Preliminary Results Towards Contract Monitorability

Annalizz Vella Adrian Francalanza
CS, ICT, University of Malta CS, ICT, University of Malta
annalizz.vella.10@um.edu.mt adrian.francalanza@um.edu.mt

This paper discusses preliminary investigations on theitmi@bility of contracts for web service
descriptions. There are settings where servers do not igiearatatically whether they satisfy some
specified contract, which forces the clieme(, the entity interacting with the server) to perform
dynamic checks. This scenario may be viewed as an instanBaimime Verification, where a
pertinent question is whether contracts can be monitoneddequately at runtime, otherwise stated
as themonitorability of contracts We consider a simple language of finitary contracts desayib
both clients and servers, and develop a formal framewottkdscribes server contract monitoring.
We define monitor properties that potentially contributeaods a comprehensive notion of contract
monitorability and show that our simple contract languaafesies these properties.

1 Introduction

Web serviced [7,/6] typically consist of two types of compgtentities.Serveroffer ranges of sequences
of service interaction$o clients which in turn interact with these services and occasigratch a state
denoting client satisfaction. The service interactiorierefl by a server typically follow some predefined
structure that may be formalised as a contriact[6, 7], 15, G&llR, the service interactions invoked by a
client may also be expressed within the same formalism.

The contract calculus defined in_[15,[2, 5] is an abstract &ism equipped with an operational
semantics that provides an implementation-agnostic,-keigil description of client-server interactions;
this permits formal reasoning about web services, such ath&ha client is compatible with a server or
whether a server is able to satisfy the service interactieqaested by the client. Such reasoning may,
for instance, be used by clients fdynamic service discoveryhere a client decides to interact with a
server whenever the contract it advertises satisfies tharesgents of the client.

Example 1.1. Consider the contract below describing the behaviour ofraernet banking server:
login. ((valid.(query.0+ transfer.0)) @ (invalid.0))

It states that the server first expectsagin service interaction followed by either @lid or invalid
service invocation; the operat@p denotes that the server decides autonomously whetherdkama/id

or invalidin response. If it branches to the latter, it terminates ateractions, denoted b However, if

it internally decides to invoke the service interactwariid, it then offers a choice (denoted by the symbol
+) of service interactions: it either accepts (account bakyuery interactions or else (fundjransfer
interactions. A contract describing the behaviour of a fildesbank client is given below:

login. ((invalid.reason.1) + (expired.1) + (valid.query.1))

After a login service invocation, this client expects aitbé three responses: amvalid interaction
prompting another service request that asks fareason why the login was invalid, a logiexpired

L. Aceto, A. Francalanza and A. Ingolfsdottir (Eds.): Wdrkp on © A. Vella and A. Francalanza
Pre- and Post-Deployment Verification Techniques (PreBeiss) This work is licensed under the
EPTCS 208, 2016, pp. 54363, d0i:10.4204/EPTCS.208.5 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.208.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

A. Vella and A. Francalanza 55

invocation or else aalid login interaction that is followed by invokingquery service request. All these
alternative sequences leave the client in a satisfied statBy analysing theesp. contracts, one can
deduce that interactions on thalid service following a clienfogin interaction necessarily lead to a
query interaction, which then leaves the client satisfied. Onealan discern thatnvalid interactions
lead to a deadlock, whereby the client asks feeason service that is not offered by the server. One can
also note that thexpired option offered by the client is never chosen by the server. |

Within this framework, there still remains the question dfether a service behaviour actually ad-
heres to the contract it advertises. In general, staticmigolks (such as session-based type systems [9],
or state-based model-checking of compliance, must ordatirtg inclusion[[15,12,]5]) are used to verify
before deploymenivhether a server implementation respects the contractddedribes it. However,
there are cases where this solution is not applicable. Btanice, the client may deciget to trust the
static verifier used by the server. Alternatively, in a dyi@asetting where service components are down-
loaded and installed at runtime, pre-deployment checkaatdoe made on the server implementation
since some components only become available for inspeatinmtime. There are also cases whereby a
server does not come equipped with a formal description.at al

In these circumstances, a client can check that a servezaissan advertised (or expected) contract
by analysing the behaviour exhibited by the semtruntime There are a number of cases where such
a solution is adopted [4, 12], making use of dynamic momnigpripossibly in conjunction with other
verification techniques. This monitoring of systems maydmnsas an instance of Runtime Verification
(RV) [13], a lightweight formal verification technique uskxicheck the current execution of a program
by verifying it against some properties. In a typical setilfg monitor observing the running system
raises a flag when @onclusiveverdict is reached, denoting that the property being chetéieis either
satisfiedor violated

An important question in any RV setup is that of th@nitorability of the specification language
considered. Indeed, it is generally the case that not ab@sf a specification can be monitored for
and determined at runtime, as shownin[8, 1, 11] for spetifindanguages such as LTL and the modal
u-calculus. In this work, we start to investigate the morabolity of contracts which, in turn, sheds light
on the viability and expressiveness of the dynamic contrhetking setup discussed above. In contrast
to earlier work on monitorability, we doot rely on an external formal logic for specifying the propesti
expected by a server contraetg.,a satisfaction relatiop = ¢ whereg would be a formula from a logic
defined over server contraptthrough the semantic relatidga. Instead, we use the subcontract server
relationq Csgy p defined in[[15] as aefinement semantic relatiomhereq is an abstract description of
the expected properties of a server contygdhus using the contract language itself as a specification
language. Within this setting, we investigate whether oanitering mechanism is expressive enough to
verify whether a servep indeed refines an abstract descriptepn

The rest of the paper is structured as follows. Section 2ui@s our contract language and defines
our notion of contract satisfaction. Sectigh 3 introduces monitoring setup and Sectidn 4 relates
verdicts reached by our monitored computations to the aonsatisfactions discussed in Sectidn 2.
Sectior[b concludes by discussing related and future work.

2 Servers, Clients and Satisfaction

Figure[l describes the syntax and semantics of (finite) searal clients. Led, b,c,d... € NAMES be a
set of names denoting interaction addresses: het complementation operation on these names where
we refer to the complement af asa; the operation is an involution, wheee= a. The set of actions

56 Preliminary Results Towards Contract Monitorability

Syntax
p,q€ SRV =0 (inaction) | a.p (prefixing)
| p+q (external choicg | peq (internal choicg
rse CLl :=0 | a.r | r+s | rés | 1 (success
Dynamics
M / H /
ACT—————— SELL P —>u P SELR g —>“q
a.p—p p+q — p p+qa — d
CHOL—T CHOR—T
peq — p peq — g
Interaction
i r r5s =
AsyS—P - g AsyC— 5 SYN - P—4
rip—ria rip — slp rlp — sliq

Figure 1: Server and Client Syntax and Semantics

a € AcT= (NAMESU{a| a€ NAMES}) includes all names and their complement. téte a distinct
actionnotin AcT denotinginternal unobservable activity, where we |gtc ACTU {1}.

Serversp, q € SRy, consist of either the terminated ser@er prefixed serves.p that first engages
in interactiona and then behaves @gsan external choice+ qthat can either behave a®or qdepending
on the interactions it engages in, or an internal chq@igeq that autonomously decides to either behave
asporq. Clients,r,se CLI, have a similar structure but may also consist of the tedanoting contract
fulfilment. The semantics of both servers and clients arergia terms of a Labelled Transition System
(LTS) where the labelled transition relatiqmi> g is defined as the least relation satisfying the rules
in Figure[1; the definition of the transition relation foreslisr £ sis analogous and thus elided.
The definition is standard and follows that of related lamgasasuch as CCS [14]. For instance, the
term a. p transitions with (action) labek to the continuatiorp; if p can engage in an interaction gn
and transition tq/, then an external choice term involving e.g., p+ g may also transition t@' after
exhibiting actionu; by contrast, an internal choice involving e.g., p® q may transition tgp without
exhibiting an external actiorr (is used).

Servers and clients may be composed together to form a sysfgmso as to engage in a sequence
of interactions. Interactions are also defined as an LTS gystiems, through the rulessAS, AsyC
and N in Figure[1. As is standard, silent transitions by eitheveeor client allow them to transition
autonomously in a system. However, a client transition oexdernal action must be matched by a
server transition on the (dual) co-action for the transitio occur in theresp. system, denoting client-
server interactionComputationsre sequences of system transitiog$ po ... 5 |l pn, denoted
asrol|| po = rnl| pn; the sequence may be potentially empty= 0, whereno transitions are made,
in which case we havey = r, and po = p,. A computationrg || po = rn || pn IS maximalwhenever

A. Vella and A. Francalanza 57

2P - tallpn 5 1P

Definition 2.1. A maximal computation, |fp = s|| g, is successfylwhenever the client’s contract is
fulfilled, meaning that s- 1. A service psatisfiesa client r, denoted asat(p,r), wheneverymaximal
computation rooted at|fp is successful. [

Example 2.2. The server p=a.0+ (b.a.0® c.0) may either transition as p3> O using rulesAcT and

SELL from Figure[d, or silently transition as p= b.a.0 or p — ¢.0 via rules CHoL, CHOR and
SELR from Figurel1. It satisfies the client= b.1+¢.1, denoted asat(p,r), because the only maximal
computations possible are the following

rllp = r|ba0 = 1]a0 rlp = rlco 5 10

both of which are successful. By contrast, server p admgsatisfy clientb.1, denoted as-sat(p,b.1),
nor does it satisfy the clients1+b.0+t.1 andb.c.1+tT.1. In each case, we can show this through the
unsuccessfumaximal computations below.

b.1|p = b.1]cO b.1+b0+cl|p = bi1+b0+cl1|b0 5 00

b.cl+cl|p = becl+cl|b0o < c1]0 |

The satisfaction predicatat(—, —) induces a natural preorder amongst servers.

Definition 2.3 (Server Preordel [15])A server p is a subcontract of server g, denoted dssp, g,
whenever, foall clients r,sat(p,r) impliessat(q,r). Dually, q is referred to as a supercontract of [l

Intuitively, p Csgy g of Definition[2.3 means that we can substitute a sep/y a servel, safe in
the knowledge that any client satisfied pyvould not be affected.

Example 2.4. Definition[2.3 allows us to establish a number of useful sgfimgequations such as
a0dh0Cgsyal b.a.0+b.c.0 Cgry b.(a.0®c.0) b.(a.0®c.0) Csgy b.a.0+b.c.0

but also justify subtle cases where substituting one seéoreanother might break client satisfaction.
For instance, we hav@ [Zsz, a.0 because for the clier{tl ® 1) +a.0 we havesat(0, (1@ 1) +a.0) since
(1©1)+a0[0 5 10 is the only maximal computation (which is also successhui},also have
—sat(a.0, (16 1) +a.0) due to the unsuccessful computatidns 1) +a.0[a.0 — 0]|0. |

3 Monitors and Monitored Computations

Figurel2 describes the monitoring framework used to anagseers purporting to adhere to some adver-
tised contract. It defines the syntax of these monitors, lvfdllow the general structure used in earlier
works [11,[1] whereby monitors may reach any one of the thexdists VERD, namely acceptance,
rejection, or the inconclusive verdict. In addition to tteste prefixing patterns used [n |11, 10], we here
also use action complementatiom, to denote any actioapart froma. As in [11,[10], a monitor is
allowed to branchm+ n, depending on the actions observed at runtime. We also ficwhitenient to
express a merge monitor operator that facilitates the casitip of monitor specificationsn x n.

The semantics of a monitor is given in terms of the LTS definethb rules in Figurél2. This is best
viewed as the evolution of a monitor in response to a (finikgkcation trace € AcCT, consisting of a
sequence of actiong,, ..., as. Verdicts are irrevocable when reached, and do not change wipwing

58 Preliminary Results Towards Contract Monitorability

Syntax
v,ue VERD =Y (acceptance | N (rejection
| end (inconclusive
0 € PATTERNS =0 (action) | a (complement
m,ne MON =V (verdict) | 6.m (interaction)
|m+n (choice) | mxn (conjunction)
Dynamics
a
MVERﬁ MACT—a MNACT B 7&
Vv a.m - m a.m -t m
a a / a a !
mSeLL — 1 —>am MSELR— 1 —>an MCony— I — ma h— n
m+n — m+n — n’ mxn — m xn
Instrumentation
a / a a / T /
— m — m — m —
IMON p p a ITER p 2 7% IASY p T p
map — m<p m<p — end< p/ map — map

Figure 2: Monitors and Instrumentation

further actions in the trace (rul@VER). Prefixing releases the guarded monitor when the expected
pattern is encountered (rulesAcT andMNACT). The rulesmSELL andMSELR describe left and right
monitor branching as expected, whereas mfeonNJ describes the synchronous evolution of merged
monitors.

A monitored server contraatonsists of a servar that is instrumented with a monitan, denoted as
m< p. The behaviour of monitored contracts is defined as an LT&igir the rules stated in Figurée 2,
and relies on theesp. LTSs of the monitor and the server. RulgON states that if a server can
transition with actioror and the monitor can follow this by transitioning with the saattion, then in an
instrumented server they transition in lockstep. Howe¥dine monitor cannot follow such a transition
the instrumentation forces it to terminate with an incossle verdict,end, while the process is allowed
to proceed unaffected; see rul€er. Finally, rule IAsy allows a contract to evolve independently
from the monitor when performing silemt moves (which are unobservable to the monitor). We refer
to a sequence of transitions from a monitored contractrasritored computatioand use the standard
notationm< p L m< p’ that abstracts ovar-moves in trace.

A few comments are in order. First, we highlight the fact tmathe operational semantics for
monitored systems of Figuig 2, the monitor doeg have access to the internal state of the server
generating the trace, and its observations are limitedaeekecution that the server chooses to exhibit
at runtime. This is meant to model the RV scenarios mentioneskection’1, where the source of the
executing system cannot be analysed: from the point of vigdweoruntime monitoring and verification,
the server description is merely used to generate tracesn8gwe note that, in a monitored server setup,
any visible behaviour is instigated by the server, relegathe instrumented monitor topassiverole

A. Vella and A. Francalanza 59

that merely follows the server actions. Stated otherwlse servedrivesthe behaviour in a monitored
system and dictates the execution path that the monitormagse at runtime.

In what follows, we explain how monitors work through a sexéexamples. The exposition focuses
on monitors that produce rejection verdicts, but the disicuscan be extended to acceptance verdicts in
a straightforward manner.

Example 3.1. The monitora. N+ a.b. N checks for violations from contracts that are expected toeael

to (i.e., be supercontracts of) the contra&b.0. In fact, the monitor reaches a rejection verdict whenever
a contract either emits an action that is natat runtime,a./V, or else emits an action that is not
following action aa.b.N. Consider the servea.c.0; when instrumented with our monitor we can observe
the following monitored computation whereby the monitaichees a rejection verdicty.

(aN+abN)<(@co 5 bNacO S N0

By contrast, when the servarb.0 is instrumented with the monitor, no rejection verdict iaghed; in
particular, the final transition below is derived using rulEer because bV 7% .

a

(@aN+abN)<(@b0) = bNab0 2 enda0

We emphasise the fact that monitor termination through rililer is crucial to avoid unwanted detec-
tions. Consider a variant of the earlier monitath. NV, which now reports violations whenever it observes
the trace consisting of the acti@followed by the action b. When composed with the syatemm0 we
observe the following monitored computation.

ab.Naacho & b.N<chO

<5 end<b.0 (**)

£> end< 0

At transition [¥), the server can perform an action, c, ththe monitor is not able to followi.g., it is
not specified how the monitor should behave at that point shawdtiserve action c). Accordingly, the
semantics instructs the monitor to terminate (prematreligh an inconclusive verdict. There are two
instrumentation alternatives that could have been adgpbeth of which are arguably wrong from a
monitoring perspective. The first option would have beenrabipit the server from exhibiting action
¢, which goes against the tenet that the monitor should adqussive role and not interfere with the
execution of the program it monitors. The second optiongsiably even worse: we could have let the
server transition and left the monitor in its present state,, b.N < ¢.b.0 < b.N< b.0, but then this

would have led to annspecified/erroneoiwdetection at the next transition/< b.0 2, nao. |

Example 3.2. The servem.b.0& ¢.b.0 is nota supercontract ofi.b.0 according to Definitio 2]3. Cru-
cially, however, in an RV setting, monitor detection degenil the runtime behaviour exhibited by the
server. This contrasts with other forms of verification vihigay be allowed to exploml the execution
paths of a server under scrutiﬂy.

T

(@N+abN)<(@boech0) - (aN+abN)<a@b0) & bNab0 2 end<0

T

(@N+abN)< (@boecb0) - (aN+abN)a(cbo) = Nab0 X N«O

1in the general case, a pre-deployment verification teclenigay also analysiefinite paths.

60 Preliminary Results Towards Contract Monitorability

In the first monitored computation above, the server exhibieé behaviour described by the tracd ,
which prohibits the monitor from detecting any violatiohtwever, the same server exhibits a different

trace =2 in the second monitored computation which permits monibection. The rejection verdict is
in fact reached after the first visible transition on actigraad then preserved throughout the remainder
of the computation. |

Example 3.3. We can monitor for violations of the contrag&t.0+ ¢.0 by composing two submonitors
that monitor for the constituents. Specifically, since thenitor c. N+ c.end checks for violations of
contract cO and, the minimally extended monitarN +a.(b. N+ b.end) checks for violations cé.b.0
as discussed in Examfle B.1, we can construct the compositéam(a. N+ a.(b. N+ b.end)) x (c.N+
c.end) to monitor for violations of.b.0+c.0.

(@N+a(b.N+b.end) x (c.N+cend)<ab0+cO = b.N-+bendx NabO

L, endx N<aO
(@N+a(b.N+bend) x (c.N+cend)<ab0+cO0 = Nxend<0

When the compaosite monitor is instrumented with the coniré expected to monitor for, we note that
it does not reach a rejection aloreyery(parallel) submonitor.

(@N+a(b.N+bend) x (CN+cend))<ab0 2 NxNaO

By contrast, the violating contract above generates a t&acalong every submonitor. |
Exampld_3.B clearly suggests a definition of monitor regecti

Definition 3.4 (Rejection) A monitor m is in a rejection state, denotedrag m), whenever it is of the
form N x ... x N. We overload this predicate to denote a server p being re§elby a monitor m, defined
formally as

rej(p,m) £ 3t,p - ma p=miap andrej(n)

Example 3.5. The monitor_cN + c.end rejects server 0, rej(b.0,(c.N+ c.end)) as well as server
c.0+ b0, re((c.0+b.0),(c.N+ c.end)) because both may exhibit an execution trace that leads the
monitor to a rejection state. By contrast,\t+ c.end doesnot reject server @. Recalling monitor
m= ((@N+a.(b.N+b.end)) x (c.N+c.end)) from Exampl€3]3, we can also state that it rejects server
b.0, rej(b.0,m). [

4 Preliminary results towards Monitorability

Monitorability may be broadly described as the relatiopdietween the properties of a logic specifying
program behaviour and the detection capabilities of a mani setup instrumented over such programs.
It is therefore parametric with respect to the logic and ravitig setup considered. In what follows,
we sketch out preliminary investigations that focus on ttenitor rejections defined in Sectiéh 3, and
attempt to relate them to violations of the server preorééindd in Sectioql2.

We have already defined enough machinery to be able to statmlfg two important properties.
Definition[4.]1 states that a monitar soundly monitor§or a server contracp if and only if, whenever
it rejects a serveq, it is indeed the case thgtis not a supercontract . In a sense, the dual of this is
Definition[4.2, which states that a monitwr completely monitorfor a server contragp if and only if
everyqthat is not a supercontract gfis rejected bym.

A. Vella and A. Francalanza 61

Definition 4.1 (Rejection Sound)smon(p, m) = Vq- rej(g,m) implies pZsgy Q. |
Definition 4.2 (Rejection Complete)cmon(p, m) = VQq- p Zsry g impliesrej(g, m). |

We can also extend these monitorability definitions to aifipation language of contractsé., a set of
contracts).

Definition 4.3 (Language Rejection Monitorability)A set of contracts’ is:
¢ sound rejection-monitorable iffp € ¥ - Ime MoON-smon(p,m)
e complete rejection-monitorable iffp € € - Ime MoN- cmon(p, m)
e rejection-monitorable iff/p € € - Im e MoN - smon(p,m) andcmon(p, m) [

We can readily argue in a formal manner that the contractuagg %v of Figure[1cannotbe
rejection-monitorable. Consider as an exangaet-b.0 € SRv. If this language is rejection-monitorable,
then there must exist a moniton such thatsmon(a.0 + b.0,m) and cmon(a.0 + b.0,m). We argue
towards a contradiction. From Sectibh 2 we know ta&+ b.0 Zsgy @0, and thus, bycmon(a.0 +
b.0,m), it must be the case thatj(a.0,m). Now this rejection predicate holds if either reaches a
rejection state immediately or else reaches rejectiom afiserving actiom. In either case, this monitor
would also reject the contraatO+ b.0 as well, which would make the monitor necessarily unsouad,
—smon(a.0+ b.0,m), since, by the reflexivity property of the preorder, we ha@+ b.0 Csg, a.0+ b.0.

We deem sound rejection to be the minimum correctness mrgeint to be expected from the con-
tract monitors we consider. Note, however, that the cohtemguage 8v of Figurel1 is trivially sound
rejection-monitorable via the monitend; this monitor never reaches a rejection state and thuslkivi
satisfyingrej (p,end) for any p € SRv. However, we argue that this monitend, is not very useful.

We attempt to go one step further and define an automated ensgitthesis function that returns a
monitor forevery servein the contract languagers. We argue, at least informally, that these synthe-
sised monitors are, in some sense, useful because theymeafdegree of violation detections. Impor-
tantly, however, we show that these synthesised monitemegction sound, according to Definitionl4.1.

Definition 4.4 (Monitor Synthesis) The function]—] : SRV — MON synthesises a monitor from a server
contract description, and is defined inductively on thedttrce of this contract as follows:

[0] £ end [a.p] £ a.N+a.[p]
[p-+a] = [p] x [a] [p&d] = [p] x [a] n

A few comments on Definitionh 4.4 are in order. First, note thatimber of the monitors considered
earlier in Sectioh]3 are in fact instances of this transtatieor instance, we have

[ab.0] =a.N+a.(b.N+b.end) and [ab0+c0]=(aN+a(b.N+bend))x (c.N+c.end)

from Exampld_3.3. Secondly, note that the monitor synth@sés not attempt to perform any detection
violation for the contrac@. Since0 is in some sense a bottom element in the preorder, no supercbn
of 0 is allowed to perform any visible action. Thus, in cases wtadl the actions permissible InRS

are known up front as finite set{a1,...,an}, we can improve the precision of our synthesis through
the alternative definitiorfO] d:“ﬂ.N + ...+ an.N for the case wher@ = 0. Third, note that the syn-
thesis for both internal and external choice constructeaide which, in a sense, is due to the inherent
discriminating limits of RV. Consider, by way of exampleetimonitor syntheses below:

[a0+b.0] = ((@N+aend)) x (b.N+b.end)) = [a.0® b.0]

62 Preliminary Results Towards Contract Monitorability

The server.0 is rejected by the monitai{a.N +a.end)) x ((b.N + b.end)) and accordingly it imeither

a supercontract .0+ b.0 nor of 2.0 b.0. However, the servea.0 is not rejected by the monitor
((@aN-+a0)) x ((b.N+b.0)); whereas it is correct to do so in the case of monitoring ferititernal
choice contracB.0® b.0 becausea.0 ® b.0 Csry a0, it leads to lack of precision in the case of the
external choic&.0+ b.0 sincea.0+ b.0 Zszy a.0. In spite of these limitations, we are able to show that
our proposed monitor synthesis is sound.

Theorem 4.5(Synthesis Soundnesdjor every server specification @ SRv, every server implementa-
tion g€ SRrv, and the monitor synthesis functi¢r] of Definition[4.4:

Wheneverrg(q,[p]) then itis necessarily the case thatiZggy g

Proof. By structural induction on the server specificatimn O

5 Conclusion

We have presented preliminary investigations relatindnéorhonitorability of contracts, high-level de-
scriptions for web services. We developed a monitoring éanork that complements the operational
semantics of server contracts. We then focused on theimjestpressivity of the monitors within this
framework and related it to cases where it is unsafe to reglae server (contract) with another. Within
our simple framework, we were already able to identify Isnitith respect to monitor detection powers,
and were able to diagnose problems with a proposed automaiador synthesis procedure. We were
also able to formally prove that, in spite of its limit, the nitor synthesis considered is, in some sense,
correct (Theorerh 415).

Related and Future Work The language of contracts for web services has been distirsseveral
other works prior to ours, such as [2,5] 15, 7]; although epheally simple, it has been shown to
be expressive enough to capture the dynamicity of intemastispecified by more elaborate contract
descriptions. The server preorder considered in this pegetures the essence of the must preorder,
studied in [3] and the compliance preorder, studied_in []5jr¥ our simplistic case of finite servers
and clients, the two preorders coincide (modulo minor tesgindetails regarding client satisfaction
and computation success). Our notion of monitorabilitynispired by that presented in_[11], which
relates process satisfaction of a branching-time logigs ¢, with detections of monitors synthesised
from formulas in this logic[¢@] < p. The instrumentation relation considered in this papen &ct an
adaptation to the one used in J11].

For future work, we aim to achieve a more comprehensive sbfiggonitorability than the prelim-
inary one presented in Sectibh 4. In particular, we plan tsicer monitor acceptances as a verdict in
addition to rejections, establish stronger results witipeet to rejections and consider extended contract
descriptions similar td |3,/ 7] that include recursion and potential for infinite computation. This will
lead to different notions of server refinements such as thesdting from compliance and fair test-
ing preorders([5, 15]. It will be interesting to study whatl@y of the aforementioned server preorder
variants are more monitorable than the others.

Acknowledgements: This research was partly supported by the project “TheoRuMbheoretical
Foundations for Monitorability” of the Icelandic Reseafeind.

A. Vella and A. Francalanza 63

References

[1] Andreas Bauer, Martin Leucker & Christian Schallhar012): Runtime Verification for LTL and TLTL
TOSEM, ACM20(4), pp. 14:1-14:64, dni:10.1145/2000799.2000800.

[2] GiovanniBernardi & Matthew Hennessy (2012)Jodelling Session Types Using Contracd&\C, ACM, pp.
1941-1946, dci:10.1145/2245276.2232097.

[3] Giovanni Bernardi & Matthew Hennessy (2015):Mutually Testing Processes LMCS 11(2),
doi{10.2168/LMCS-11(2:1)2015.

[4] Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohaid4o& Nobuko Yoshida (2013)Monitor-
ing Networks through Multiparty Session Typés: FMOODS/FORTELNCS 7892, Springer, pp. 50-65,
doi{10.1007/978-3-642-3859255

[5] M. Bravetti & G. Zavattaro (2009):A theory of contracts for strong service complianchISCS19(3),
doi{10.1017/S0960129509007658.

[6] S. Carpineti, G. Castagna, C. Laneve & L. Padovani (20A6jrmal Account of Contracts for Web Services
In: WS-FM, LNCS 4184, Springer, pp. 148-162, doi:10.1007/118411@7

[7] Giuseppe Castagna, Nils Gesbert & Luca Padovani (20@9)Theory of Contracts for Web Services
TOPLAS, ACM31(5), pp. 19:1-19:61, d0i:10.1145/1538917.1533920.

[8] Clare Cini & Adrian Francalanza (2015xn LTL Proof System for Runtime Verificatidn: TACAS, LNCS
9035, Springer, pp. 581-595, d0i:10.1007/978-3-662-16684.

[9] Mariangiola Dezani-Ciancaglini & Ugo De’Liguoro (20p9Sessions and Session Types: An Overview
WS-FM, LNCS 6194, Springer, pp. 1-28, doi:10.1007/978-3-642-14433-5

[10] Adrian Francalanza (2016X Theory of Monitors (Extended Abstradt): FoSSaCSLNCS9634, Springer,
pp. 145-161, dci:10.1007/978-3-662-49630:5

[11] Adrian Francalanza, Luca Aceto & Anna Ingolfsdé{015): On Verifying Hennessy-Milner Logic with
Recursion at Runtimdn: RV, LNCS9333, Springer, pp. 71-86, 00i:10.1007/978-3-319-238%0-

[12] Limin Jia, Hannah Gommerstadt & Frank Pfenning (201&pnitors and Blame Assignment for Higher-
order Session Type®OPL, ACM, pp. 582-594, d0i:10.1145/2837614.2837662.

[13] Martin Leucker & Christian Schallhart (20098 brief account of runtime verificationJLAP 78(5), pp.
293-303, dai:10.1016/j.jlap.2008.08.004.

[14] Robin Milner (1989):Communication and Concurrencirentice Hall.

[15] Luca Padovani (2009)Contract-Based Discovery and Adaptation of Web ServitesSFM, LNCS 5569,
Springer, pp. 213-260, doi:10.1007/978-3-642-01913-0

http://dx.doi.org/10.1145/2000799.2000800
http://dx.doi.org/10.1145/2245276.2232097
http://dx.doi.org/10.2168/LMCS-11(2:1)2015
http://dx.doi.org/10.1007/978-3-642-38592-6_5
http://dx.doi.org/10.1017/S0960129509007658
http://dx.doi.org/10.1007/11841197_10
http://dx.doi.org/10.1145/1538917.1538920
http://dx.doi.org/10.1007/978-3-662-46681-0_54
http://dx.doi.org/10.1007/978-3-642-14458-5_1
http://dx.doi.org/10.1007/978-3-662-49630-5_9
http://dx.doi.org/10.1007/978-3-319-23820-3_5
http://dx.doi.org/10.1145/2837614.2837662
http://dx.doi.org/10.1016/j.jlap.2008.08.004
http://dx.doi.org/10.1007/978-3-642-01918-0_6

	1 Introduction
	2 Servers, Clients and Satisfaction
	3 Monitors and Monitored Computations
	4 Preliminary results towards Monitorability
	5 Conclusion

