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We use Dedukti as a logical framework for interoperability. We use automated tools to translate
different developments made in HOL and in Coq to Dedukti, and we combine them to prove new
results. We illustrate our approach with a concrete example where we instantiate a sorting algorithm
written in Coq with the natural numbers of HOL.

1 Introduction

Interoperability is an emerging problem in the world of proof systems. Interactive theorem provers are
developed independently and cannot usually be used together effectively. The theorems of one system
can rarely be used in another, and it can be very expensive to redo the proofs manually. Obstacles for
a large-scale interoperability are many, ranging from differences in the logical theory and the represen-
tation of data types, to the lack of a standard and effective way of retrieving proofs. For systems based
on a common logical formalism, exchange formats for proofs have appeared like the TPTP derivation
format [26] for traces of automated first-order theorem provers and OpenTheory [17] for HOL interactive
theorem provers. However, combining systems working in different logical theories is harder.

A solution to this problem is to use a logical framework. The idea is to have a small and simple
language that is expressive and flexible enough to define various logics and to faithfully express proofs
in those logics, at a relatively low cost. Translating all the different systems to this common framework
is a first step in bringing them closer together. This is the idea behind LF [14], implemented in Twelf
[22], which has been used as a framework for interoperability in various projects [25, 16].

We propose to use a variant of Twelf called Dedukti. The reason for using Dedukti is that it imple-
ments an extension of LF called the λΠ-calculus modulo rewriting [5, 10], which adds term rewriting
to the calculus. This extension not only allows for a more compact representation of proofs, but also
enables the encoding of richer theories, such as the calculus of constructions. This cannot be done in LF
efficiently because computation would have to be represented as a relation and every conversion made
explicit. We thus use Dedukti as our logical framework.

Several tools have been developed to translate the proofs of various systems to Dedukti [6, 3, 11,
8]. The translations are based on the encodings of Cousineau and Dowek in the λΠ-calculus modulo
rewriting [10]. The proofs, represented as terms of the λΠ-calculus modulo rewriting, can be checked
independently by Dedukti, adding another layer of confidence over the original systems. This approach
has been successfully used to verify the formalization of several libraries and the proof traces of theorem
provers on large problem sets (of the order of several gigabytes).

In this paper, we take one step further and show that we can combine the proofs coming from different
systems in this same framework. A theorem can therefore be split into smaller blocks to be proved
separately using different systems, and large libraries formalized in one system can be reused for the
benefit of developments made in another one.
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This approach has several advantages. First, we can use Dedukti as an independent proof checker.
The λΠ-calculus modulo rewriting is fairly simple, and the kernel implementation is relatively small
[23, 24] compared to systems like Coq. The soundness and completeness of the translations have been
studied and proved [2, 10, 12], giving us further confidence. Compared to direct one-to-one translations
[18, 19, 21, 20], we avoid the quadratic blowup of the number of translations needed to translate n
systems. In that scenario, if a new proof system enters the market, we would need to design n new
translations. Moreover, some systems such as Coq have complex foundations that are difficult to translate
to other formalisms. Another possibility would be to compose existing translations, provided that they
are scalable and composable. This avenue has not been investigated. In our approach, we instead translate
the different systems to one common framework. We do not propose translations back into other systems,
as we can use Dedukti as a low-level assembly language, akin to machine language when we compile
and link programs coming from different programming languages.

Contributions

We used Holide and Coqine to translate proofs of HOL [15] and Coq [27], respectively, to Dedukti. We
examined the logical theories behind those two systems to determine how we can combine them in a
single unified theory while addressing the problems mentioned above. Finally, we used the resulting
theory to certify the correctness of a sorting algorithm involving Coq lists of HOL natural numbers. Our
code is available online at http://dedukti-interop.gforge.inria.fr/.
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2 Tools used

Dedukti

Dedukti1 is a functional language with dependent types based on the λΠ-calculus modulo rewriting
[23, 24]. The type-checker/interpreter for Dedukti is called dkcheck. It accepts files written in the
Dedukti format (.dk) containing declarations, definitions, and rewrite rules, and checks whether they are
well-typed.

Following the LF tradition, Dedukti acts as a logical framework to define logics and express proofs in
those logics. The approach consists in representing propositions as types and proofs as terms inhabiting
those types, as in the Curry-Howard correspondence. Assuming the representation is correct, a proof
is valid if and only if its corresponding proof term is well-typed. That way we can use Dedukti as an
independent proof checker.

1Available at: http://dedukti.gforge.inria.fr/
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Holide

Holide2 translates HOL proofs to the Dedukti language. It accepts proofs in the OpenTheory format
(.art) [17], and generates files in the Dedukti format (.dk). These files can then be verified by Dedukti
to check that the proofs are indeed valid. The translation is described in detail in [3].

The generated files depend on a handwritten file called hol.dk. This file describes the theory of
HOL, that is the types, the terms, and the derivation rules of HOL. The types of HOL are those of the
simply-typed λ -calculus. We represent them as terms of type type (not to be confused with Type, the
“type of types” of Dedukti). We represent the propositions as terms of type bool.

type : Type. term : type→ Type.
bool : type. proof : term bool→ type.
arrow : type→ type→ type. ...

Coqine

Coqine3 translates Coq proofs to the Dedukti language. It takes the form of a Coq plugin that can be
called to export loaded libraries (.vo) to generate files in the Dedukti format (.dk). These files can then
be verified by Dedukti to check that the proofs are indeed valid.

A previous version of the translation is described in [6]. However, that translation is outdated, as
it does not support the universe hierarchy and universe subtyping of Coq. A universe is just another
name for a “’type of types”. To avoid paradoxes, they are stratified into an infinite hierarchy [4], but that
hierarchy is ignored by the first implementation of Coqine. The translation has since been updated to
support both features following the ideas in [1], although some other features such as the module system
are still missing.

The generated files depend on a handwritten file describing the theory of the calculus of inductive
constructions (CIC) called coq.dk. There is a type prop that represents the universe of propositions and
a type type i for every natural number i that represents the ith universe of types. We will write typei and
termi for, respectively, type i and term i.

type : nat→ Type. term : Πi : nat. type i→ Type.
prop : Type. proof : prop→ Type.
...

3 Mixing HOL and Coq

HOL and Coq use very different logical theories. The first is based on Church’s simple type theory, is
implemented using the LCF approach, and its proofs are built by combining sequents in a bottom-up
fashion. The second is based on the calculus of inductive constructions and checks proofs represented
as λ -terms in a top-down fashion. Translating these two systems to Dedukti was a first step to bringing
them closer together, but there are still important differences that set them apart. In this section, we
examine these differences and show how we were able to bridge these gaps.

2Available at: https://www.rocq.inria.fr/deducteam/Holide/
3Available at: http://www.ensiie.fr/~guillaume.burel/blackandwhite_coqInE.html.en
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Type inhabitation

The notion of types is different between HOL and Coq. In HOL, types are those of the simply-typed
λ -calculus where every type is inhabited. In contrast, Coq allows the definition of empty types, which in
fact play an important role as they are used to represent falsehood. A naïve reunion of the two theories
would therefore be inconsistent: the formula ∃x : α,>, where α is a free type variable, is provable in
HOL but its negation ¬∀α : Type,∃x : α,> is provable in Coq.

Instead, we match the notion of HOL types with that of Coq’s inhabited types, as done by Keller and
Werner [19]. We define inhabited types in the Coq module holtypes:

Inductive type : Type := inhabited : forall (A : Type), A -> type.

It is then easy to prove in Coq that given inhabited types A and B, the arrow type A→ B is also inhabited:

Definition carrier (A : type) : Type :=
match A with inhabited B b => B end.

Definition witness (A : type) : carrier A :=
match A with inhabited B b => b end.

Definition arrow (A : type) (B : type) : type :=
inhabited (carrier A -> carrier B) (fun _ => witness B).

This is all that we need to interpret hol.type, hol.term, and hol.arrow using rewrite rules:

hol.type ; coq.term1 holtypes.type.
hol.arrow a b ; holtypes.arrow a b.
hol.term a ; coq.term1 (holtypes.carrier a).

Booleans and propositions

In Coq, there is a clear distinction between booleans and propositions. Booleans are defined as an in-
ductive type bool with two constructors true and false. The type bool lives in the universe Set (which is
another name for the universe Type0). In contrast, following the Curry-Howard correspondence, proposi-
tions are represented as types with proofs as their inhabitants. These types live in the universe Prop. Both
Set and Prop live in the universe Type1. As a consequence, Prop is not on the same level as other types
such as bool or nat (the type of natural numbers), a notorious feature of the calculus of constructions.
Moreover, since Coq is an intuitionistic system, there is no bijection between booleans and propositions.
The excluded middle does not hold, though it can be assumed as an axiom.

In HOL, there is no distinction between booleans and propositions and they are both represented as
a single type bool. Because the system is classical, it can be proved that there are only two inhabitants >
and ⊥, hence the name. Moreover, the type bool is just another simple type and lives on the same level
as other types such as nat.

To combine the two theories, one must therefore reconcile the two pictures in Figure 1, which show
how the types of HOL and Coq are organized.4 One solution is to interpret the types of HOL as types in
Set. To do this, we must rely on a reflection mechanism that interprets booleans as propositions, so that
we can retrieve the theorems of HOL and interpret them as theorems in Coq. In our case, it consists of a
function istrue of type hol.bool→ coq.prop, which we use to define hol.proof:

hol.proof b ; coq.proof (istrue b).

4Since bool is the type of propositions, and propositions are the types of proofs in the Curry-Howard correspondence, bool
can be viewed as a universe [4, 13].
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Figure 1: Booleans and propositions in HOL and Coq. Boxes represent universes.

Another solution is to translate hol.bool as coq.prop. To do this, we must therefore translate the types
of HOL as types in Type1 instead of Type0. In particular, if we want to identify hol.nat and coq.nat, we
must have coq.nat in Type1. Fortunately, we have this for free with cumulativity since any element of
Type0 is also an element of Type1.

We choose the first approach as it is more flexible and places less restrictions (e.g. regarding Prop
elimination in Coq) on what we can do with booleans. In particular, it allows us to build lists by case
analysis on booleans, which is needed in our case study.

4 Case study: sorting Coq lists of HOL numbers

We proved in Coq the correctness of the insertion sort algorithm on polymorphic lists and we instantiated
it with the canonical order of natural numbers defined in HOL. More precisely, on the Coq side, we
defined polymorphic lists, the insertion sort function, the sorted predicate, and the permutation relation.
We then proved the following two theorems:

Theorem sorted_insertion_sort: forall l, sorted (insertion_sort l).
Theorem perm_insertion_sort: forall l, permutation l (insertion_sort l).

with respect to a given (partial) order:
Variable A : Set.
Variable compare : A -> A -> bool.
Variable leq : A -> A -> Prop.
Hypothesis leq_trans : forall a b c, leq a b -> leq b c -> leq a c.
Hypothesis leq_total : forall a b, if compare a b then leq a b else leq b a.

The order comes in two flavors: a relation leq used for proofs, and a decidable version compare which
we can destruct for building lists. The totality assumptions relates leq and compare and can be seen as a
specification of compare.

On the HOL side, we used booleans, natural numbers and the order relation on natural number as
defined in the OpenTheory packages bool.art and natural.art. By composing the results, we obtain
two Dedukti theorems:

Πl : coq.term1 (coq_list hol_nat). proof (sorted (insertion_sort compare l)).
Πl : coq.term1 (coq_list hol_nat). proof (permutation l (insertion_sort compare l)).

The composition takes place in a Dedukti file named interop.dk. This file takes care of matching
the interfaces of the proofs coming from Coq with the proofs coming from HOL. Most of the work went
into proving that HOL’s comparison is indeed a total order in Coq:

Πm n : holtypes.carrier hol_nat. if (compare m n) then m≤ n else n≤ m.
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Figure 2: Components of the implementation. Solid frames represent source files. Dashed frames
represent automatically generated files. Arrows represent dependencies.

We prove it using the following theorems from OpenTheory:

∀m n : hol_nat. m < n⇒ m≤ n
∀m n : hol_nat. m 6≤ n⇔ n < m

and some additional lemmas on if . . . then . . .else. Because of the verbosity of Dedukti and small style
differences between HOL and Coq, this proof is long (several hundreds of lines) for such a simple fact.
However, most of it is first-order reasoning and we believe that it could be automatically proved by the
theorem prover Zenon [7] which can output proofs in the Dedukti format [9, 11].

We chose this example because the interaction between Coq and HOL types is very limited thanks
to polymorphism: there is no need to reason about HOL natural numbers on the Coq side and no need to
reason about lists on the HOL side so the only interaction takes place at the level of booleans which we
wanted to study. We think it would have been harder for example to translate and link theorems about
natural numbers in HOL and theorems about natural numbers in Coq. Our implementation is illustrated
in Figure 2. All components were successfully verified by Dedukti.

5 Conclusion

We successfully translated a small Coq development to Dedukti and instanciated it with the HOL defi-
nition of natural numbers. The results have been validated by Dedukti. Mixing the underlying theories
of Coq and HOL raised interesting questions but did not require a lot of human work: the file hol.dk is
very close to the version included with Holide and the file holtypes.v is very small. In retrospect, the
result looks a lot like an embedding of HOL in Coq but performed in Dedukti. This is not surprising, as
the theory of HOL is fairly simple compared to Coq and is in fact a subset of the logic of Coq [4, 13, 19].

The interoperability layer interop.dk which is specific to our case study required a lot of work
which should be automated before using this approach on larger scale; our next step on this front will
be to integrate Zenon to solve the proof obligations when they happen to be in the first-order fragment.
Interoperability raises more issues than mere proof rechecking and our translators to Dedukti need to be
improved. The translations produce code intended for machines that is not very usable by humans. The
linking of theories together should therefore either be more automated or benefit from a more readable
output. We expect more complex examples of interoperability to require some form of parametrization
in the translators: when the developer wants the translator to map a given symbol to a specific Dedukti
definition, he should be able to alter the behaviour of the translator by annotations in some source file, as
done by Keller and Werner [19] and by Hurd [17].
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Another limitation of this example of interoperability is the lack of executability. Even though we
have constructed a sorting “algorithm” on lists of HOL natural numbers and we have proved it correct,
there is no way to actually execute this algorithm. Indeed, there is no notion of computation in HOL,
so when the sorting algorithm asks compare for a comparison between two numbers, it will not return
something which will unblock the computation. Therefore, insertion_sort [4,1,3,2] is not computation-
ally equal to [1,2,3,4]. However, the result is still provably equal to what is expected: we can show that
insertion_sort [4,1,3,2] is equal to [1,2,3,4]. A constructive and computational presentation of HOL
will be necessary before we can obtain truly executable code. The pure type system presentation of HOL
[4, 13] is a reasonable candidate for that but the proofs of OpenTheory will need to be adapted. Holide
seems like a good starting point for such a transformation and is the subject of current ongoing work.
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