The Common HOL Platform

Mark Adams
Proof Technologies Ltd, UK
Radboud University, Nijmegen, The Netherlands

The Common HOL project aims to facilitate porting source code and proofs between members of the
HOL family of theorem provers. At the heart of the project is the Common HOL Platform, which
defines a standard HOL theory and API that aims to be compatible with all HOL systems. So far,
HOL Light and hol90 have been adapted for conformance, and HOL Zero was originally developed
to conform. In this paper we provide motivation for a platform, give an overview of the Common
HOL Platform’s theory and API components, and show how to adapt legacy systems. We also report
on the platform’s successful application in the hand-translation of a few thousand lines of source
code from HOL Light to HOL Zero.

1 Introduction

The HOL family of theorem provers started in the 1980s with HOLS8S8 [5]], and has since grown to
include many systems, most prominently HOL4 [[16]], HOL Light [8], ProofPower HOL [3] and Is-
abelle/HOL [12]. These four main systems have developed their own advanced proof facilities and
extensive theory libraries, and have been successfully employed in major projects in the verification of
critical hardware and software |1, [11] and the formalisation of mathematics [7]].

It would clearly be of benefit if these systems could “talk” to each other, specifically if theory, proofs
and source code could be exchanged in a relatively seamless manner. This would reduce the considerable
duplication of effort otherwise required for one system to benefit from the major projects and advanced
capabilities developed on another. Work to date has concentrated on exchange of proofs via proof objects,
with some degree of success, but little has been done to facilitate porting of source code.

The Common HOL Platform is part of the Common HOL project for facilitating the porting of source
code and proofs between HOL systems. It defines a standard HOL theory compatible with the core theory
of each HOL system, and an application programming interface (API) of programming components that
is more-or-less common to all HOL systems. It has so far been supported in HOL Light, hol90 [15]] and
HOL Zero [19]].

In this paper we give an overview of the platform. In Section 2, we further discuss motivation. In
Section 3, we cover the platform’s choice of components. In Section 4, we explain how to adapt legacy
systems to conform to the platform. In Section 5, we report on its successful usage in assisting the
manual porting of both new and legacy source code. In Section 6, we present our conclusions.

2 Motivation

By definition, all systems in the HOL family implement the HOL logic or a close variant. However,
in practice their commonality stretches far beyond this. They have broadly similar axiomatisations
of the logic, similar mechanisms for logical extension, similar formal language concrete syntax and
build up similar foundational theory. Furthermore, in most basic usage at least, they each support

C.Kaliszyk and A. Paskevich (Eds.): 4th Workshop
on Proof eXchange for Theorem Proving (PxTP’15).
EPTCS 186, 2015, pp. 42-{56] doi{10.4204/EPTCS.186.6

http://dx.doi.org/10.4204/EPTCS.186.6

M. Adams 43

similar paradigms of user interaction, namely simple forwards-style application of inference rules and
backwards-style tactic proofs via the subgoal goal package [14]], performed in an interactive functional
programming session. Also, their implementations are all written in variants of the ML functional pro-
gramming language, all employ an LCF-style architecture [6]] and are all built up from similar libraries
of programming utilities, syntax utilities, inference rules and tactics.

Other than in these basic aspects, the systems branch off in their own respects. Each builds up con-
siderable theory beyond the basic foundations in its own way. For example, real numbers in HOL Light
are constructed quite differently from real numbers in ProofPower HOL. There is also much variation in
their provision of user proof commands, especially for those relating to proof automation, with each sys-
tem having its own strengths and idiosyncrasies. Most different is Isabelle/HOL, which is implemented
as an instantiation of the Isabelle generic theorem prover [[17] rather than by having its deductive system
“hardwired” as source code, and supports a variant of the HOL logic that has axiomatic type classes.
Also, the predominant mode of interaction with Isabelle has become the declarative proof language Isar
in conjunction with a bespoke IDE, rather than the subgoal package in an interactive ML session.

Porting proofs between HOL systems by hand involves translating proofs scripts. These proof scripts
typically involve heavy use of high-level proof commands that differ between systems. In cases where
such commands are used to finish off subgoals, it is often possible to find a suitably powerful command
to do the same in the target system, but in other cases proof scripts have to be recreated from scratch.
Automatic proof porting, via recording of low-level proof steps and export to proof object files, is vastly
preferable if it can be made sufficiently reliable. Such a capability requires a platform of common
foundational theory, inference rules and logical extension mechanisms in both systems.

There have been notable successes in the large scale porting of legacy proofs between HOL systems
via proof objects. Obua and Skalberg [13] developed a capability for porting proofs from HOL4 to
Isabelle/HOL, using a theory platform based on the HOL4 inference kernel, and then adapted this for
porting from HOL Light to Isabelle/HOL. Kaliszyk and Krauss [10] developed a capability for porting
from HOL Light to Isabelle/HOL, based on the HOL Light inference kernel. The OpenTheory project [9]
is based around the HOL Light axiomatisation, and establishes a common proof object format for porting
proofs between various HOL systems, including HOL4, ProofPower/HOL and HOL Light, with ongoing
work to support Isabelle/HOL. However, these capabilities would all struggle to port something as large
as the entire Flyspeck project [7]. We believe that significant advances in capability can be achieved
by exploiting a broader commonality that exists between HOL systems, using a platform at a somewhat
higher level than the inference kernel of one system.

Porting source code from one system to another currently requires deep knowledge of both systems’
implementations and can entail weeks of effort to replicate behaviour sufficiently closely. Naive port-
ing of high-level routines will typically result in unreliable code due to the compounding of small and
subtle differences in the theory or in ML function behaviour. We know of no pre-existing capability for
supporting the systematic porting of source code between HOL systems.

We believe that if the existing HOL systems can be adapted to support a well-designed API that
reflects the commonality of “primary functionality” (by which we mean functionality directly concerned
with theorem proving) between the systems, then much of the pain of porting source code can be avoided.
There is then a platform of precisely corresponding programming components, and source code built on
this platform in one system can be trivially but accurately ported to another system conforming to the
same platform. As is also the case for a proof porting capability, both ML components and foundational
theory have to be taken into account when designing an effective platform.

44 The Common HOL API

3 Components

In this section, we give an overview of the components that make up version 0.5 of the Common HOL
Platform. This is the latest version, and has been implemented for HOL Light and HOL Zero. An earlier
version was implemented for hol90, but this has not yet been upgraded. Even though the platform has
not yet been implemented for ProofPower HOL or HOL4, it has been carefully designed with knowledge
of how these systems work. However, little consideration has so far been given to Isabelle/HOL, which
presents greater challenges due to its greater differences. A significant redesign of the standard would
probably be required to properly cater for Isabelle/HOL.

There is no space in this paper to list all the platform components, let alone to describe each one.
Instead we provide various tables comparing some corresponding components from hol90, HOL4, Proof-
Power HOL, HOL Light and HOL Zero. For a given system, each platform component is either exactly
represented in the system, or it is approximately represented, or it is not represented in the system. In
our listings, those components only approximately corresponding are written in curly brackets.

There is not yet a single stand-alone document specifically for the purpose of precisely defining each
platform component. However, part of the original motivation for the HOL Zero system was to act as a
clear demonstration of the platform, and it has been designed to exactly conform to platform behaviour
without adaption. Readers can download the HOL Zero source distribution [[19], where source code file
commonhol.mli gives a complete list of the API components, and the user manual appendices give a
precise description of each API and theory component.

3.1 Considerations
Here we discuss some factors that should be taken into consideration when choosing the components.

Commonality Platform components should broadly reflect the commonality that exists between the
systems. Including components that are only relevant in one system would entail extra effort to
make the other systems conformant, and would be of little use to them. Not including components
that are common to all systems would mean that basic components from one system would have
to be needlessly considered when porting to a target system.

Usage Amount of usage in post-platform code should be taken into consideration when deciding the
platform components. Heavily used components should almost qualify by default.

Level The components should be sufficiently high-level to be of likely use in post-platform source code.
For example, including low-level subcomponents used to make a HOL term parser would be of
little use, even if these components were common to all HOL systems.

Precision A platform without precisely defined components of course loses much of its purpose. In HOL
systems, there are many small differences in the details of the behaviour of various corresponding
basic functions. For each component, the platform should explicitly specify its exact behaviour or
otherwise be clear about what is not specified. Non-conformant components must have platform-
conformant variants defined as part of platform qualification.

Underspecification The API should allow some degree of flexibility in certain kinds of details about
it components. For example, the ML names of the components, or the order in which function
components take arguments and whether tuples or curried form is used. The API should seek to
minimise the effort required to make legacy systems conformant by underspecifying these details,
which are not the kinds of differences that make porting source code difficult.

M. Adams 45

Completeness The components should be complete in the sense that all primary functionality can be
built from platform components alone. This becomes essential for the constructors and destructors
of abstract datatypes (such as for HOL types, terms and theorems) because there is otherwise no
way of manipulating such values.

Coherence The components should be chosen as a coherent set that categorise in a complete and con-
sistent way and that composes robustly. This makes it easier to write new code based on the API,
as well as helping portability.

Performance The API should not exclude components that are important to the performance of a system
if this means they would otherwise need to be reimplemented in the outer platform in terms of API
components to result in a significant degradation in performance.

Ease of Implementation The implementation effort required to conform to a platform is a significant
consideration. Otherwise, in practice the platform will not get implemented for the full range of
HOL systems, which defeats its purpose.

3.2 Theory Components

The theory components are the axioms, declarations and definitions that must exist in a conformant
system’s theory. They must form a sufficient basis for building up each HOL system’s theory.

There is some variation in the systems’ axiomatisations, especially between HOL Light and the other
systems. Because each system implements the same formal logic, for our purposes of completeness it
is sufficient to choose the core theory (i.e. the theory of the logical core) of one system as the theory
platform, and to derive this in the other systems from their respective core theories. The outer platform
(see Section in these other systems can then “re-derive” the system’s core theory using the theory
platform. A platform theorem may be an axiom or definition theorem in one system and a derived
theorem in another, but as far as the platform is concerned they are all just theorems.

Our theory platform features the axioms and definitions of ProofPower HOL, which we view as
the most intuitive, and which are close to those of hol90 and HOL4. It also includes the HOL Light
definition of the implication operator, which does not feature in the other systems because the behaviour
of implication drops out from their primitive inference rules and the implication antisymmetry axiom.
Including this definition means that any of the systems’ primitive inference rule set suffices to complete
the deductive system. A handful of fundamental theorems that are common to but derived in each system
are included in the platform, such as the truth theorem and the Law of the Excluded Middle, because they
are inevitably needed in implementing the platform and so may as well feature as components.

The type constants and constants declared in the theory platform include those from the basic theory
about predicate logic and lambda calculus that is common to each HOL system, established in the logical
core and initial derived theory of each system. This includes the function space type operator and the
boolean base type, plus the equality, conjunction, disjunction, implication and logical negation operators,
the universal, existential and unique existential quantifiers and the Hilbert choice operator.

Beyond this, each system builds up essentially equivalent theory of pairs, lists and natural numbers.
To take advantage of this commonality, the platform also includes theory for pairs and natural numbers,
including natural number numerals and 13 classic arithmetic operators including plus, multiply and ex-
ponentiation. Theory for lists does not currently feature, but is planned for inclusion in a future version.

The representation of natural number numerals varies between HOL systems: in HOL Light, HOL4
and HOL Zero, each numeral is constructed using compounding of two unary operators on the zero
constant (one for multiplying by two and adding one, and one for multiplying by two and adding zero or

46 The Common HOL API
hol90 HOL4 ProofPower HOL Light HOL Zero
"bool" "bool" "BOOL" "bool" "bool"
"fun" "fun" " "fun" "->n
"pI‘Od" "pI‘Od" "X "pI‘Od" "g#"
"ind" "ind" "IND" "ind" "ind"
"num" "num" "N "num" "nat"
"T" "T" "T" "T" "true"
"F" "F" "F" "F" "false"
n=n n=n n=mn n=mn n=n
AN AN A" "/ AN
"/ "/ e "/ "/
n.un n.on Il_\ll n.un n.on
e e " e e
nen nen v nen nen
e " " e "
"Q" "Q" e "Q" "Q"
IMP_ANTISYM AX | IMP_ANTISYM_AX" | = _antisym_axiom - imp_antisym_ax
ETA_AX ETA_AX 7-axiom ETA_AX eta_ax
SELECT_AX SELECT_AX €_axiom SELECT_AX select_ax
BOOL_CASES_AX BOOL_CASES_AX bool_cases_axiom | BOOL_CASES_AX" | bool_cases_thm*
INFINITY_AX INFINITY_AX infinity_axiom INFINITY_AX infinity_ax
T_DEF T_DEF t_def T_DEF true_def
F_DEF F_DEF f_def F_DEF false_def
AND_DEF AND_DEF N_def {AND_DEF} conj_def
- - - IMP_DEF -
OR_DEF OR_DEF V_def OR_DEF disj_def
NOT_DEF NOT_DEF —_def NOT_DEF not_def
FORALL_DEF FORALL_DEF V_def FORALL_DEF forall_def
EXISTS_DEF EXISTS_DEF J_def EXISTS_THM" exists_def
{UEXISTS_DEF} {UEXISTS_DEF} J)_def {UEXISTS_DEF} uexists_def

Table 1: The type constants, some of the constants and some of the theorems (including all the axioms)
of the theory platform. Derived theorems in a given system are marked with *.

two depending on the system), whereas numerals in hol90 and ProofPower HOL form an infinite family
of constants. However, beyond the definition of a set of basic numeral arithmetic evaluation inference
rules, these differences do not surface in practice in the implementations of the systems. Thus we have
abstracted away from the theory platform the detail of how numerals are defined.

3.3 API Components

The API components form the ML interface for programming primary functionality. There are approxi-
mately 475 components, mainly consisting of ML function and constant values, but also seven datatypes
and three exceptions. Three configuration values are also provided, that hold the HOL system name and
version and the Common HOL Platform version. In each conformant system, the API is provided as an
ML module interface file, with components given the same ordering to aid comparison between systems.
Note that table components that have ML infix fixity in a given system are written in parentheses.

3.3.1 Functional Programming Library

There are around 100 functional programming library components (see Table [2|for a selection).

M. Adams 47
hol90 HOL4 ProofPower | HOL Light HOL Zero
curry curry curry curry curry

uncurry uncurry uncurry uncurry uncurry
C C switch C swap-arg
I I I I id_fn
K K K K con_fn
W W - W dbl_arg
(o) (o) (o) (o) (<%
(3#4#) (##) () (F_F) pair_apply
map map map map map
map2 map2 - map2 bimap
{funpow} {funpow} fun_pow {funpow} funpow
itlist itlist fold itlist foldr
rev_itlist | rev_itlist revfold rev_itlist foldl
end_itlist | end_itlist - end_itlist foldril
- - - - foldl1

Table 2: Some of the functional programming library API components.

Included are many basic operations on ML pairs, lists and strings, such as selecting the first element
of a pair, reversing the order of elements in a list, or turning an integer into a string. Association lists
are also supported. Also included are various classic functional programming meta operations, e.g. for
applying a function to each element in a set, or folding up a list into a single element by repeated appli-
cation of a binary operator. There is also a collection of set operations on lists, such as set membership
and set union, under either equality comparison or a supplied equivalence relation.

For coherence, we fill out the gaps that exist in the various legacy systems’ libraries. For example,
all kinds of folding operators and their inverses, unfolding operators, are provided, and all set operations
are provided for both under equality and a supplied equivalence relation.

Three kinds of standard exception are catered for: normal failure, catastrophic failure and “local
failure” (used for control flow within a function). The API underspecifies the form of the exception
arguments and the textual content of error messages

Note that there is some variation in the behaviour of some library functions between systems. For
example, funpow, which iterates a function application for the number of times specified by a supplied
integer, does not fail in hol90, HOL4 or HOL Light if the integer is negative. Generally, platform
functions are specified to fail if supplied with invalid arguments, and the platform version of funpow
fails if its supplied integer is negative, as is done in ProofPower HOL and HOL Zero.

3.3.2 Type, Term and Theorem Utilities

Around 150 HOL type, term and theorem manipulation utilities are provided (see Table [3|for a selection).

The bulk of these utilities are syntax functions for HOL types or terms, for constructing, destructing
and testing for a given syntactic category. Two levels of syntactic category are supported for both types
and terms. Firstly, there are the primitive syntactic categories, namely the type variables and type constant
applications for types, and variables, constants, function applications and lambda abstractions for terms.
These are very widely used throughout the HOL implementations. Secondly, there are the basic syntactic
categories associated with the type constants and constants of predicate logic and lambda calculus that
feature in the theory platform. Some of these are also used heavily throughout the HOL implementations,
but we include support for all such syntactic categories in the API for coherence with the theory platform
and the API inference rules.

48 The Common HOL API
hol90 HOL4 ProofPower HOL Light HOL Zero
type_of type_of type-of type_of type-of
type_vars_in_term | type_vars_in term | {term_tyvars} | type_vars_in_term term_tyvars
aconv aconv (~=%) aconv alpha_eq
- rename_bvar - {alpha} rename_bvar
free_vars free_vars frees frees free_vars
free_varsl free_varsl - freesl list_free_vars
- var_occurs is_free_in {vfree_in} var_free_in
{free_in} free_in - free_in term_free_in
all_vars - - variables all_vars
all_varsl - - - list_all_vars
inst {inst} {inst} {inst} tyvar_inst
- rename_bvar - {alpha} rename _bvar
- - {var_subst} vsubst var_inst
{subst} {subst} subst subst subst

Table 3: Some of the term utility API components.

There are various ML bindings for HOL constants and base types featured in the theory platform,
and for commonly used HOL type variables. Also included are utilities for destructing a theorem into
its assumptions and conclusion parts, and for equality and alpha-equivalence comparison of theorems.
There are also various type and term operations defined that are essential for defining an inference kernel.
These include calculating the type of a term, listing the type variables of a type, testing for the alpha
equivalence of two terms, and performing variable and type variable instantiation.

The platform utilities for HOL terms are generally specified to work modulo alpha equivalence in
their arguments. This was decided because different systems generate bound variable names differently
when avoiding variable capture in type variable and variable instantiation, and so this measure makes
the API functions more robust when ported. An arbitrary bound variable name used in an operation in
one system could otherwise cause the equivalent operation in another system to fail. Note that hol90’s
free_in, which tests for one term occurring free in another, does not work modulo alpha equivalence,
and so does not conform to the platform.

Note that there are various subtle differences between different systems’ utilities that can trip up
casually ported code. Examples include ProofPower HOL’s mk_const constructor, which does not test
that a constructed constant is well-formed, and hol90’s and HOL4’s dest_imp and is_imp, which work
for logical negation as well as implication (although HOL4 has dest_imp_only and is_imp_only for
implication only). The API chooses more conventional behaviour.

3.3.3 Theory Extension and Listing Commands

Around 40 theory extension and querying functions are provided. This includes primitive theory exten-
sion commands for type declaration, term declaration, constant definition, constant specification and type
constant definition. On top of these, there are a few basic derived theory extension commands, for ex-
ample the command to define a function constant using a universal quantifier for the function arguments
instead of a lambda abstraction. Most systems have more sophisticated extension commands, but these
are excluded from the platform because there is much variation in their capability between systems.

Each system also provides querying commands to access information about the theory extensions
that have been made, although HOL Light omits support for querying about primitive type constant
definitions. Such commands are essential for the approach for proof auditing advocated in [2], and a
complete set features in the API.

M. Adams 49

3.3.4 Inference Rules

Around 100 basic inference rules are provided by the API (see Table [for a selection).

It is sufficient for the platform inference rules to include just a kernel of primitive rule{] that suffice,
when coupled with the axiom and definition theorems in the theory platform, to implement the HOL
deductive system. Given our choice of theory platform, any of the systems’ primitive inference rules
would be sufficient. However, efficiency is also a consideration. If a primitive rule of a given system
were missing from the API, it would have to be reimplemented in that system’s outer platform in terms
of the API inference rules, and which would in turn need to be implemented in terms of the system’s
primitives. An execution of such a recreated primitive could require 10 pre-platform rule applications or
more, resulting in an unacceptable performance penalty. Thus we choose to include the union of primitive
rules from each system in the platform (with the exception of one HOL Light primitive explained below).
This principle qualifies around 35 rules for inclusion in the platform. Note that each system except HOL
Zero has primitive rules that are derive able in terms of other primitives, but are included to improve the
system’s performance, which explains why the union includes as many as 35.

Also included are around 15 other inference rules at roughly the same level as the union of the
primitive inference rules, including the equality symmetry rule and the cut rule, for using the conclusion
of one theorem to eliminate an assumption in another. A further 25 rules are included for performing
equality congruence over certain operators, in addition to the two that are present as a result of being
primitive inference rules. For coherence, these fill out the patchy provision in existing HOL systems
with full coverage for the HOL operators supported by the API syntax functions.

In addition, for natural arithmetic expressions there are conversions provided for performing evalu-
ation of operators applied to numeral arguments for each of the 13 natural arithmetic operators featured
in the theory platform. This is sufficient to provide complete coverage of the primitive natural numeral
arithmetic inference rules provided by hol90 and ProofPower HOL (which represent numerals as con-
stants). This allows the platform to keep abstract the underlying representation of numerals.

It is vital that the API specifies precise behaviour for each of its inference rules. There is a degree
of variation in the behaviour of various rules between systems. We outline here some ways in which the
platform promotes robustness in the details of the behaviour it specifies for its inference rules.

As with the API’s term utilities, its inference rules also work modulo alpha equivalence, for the
same reasons. Note that the successful execution of HOL Light’s BETA rule (not to be confused with its
BETA_CONV rule) can fail depending on the name used for a bound variable in one of its arguments, and
because of this it is excluded from the API, despite being a primitive of HOL Light. Fortunately, the
consequences on performance in HOL Light are minimal because BETA can be implemented purely in
terms of BETA_CONV, which is in the API.

It was also decided that API inference rules should not depend on the presence of assumptions in their
theorem arguments, also to help robustness. It is harmless for a rule to remove an assumption if it can,
and this should not result in failure in rules composed with it. So, for example, the rule for discharging
an assumption matching a supplied term should not fail if the assumption is not present in the theorem
argument. Note that ProofPower’s classical contradiction rule c_contr_rule breaks this principle, but
other systems’ equivalents do not.

There are also various other differences in behaviour between seemingly equivalent rules in different
HOL systems. One particularly extreme case is the rule for instantiating type variables, called INST in
hol90, HOL4 and HOL Light, which is a primitive of every HOL system. In hol90, only type variables
in the conclusion are instantiated. In HOL Light and HOL4, non-variable types in the instantiation list

'In the paper, we occasionally abbreviate the term inference rule to rule.

50 The Common HOL API
hol90 HOL4 ProofPower HOL Light HOL Zero
ASSUME* ASSUME* asm_rule* ASSUME* assume_rule*
BETA_CONV* | BETA_CONV* | simple_f3_conv* BETA_CONV beta_conv*
CCONTR* CCONTR* {c_contr_rule} CCONTR ccontr_rule
CHOOSE* CHOOSE* simple 3 elim CHOOSE choose_rule
CoNJ* CoNJ* A_intro CONJ conj_rule
CONJUNCT1* | CONJUNCT1* A_left_elim CONJUNCT1 conjunctl_rule
CONJUNCT2* | CONJUNCT2* A_right_elim CONJUNCT2 conjunct2_rule
CONTR* CONTR contr_rule CONTR contr_rule
- - - DEDUCT_ANTISYM RULE* | deduct_anitsym rule
DISCH* DISCH* =_intro* DISCH disch.rule*
DISJ1* DISJ1* V_right_intro DISJ1 disjl_rule
DISJ2* DISJ2* V_left_intro DISJ2 disj2_rule
DISJ_CASES* | DISJ_CASES* V_elim DISJ_CASES disj_cases_rule

Table 4: Some of the inference rule API components. Primitive rules in a given system are marked with *.

argument do not cause failure. And in ProofPower HOL, any free variables that would otherwise become
equal as a result of the instantiation are renamed. None of these idiosyncrasies exist in the API version.

3.3.5 Parsing and Pretty Printing

Around 20 functions supporting parsing and pretty printing are provided in the API. This includes func-
tions for parsing strings into HOL types and terms, and printers for types, terms and theorems. There
is also support for setting the fixity of HOL functions and type operators. The fixities supported exceed
what is provided by hol90, ProofPower HOL and HOL Light, but do not extend to the full range of
fixities supported by HOL4. There are plans to extend the platform to support all of HOL4’s fixities.

4 Implementation

4.1 Architecture

For a legacy system to conform to an API, its source code must be adapted so that every component of
the API is implemented in the system. For the Common HOL API, we use a software architecture for
adapting legacy HOL systems that is designed with the three goals of minimising implementation effort,
enabling API-level virtualisation, and facilitating the demonstration that the adapted system exhibits
precisely the same behaviour as the legacy system.

To achieve this, we choose an appropriate point in the build of the legacy system that corresponds to
the level of the API (the platform level), and insert an ML module for the API components (the platform
module) at this point. All legacy source code occurs either before or after the platform level (respectively
called the pre-platform and post-platform code) and stays exactly the same. Keeping the pre- and post-
platform code the same makes it easier to argue that the system’s behaviour has not been altered.

In the platform module, we define the API in terms of pre-platform functionality. Any API compo-
nents not precisely implemented as a pre-platform component must be implemented here. This includes
components missing from the legacy system, or with imprecisely corresponding equivalents in the pre-
platform code or that are implemented as post-platform code. For any implemented as post-platform
code, the full tree of post-platform code used to define it can be shifted into the platform module, or, if
this is too big, then a more succinct version can be implemented specially for the platform. The code for

M. Adams 51

post-platform API components can then be deleted from its original position in the source code (thus the
post-platform code remains the same except for deleted code that occurs in the platform module).

In our architecture, all post-platform code implementing primary functionality is implemented in
terms of the APIL. This enables the API to act as a virtualisation layer through which all primary func-
tionality is executed. This virtualisation layer can then be used for recording proofs as they are executed,
before exporting them to proof objects. In order to achieve this and keep the post-platform code the
same, we must somehow have a way of referring to pre-platform code that is used by post-platform code
but is not in the API. We do this by implementing a module immediately after the platform module in the
build that re-implements all such pre-platform code in terms of the platform, overwriting the pre-platform
code. We call this the outer platform module.

In arguing that the system’s behaviour has not altered in the API-adjusted version of the system, we
must justify why any reimplementation of post-platform code in the platform module, and any reimple-
mentation of pre-platform code in the outer platform module, preserves functionality.

Given that the API components correspond to classic basic components of a HOL system that tend
to be implemented towards the start of the build of the system, finding an appropriate insertion point for
the platform level tends to be fairly straightforward. It is to be found after the definition of the HOL
type and term datatypes and basic utilities for manipulating them, the inference kernel, the initial theory
and the parser and pretty printer. It is typically before the derived inference rules for predicate logic and
the theory for pairs and natural numbers, which would need to be moved to or recreated in the platform
module.

4.2 Adapting HOL Light

We now describe how we adapted HOL Light SVN release 197 to conform to the platform. The reader
may find it instructive to download the adapted system [[18]].

The platform level in the HOL Light build file was chosen between the source files parser.ml and
equal.ml. About 1,000 lines of post-platform code implementing platform components were moved
into the platform module. Much of this was derived inference rules implemented using lemmas proved
using HOL Light’s automated proof facilities. Instead of recreating these facilities inside the platform
module, we employed Common HOL proof porting to export the proofs of these lemmas as proof objects,
which were then hand-translated into a total of around 400 lines of forwards style proof script in the
platform module. An alternative approach was used to recreate the 13 evaluation rules for natural numeral
arithmetic, whose implementation in calc_num.ml involves lemmas proved in hundreds of lines of proof
script. Instead of exporting proof objects for these lemmas, the inference rules were given a completely
different implementation in the platform module, ported from HOL Zero in about 800 lines.

About 1,000 lines of code were required to fill out platform components missing from HOL Light.
For those components with an approximate equivalent already in HOL Light, the existing component
was used in the implementation of the platform variant (e.g. see Figure [T, to ensure that the platform
variant had roughly the same performance as the original. Those components with no approximate HOL
Light version were ported from HOL Zero. In total, the components ported from HOL Zero required
about 1,350 lines of supporting source code to be ported from HOL Zero, mainly involving forwards
proof to prove lemmas. The platform module interface is written in about 500 lines of code.

For the outer platform, primitive inference rules and theory commands that do not correspond to
platform components must be precisely recreated in terms of the platform. In HOL Light, this involves
the INST_TYPE and BETA rules and all the theory commands. Also, non-platform theorems used to define
platform theory needed to be recreated. In total, the outer platform required around 800 lines of code.

52 The Common HOL API

let INST_TYPE1l theta th =
let () = if (forall (is_vartype o snd) theta)
then failwith "INST_TYPE: Non-type-variable in instantiation domain" in
INST_TYPE theta th;;

Figure 1: Using HOL Light’s original INST_TYPE in the definition of the platform variant.

Overall, the platform and outer platform modules involved around 6,000 lines of source code, includ-
ing the platform module interface. This took around two weeks of effort to create. The code was mostly
systematically produced, being either moved from other parts of HOL Light, ported from HOL Zero,
translated from proof object files, or simply a listing of platform components. The only code requir-
ing creative thought was in the platform module variants of components with approximate equivalents
already in HOL Light, and in much of the outer platform, totalling to around 1,000 lines.

5 Use Cases

In this section, we report on two use cases for the Common HOL Platform in assisting manual ports of
source code between platform-adapted HOL systems. In both cases, the port was from HOL Light to
HOL Zero. This is on the easy end of the difficulty spectrum in inter-HOL-system code porting, because
both systems are implemented in the same dialect of ML, i.e. OCaml, and because the target system,
HOL Zero, is almost a blank canvas with very little post-platform code to consider. Other HOL systems
have considerable post-platform code, and porting should attempt to reuse any pre-existing code if it is
straightforward to do so, to avoid creating an almost duplicate stack of supporting functionality in the
target system. However, both ports described here would still be difficult without the support of the
platform, and so the use cases provide useful insight.

5.1 Legacy Code Port: HOL Light Rewriting Mechanism to HOL Zero

In our first use case, we ported HOL Light’s entire rewriting apparatus to HOL Zero. This is defined rela-
tively early on in HOL Light’s post-platform code, but provides vital functionality that is used throughout
the rest of the system, and goes far beyond what HOL Zero is capable of in terms of proof automation. It
is implemented in 360 lines of code, in the HOL Light source file simp.m1, and relies on 60 lines of code
defining discrimination nets, and a further 300 lines of post-platform code defining supporting function-
ality such as conversion combinators. Thus there was a total of 720 lines to port, but this would probably
be less if porting to another HOL system because it would already support conversion combinators. See
Figures 2] and [3| for a sample of 32 lines from the port.

The manual port was carried out in about 2 hours 30 minutes of effort. Note that this time does not
include approximately 30 minutes of effort required to extract out the 360 lines of HOL Light supporting
code prior to the port. The porting itself involved systematically looking up HOL Zero equivalents of
HOL Light platform functions, and renaming accordingly. HOL Light’s uppercase names, that don’t
conform to normal OCaml lexical syntax, also needed to be converted to lowercase names. Instantiation
lists, which have old-to-new ordering in HOL Zero but new-for-old ordering in HOL Light, needed to be
switched around. The datatype constructors for types and terms, which are visible outside their defining
module in HOL Light but not in HOL Zero, required some pattern matches to be replaced with abstract
destructors and if-expressions. The function term match name-clashed with a pre-existing HOL Zero
function, and so was renamed to hl_term_match.

M. Adams 53

let mk_rewrites =
let IMP_CONJ_CONV = REWR_CONV(ITAUT ‘p ==> q ==> r <=> p /\ q ==> r‘)
and IMP_EXISTS_RULE =
let cnv = REWR_CONV(ITAUT ‘(!x. P x ==> Q) <=> (?x. P x) ==> Q) in
fun v th -> CONV_RULE cnv (GEN v th) in
let collect_condition oldhyps th =
let conds = subtract (hyp th) oldhyps in
if conds = [] then th else
let jth = itlist DISCH conds th in
let kth = CONV_RULE (REPEATC IMP_CONJ_CONV) jth in
let cond,eqn = dest_imp(concl kth) in
let fvs = subtract (subtract (frees cond) (frees eqn)) (freesl oldhyps) in
itlist IMP_EXISTS_RULE fvs kth in
let rec split_rewrites oldhyps cf th sofar =
let tm = concl th in
if is_forall tm then
split_rewrites oldhyps cf (SPEC_ALL th) sofar
else if is_conj tm then
split_rewrites oldhyps cf (CONJUNCT1 th)
(split_rewrites oldhyps cf (CONJUNCT2 th) sofar)
else if is_imp tm & cf then
split_rewrites oldhyps cf (UNDISCH th) sofar
else if is_eq tm then
(if cf then collect_condition oldhyps th else th)::sofar
else if is_neg tm then
let ths = split_rewrites oldhyps cf (EQF_INTRO th) sofar in
if is_eq (rand tm)
then split_rewrites oldhyps cf (EQF_INTRO (GSYM th)) ths
else ths
else
split_rewrites oldhyps cf (EQT_INTRO th) sofar in
fun cf th sofar -> split_rewrites (hyp th) cf th sofar;;

Figure 2: A sample of legacy source code from HOL Light’s simp.m1.

HOL Light non-conformant versions of platform functions, such as its variant function, required
special attention. Unlike the platform equivalent, this function does not fail if its avoidance list contains
non-variables, and so the code was adapted to either filter them out or check that non-variables are not
possible from program context. Other complications included two uses of HOL Light’s intuitionistic
tautology prover, ITAUT. It was decided to keep this function outside the scope of the port, despite it
being used to prove two lemmas, to reduce the amount of supporting code. For the HOL Zero version,
one of the lemmas already existed in HOL Zero’s small library of predicate logic theorems, and the other
was proved in 10 minutes in a 16-line proof using HOL Zero’s forward inference rules.

After the port was completed, it was tested on various rewriting examples, and one error was found.
This took 45 minutes of debugging to track down and correct, and was due to a quirk in the failure
exception returned by HOL Light’s rev_assoc function, which has error message text "find" (instead
of "rev_assoc"). This particular error message was explicitly trapped in the HOL Light code, but
naively porting this to HOL Zero didn’t work because its equivalent function, inv_assoc, uses error
message text "inv_assoc". As explained in Section[3.3.1] this aspect of porting is not catered for by the
platform, and must be done manually.

54 The Common HOL API

let mk_rewrites =
let imp_conj_conv = rewr_conv imp_imp_thm
and imp_exists_rule =
let cnv = rewr_conv imp_exists_rule_thm in
fun v th -> conv_rule cnv (gen_rule v th) in
let collect_condition oldhyps th =
let conds = subtract (asms th) oldhyps in
if conds = [] then th else
let jth = foldr disch_rule conds th in
let kth = conv_rule (repeatc imp_conj_conv) jth in
let cond,eqn = dest_imp(concl kth) in
let fvs = subtract (subtract (free_vars cond) (free_vars eqn))
(list_free_vars oldhyps) in
foldr imp_exists_rule fvs kth in
let rec split_rewrites oldhyps cf th sofar =
let tm = concl th in
if is_forall tm then
split_rewrites oldhyps cf (spec_all_rule th) sofar
else if is_conj tm then
split_rewrites oldhyps cf (conjunctl_rule th)
(split_rewrites oldhyps cf (conjunct2_rule th) sofar)
else if is_imp tm & cf then
split_rewrites oldhyps cf (undisch_rule th) sofar
else if is_eq tm then
(if cf then collect_condition oldhyps th else th)::sofar
else if is_not tm then
let ths = split_rewrites oldhyps cf (eqf_intro_rule th) sofar in
if is_eq (rand tm)
then split_rewrites oldhyps cf (eqf_intro_rule (gsym_rule th)) ths
else ths
else
split_rewrites oldhyps cf (eqt_intro_rule th) sofar in
fun cf th sofar -> split_rewrites (asms th) cf th sofar;;

Figure 3: The translation into HOL Zero of the legacy code sample from simp.ml.

5.2 New Code Port: HOL Light Proof Importer to HOL Zero

In the second use case, we used the platform to port HOL Light’s importer for Common HOL proof
objects. This was a fundamentally easier exercise because the proof importer is written specifically in
terms of the API, and because Common HOL proof porting works at the level of platform inference rules
itself. The proof importer is implemented in 2,200 lines of code.

It took about 1 hour 15 minutes to perform the porting. Despite the source code being three times
longer than in the legacy code port, it took only half the time. The easier nature of the task meant that
everything went smoothly first time. The effort consisted almost entirely of systematically applying
search-and-replace to replace HOL Light platform function names with HOL Zero equivalents and car-
rying out manual adjustments for functions that take their arguments differently in the different systems.

The resulting source code was tested by importing into HOL Zero the text formalisation part of the
Flyspeck project, as part of a partial audit of the project as described in [2]]. This involved the tens of
millions of platform-level inference rule steps. The import into HOL Zero worked first time, suggesting
the code was ported correctly.

M. Adams 55

6 Conclusions

In defining a standard for basic theory and programming components, the Common HOL Platform is
attempting to lay the foundation for much better portability between HOL systems, both in terms of
porting proofs and porting source code. The feasibility of large scale proof porting has already been es-
tablished by others, but arguably there is scope for doing better still, given a better foundation. However,
the feasibility of quick and reliable source code porting has not been explored until now.

In this paper, we have given an overview of the platform’s components and explained the reasons
behind some of the careful design decisions made. We have also demonstrated using the platform in
two use cases of manually porting source code from HOL Light to HOL Zero, one for legacy code and
one for new code written specially for the platform. In both cases, several hundred lines of code were
successfully and reliably ported within a few hours. Much of the effort normally involved in a manual
port is removed, because almost all that needs to be considered is functionality implemented above the
platform level. Finding corresponding low-level components in the two systems, and the subtle ways
in which they can differ, has already been taken care of by the platform. As far as we are aware, this
represents a leap in the productivity of source code porting between HOL systems, even when accounting
for it being less challenging than the general porting case due to both systems being implemented in the
same dialect of ML and due to HOL Zero effectively being a blank canvas.

It would be interesting to see how far HOL source code porting could be pushed. Certainly it is
feasible to port more challenging parts of HOL Light to HOL Zero. Obvious candidates are the sub-
goal package, the intuitionistic tautology checker and the powerful MESON_TAC. Implementing the latest
version of the platform for hol90, HOL4 and ProofPower HOL, and porting to these systems is another
challenge worth pursuing. The platform has already been designed with these systems in mind, and it
would at least enable Common HOL proof exporters and importers to be quickly ported to these systems.

One insight that comes from looking at code from the various HOL systems is how much the subgoal
package is used in the implementation of other parts of HOL systems, suggesting that it should be part
of the APIL. This should be a fairly easy extension to make, since beyond the implementation of an
initial few tactics, code using it appears to operate at the abstract level using tacticals, rather than use
the inner workings that differ between HOL systems. Another change worth making is to update the
platform for the reform to primitive theory extension currently underway in various HOL systems [4].
And finally, catering for Isabelle/HOL must be a long term priority. This would probably require a
significant overhaul of the platform to fit with such a different system, but if done well it would pay
dividends to have good portability between the widest used HOL system and the rest of the family.

The systematic manner in which the porting can be carried out lends itself to automation, or at least
to partial automation. The most difficult to automate is probably the intelligent use of the target system’s
legacy supporting code to avoid the ugly situation of creating two parallel stacks of code implementing
effectively the same thing. Thus partial automation looks a more realistic prospect. We believe there are
no fundamental difficulties in automatically porting between ML dialects, because the subsets of ML that
tend to be used in the implementation of HOL systems are trivially corresponding between OCaml and
SML. So we see there being good prospects for reducing further the time taken to reliably port source
code, even in more challenging cases.

References

[1] M. Adams & P. Clayton (2005): ClawZ: Cost-Effective Formal Verification for Control Systems. In: Pro-
ceedings of the 7th International Conference on Formal Methods and Software Engineering, Lecture Notes

56

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

The Common HOL API

in Computer Science 3785, Springer, pp. 465-479, doi;10.1007/11576280_32,

M. Adams (2015): Proof Auditing Formalised Mathematics. Available at http://www.
proof-technologies.com/flyspeck/qed_paper.pdf. Accepted for publication in the Journal of
Formalized Reasoning.

R. Arthan & R. Jones (2005): Z in HOL in ProofPower. In Issue 2005-1 of the British Computer Society
Specialist Group Newsletter on Formal Aspects of Computing Science.

R. Arthan (2014): HOL Constant Definition Done Right. In: Proceedings of the 5th International Con-
ference on Interactive Theorem Proving, Lecture Notes in Computer Science 8558, Springer, pp. 531-536,
doi:10.1007/978-3-319-08970-6_34.
M. Gordon & T. Melham (1993): Introduction to HOL: A Theorem Proving Environment for Higher Order
Logic. Cambridge University Press.

M. Gordon, R. Milner & C. Wadsworth (1979): Edinburgh LCF: A Mechanised Logic of Computation.
Lecture Notes in Computer Science 78, Springer, doi:10.1007/3-540-09724-4,

T. Hales et al. (2015): A Formal Proof of the Kepler Conjecture. Preprint available at arxiv.org.
ArXiv:1501.02155v1 [math.MG].

J. Harrison (2009): HOL Light: An Overview. In: Proceedings of the 22nd International Conference on
Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science 5674, Springer, pp. 60—66,
doi:10.1007/978-3-642-03359-9 4.

J. Hurd (2011): The OpenTheory Standard Theory Library. In: Proceedings of the Third International
Symposium on NASA Formal Methods, Lecture Notes in Computer Science 6617, Springer, pp. 177-191,
doi:10.1007/978-3-642-20398-5_14.

C. Kaliszyk & A. Krauss (2013): Scalable LCF-Style Proof Translation. In: Proceedings of the 4th Interna-
tional Conference on Interactive Theorem Proving, Lecture Notes in Computer Science 7998, Springer, pp.
51-66, doi:10.1007/978-3-642-39634-2_7.

G. Klein et al. (2009): seL4: Formal Verification of an OS Kernel. In: Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles, ACM, pp. 207-220, doi:10.1145/1629575.1629596|

T. Nipkow, L. Paulson & M. Wenzel (2002): Isabelle/HOL: A Proof Assistant for Higher-Order Logic.
Lecture Notes in Computer Science 2283, Springer, doi:10.1007/3-540-45949-9.

S. Obua & S. Skalberg (2006): Importing HOL into Isabelle/HOL. In: Proceedings of the Third International
Joint Conference on Automated Reasoning, Lecture Notes in Computer Science 4130, Springer, pp. 298-302,
doi:10.1007/11814771_27.

L. Paulson (1987): Logic and Computation: Interactive proof with Cambridge LCF. Cambridge University
Press, doij10.1017/CB0O9780511526602.

K. Slind (1991): An Implementation of Higher Order Logic. Technical Report 91-419-03, Computer Science
Department, University of Calgary.

K. Slind & M. Norrish (2008): A Brief Overview of HOLA. In: Proceedings of the 21st International Confer-
ence on Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science 5170, Springer, pp.
28-32, doi;10.1007/978-3-540-71067-7_6.

M. Wenzel, L. Paulson & T. Nipkow (2008): The Isabelle Framework. In: Proceedings of the 21st Interna-
tional Conference on Theorem Proving in Higher Order Logics, Lecture Notes in Computer Science 5170,
Springer, pp. 33-38, doii10.1007/978-3-540-71067-7_7.

HOL Light adaptation for Common HOL. Available at http://www.proof-technologies.com/
commonhol/commonhol-0.5-hl-svn197.tgz.

HOL Zero homepage. Available athttp://www.proof-technologies.com/holzero/.

http://dx.doi.org/10.1007/11576280_32
http://www.proof-technologies.com/flyspeck/qed_paper.pdf
http://www.proof-technologies.com/flyspeck/qed_paper.pdf
http://dx.doi.org/10.1007/978-3-319-08970-6_34
http://dx.doi.org/10.1007/3-540-09724-4
arxiv.org
http://dx.doi.org/10.1007/978-3-642-03359-9_4
http://dx.doi.org/10.1007/978-3-642-20398-5_14
http://dx.doi.org/10.1007/978-3-642-39634-2_7
http://dx.doi.org/10.1145/1629575.1629596
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/11814771_27
http://dx.doi.org/10.1017/CBO9780511526602
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://dx.doi.org/10.1007/978-3-540-71067-7_7
http://www.proof-technologies.com/commonhol/commonhol-0.5-hl-svn197.tgz
http://www.proof-technologies.com/commonhol/commonhol-0.5-hl-svn197.tgz
http://www.proof-technologies.com/holzero/

	1 Introduction
	2 Motivation
	3 Components
	3.1 Considerations
	3.2 Theory Components
	3.3 API Components
	3.3.1 Functional Programming Library
	3.3.2 Type, Term and Theorem Utilities
	3.3.3 Theory Extension and Listing Commands
	3.3.4 Inference Rules
	3.3.5 Parsing and Pretty Printing

	4 Implementation
	4.1 Architecture
	4.2 Adapting HOL Light

	5 Use Cases
	5.1 Legacy Code Port: HOL Light Rewriting Mechanism to HOL Zero
	5.2 New Code Port: HOL Light Proof Importer to HOL Zero

	6 Conclusions

