUTOMATON) A hybrid automatonH is a tuple

⟨Loc, T, Σ, X, Init , Inv, Flow,Jump⟩

where:

• Loc is a finite set{loc1, . . . , locn} of discrete states (locations).

• T ⊆ Loc×Loc is a finite set of discrete transitions.

• Σ is a set of event names, associated with a labelling functionΛ ∶ T → Σ.

• X = {x1, . . . ,xm} is a finite set of real-valued variables. The setẊ = {ẋ1, . . . , ẋm} represents the first
derivatives of the elements in X. In addition, the set X′ = {x′1, . . . ,x

′
m} represents the updates of the

variables when a discrete transition takes place. In this section, we assume that discrete variables
are continuous variables whose derivative is zero at all locations.

• The functions Init, Inv and Flow assign predicates to each location loc∈ Loc. Init(loc) establishes
the possible initial values for the continuous variables atlocation loc. Inv(loc) constrains the
values of the continuous variables at location loc. Flow(loc) contains the differential equations
describing the evolution of the continuous variables at location loc.

Adalid, Gallardo & Titolo 5

Ṫ = −0.5

T ≥ 26

on

Ṫ = +2.0

T ≤ 30

off

T = 26

T = 30

Figure 2: Hybrid automaton for the cooler system

• Function Jump assigns to each discrete transition t∈ T a guardthat must be satisfied in order to
allow the transition to take place, and aresetpredicate which updates the value and/or the flow of
a continuous variables.

EXAMPLE 2.3 Figure 2 shows a hybrid automaton modeling a cooler system. The automaton has two
locationson andoff and a continuous variableT storing the room temperature. When the automaton is
at locationon (the cooler is turned on) the temperature decreases at rate−0.5. When the location isoff
(the cooler is turned off) the temperature increases at rate+2.0. Transitions between locations represent
the turning on or off of the cooler. These transitions are guarded with conditions. For instance, transition
on-off takes place when the temperature is 26, while transitionoff -on takes place when the temperature
is 30.

A hybrid automaton behaves like atimed transition system(TTS), where each step is labelled either
with a positive real valueτ (continuous transition of durationτ) or with σ (discrete transition). Let
[X→R] be the set of maps fromX to R. An automaton state, called hybrid state from now on, is a pair
(loc,v) ∈ (Loc× [X → R]), whereloc ∈ Loc is a location of the automaton, andv ∈ [X → R] maps each
continuous variable to its current value.

Let p be a predicate overX∪ Ẋ or X∪X′, then⟦p⟧ denotes all functionsv ∈ [X→R] that satisfyp.

DEFINITION 2.4 (TRAJECTORIES) Let H = ⟨Loc, T, Σ, X, Init , Inv, Flow,Jump⟩ be a hybrid automa-
ton. We consider two types of transitions:
Discrete transitions Let(loc, loc′) ∈T, (loc,v)→σ (loc′,v′), iff v,v′ ∈ [X→R], and(v,v′) ∈ ⟦Jump(t)⟧.
Continuous transitions For eachτ ∈ R+, we have(loc,v)→τ (loc,v′) iff there exists a differentiable

function f ∶ [0,τ]→R
m, ḟ ∶ [0,τ]→R

m being its first derivative, such that:

• f (0) = v
• f (τ) = v′

• ∀τ ′ ∈ [0,τ], f (τ ′) ∈ ⟦Inv(loc)⟧
• (f (τ ′), ḟ (τ ′)) ∈ ⟦Flow(loc)⟧

A trajectory is a (possible infinite) sequence of hybrid states such as(loc0,v0)→λ1
(loc1,v1)→λ2

. . .→λn (locn,vn)→λn . . . , where for all i≥ 0, vi ∈ ⟦Inv(loci)⟧ andλi ∈R∪{σ}.
It is worth noting that the system is free to select non-deterministically at each moment any enabled

transition, either discrete or continuous.

EXAMPLE 2.5 Considering the hybrid system in Figure 2, the following trajectory represents a possi-
ble evolution of the automaton starting at hybrid state(on,27): (on,27)→1 (on,26.5)→1 (on,26)→σ
(off ,26)→0.5 (off ,27)→1.5 (off ,30)→σ (on,30) . . .

6 Modeling Hybrid Systems in the Concurrent Constraint Paradigm

3 Hy-tccp: an extension of tccp over continuous time

In this section, we present the languageHy-tccp, which subsumestccpand includes new agents in order
to model the continuous behavior typical of hybrid systems in the style of hybrid automata. In contrast
to tccp, in Hy-tccpwe consider a notion ofcontinuoustime by means of a global continuous clock.

Hy-tccpuses atccpmonotonic store (calleddiscrete store) to model the information about the current
location and the associated invariants of a hybrid automaton. Discrete transitions are modeled as instan-
taneous transitions inHy-tccp and they are used to synchronize parallel agents/automata.In summary,
the features offered bytccp are used to model the discrete behavior of hybrid automata. However, hy-
brid automata are characterized by the use of continuous variables whose values change following some
ODEs. For this reason, thetccpstore is extended by adding a component calledcontinuous store. The
continuous store is not monotonic, instead it records the dynamical evolution of the continuous variables.

We distinguish the set of discrete variablesVar, whose information is accumulated monotonically,
and the set of continuous variables̃Var, whose values change continuously over time (Var∩ Ṽar = ∅).
Constraints inC are now defined overVar∪ Ṽar.

A continuous storeis a function that associates a continuous variable with tworeal numbers: its value
and its flow, which indicates how its value changes over time.In this work, we consider only ODEs of
the form ẋ = n with n ∈ R. In the future, we intend to also consider ODEs of the form ˙x ∈ [n1,n2] with
n1,n2 ∈R in order to model rectangular hybrid systems.

We denote as̃C = [Ṽar↪ (R×R)] the set of all possible continuous stores, and as̃true and f̃alsethe
empty and the inconsistent continuous store, respectively. We denote with dom(c̃) ⊆ Ṽar the domain of ˜c.
Givenc̃∈ C̃ andx∈dom(c̃), c̃(x) = ⟨v, f ⟩means thatx has valuev (denoted as ˜c(x).v) and flow f (denoted
asc̃(x). f). The binary operator̃∧ ∶ C̃ × C̃ → C̃ merges the information from two continuous stores. In the
case the same variable appears in both stores with differentvalues or flows, their merge is inconsistent.
Given c̃, d̃ ∈ C̃:

c̃∧̃ t̃rue= c̃ c̃∧̃ f̃alse= f̃alse

c̃∧̃ d̃ = f̃alse if ∃x ∈ dom(c̃)∩dom(d̃). c̃(x) ≠ d̃(x)

c̃∧̃ d̃ = λy.
⎧⎪⎪
⎨
⎪⎪⎩

c̃(y) if y ∈ dom(c̃)
d̃(y) if y ∈ dom(d̃)

if ∀x ∈ dom(c̃)∩dom(d̃). c̃(x) = d̃(x)

We define the operator̃∃ ∶Var× C̃→ C̃ such that, given ˜c∈ C̃ andx∈ Ṽar, ∃̃x c̃ deletes the information about
x in c̃.

Given c̃ ∈ C̃, x ∈ dom(c̃) andv ∈R, we denote as ˜c[v/x] the continuous store that is equal to ˜c except
for the value ofx that becomesv.

c̃[v/x] = λy.
⎧⎪⎪
⎨
⎪⎪⎩

c̃(y) if y ∈ dom(c̃),y≠ x

(v, c̃(x). f) if y= x

A Hy-tccpstore is a pair⟨c, c̃⟩ wherec ∈ C (discrete store) is a monotonic constraint store as intccp
and c̃ ∈ C̃ (continuous store) is such thatc∧⋀x∈dom(c̃)(x = c̃(x).v) ≠ false, i.e., discrete and continuous
store are consistent1. We denote asΓ the set of all possibleHy-tccp stores. We define the extension of
the entailment relation⊢ over Hy-tccpstores as̃⊢ ∶ Γ×C such that given⟨c, c̃⟩ ∈ Γ andd ∈ C, ⟨c, c̃⟩⊢̃d if
c∧⋀x∈dom(c̃)(x = c̃(x).v) ⊢ d. In other words, a store⟨c, c̃⟩ entails a constraintd if the discrete storec

1We assume that our underlying constraint system handles equality constraints.

Adalid, Gallardo & Titolo 7

merged with the projection of the current values of the continuous variables entailsd in the underlying
constraint system.

Givenτ ∈R+ we denote as⟨c, c̃τ⟩ the continuous projection of the store⟨c, c̃⟩ at timeτ : the values of
the continuous variables are updated at timeτ , while the flows are unchanged: ˜cτ = λy. c̃[ny/y] wherey ∈
dom(c̃) andny = c̃(y).v+ (c̃(y). f ∗τ). For instance consider the store⟨x> 10, y↦ (2,5)⟩, its projection
at time 3 is the store⟨x> 10, y↦ (17,5)⟩. We say that⟨c, c̃τ⟩ is a continuous projection of⟨c, c̃⟩ at time
τ that satisfiesd (denoted as⟨c, c̃⟩↝d

τ ⟨c, c̃τ⟩) if for all τ ′ ∈ [0,τ] ⟨c, c̃τ ′⟩⊢̃d. For instance, the above
projection satisfiesy> 0: ⟨x> 10, y↦ (2,5)⟩↝y>0

3 ⟨x> 10, y↦ (17,5)⟩.
The update operator⊲, given c̃, d̃ ∈ C̃ such that dom(c̃)∩dom(d̃) = {x1, . . . ,xn}, updates ˜c with the

information ofd̃ as follows: c̃⊲ d̃ ∶= (∃̃x1,...,xn c̃) ∧̃ d̃. Note that it is impossible to obtain an inconsistent
continuous store since the common variables are hidden fromc̃ and replaced by the new values and flows
from d̃.

In order to model the typical behaviors of hybrid systems we introduce two new constructs w.r.t. the
syntax oftccp: change andãsk.

The agentchange updates the current continuous store with a new value and/orflow for a given
continuous variable. It roughly corresponds to theresetpredicate of hybrid automata.

Continuous transitions are modeled by the new constructãsk(inv) that makes continuous variables
evolve overcontinuoustime while the invariantinv is satisfied. Thetccp choice agent is extended by
allowing the non-deterministic choice between discrete and continuous transitions in the following way:

∑n
i=1ask(ci)→A+∑m

j=1 ãsk(inv j).

Here, theãsk branches can be non-deterministically selected when the corresponding invariantinv j

is entailed in the current store. The continuous variables evolve over time whileinv j holds and until
another ask branch is selected.

The syntax ofHy-tccpagents is given by the following grammar:

A ∶∶= stop ∣ tell(c) ∣A∥A ∣ now c then A elseA ∣ ∃xA ∣ p(x⃗) ∣

change(y,v, f) ∣∑n
i=1ask(ci)→A+∑m

j=1 ãsk(inv j)

wherec, ci and inv j are finite constraints inC, y is a continuous variable iñVar, v, f ∈R, p is a process
symbol,x ∈Var∪ Ṽar, x⃗ ∈ (Var∪ Ṽar)×⋅ ⋅ ⋅ ×(Var∪ Ṽar), n≥ 0 andm≥ 0.

Theoperational semanticsof Hy-tccp is described by a transition systemT = (C̃onf,→σ ,→τ). Con-
figurations inC̃onf are triples⟨A, c, c̃⟩ representing the agentA to be executed in the current extended
store⟨c, c̃⟩. In contrast to thetccpapproach, the discrete transition relation→σ⊆ C̃onf× C̃onf does not
represent the passage of one time unit. Instead, it models a computational step which does not consume
time but it is needed to synchronize the agents in parallel. The continuous passage of time is modeled
by the transition relation→τ⊆ C̃onf× C̃onf whereτ ∈R+ is a (strictly) positive real number that indicates
the duration of the transition. In Figure 3, we formally describe the operational semantics ofHy-tccp.
Wherever possible we will use the subindexλ ∈R+∪{σ} to represent both kinds of transitions (discrete
and continuous).

RuleR1 shows the effects of adding a constraintc ∈ C to the current discrete store. In RuleR1’, the
agentchange updates the continuous stored̃ with a new initial valuev and a new flowf for the variable
y by using the update operator⊲.

RulesR2 andR2’ describe the non-deterministic choice behavior. RuleR2 represents the discrete
transition that is performed when one of theask guards is entailed in the current store. In this case the

8 Modeling Hybrid Systems in the Concurrent Constraint Paradigm

corresponding agent is executed in the next step. RuleR2’ models the continuous evolution of the system
while one of theãsk invariants holds in the store. After a continuous transition of durationτ , the values
of the variables in the continuous stored̃ are updated while the discrete store is unchanged. At the end
of that transition the non-deterministic choice is executed again allowing another discrete or continuous
branch to be selected. In the case no guard or invariant holdsthis agent suspends.

RulesR3, R3’, R4 and R4’ describe the behavior of agentnow. This agent behaves asA if c is
entailed by the constraint store, otherwise it behaves asB.

RuleR5 represents the parallel execution of two discrete transitions in terms of maximal parallelism,
i.e., all the enabled agents ofA andB are executed at the same time. RuleR6 represents the parallel
execution of two continuous transitions, note that their duration must coincide. RuleR7 expresses the
parallel composition of a discrete and a continuous transition. In this case, the discrete transition is
executed before the continuous one. RuleR8 states that when an agent is blocked, the other one performs
its transition (discrete or continuous).

In RuleR9, the agent∃⟨l , l̃ ⟩xA makes variablex local toA. It behaves likeA with x considered local,
i.e., the information onx provided by the external environment is hidden fromA by using thẽ∃ operator,
and, in the same way, the information onx produced byA is hidden from the global environment. The
store⟨l , l̃⟩ in the agent∃⟨l , l̃ ⟩xA represents the store local toA. This auxiliary operator is linked to the
hiding construct by setting the initial local store to⟨true, t̃rue⟩, thus∃xA ∶= ∃⟨true, t̃rue⟩xA.

Finally, in RuleR10, the agentp(x⃗) takes fromD a declaration of the formp(x⃗) ∶− A and executes
A.

Let us formalize the notion of behavior of aHy-tccp programP in terms of the transition system
described in Figure 3. The small-step operational behaviorof Hy-tccp collects all the small-step com-
putations associated withP (in terms of sequences ofHy-tccpstores closed by prefix) for each possible
initial store. We assume that subsequent continuous transitions are considered as a unique (maximal) one
whose length is equal to the sum of all the subsequent transition lengths. For instance, a sequence of con-
tinuous transitions of the form⟨A0, c0, c̃0⟩→τ1 . . .→τn ⟨An, cn, c̃n⟩ is considered as the unique transition
⟨A0, c0, c̃0⟩→τ ⟨An, cn, c̃n⟩ whereτ =∑n

i=1τi
2.

DEFINITION 3.1 Let P= D .A be aHy-tccp program. Thesmall-step (observable) behaviorof P is
defined as:

Bss⟦D .A⟧ ∶= ⋃
⟨c0, c̃0⟩∈Γ

{⟨c0, c̃0⟩ ⋅ ⟨c1, c̃1⟩ ⋅ . . . ⋅ ⟨cn, c̃n⟩ ∣ ⟨A, c0, c̃0⟩→λ1
⟨A1, c1, c̃1⟩

→λ2
. . .→λn ⟨An, cn, c̃n⟩,∀1≤ i ≤ n. λn ∈R

+
∪{σ}}∪{ε}

4 Examples

In order to show the expressivity ofHy-tccp, we present some examples of hybrid systems described in
this language. For each case, we present theHy-tccpcode and the corresponding hybrid automaton.

4.1 Cooler system

In Figure 4 we model inHy-tccp the cooler system introduced in Example 2.5. The initial state of
the cooler is set tooff and the temperatureT initially has value 29 and changes with a rate of+2.0. The
temperature value increases continuously over time (firstãsk) until the temperature is lower than or equal

2We assume that our system does not exhibit Zeno behaviors.

Adalid, Gallardo & Titolo 9

⟨tell(c), d, d̃⟩→σ ⟨stop, c∧d, d̃⟩
(R1)

⟨change(y,v, f), d, d̃⟩→σ ⟨stop, d, d̃ ⊲ (y↦ (v, f))⟩
(R1’)

∃1≤ k≤ n.⟨d, d̃⟩⊢̃ck

⟨∑n
i=1ask(ci)→Ai +∑

m
j=1 ãsk(inv j), d, d̃⟩→σ ⟨Ak, d, d̃⟩

(R2)

∃1≤ k≤m, τ ∈R+.⟨d, d̃⟩↝invk
τ ⟨d, d̃τ ⟩

⟨∑n
i=1ask(ci)→Ai +∑

m
j=1 ãsk(inv j), d, d̃⟩→τ ⟨∑n

i=1ask(ci)→Ai +∑
m
j=1 ãsk(inv j), d, d̃τ ⟩

(R2’)

⟨A, d, d̃⟩→λ ⟨A′, d′, d̃′⟩ λ ∈R+∪{σ} ⟨d, d̃⟩⊢̃c

⟨now c then A elseB, d, d̃⟩→λ ⟨A′, d′, d̃′⟩
(R3)

⟨A, d, d̃⟩ /→λ λ ∈R+∪{σ} ⟨d, d̃⟩⊢̃c

⟨now c then A elseB, d, d̃⟩→σ ⟨A, d, d̃⟩
(R3’)

⟨B, d, d̃⟩→λ ⟨B′, d′, d̃′⟩ λ ∈R∪{σ} ⟨d, d̃⟩⊬̃c

⟨now c then A elseB, d, d̃⟩→λ ⟨B′, d′, d̃′⟩
(R4)

⟨B, d, d̃⟩ /→λ λ ∈R∪{σ} ⟨d, d̃⟩⊬̃c

⟨now c then A elseB, d, d̃⟩→σ ⟨B, d, d̃⟩
(R4’)

⟨A, d, d̃⟩→σ ⟨A′, d′, d̃′⟩ ⟨B, d, d̃⟩→σ ⟨B′, d′′, d̃′′⟩
⟨A∥B, d, d̃⟩→σ ⟨A′ ∥B′, d′∧d′′, d̃′ ∧̃ d̃′′⟩

(R5)

⟨A, d, d̃⟩→τ ⟨A, d, d̃′⟩ ⟨B, d, d̃⟩→τ ⟨B, d, d̃′⟩ τ ∈R+

⟨A∥B, d, d̃⟩→τ ⟨A∥B, d, d̃′⟩
(R6)

⟨A, d, d̃⟩→σ ⟨A′, d′, d̃′⟩ ⟨B, d, d̃⟩→τ ⟨B, d, d̃′′⟩ τ ∈R+

⟨A∥B, d, d̃⟩→σ ⟨A′ ∥B, d′, d̃′⟩
(R7)

⟨A, d, d̃⟩→λ ⟨A′, d′, d̃′⟩ ⟨B, d, d̃⟩ /→λ ′ λ ,λ ′ ∈R+∪{σ}
⟨A∥B, d, d̃⟩→λ ⟨A′ ∥B, d′, d̃′⟩
⟨B∥A, d, d̃⟩→λ ⟨B∥A′, d′, d̃′⟩

(R8)

⟨A, l ∧∃xd, l̃ ∧̃ ∃̃x d̃⟩→λ ⟨B, l ′, l̃ ′⟩ λ ∈R+∪{σ}
⟨∃⟨l , l̃ ⟩xA, d, d̃⟩→λ ⟨∃⟨l

′
, l̃ ′⟩xB, d∧∃x l ′, d̃ ∧̃ ∃̃x l̃ ′⟩

(R9)

p(x⃗) ∶−A ∈D

⟨p(x⃗), d, d̃⟩→σ ⟨A, d, d̃⟩
(R10)

Figure 3: The transition system forHy-tccp.

10 Modeling Hybrid Systems in the Concurrent Constraint Paradigm

init ∶− ∃ St,T (tell(St= [off ∣]) ∥ change(T,29,+2.0) ∥ tell(T ≥ 26∧T ≤ 30) ∥ cooler(St,T))
cooler(St,T) ∶− ∃ St′(ãsk(St= [off ∣]∧T ≤ 30)

+ask(St= [off ∣]∧T = 30)→ (tell(St= [off ∣St′]) ∥ tell(St′ = [on ∣]) ∥ change(T,30,−0.5) ∥ cooler(St′,T))
+ ãsk(St= [on ∣]∧T ≥ 26)
+ask(St= [on∣]∧T = 26)→ (tell(St= [on ∣ St′]) ∥ tell(St′ = [off ∣]) ∥ change(T,26,+2.0) ∥ cooler(St′,T)))

Figure 4:Hy-tccpmodel for the cooler system

to the value of 30. When the temperature reaches this limit, the cooler is turned on and the flow of the
temperature changes from+2.0 to−0.5 (first ask). At this point, the temperature starts decreasing until
it reaches the value of 26 (second̃ask). When this happens, the cooler is turned off and the flow of the
temperature is changed again to+2.0 (secondask).

It is worth noting that, due to the monotonicity of the discrete constraint store, streams (written
in a list-fashion way) are used to modelimperative-stylevariables [2]. A stream is a list of the form
St= [on ∣ St′] where the headon represents the current value ofSt, and the tailSt′ is a free variable that
will be instantiated with the future values ofSt. Observe that we use the global constraintT ≥ 26∧T ≤ 30
to add a global invariant of the cooler system ensuring that the temperature always stays in the interval
[26,30].

The following partial trace represents the small-step behavior (see Definition 3.1) ofcooler(St,T)
starting from the initial store⟨St= [off ∣]∧T ≥26∧T ≤30, T↦ (29,+2.0)⟩. This means that, initially, the
cooler is turned off and the temperature has a value of 29 and aflow of +2.0. Moreover, the temperature
is constrained to be between the values 26 and 30. Observe howthe valueson andoff are accumulated
in the streamSt in order to model the evolution of the state. The current state corresponds to the last
value added to the stream. We useto indicate that the tail of the streamSt is a free variable that can be
instantiated with future values. The continuous variablesevolve over time until another discrete transition
is executed. The repeated equal stores occurring in the trace correspond to the discrete computational
steps taken inHy-tccp (as well as intccp) to evaluate one of theask guards or to perform a procedure
call. These steps are necessary to synchronize parallel agents. For sake of clarity, we explicitly indicate
the kind of transition occurring between two states (we write σ for discrete transitions and the duration
τ ∈R+ for continuous ones).

⟨St= [off ∣]∧T ≥ 26∧T ≤ 30, T ↦ (29,+2.0)⟩ ⋅0.5 ⟨St= [off ∣]∧T ≥ 26∧T ≤ 30, T ↦ (30,+2.0)⟩⋅σ

⟨St= [off ∣]∧T ≥ 26∧T ≤ 30, T ↦ (30,+2.0)⟩ ⋅σ ⟨St= [off ,on ∣]∧T ≥ 26∧T ≤ 30, T ↦ (30,−0.5)⟩⋅σ

⟨St= [off ,on ∣]∧T ≥ 26∧T ≤ 30, T ↦ (30,−0.5)⟩ ⋅8 ⟨St= [off,on ∣]∧T ≥ 26∧T ≤ 30, T ↦ (26,−0.5)⟩⋅σ

⟨St= [off ,on ∣]∧T ≥ 26∧T ≤ 30, T ↦ (26,−0.5)⟩ ⋅σ ⟨St= [off ,on,off ∣]∧T ≥ 26∧T ≤ 30, T ↦ (26,+2.0)⟩ . . .

4.2 Cat and mouse race

We consider the cat and mouse problem proposed in [7] (see Figure 5 for the corresponding hybrid
automaton). TheHy-tccpcode of this model is shown in Figure 6. The positions of the cat and the mouse
are modeled by two continuous variables, calledC andM respectively. A mouse starts running from the
point of origin at a speed of 10 meters/second (change(M,0,10.0)) towards a hole that is 100 meters

Adalid, Gallardo & Titolo 11

Ċ= 0.0

true

loser

Ċ= 0.0

true

finished

Ċ= 20.0

C≤ 100

chasing

Ċ= 0.0

true

sleeping

Ċ= 0.0

true

winner

go C= 100∣ endC

winC

winM

Ṁ = 10.0

M ≤ 50

1st half

Ṁ = 10.0

M ≤ 100

2nd half

Ṁ = 0.0

true

finished

Ṁ = 0.0

true

winner

Ṁ = 0.0

true

loser

M = 50 ∣ go M = 100∣ endM

winM

winC

Figure 5: Hybrid automata for the cat and mouse problem

init ∶− mouse ∥ cat ∥ controller

mouse ∶− ∃M(change(M,0,10.0) ∥

(ãsk(M ≤ 50)
+ask(M = 50)→ (tell(go) ∥ (ãsk(M ≤ 100)

+ask(M = 100)→ (tell(endm) ∥ ask(winm)→ claimPrize(...)
+ask(winc)→ stop)))))

cat ∶− ∃C(ask(go)→ (change(C,0,20.0) ∥
(ãsk(C ≤ 100)
+ask(C = 100)→ (tell(endc) ∥ ask(winc)→ claimPrize(...)

+ask(winm)→ stop))))
controller ∶− ask(endm)→ tell(winm)+ask(endc)→ tell(winc)

Figure 6:Hy-tccpmodel for the cat and mouse race

away. After it has run 50 meters it sends a signal to the cat (tell(go)) and continues its run. When the cat
receives the signalgo, it starts chasing the mouse from the point of origin at a speed of 20 meters/second
(change(C,0,20.0)). The cat wins if it catches the mouse before it reaches the hole, otherwise it loses.
At the end of their run, the mouse and the cat send a message to the controller (endM and endC,
respectively), which decides non-deterministically the winner and informs of it through a signal (winm

or winc). The winner, at this point, can claim his prize.

4.3 Gear shift system

The hybrid automaton in Figure 7 represents a car gear shift system. Each location models a gear (1, 2
or 3) and the fact that the speed is either increasing or decreasing (↑ or ↓ respectively). When the speed
increases (respectively decreases) over time and it reaches a given threshold, the current gear is changed
to the upper (respectively lower) one. When a signal of danger (dng) is received, the system changes
the current gear to the lower one and the speed starts decreasing. At this point, when a signal of safe
situation (safe) is received, the system is allowed to stay in the current location as well as to increase the

12 Modeling Hybrid Systems in the Concurrent Constraint Paradigm

V̇ = +4.0

V ≤ 20

1 ↑

V̇ = +5.0

V ≤ 60∧¬dng

2 ↑

V̇ = +6.0

V ≤ 100∧¬dng

3 ↑

V̇ = −4.0

V ≥ 0

1 ↓

V̇ = −5.0

V ≥ 20

2 ↓

V = 20 V = 60

V ≤ 20∧safe
dng dng

V ≤ 60∧safe

V = 20

Figure 7: Hybrid automaton for the gear shift system

speed. The latter case is modeled by the transitions from location 1↓ to location 1↑, and from 2↓ to 2↑.
TheHy-tccpprogram modeling this system is shown in Figure 8. The streamG stores the evolution

of the gear state. Thẽask statements model the five locations of the automaton of Figure 7, i.e., the
possible cases in which a continuous transition is performed. It is worth noting that the invariant of
each location is modeled by the guard of the correspondingãsk statement. The first threeask statements
model thegearbox shifting automatically into a higher (respectively lower)gear if the speedV reaches
the upper (respectively lower) threshold of the current gear. Thewatcher informs to thegearbox about
the current external situation (danger or safe), through channelWG. Whengearbox receives a danger
signaldngand the speed is growing (fourth and fifthask branches), it moves to a lower gear, and changes
the speed flow from positive to negative by means of achange agent. Otherwise, when it receives a safety
signalsafeand the speed is decreasing (sixth and seventhask branches), it is allowed to change the speed
flow from negative to positive.

5 Related Work

In [7], hcc was introduced as the first extension over continuous time ofthe concurrent constraint
paradigm. Although bothHy-tccp and hcc are declarative languages with a logical nature, there are
some important differences between them. First of all,Hy-tccp is a non-deterministic language, while
hcc is deterministic. We believe that this is an essential feature for modeling hybrid systems, which are
inherently non-deterministic.Hy-tccp has been defined as a modeling language for hybrid systems in
the style of hybrid automata. This means that we aim to obtainprograms with a structure similar to that
of hybrid automata, but described in a more abstract way. Thenon-deterministic choice is a powerful
construct that allows the set of all possible transitions ofan hybrid automata to be expressed as a list of
ask andãsk branches. Furthermore, inhcc, the information on the value and flow of continuous variables
is modeled as a constraint of the underlying continuous constraint system. On the contrary, inHy-tccp,

Adalid, Gallardo & Titolo 13

init ∶− ∃ V,G,WG(tell(G= [1 ↑∣]) ∥ change(V,0,+4.0) ∥ tell(V ≥ 0∧V ≤ 100) ∥ gearbox(G,WG,V) ∥ watcher(WG))

gearbox(G,WG,V) ∶− ∃ G′,WG′(

ãsk(G= [1 ↑∣]∧V ≤ 20)+ ãsk(G= [2 ↑∣]∧V ≤ 60∧WG≠ [dng∣])+ ãsk(G= [3 ↑∣]∧V ≤ 100∧WG≠ [dng∣])
+ ãsk(G= [1 ↓∣]∧V ≥ 0)+ ãsk(G= [2 ↓∣]∧V ≥ 20)
+ask(G= [1 ↑∣]∧V = 20)→ (tell(G= [1 ↑∣G′]) ∥ tell(G′ = [2 ↑∣]) ∥ change(V, ,+5.0) ∥ gearbox(G′,WG,V))
+ask(G= [2 ↑∣]∧V = 60)→ (tell(G= [2 ↑∣G′]) ∥ tell(G′ = [3 ↑∣]) ∥ change(V, ,+6.0) ∥ gearbox(G′,WG,V))
+ask(G= [2 ↓∣]∧V = 20)→ (tell(G= [2 ↓∣G′]) ∥ tell(G′ = [1 ↓∣]) ∥ change(V, ,−4.0) ∥ gearbox(G′,WG,V))
+ask(G= [2 ↑∣]∧WG= [dng∣])→ (tell(G= [2 ↑∣G′]) ∥ tell(G′ = [1 ↓∣]) ∥ tell(WG= [dng∣WG′]) ∥

change(V, ,−4.0) ∥ gearbox(G′,WG′,V))
+ask(G= [3 ↑∣]∧WG= [dng∣])→ (tell(G= [3 ↑∣G′]) ∥ tell(G′ = [2 ↓∣]) ∥ tell(WG= [dng∣WG′]) ∥

change(V, ,−5.0) ∥ gearbox(G′,WG′,V))
+ask(G= [1 ↓∣]∧WG= [safe∣]∧V ≤ 20)→ (tell(G= [1 ↓∣G′]) ∥ tell(G′ = [1 ↑∣]) ∥ tell(WG= [safe∣WG′]) ∥

change(V, ,+4.0) ∥ gearbox(G′,WG′,V))
+ask(G= [2 ↓∣]∧WG= [safe∣]∧V ≤ 60)→ (tell(G= [2 ↓∣G′]) ∥ tell(G′ = [2 ↑∣]) ∥ tell(WG= [safe∣WG′]) ∥

change(V, ,+5.0) ∥ gearbox(G′,WG′,V)))

watcher(WG) ∶− ∃WG′(ãsk(true)
+ask(true)→ (tell(WG=[safe∣WG′]) ∥ watcher(WG′))
+ask(true)→ (tell(WG=[dng∣WG′]) ∥ watcher(WG′)))

Figure 8:Hy-tccpmodel for a gear shift system

14 Modeling Hybrid Systems in the Concurrent Constraint Paradigm

there is a clear distinction between discrete and continuous variables. Inhcc the positive information in
the store must be transferred by using the agenthence. In contrast, inHy-tccp the positive information
in the discrete store is transferred automatically from onestep to the next.

In [1] and [4], two process algebras for hybrid systems have been defined:Hybrid Chi andHyPa,
respectively. The process algebraHybrid Chi [1] shares withHy-tccp the separation between discrete
and continuous variables, the synchronous nature and the concept of delayable guard (corresponding
to the suspension of the non-deterministic choice).HyPa [4] was introduced as an extension of the
process algebraACP. It differs from Hybrid Chi mainly in the way time-determinism is treated, and in
the modeling of time passing.

6 Conclusions

In this paper we have presentedHy-tccp, an extension oftccp over continuous time with the aim of
modeling hybrid systems in a declarative and logical way by abstracting away from all the implemen-
tation details.Hy-tccp has been introduced as a synchronous and non-deterministiclanguage defining
computations similar to that of hybrid automata.

Hy-tccp has several advantages that make it suitable for modeling hybrid systems. Its declarative
nature facilitates a high level description close to that ofhybrid automata. In addition, the logical nature
of Hy-tccpeases the development of formal methods techniques for the static analysis and verification of
hybrid systems. Furthermore, sinceHy-tccp is a conservative extension oftccp, it is possible to describe
with the same syntax concurrent, reactive and hybrid systems.

In the future, we plan to develop a framework for the description and simulation ofHy-tccpprograms.
In this way, we will be able to model complex hybrid systems inHy-tccp. Given the affinity of the two
formalisms, we are interested in defining a translation rules system fromHy-tccp to hybrid automata
and viceversa, in order to transfer verification and analysis results from one formalism to the other.
Furthermore, we plan to use model checking and abstract interpretation techniques to verify temporal
properties of hybrid systems written inHy-tccp (as done in [6] for SPIN and in [3] fortccp). Another
feature we would like to explore is the adjustment of the language to make it compatible with rectangular
hybrid automata [9].

References

[1] D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda & R. R. H.Schiffelers (2006):Syntax and consistent
equation semantics of hybrid Chi. Journal of Logic and Algebraic Programming68(1-2), pp. 129–210,
doi:10.1016/j.jlap.2005.10.005.

[2] F. S. de Boer, M. Gabbrielli & M. C. Meo (2000):A Timed Concurrent Constraint Language. Information
and Computation161(1), pp. 45–83, doi:10.1006/inco.1999.2879.

[3] M. Comini, L. Titolo & A. Villanueva (2014):Abstract Diagnosis fortccp using a Linear Temporal Logic.
Theory and Practice of Logic Prog.14(4-5), pp. 787–801, doi:10.1017/S1471068414000349.

[4] P. J. L. Cuijpers & M. A. Reniers (2005):Hybrid process algebra. Journal of Logic and Algebraic Program-
ming62(2), pp. 191–245, doi:10.1016/j.jlap.2004.02.001.

[5] C. Daws & S. Yovine (1995):Two Examples of Verification of Multirate Timed Automata with Kronos.
In: Proceedings of the 16th IEEE Real-Time Systems Symposium, RTSS ’95, IEEE Computer Society,
Washington, DC, USA, pp. 66–75, doi:10.1109/REAL.1995.495197.

http://dx.doi.org/10.1016/j.jlap.2005.10.005
http://dx.doi.org/10.1006/inco.1999.2879
http://dx.doi.org/10.1017/S1471068414000349
http://dx.doi.org/10.1016/j.jlap.2004.02.001
http://dx.doi.org/10.1109/REAL.1995.495197

Adalid, Gallardo & Titolo 15

[6] M. M. Gallardo & L. Panizo (2013):Extending Model Checkers for Hybrid System Verification: the case
study of SPIN. Software Testing, Verification and Reliability, doi:10.1002/stvr.1505.

[7] V. Gupta, R. Jagadeesan, V. A. Saraswat & D. G. Bobrow (1994): Programming in Hybrid Constraint Lan-
guages. In P.J. Antsaklis, W. Kohn, A. Nerode & S. Sastry, editors:Hybrid Systems II, Lecture Notes in
Computer Science999, Springer, pp. 226–251, doi:10.1007/3-540-60472-312.

[8] T. A. Henzinger (1996):The theory of hybrid automata. In: Proceedings of the 11th Annual IEEE Sym-
posium on Logic in Computer Science, LICS ’96, IEEE Computer Society, Washington, DC, USA, pp.
278–292.

[9] P. W. Kopke (1996):The Theory of Rectangular Hybrid Automata. Technical Report, Ithaca, NY, USA.

[10] V. A. Saraswat (1989):Concurrent Constraint Programming Languages. Ph.D. thesis, Pittsburgh, PA, USA.

http://dx.doi.org/10.1002/stvr.1505
http://dx.doi.org/10.1007/3-540-60472-3_12

	1 Introduction
	2 Background
	2.1 The Timed Concurrent Constraint Language
	2.2 Introduction to hybrid automata

	3 hy-tccp: an extension of tccp over continuous time
	4 Examples
	4.1 Cooler system
	4.2 Cat and mouse race
	4.3 Gear shift system

	5 Related Work
	6 Conclusions

