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We present an automated verification of the well-known modal logic cube in Isabelle/HOL, in which
we prove the inclusion relations between the cube’s logics using automated reasoning tools. Prior
work addresses this problem but without restriction to the modal logic cube, and using encodings in
first-order logic in combination with first-order automated theorem provers. In contrast, our solution
is more elegant, transparent and effective. It employs an embedding of quantified modal logic in
classical higher-order logic. Automated reasoning tools, such as Sledgehammer with LEO-II, Satal-
lax and CVC4, Metis and Nitpick, are employed to achieve full automation. Though successful, the
experiments also motivate some technical improvements in the Isabelle/HOL tool.

1 Introduction

We present an approach to meta-reasoning about modal logics, and apply it to verify the relative strengths
of logics in the well-known modal logic cube, which is illustrated in Figure 1. In particular, proofs are
given for the equivalences of different axiomatizations and the inclusion relations shown in the cube.
Our solution makes extensive use of the fact that all modal logics found in the cube are sound and
complete because they arise from base modal logic K by adding Sahlqvist axioms. This is in contrast
to prior work by Rabe et al. [16], who address the more general problem of determining the relation
between two arbitrary modal logics characterized by their sets of inference rules. In their article the
authors apply first-order logic encodings in combination with first-order automated theorem provers to
prove an inclusion relation employing a number of different decision strategies. For the subproblem
of only comparing logics within the cube (and therefore taking advantage of normality as additional
knowledge) our solution improves on the elegance and simplicity of the problem encodings, as well
as with automation performance. One motivation of this paper is to demonstrate the advantage of a
pragmatically more expressive logic environment (here classical higher-order logic) in comparison to a
less expressive language such as first-order logic or decidable fragments thereof.
We exploit an embedding of quantified multimodal logic (QML) in classical higher-order logic (HOL)
[7], in which we carry out the automated verification of the aforementioned inclusion relations. These
include the logics K, D, M (also known as T), S4, and S5. We analyze inclusion and equivalence relations
for modal logics that can be defined from normal modal logic K by adding (combinations of) the axioms
M, B, D, 4, and 5. In our problem encodings we exploit the well-known correspondences between these
∗This work has been supported by the German Research Foundation DFG under grants BE2501/9-2 & BE2501/11-1.
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Figure 1: The modal logic cube: reasoning in modal logics is commonly done with respect to a certain
set of basic axioms; different choices of basic axioms give rise to different modal logics. These modal
logics can be arranged as vertices in a cube, such that the edges between them denote inclusion relations.

axioms and semantic properties of accessibility relations (i.e. Kripke models). These correspondences
can themselves be elegantly formalized and effectively automated in our approach. Formalization of
the modal axioms M, B, D, 4, and 5 requires quantification over propositional variables. This explains
why an embedding of quantified modal logic in HOL is needed here, and not simply an embedding of
propositional modal logic in HOL.
Our previous work (see the non-refereed, invited paper [3]) has already demonstrated the feasibility
of the approach. However, instead of the development done there in pure TPTP THF [8], we here
work with Isabelle/HOL [14] as the base environment, and fruitfully exploit various reasoning tools
that are provided with it. This includes the Sledgehammer-based [15] interfaces from Isabelle/HOL
to the external higher-order theorem provers LEO-II [9] and Satallax [1], as well as Isabelle/HOL’s
own reasoner Metis [11]. Moreover, the higher-order model finding capabilities of Nitpick [10] are
heavily used in order to formulate and prove subsequent inclusion theorems in Isabelle/HOL. We also
encountered some problems with interacting with the proof reconstruction available for LEO-II and
Satallax in Isabelle/HOL.
This paper is a verified document in the sense that it has been automatically generated from Isabelle/HOL
source code with the help of Isabelle’s build tool (the entire source package is available from http:
//christoph-benzmueller.de/varia/pxtp2015.zip).
The paper is structured as follows: Section 2 presents an encoding of QML in HOL. This part reuses the
theory provided by Benzmüller and Paulson [7], which has recently been further developed (to cover full
higher-order QML) and applied for the verification of Gödel’s ontological argument [5, 6]. Section 3
first establishes the well-known correspondence between properties of models and base axioms, and
then investigates the equivalence of different axiomatizations. Subsequently, all inclusion relations as

http://christoph-benzmueller.de/varia/pxtp2015.zip
http://christoph-benzmueller.de/varia/pxtp2015.zip


Christoph Benzmüller, Maximilian Claus and Nik Sultana 29

depicted in the modal logic cube are shown to be proper. Finally, the minimal number of possible worlds
that is required to obtain proper inclusions in each case is determined and verified. Section 4 presents a
short evaluation and discussion of the conducted experiments, and Section 5 concludes the paper.

2 An Embedding of Quantified Multimodal Logics in HOL

In contrast to the monomodal case, in quantified multimodal logics both modalities � and ♦ are parame-
trized, such that they refer to potentially different accessibility relations. We write �R and ♦R to refer to
necessity and possibility wrt. a relation R. Furthermore, in terms of quantification, we only consider the
constant-domain case: this means that all possible worlds share one common domain of discourse. More
details on the embedding of QML in HOL are given in earlier work [7, 6].

QML formulas are translated as HOL terms of type i⇒ bool, where i is the type of possible worlds. This
type is abbreviated as σ .

The classical connectives ¬,∧,→, and ∀ (which quantifies over individuals and over sets of individuals)
and ∃ (over individuals) are lifted to type σ . The lifted connectives are ¬m, ∧m, ∨m, →m, ≡m, ∀ , and
∃ (the latter two are modeled as constant symbols). Other connectives can be introduced analogously.
Moreover, the modal operators � and ♦, parametric to R, are introduced. Note that in symbols like ¬m,
symbol m is simply part of the name, whereas in �R and ♦R, symbol R is a parameter to the modality.

abbreviation mnot :: σ ⇒ σ where ¬m ϕ ≡ (λw. ¬ ϕ w)
abbreviation mand :: σ ⇒ σ ⇒ σ where ϕ ∧m ψ ≡ (λw. ϕ w ∧ ψ w)
abbreviation mor :: σ ⇒ σ ⇒ σ where ϕ ∨m ψ ≡ (λw. ϕ w ∨ ψ w)
abbreviation mimplies :: σ ⇒ σ ⇒ σ where ϕ →m ψ ≡ (λw. ϕ w −→ ψ w)
abbreviation mequiv:: σ ⇒ σ ⇒ σ where ϕ ≡m ψ ≡ (λw. ϕ w←→ ψ w)
abbreviation mforall :: ( ′a⇒ σ)⇒ σ where ∀ Φ ≡ (λw. ∀x. Φ x w)
abbreviation mexists :: ( ′a⇒ σ)⇒ σ where ∃ Φ ≡ (λw. ∃x. Φ x w)
abbreviation mbox :: (i⇒ i⇒ bool)⇒ σ ⇒ σ where �R ϕ ≡ (λw. ∀v. (R w v) −→ ϕ v)
abbreviation mdia :: (i⇒ i⇒ bool)⇒ σ ⇒ σ where ♦R ϕ ≡ (λw. ∃v. R w v ∧ ϕ v)

For grounding lifted formulas, the meta-predicate [·], read valid, is introduced.

abbreviation valid :: σ ⇒ bool where [p] ≡ ∀w. p w

3 Reasoning about Modal Logics

3.1 Correspondence Results

Axioms of the modal cube correspond to constraints on the underlying accessibility relations. These
constraints are as follows:

definition refl ≡ λR :: (i⇒ i⇒ bool). ∀S. R S S — reflexivity
definition sym ≡ λR :: (i⇒ i⇒ bool). ∀S T. (R S T −→ R T S) — symmetry
definition ser ≡ λR :: (i⇒ i⇒ bool). ∀S. ∃T. R S T — seriality
definition trans ≡ λR :: (i⇒ i⇒ bool). ∀S T U. (R S T ∧ R T U −→ R S U) — transitivity
definition eucl ≡ λR :: (i⇒ i⇒ bool). ∀S T U. (R S T ∧ R S U −→ R T U) — Euclidean

The corresponding axioms are defined next; note that they are parametric over accessibility relation R:
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definition M ≡ λR . valid (∀(λP. (�R P)→m P))
definition B ≡ λR . valid (∀(λP. P→m �R♦R P))
definition D ≡ λR . valid (∀(λP. (�R P)→m ♦R P))
definition IV ≡ λR . valid (∀(λP. (�R P)→m �R�R P))
definition V ≡ λR . valid (∀(λP. (♦R P)→m �R♦R P))

We will see below that correspondence theorems (between axioms and constraints on accessibility re-
lations) can be elegantly expressed in HOL by exploiting the embedding used above. These correspon-
dence theorems link a constraint to every axiom—for instance, M is linked to refl. Subsequently, in order
to make statements about the relationship of two logics in the cube, it is sufficient to only look at the
model constraints of their respective axiomatizations. Throughout the rest of this paper, all reasoning
will be done on the model-theoretic side and then interpreted on the proof-theoretic side by the means of
this correspondence.

3.1.1 Axiom M corresponds to Reflexivity

theorem A1: (∀R. (refl R)←→ (M R)) by (metis M-def refl-def )

3.1.2 Axiom B corresponds to Symmetry

lemma A2-a: (∀R. (sym R) −→ (B R)) by (metis B-def sym-def )
lemma A2-b: (∀R. (B R) −→ (sym R)) by (simp add:B-def sym-def , force)
theorem A2: (∀R. (sym R)←→ (B R)) by (metis A2-a A2-b)

3.1.3 Axiom D corresponds to Seriality

theorem A3: (∀R. (ser R)←→ (D R)) by (metis D-def ser-def )

3.1.4 Axiom 4 corresponds to Transitivity

theorem A4: (∀R. (trans R)←→ (IV R)) by (metis IV-def trans-def )

3.1.5 Axiom 5 corresponds to Euclideanness

lemma A5-a: (∀R. (eucl R) −→ (V R)) by (metis V-def eucl-def )
lemma A5-b: (∀R. (V R) −→ (eucl R)) by (simp add:V-def eucl-def , force)
theorem A5: (∀R. (eucl R)←→ (V R)) by (metis A5-a A5-b)

3.2 Alternative Axiomatisations of Modal Logics

Often the same logic within the cube can be obtained through different axiomatizations. In this section
we show how to prove different axiomatizations for logic S5 resp. KB5 to be equivalent. Using the
correspondence theorems from the previous section, the equivalences can be elegantly formulated solely
using the properties of accessibility relations. In Subsections 3.2.1 and 3.2.2 we also add the correspond-
ing statements using the modal logic axioms; this could analogously be done also for the other theorems
and lemmata presented in Sections 3.2 and 3.3.
The theorems below can be solved directly by Metis when it is provided the minimal set of necessary def-
initions. Sledgehammer (with the ATPs LEO-II and Satallax or with first-order provers) can also quickly
solve these problems, in which case the manual selection of the required definitions is not necessary.
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3.2.1 M5⇐⇒MB5

theorem B1: ∀R.((refl R) ∧ (eucl R))←→ ((refl R) ∧ (sym R) ∧ (eucl R))
by (metis eucl-def refl-def sym-def )

theorem B1-alt: ∀R.((M R) ∧ (V R))←→ ((M R) ∧ (B R) ∧ (V R))
by (metis A1 A2 A5 B1)

3.2.2 M5⇐⇒M4B5

theorem B2: ∀R.((refl R) ∧ (eucl R))←→ ((refl R) ∧ (trans R) ∧ (sym R) ∧ (eucl R))
by (metis eucl-def refl-def trans-def sym-def )
theorem B2-alt: ∀R.((M R) ∧ (V R))←→ ((M R) ∧ (IV R) ∧ (B R) ∧ (V R))
by (metis A1 A4 A5 B1-alt B2)

3.2.3 M5⇐⇒M45

theorem B3: ∀R.((refl R) ∧ (eucl R))←→ ((refl R) ∧ (trans R) ∧ (eucl R))
by (metis eucl-def refl-def trans-def )

3.2.4 M5⇐⇒M4B

theorem B4: ∀R.((refl R) ∧ (eucl R))←→ ((refl R) ∧ (trans R) ∧ (sym R))
by (metis eucl-def refl-def sym-def trans-def )

3.2.5 M5⇐⇒ D4B

theorem B5: ∀R.((refl R) ∧ (eucl R))←→ ((ser R) ∧ (trans R) ∧ (sym R))
by (metis eucl-def refl-def ser-def sym-def trans-def )

3.2.6 M5⇐⇒ D4B5

theorem B6: ∀R.((refl R) ∧ (eucl R))←→ ((ser R) ∧ (trans R) ∧ (sym R) ∧ (eucl R))
by (metis eucl-def refl-def ser-def sym-def trans-def )

3.2.7 M5⇐⇒ DB5

theorem B7: ∀R.((refl R) ∧ (eucl R))←→ ((ser R) ∧ (sym R) ∧ (eucl R))
by (metis eucl-def refl-def ser-def sym-def )

3.2.8 KB5⇐⇒ K4B5

theorem B8: ∀R.((sym R) ∧ (eucl R))←→ ((trans R) ∧ (sym R) ∧ (eucl R))
by (metis eucl-def sym-def trans-def )

3.2.9 KB5⇐⇒ K4B

theorem B9: ∀R.((sym R) ∧ (eucl R))←→ ((trans R) ∧ (sym R))
by (metis eucl-def sym-def trans-def )

3.3 Proper Inclusion Relations between Different Modal Logics

An edge within the cube denotes an inclusion between the connected logics. In the forward direction,
these can be trivially shown valid through monotonicity of entailment and equivalence of the different
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axiomatizations. For example, for the forward link from logic K to logic B, we need to show that every
theorem of K is also a theorem of B; this simply means to disregard the additional axiom B. Below, the
crucial backward directions are proved. Informally, it is shown that through moving further up in the
cube (adding further axioms), theorems can be proved which were not provable before; this means that
the inclusions are proper. We write A > B to indicate that logic A can prove strictly more theorems than
logic B.
It has to be noted that some logics are actually equivalent if the only models considered have few enough
worlds; examples are given below. We introduce some useful abbreviations to formulate constraints on
the number of worlds in a model.

abbreviation one-world-model :: i⇒ bool where #1 w1 ≡ ∀x. x = w1
abbreviation two-world-model :: i⇒ i⇒ bool where #2 w1 w2 ≡ (∀x. x = w1 ∨ x = w2) ∧ w1 6= w2
abbreviation three-world-model :: i⇒ i⇒ i⇒ bool where #3 w1 w2 w3 ≡ (∀x. x = w1 ∨ x = w2 ∨ x = w3) ∧
w1 6= w2 ∧ w1 6= w3 ∧ w2 6= w3

In what follows, we reserve the symbols i1, i2 and i3 for worlds, and r for an accessibility relation.

We applied the following methodology in the experiments reported in this section:

(Step A) First we deliberately made invalid conjectures about inclusion relations—e.g. for proving
K4 > K we first wrongly conjectured that K4 ⊆ K, meaning that K4 entails K. We did this by
conjecturing

lemma C1-A: ∀R. (trans R)

These wrongly-conjectured lemmata in Step A are uniformly named C∗-A. Note that for the for-
mulation of the C∗-A-lemmata we again exploit the correspondence results given earlier, and we
work with conditions on the accessibility relations instead of using the corresponding modal logic
axioms. For each C∗-A-lemma Nitpick quickly generates a countermodel, which it communicates
in a specific syntax. For example, the countermodel it presents for C1-A is

R = (λx. -)(i1 := (λx. -)(i1 := True, i2 := True), i2 := (λx. -)(i1 := True, i2 := False)) .

Diagrammatically this 2-world countermodel can be represented as follows

i1 i2

(Step B) Next, we systematically employed the arity information obtained from the countermodels for
the C∗-A-lemmata, reported by Nitpick, to formulate a corresponding lemma to be passed via
Sledgehammer to the HOL-ATPs LEO-II, Satallax and/or CVC4 [2] (whenever it was not trivially
provable by the automation tools simp, force and/or blast available within Isabelle/HOL). In our
running example this lemma is

C1-B: #2 i1 i2 −→ ∀R. ¬ trans R

All but four of these lemmata can actually be proved by either LEO-II or Satallax. Some of the
easier problems can already be automated with simp, force and blast, which are preferred here.
The four cases in which no automation attempts succeeded (we also tried all other integrated
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ATPs in Isabelle) are named C∗-ATP-challenge below. Moreover, there are ten problems named
C∗-Isabelle-challenge. For these problems LEO-II or Satallax found proofs, but their Metis-based
integration into Isabelle failed. Hence, no verification was obtained for these problems. However,
we found that five of these C∗-Isabelle-challenge problems can also be proved by CVC4, for which
proof integration worked. Unfortunately, no other automation means (including the integrated first-
order ATPs or SMT solvers) succeeded for the C∗-Isabelle-challenge problems.

(Step C) For the verification of the modal logic cube, the non-proved or non-integrated C∗-challenge
problems of Step B are clearly unsatisfactory, since no proper verification in Isabelle is obtained.
However, an easy solution for these (and all other) cases is possible by exploiting not only Nitpick’s
arity information on the countermodels, but by using all the information about the countermodels
it presents, that is, the precise information on the accessibility relation. For example, Nitpick’s
countermodel for C1-A from above can be converted into the following theorem (where r denotes
a fixed accessibility relation)

theorem C1-C: #2 i1 i2 ∧ r i1 i1 ∧ r i1 i2 ∧ r i2 i1 ∧ ¬r i2 i2 −→ ¬ trans r.

The resulting theorems we generate are uniformly named C∗-C. It turns out that all C∗-C-theorems
can be quickly verified in Isabelle by Metis. Thus, for each link in the modal logic we provide
either a verified C∗-B theorem or, if this was not successful, a verified C∗-C theorem. Taken
together, this confirms that the inclusion relation in the cube are indeed proper. Hence, these C∗-B
resp. C∗-C theorems complete the verification of the modal logic cube. Below the C∗-C proof
attempts are omitted if the corresponding C∗-B attempts were already successful.

(Step D) We additionally prove that the countermodels found by Nitpick in Step A are minimal (regard-
ing the number of possible worlds). In other words, we prove here that the world model constraints
as exploited in Step B are in fact minimal constraints under which the inclusion relations can be
shown to be proper. Of course, if such a countermodel consists of one possible world only, nothing
needs to be shown.

Note that the entire process sketched above, that is the schematic Steps A-D, could be fully automated,
meaning that the formulation of the lemmata and theorems in each step could be obtained automatically
by analyzing and converting Nitpick’s output. In our experiments we still wrote and invoked the veri-
fication of each link in the modal cube manually however. Clearly, automation facilities could be very
useful for the exploration of the meta-theory of other logics, for example, conditional logics [4], since
the overall methodology is obviously transferable to other logics of interest.

i1 i2

3.3.1 K4 > K

lemma C1-A: ∀R. trans R nitpick oops
theorem C1-B: #2 i1 i2 −→ ¬ (∀R. trans R) by (simp add:trans-def , force)
lemma C1-D: #1 i1 −→ (∀R. trans R) by (metis (lifting, full-types) trans-def )

i1 i2

3.3.2 K5 > K

lemma C2-A: ∀R. eucl R nitpick oops
theorem C2-B: #2 i1 i2 −→ ¬ (∀R. eucl R) by (simp add:eucl-def , force)
lemma C2-D: #1 i1 −→ (∀R. eucl R) by (metis (lifting, full-types) eucl-def )
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i1 i2
3.3.3 KB > K

lemma C3-A: ∀R. sym R nitpick oops
theorem C3-B: #2 i1 i2 −→ ¬ (∀R. sym R) by (simp add:sym-def , force)
lemma C3-D: #1 i1 −→ (∀R. sym R) by (metis (full-types) sym-def )

3.3.4 K45 > K4

i1 i2

lemma C4-A: ∀R. ser R −→ (ser R ∧ eucl R) nitpick oops
lemma C4-B-Isabelle-challenge: #2 i1 i2 −→ ¬ (∀R. ser R −→ (ser R ∧ eucl R))
— sledgehammer [remote leo2](ser def eucl def)
— CPU time: 13.74 s. Metis reconstruction failed.
— sledgehammer [cvc4,timeout=300] – timed out oops
theorem C4-C: #2 i1 i2 ∧ ¬r i1 i1 ∧ r i1 i2 ∧ r i2 i1 ∧ ¬r i2 i2 −→ ¬ (ser r −→ (ser r ∧ eucl r))
by (metis ser-def eucl-def )

lemma C4-D: #1 i1 −→ (∀R. ser R −→ (ser R ∧ eucl R)) by (metis (full-types) eucl-def )

i1
3.3.5 K45 > K5

lemma C5-A: ∀R. eucl R −→ (ser R ∧ eucl R)
nitpick oops

lemma C5-B-Isabelle-challenge: #1 i1 −→ ¬ (∀R. (eucl R) −→ (ser R) ∧ (eucl R))
— sledgehammer [remote leo2](eucl def ser def) – CPU time: 14.61 s. Metis reconstruction failed.
— sledgehammer [cvc4,timeout=300] – timed out oops
theorem C5-C: #1 i1 ∧ ¬r i1 i1 −→ ¬ (eucl r −→ (ser r ∧ eucl r)) by (metis (full-types) eucl-def ser-def )

i1 i2

3.3.6 KB5 > KB

lemma C6-A: ∀R. sym R −→ (sym R ∧ eucl R)
nitpick oops

lemma C6-B-Isabelle-challenge: #2 i1 i2 −→ ¬ (∀R. sym R −→ (sym R ∧ eucl R))
— sledgehammer [remote leo2,timeout=200](sym def eucl def) – CPU time: 29.0 s. Metis reconstruction failed.
— sledgehammer [cvc4,timeout=300] suggested following line:
by (metis (full-types) A4 B8 C1-B IV-def sym-def )

lemma C6-D: #1 i1 −→ (∀R. sym R −→ (sym R ∧ eucl R))
by (metis (full-types) eucl-def )

i1 i2

3.3.7 KB5 > K45

lemma C7-A: ∀R. ser R ∧ eucl R −→ (sym R ∧ eucl R)
nitpick oops

lemma C7-B-Isabelle-challenge: #2 i1 i2 −→ ¬ (∀R. ser R ∧ eucl R −→ (sym R ∧ eucl R))
— sledgehammer [remote leo2] (ser def eucl def sym def) – CPU time: 11.15 s. Metis reconstruction failed.
— sledgehammer [cvc4,timeout=300] – timed out oops
theorem C7-C: #2 i1 i2 ∧ r i1 i1 ∧ ¬ r i1 i2 ∧ r i2 i1 ∧ ¬ r i2 i2 −→ ¬ (ser r ∧ eucl r −→ (sym r ∧ eucl r))
by (metis (full-types) ser-def eucl-def sym-def )

lemma C7-D: #1 i1 −→ (∀R. ser R ∧ eucl R −→ (sym R ∧ eucl R)) by (metis (full-types) sym-def )
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i1
3.3.8 D > K

lemma C8-A: ∀R. ser R nitpick oops
lemma C8-B: #1 i1 −→ ¬(∀R. (ser R)) by (simp add:ser-def , force)
theorem C8-C: #1 i1 ∧ ¬r i1 i1 −→ ¬(ser r) by (metis (full-types) ser-def )

i1
3.3.9 D4 > K4

lemma C9-A: ∀R. trans R −→ (ser R ∧ trans R)
nitpick oops

theorem C9-B: #1 i1 −→ ¬ (∀R. trans R −→ (ser R ∧ trans R))
using C1-D C8-B by blast

i1
3.3.10 D5 > K5

lemma C10-A: ∀R. eucl R −→ (ser R ∧ eucl R) nitpick oops
theorem C10-B: #1 i1 −→ ¬ (∀R. eucl R −→ (ser R ∧ eucl R)) using B9 C3-D C9-B by blast

i1 i2

3.3.11 D45 > K45

lemma C11-A: ∀R. trans R ∧ eucl R −→ (ser R ∧ trans R ∧ eucl R)
nitpick oops

theorem C11-B: #1 i1 −→ ¬ (∀R. trans R ∧ eucl R −→ (ser R ∧ trans R ∧ eucl R))
using B9 C3-D C9-B by blast

i1
3.3.12 DB > KB

lemma C12-A: ∀R. sym R −→ (ser R ∧ sym R)
nitpick oops

theorem C12-B: #1 i1 −→ ¬ (∀R. sym R −→ (ser R ∧ sym R))
using C11-B C3-D by blast

i1

3.3.13 S5 > KB5

lemma C13-A: ∀R. sym R ∧ eucl R −→ (refl R ∧ eucl R)
nitpick oops

theorem C13-B: #1 i1 −→ ¬ (∀R. sym R ∧ eucl R −→ (refl R ∧ eucl R)) using B5 C12-B C6-D by blast

i1 i2

3.3.14 D4 > D

lemma C14-A: ∀R. (ser R) −→ (ser R) ∧ (trans R)
nitpick oops

theorem C14-B-Isabelle-challenge: #2 i1 i2 −→ ¬(∀R. ser R −→ (ser R ∧ trans R))
— sledgehammer [remote leo2] (ser def trans def) – CPU time: 13.08 s. Metis reconstruction failed.
— sledgehammer [cvc4,timeout=300] suggested following line:
by (metis (full-types) C1-B trans-def ser-def )

lemma C14-D: #1 i1 −→ (∀R. ser R −→ (ser R ∧ trans R)) by (metis (full-types) trans-def )
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3.3.15 D5 > D

i1 i2

lemma C15-A: ∀R. ser R −→ (ser R ∧ eucl R)
nitpick oops

theorem C15-B-Isabelle-challenge: #2 i1 i2 −→ ¬ (∀R. ser R −→ (ser R ∧ eucl R))
— sledgehammer [remote leo2](ser def eucl def)
— CPU time: 12.9 s. Metis reconstruction failed.
— sledgehammer [cvc4,timeout=300] suggested following line:
by (metis (full-types) C14-B-Isabelle-challenge trans-def eucl-def )

lemma C15-D: #1 i1 −→ (∀R. ser R −→ (ser R ∧ eucl R)) by (metis (full-types) C2-D)

i1 i2

3.3.16 DB > D

lemma C16-A: ∀R. ser R −→ (ser R ∧ sym R)
nitpick oops

lemma C16-B: #2 i1 i2 −→ ¬ (∀R. ser R −→ (ser R ∧ sym R)) by (simp add:ser-def sym-def , force)
lemma C16-D: #1 i1 −→ (∀R. ser R −→ (ser R ∧ sym R)) by (metis (full-types) sym-def )

i1 i2

3.3.17 D45 > D4

lemma C17-A: ∀R. ser R ∧ trans R −→ (ser R ∧ trans R ∧ eucl R)
nitpick oops

lemma C17-B-ATP-challenge: #2 i1 i2 −→ ¬(∀R. ser R ∧ trans R −→ (ser R ∧ trans R ∧ eucl R))
oops — All ATPs time out

theorem C17-C: #2 i1 i2 ∧ r i1 i1 ∧ r i1 i2 ∧ ¬ r i2 i1 ∧ r i2 i2 −→ ¬ (ser r ∧ trans r −→ (ser r ∧ trans r ∧ eucl
r))
by (metis (full-types) ser-def trans-def eucl-def )

lemma C17-D: #1 i1 −→ (∀R. ser R ∧ trans R −→ (ser R ∧ trans R ∧ eucl R))
by (metis (full-types) eucl-def )

i1 i2 i3

3.3.18 D45 > D5

lemma C18-A: ∀R. ser R ∧ eucl R −→ (ser R ∧ trans R ∧ eucl R)
nitpick oops

lemma C18-ATP-challenge: #3 i1 i2 i3 −→ ¬ (∀R. ser R ∧ eucl R −→ (ser R ∧ trans R ∧ eucl R))
oops — All ATPs time out

theorem C18-C: #3 i1 i2 i3 ∧ r i1 i1 ∧ r i1 i2 ∧ ¬ r i1 i3 ∧ r i2 i1 ∧ r i2 i2 ∧ ¬ r i2 i3 ∧ ¬ r i3 i1 ∧ r i3 i2 ∧ ¬ r
i3 i3 −→ ¬ (ser r ∧ eucl r −→ (ser r ∧ trans r ∧ eucl r)) by (metis (full-types) eucl-def ser-def trans-def )
lemma C18-D: #2 i1 i2 −→ (∀R. ser R ∧ eucl R −→ (ser R ∧ trans R ∧ eucl R))
by (metis (full-types) eucl-def trans-def )

i1 i2

3.3.19 M > D

lemma C19-A: ∀R. ser R −→ refl R
nitpick oops
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theorem C19-B-Isabelle-challenge: #2 i1 i2 −→ ¬ (∀R. ser R −→ refl R)
— sledgehammer [remote leo2,timeout=200] (ser def refl def) – CPU time: 29.15 s. Metis reconstruction failed.
— sledgehammer [cvc4,timeout=300] suggested following line:
by (metis (full-types) C14-B-Isabelle-challenge trans-def refl-def )

lemma C19-D: #1 i1 −→ (∀R. ser R −→ refl R) by (metis (full-types) ser-def refl-def )

i1 i2

3.3.20 S4 > D4

lemma C20-A: ∀R. ser R ∧ trans R −→ (refl R ∧ trans R)
nitpick oops

lemma C20-B-Isabelle-challenge: #2 i1 i2 −→ ¬ (∀R. ser R ∧ trans R −→ (refl R ∧ trans R))
— sledgehammer [remote leo2](ser def trans def refl def) – CPU time: 12.5 s. Metis reconstruction failed.
— sledgehammer [cvc4,timeout=300] – timed out
oops

theorem C20-C: #2 i1 i2 ∧ r i1 i1 ∧ ¬ r i1 i2 ∧ r i2 i1 ∧ ¬ r i2 i2 −→ ¬ (ser r ∧ trans r −→ (refl r ∧ trans r))
by (metis (full-types) ser-def refl-def trans-def )

lemma C20-D: #1 i1 −→ (∀R. ser R ∧ trans R −→ (refl R ∧ trans R))
by (metis (full-types) ser-def refl-def )

i1 i2

3.3.21 S5 > D45

lemma C21-A: ∀R. ser R ∧ trans R ∧ eucl R −→ (refl R ∧ eucl R)
nitpick oops

lemma C21-B-Isabelle-challenge: #2 i1 i2 −→ ¬ (∀R. ser R ∧ trans R ∧ eucl R −→ (refl R ∧ eucl R))
— sledgehammer [remote leo2](ser def trans def eucl def refl def) – CPU time: 12.51 s. Metis reconstruction
failed.
— sledgehammer [cvc4,timeout=300] – timed out
oops

theorem C21-C: #2 i1 i2 ∧ r i1 i1 ∧ ¬ r i1 i2 ∧ r i2 i1 ∧ ¬ r i2 i2 −→ ¬ (ser r ∧ trans r ∧ eucl r −→ (refl r ∧
eucl r))
by (metis (full-types) ser-def trans-def eucl-def refl-def )

lemma C21-inclusion: #1 i1 −→ (∀R. ser R ∧ trans R ∧ eucl R −→ (refl R ∧ eucl R))
by (metis (full-types) ser-def refl-def )

i1 i2

3.3.22 B > DB

lemma C22-A: ∀R. ser R ∧ sym R −→ (refl R ∧ sym R)
nitpick oops

lemma C22-B-Isabelle-challenge: #2 i1 i2 −→ ¬ (∀R. ser R ∧ sym R −→ (refl R ∧ sym R))
— sledgehammer [remote leo2,timeout=200](ser def sym def refl def) – CPU time: 31.18 s. Metis reconstruction
failed.
— sledgehammer [cvc4,timeout=300] suggested following line:
— by (smt C14 B sym def trans def refl def) oops
theorem C22-C: #2 i1 i2 ∧ r i1 i1 ∧ r i1 i2 ∧ r i2 i1 ∧ ¬ r i2 i2 −→ ¬ (ser r ∧ sym r −→ (refl r ∧ sym r))
by (metis (full-types) ser-def sym-def refl-def )

lemma C22-D: #1 i1 −→ (∀R. ser R ∧ sym R −→ (refl R ∧ sym R))
by (metis (full-types) ser-def refl-def )
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i1 i2

3.3.23 B > M

lemma C23-A: ∀R. refl R −→ (refl R ∧ sym R) nitpick oops
lemma C23-B-ATP-challenge: #2 i1 i2 −→ ¬ (∀R. refl R −→ (refl R ∧ sym R))
oops — All ATPs time out

theorem C23-C: #2 i1 i2 ∧ r i1 i1 ∧ r i1 i2 ∧ ¬ r i2 i1 ∧ r i2 i2 −→ ¬ (refl r −→ (refl r ∧ sym r))
by (metis refl-def sym-def )

lemma C23-D: #1 i1 −→ (∀R. refl R −→ (refl R ∧ sym R)) by (metis (full-types) sym-def )

i1 i2

3.3.24 S5 > S4

lemma C24-A: ∀R. refl R ∧ trans R −→ (refl R ∧ eucl R)
nitpick oops

lemma C24-B-ATP-challenge: #2 i1 i2 −→ ¬ (∀R. refl R ∧ trans R −→ (refl R ∧ eucl R))
oops — All ATPs time out

theorem C24-C: #2 i1 i2 ∧ r i1 i1 ∧ r i1 i2 ∧ ¬ r i2 i1 ∧ r i2 i2 −→ ¬ (refl r ∧ trans r −→ (refl r ∧ eucl r))
by (metis (full-types) trans-def refl-def eucl-def )

lemma C24-D: #1 i1 −→ (∀R. refl R ∧ trans R −→ (refl R ∧ eucl R)) by (metis (full-types) eucl-def )

i1 i2 i3

3.3.25 S5 > B

lemma C25-A: ∀R. refl R ∧ sym R −→ (refl R ∧ eucl R)
nitpick oops

lemma C25-B-ATP-challenge: #3 i1 i2 i3 −→ ¬ (∀R. (refl R ∧ sym R) −→ (refl R ∧ eucl R))
oops — All ATPs time out

theorem C25-C: #3 i1 i2 i3 ∧ r i1 i1 ∧ r i1 i2 ∧ ¬ r i1 i3 ∧ r i2 i1 ∧ r i2 i2 ∧ r i2 i3 ∧ ¬ r i3 i1 ∧ r i3 i2 ∧ r i3 i3
−→ ¬ ((refl r ∧ sym r) −→ (refl r ∧ eucl r))
by (metis (full-types) eucl-def refl-def sym-def )

lemma C25-D: #2 i1 i2 −→ (∀R. (refl R ∧ sym R) −→ (refl R ∧ eucl R))
by (metis (full-types) refl-def sym-def eucl-def )

4 Discussion and Future Work.

The entire Isabelle document can be verified by Isabelle2014 in less than 60s on a semi-modern computer
(2.4 GHz Core 2 Duo, 8 GB of memory). When including all (commented) remote calls to the external
ATPs in the calculation the verification time sums up to a few minutes, which is still very reasonable.
The improvements in comparison to the first-order based verification of the modal logic cube done earlier
by Rabe et al. [16], are: clarity and readability of the problem encodings, methodology, reliability (our
proofs are verifiable in Isabelle/HOL) and, most importantly, automation performance. For the latter note
that the experiments by Rabe et al. [16] required several days of reasoning time in first-order theorem
provers. Most importantly, however, their solution relied on an enormous manual coding effort. However,
we want to point again to the more general aims of their work.
Our solution instead requires a small amount of resources in comparison. In fact, as indicated before,
the entire process (Steps A-D) is schematic, so that it should eventually be possible to fully automate
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our method. For this it would be beneficial to have a flexible and accessible conversion of the counter-
models delivered by Nitpick back into Isabelle/HOL input syntax. In fact, an automated conversion of
Nitpick’s countermodels into the corresponding C∗-B and C∗-C conjectures would eventually enable a
truly automated exploration and verification of of the modal logic cube with no or minimal handcoding
effort. Similarly, for the interactive user a more intuitive presentation of Nitpick’s countermodels would
be welcome (perhaps similar to the illustrations we used in this paper).
Using the first-order provers E [17], SPASS [19], Z3 [13] and Vampire [12] proved unsuccessful for all
C∗-Isabelle-challenge problems (unless the right lemmas were given to them). Analyzing the reason for
their weakness, as compared to the better performing higher-order automated theorem provers, remains
future work. In contrast, the SMT solver CVC4 (via Sledgehammer) was quite successful and contributed
five C∗-Isabelle-challenge proofs.
Our work motivates further improvements regarding the integration of LEO-II and Satallax: While these
systems are able to prove all ∗-Isabelle-challenge problems their proofs cannot yet be easily replayed
or integrated in Isabelle/HOL. There have been recent improvements regarding the transformation of
proofs from LEO-II and Satallax to Isabelle/HOL [18], using which all the proofs produced by Satallax
and LEO-II in our work could be checked in Isabelle/HOL,1 but this process still requires some manual
work to adapt the output from the ATPs.
Our work also motivates further improvements in higher-order automated theorem provers. For example,
for these systems it should be possible to also prove the remaining two ∗-ATP-challenge problems. More-
over, they needed more than 10 seconds of CPU time in our experiments for the ∗-Isabelle-challenge
problems; it should be possible to prove these theorems much faster.

5 Conclusion

We have fully verified the modal logic cube in Isabelle/HOL. Our solution is simple, elegant, easy to fol-
low, effective and efficient. Proof exchange between systems played a crucial role in our experiments. In
particular, we have exploited and combined Nitpick’s countermodel-finding capabilities with subsequent
calls to the higher-order theorem provers LEO-II and Satallax and the SMT solver CVC4 via Isabelle’s
Sledgehammer tool. Our experiments also point to several improvement opportunities for Isabelle and
the higher-order reasoners, in particular, regarding interaction and proof exchange.
Related experiments have been carried out earlier in collaboration with Geoff Sutcliffe. Similar to and
improving on the work reported in [3], these unpublished experiments used the TPTP THF infrastructure
directly. However, in that work we did not achieve a ‘trusted verification’ in the sense of the work
presented in this paper. Another improvement in this article has been the use of schematic meta-level
working steps (Steps A-D) to systematically convert (counter)models found by Nitpick into conjectures
to be investigated.
Future work will explore and evaluate similar logic relationships for other non-classical logics, for ex-
ample, conditional logics. Any improvements in the mentioned systems, as motivated above, would be
very beneficial towards this planned work. Moreover, it would be useful to fully automate the schematic,
meta-level working steps (Steps A-D) as applied in our experiments. This would produce a system that
would explore logic relations truly automatically (for example, in conditional logics), analogous to what
has been achieved here for the modal logic cube.

1The proofs and the evaluation workflow can be downloaded from http://christoph-benzmueller.de/papers/pxtp2015-eval.zip

http://christoph-benzmueller.de/papers/pxtp2015-eval.zip


40 Systematic Verification of the Modal Logic Cube in Isabelle/HOL

Acknowledgements: We thank Florian Rabe and the anonymous reviewers of this paper for their valu-
able feedback.

References

[1] J. Backes & C.E. Brown (2010): Analytic Tableaux for Higher-Order Logic with Choice. In J. Giesl &
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