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The search for increased trustworthiness of SAT solvers is very active and uses various methods.
Some of these methods obtain a proof from the provers then check it, normally by replicating the
search based on the proof’s information. Because the certification process involves another nontriv-
ial proof search, the trust we can place in it is decreased. Some attempts to amend this use certifiers
which have been verified by proofs assistants such as Isabelle/HOL and Coq. Our approach is dif-
ferent because it is based on an extremely simplified certifier. This certifier enjoys a very high level
of trust but is very inefficient. In this paper, we experiment with this approach and conclude that
by placing some restrictions on the formats, one can mostly eliminate the need for search and in
principle, can certify proofs of arbitrary size.

1 Introduction

SAT solvers feature prominently in many fields of Computer Science, such as Formal Methods [2],
Security [11] and Artificial Intelligence [8]. It is no surprise that in addition to improving SAT solver
performance, the correctness and trustability of their results is also an area of focus. One of the main
venues that drive and compare the different solvers are the annual SAT competitions 1.

The results of these competitions show a steady increase in performance of SAT solvers. This im-
provement is achieved by designing more sophisticated solvers. However, improvements in design come
at a price. The more sophisticated the prover is, the harder it is to understand, prove its code as correct,
and trust its result. An example of this tradeoff is Lingeling [3], a leading SAT solver used extensively
in the industry, which was found to have a bug after years of use [13].

This lower level of trust prompted research in proof certification which was supported by the com-
munity. Since 2013, producing certificates for checking is mandatory for the main tracks in the SAT
competitions. These certificates vary from extended resolution proofs, like Trace [6], to formats specifi-
cally targeting solvers based on conflict driven clause learning, such as the DRAT format [13].

In order to verify that these certificates indeed represent proofs of a certain theorem, one can build
dedicated verifiers as done by TraceChecker [6] and DRAT [13]. These verifiers, while usually simpler
than SAT solvers, are based still on non-elementary programs. The possibility of bugs in these programs
reduces the trust we can place in their verification.

One way of amending the problem is to use certified tools to verify proof certificates. Two examples
are the verifiers certified by the Coq [7] and Isabelle/HOL [9] proof assistants.

In this paper, we take another approach. Following the ideas presented in the ProofCert project
[12], we would like the trusted core of the certifier to be simple to understand and be reproducible by
programmers of any skill. On the other hand, we would like the certification time to be tightly bound to
the complexity of the proof (in the way discussed in Sec. 2.3).

ProofCert certifiers enjoy a high level of trust due to two factors. The first factor relates to the way
they are implemented. Their trusted kernel consists of only a few dozen lines of easily-understood Prolog

1http://www.satcompetition.org/
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code. Prolog was chosen because the interpreter takes care of several of the required mechanisms, such
as substitutions, unification and backtracking. The simplicity of the code means that many programmers
are capable of writing such certifiers. While writing these certifiers in other programming languages
will require the implementation of the mechanisms mentioned above, the kernels will still be relative
simple. In addition, there already exist many implementations of Prolog which can execute the above
certifiers. If a bug exists in one implementation, we just need to certify the proof evidences using different
implementations.

Second, our certifier is using as a reference the propositional sequent calculus, which is one of the
most foundational calculi. Compared to the resolution and other calculi mentioned in this paper, its
meta-theory depends on just a few notions such as substitutions and regularity.

ProofCert certifiers also enjoy a high level of universality. Due to the low and foundational level of
the sequent calculus, the same kernel can be used to certify proofs containing different theories, as was
done in [4]. This makes an extension of the method to SMT solvers theoretically possible.

Having a simpler kernel, however, comes with a price: more information than is currently given
must be supplied in the proof certificate in order for the checker to efficiently check a proof. Taking into
account the huge size of unsatisfiability certificates, a further increase in size is clearly not an option.

Fortunately, we find that the information required does not increase the size of the Trace format
mentioned above. Since this format is extractable from other formats, like DRAT-trim [13], it can also
target generic SAT solvers.

There are different ways for supplementing the trace certificates with the missing information. The
easiest approach would be to preprocess the certificates using a (untrusted) theorem prover.

The key ideas in this paper are using a simple and readable trusted kernel based on the propositional
sequent calculus [5] and defining the certifier so as to guide proof search in an “almost” deterministic
way, which will preserve a tight bound on the complexity of the certification process.

The prototype certifier presented in this paper targets certificates in the Trace format and can currently
certify only small examples due to an inefficient implementation based on lists, instead of on Prolog’s
own predicate database.

The implementation is used in order to show that by supplying specific instances of Trace certifi-
cates, we can eliminate most search when looking for a proof over the sequent calculus. Relaxing the
restriction on the certificates, our current certifier’s performance declines sharply. We plan on improving
its performance by using more efficient data structures.

The approach most similar to ours is the one taken by the first-order resolution certifier “Checkers”
[4]. The main differences lie in the emphasis on deterministic search in our case as well as in the
underlining programming language.

The next section introduces the main technicalities used in the paper, the focused sequent calculus,
the ProofCert approach and the Trace format. We then describe in detail the certifier and its implemen-
tation. The third section will be dedicated to the experiments we have conducted to determine potential
relevance for very large proofs. We finish with a conclusion and future work section.

2 Preliminaries

2.1 Propositional Focused Sequent Calclulus

Theorem provers usually employ efficient proof calculi with a lower degree of trust. At the same time,
traditional proof calculi like sequent calculus enjoy a high degree of trust but are very inefficient for
proof search. In order to use the sequent calculus as the basis of automated deduction, much more
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structure within proofs needs to be established. Focused sequent calculi, first introduced by Andreoli [1]
for linear logic, combine sequent calculi’s higher degree of trust with a more efficient proof search. They
take advantage of the fact that some of the rules are “invertible”, i.e. can be applied without requiring
backtracking, and that some other rules can “focus” on the same formula for a batch of deduction steps.
In this paper, we will make use of the propositional fragment of the focused sequent calculus system
(LKF) for classical logic defined in [10]. Fig. 1 presents, in black font, the rules of this fragment
(PLKF).

Formulas in PLKF can have either positive or negative polarity and are constructed from atomic
formulas, whose polarity has to be assigned, and from logical connectives whose polarity is pre-assigned.
The connectives ∧− and ∨− are of negative polarity, while ∧+ and ∨+ are of positive polarity.

Deductions in PLKF are made during invertible or focused phases. Invertible phases correspond to
the application of invertible rules to negative formulas while a focused phase corresponds to the applica-
tion of focused rules to a specific, focused, positive formula. Phases can be changed by the application
of structural rules.

In the next section, we will describe a method for certifying proofs of unsatisfiability (UNSAT)
using PLKF. To make use of the evidence’s information while conducting a proof search in PLKF, we
augment the proof system by adding additional predicates as seen (in bold, blue font) in Fig. 1. These
additional predicates serve only to restrict the proof search in PLKF and, therefore, do not impair the
soundness and trustiness of the certifier. The new proof space is a subset of the proof space of PLKF.
The intuition behind them is that given a specific UNSAT proof format, we will pair it with a logic
program which interprets its meaning over the focused sequent calculus. For example, in the ”cut”
rule, the implementation of the predicate cute(Ξ,Ξ′,Ξ′′,B) will use the proof evidence, denoted by Ξ, to
choose the cut formula B which will be then used in PLKF. The two remaining components are the proof
evidences necessary for the two proofs used by the cut rule.

Additionally, we include a mechanism, in bold blue, to store formulas by mapping them to indices.
This allows for efficient application of the store and decide rules.

2.2 A General UNSAT Proof Checker

There is no consensus about the optimal shape for a formal proof evidence. The notion of structural
proofs, based on derivations in some calculus, is of no help as long as the calculus is not fixed. One of
the goals of the ProofCert project [12] is to amend this problem by defining the notion of a foundational
proof certificate (FPC): a pair of some arbitrary proof evidence and an executable specification that
denotes its semantics in terms of some well-known target calculus, such as the sequent calculus. These
two elements of an FPC are then given to a universal proof checker which, by the help of the FPC,
can derive a proof in the target calculus. Since the proof generated is over a well-known and low-level
calculus that is easy to implement, one can obtain a high degree of trust in its correctness.

Such a universal proof certifier, which will be mainly implemented in the programming language
Prolog, contains the following main components.

• Kernel. The kernels are the implementations in Prolog of several trusted proof calculi. Currently,
there is a kernel over the propositional classical focused sequent calculus (PLKF). Section 2.1
presents the calculus PLKF that will be used in the paper.

• Proof evidence. The first component of an FPC, a proof evidence is a description of the proof
output by a theorem prover. Given the high-level declarative form of Prolog, the structure and
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INVERTIBLE RULES

ΞΞΞ
′′′ `Θ⇑A,Γ ΞΞΞ

′′′′′′ `Θ⇑B,Γ andNegc(((ΞΞΞ,,,ΞΞΞ
′′′,,,ΞΞΞ′′′′′′)))

ΞΞΞ `Θ⇑A∧− B,Γ
ΞΞΞ
′′′ `Θ⇑A,B,Γ orNegc(((ΞΞΞ,,,ΞΞΞ

′′′)))

ΞΞΞ `Θ⇑A∨− B,Γ

FOCUSED RULES

ΞΞΞ
′′′ `Θ⇓B1 ΞΞΞ

′′′′′′ `Θ⇓B2 andPose(((ΞΞΞ,,,ΞΞΞ
′′′,,,ΞΞΞ′′′′′′)))

ΞΞΞ `Θ⇓B1∧+ B2

ΞΞΞ
′′′ `Θ⇓Bi orPose(((ΞΞΞ,,,ΞΞΞ

′′′,,, iii)))
ΞΞΞ `Θ⇓B1∨+ B2

IDENTITY RULES

ΞΞΞ
′′′ `Θ⇑B ΞΞΞ

′′′′′′ `Θ⇑¬B cute(((ΞΞΞ,,,ΞΞΞ′′′,,,ΞΞΞ′′′′′′,,,BBB)))
ΞΞΞ `Θ⇑ · cut

〈lll,,,¬Pa〉 ∈Θ initiale(((ΞΞΞ,,, lll)))
ΞΞΞ `Θ⇓Pa

init

STRUCTURAL RULES

ΞΞΞ
′′′ `Θ⇑N releasee(((ΞΞΞ,,,ΞΞΞ

′′′)))

ΞΞΞ `Θ⇓N release
ΞΞΞ
′′′ `Θ,〈lll,,,C〉⇑Γ storec(((ΞΞΞ,,,CCC,,, lll,,,ΞΞΞ′′′)))

ΞΞΞ `Θ⇑C,Γ
store

ΞΞΞ
′′′ `Θ⇓P 〈lll,,,P〉 ∈Θ decidee(((ΞΞΞ,,, lll,,,ΞΞΞ′′′)))

ΞΞΞ `Θ⇑ · decide

Figure 1: The PLKF proof system. The symbol Pa denotes a positive atomic formula, N a negative
formula and C a positive formula or a negative literal.

form of the evidence are very similar to the original proof. We will see the precise form of the
different proof evidences we handle in the next section.

• FPC specification. The basic goal of the universal proof certifier is to generate a proof of the
evidence’s theorem in the target kernel. To this end, the kernels have additional predicates which
take into account the information given in the evidence. Since the form of this information is not
known to the kernel, the certifier uses FPC specifications to interpret it. These logical specifications
are written in Prolog and interface with the kernel in a sound way in order to certify proofs. Writing
these specifications is the main task for supporting the different outputs of the modern theorem
provers that we consider in this paper and they are explained in detail in Section 3.

2.3 The Trace Proof Format

The description given in the previous sections refers to a universal proof certifier for SAT solvers. In this
paper, though, we focus on certifying a specific proof format and describe the implementation and some
experiments.

The annual SAT competition has included a certified UNSAT category since 2005 and has required
certifications for the general UNSAT track since 2013. One of the proof formats which was supported
until 2013 is Trace2. Trace is a format supporting resolution proofs where the resolution steps might
require arbitrary input resolution proofs. This flexibility allows Trace to support, on one hand, resolution

2http://fmv.jku.at/tracecheck/

http://fmv.jku.at/tracecheck/
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1 1 2 0 0
2 −1 2 0 0
3 1 −2 0 0
4 −1 −2 0 0

5 1 0 3 1 0
6 0 4 2 5 0

Figure 2: A example of a Trace refutation

and hyper resolution proofs, and derivations based on clause learning on the other. In order to simplify
integration with the SAT solvers that use clause learning, Trace allows arbitrary orders between com-
ponents in the proof. Since 2014, the SAT solver community has preferred to use formats which are
specialized for learned clauses. These formats are easier to produce for these solvers as well as are more
compact in size. However, these formats are harder to certify and require elements of theorem proving.

In this paper, we follow the ProofCert approach of requiring the trusted kernel of a proof certifier to
be simple so it can be implemented by programmers who have no knowledge of theorem proving and
only basic knowledge in logic. To this end, we chose to support Trace as its format best serves this goal.
Although it is not supported by SAT competitions, a proof in Trace format can be extracted from a DRAT
[13] proof, the current state-of-the-art UNSAT proof format.

The basic components of the Trace format are the chains. Chains represent the production of a
derived clause from a set of previously known clauses based on linear input resolution. This means that
the resolution proof is, in fact, of the shape of a tree and can be linearly (with respect to the number of
cuts) converted into a sequent calculus proof. In order to support clause learning, the known clauses as
well as the chains themselves can be supplied in any order.

A chain contains three parts: the index of the derived clause, the literals of the derived clause and
a list of antecedents. The antecedents are both preceded and followed by zero (‘0’). For example, to
denote the clause with the first variable occurring positively and the second negatively, with an index ‘3’,
and which is derived using clauses from chains ‘1’ and ‘2’, we would write the following.

3 1 −2 0 1 2 0

The original clauses are represented using chains with no antecedents as follows

1 1 3 0 0

The empty clause is denoted by an empty list of literals.
Since the literals of a derived clause can be derived from the list of antecedents, Trace also supports

chains without an explicit list. This is achieved by replacing the list with the ‘*’ symbol.
A simple example of a Trace proof (taken from Trace website 3) can be seen in Fig. 2.

3 Certification of the Trace Format

As mentioned in the introduction, current approaches for certifying SAT solver-generated proofs involve
using the proof evidence to guide proof search using, for example, a resolution calculus. This approach,

3http://fmv.jku.at/tracecheck/README.tracecheck



60 Certification of UNSAT Proofs

while enjoying a higher level of trust than that of the SAT solver alone, suffers from some of the same
problems. Namely, some proof search is required in order for the certification process to succeed. This
essentially means that the certifier is in itself a resolution theorem prover.

The approach taken in this paper is first to use a lower level and foundational calculus, namely the
sequent calculus. Second, we attempt to reduce proof search to nearly deterministic “search” only, thus
making the certification process more efficient and separating it from the proof search done by the SAT
solver. Sec. 4 will be devoted to our experiment with this approach and its applicability to the Trace SAT
proof format. In the rest of this section, we will describe the details of the certifier and how it implements
the ideas described in Sec. 2.2.

3.1 Prolog and Proof Search

For our certifier, the first step was to implement a highly trusted kernel following the PLKF rules. For
this purpose, we chose the Prolog language. Prolog’s unification-based computational model lends itself
naturally to proof search: given some appropriately formatted proof evidence, Prolog attempts to pattern-
match and see if there are any applicable rules. If there is, the rule is applied, and the branch is continued
until either success (application of the “init” rule, in this case) or failure (there are no more rules to
apply). If the branch fails, Prolog will automatically backtrack to the last fork (when there was either
more than one applicable rule, or more than one variable the rules could apply to) and test another option.
This process creates a proof search very similar to what a human would manually write using a sequent
calculus, except that one would expect the human to more intuitively identify whether a branch will
advance the proof or end in failure.

The focused calculus rules presented in Fig. 1 are closely followed by the Prolog code, so as to main-
tain soundness and completeness. There are a few adjustments for efficiency, which we will point out in
this section; we will also explain the behavior and meaning of the Prolog predicates and variables so the
reader can easily confirm their faithfulness to the original calculus. Then we introduce the translation of
a Trace proof into Prolog. Finally, we discuss in more detail the implementation of the “Cut” rule, as this
is where outside input (the Trace, in this case) is introduced.

3.2 Syntax

As we have mentioned, once the rules are written in Prolog, Prolog’s internal backtracking takes care
of the proof search. To grasp the Prolog rules and their faithfulness to PLKF, the reader need only be
familiar with a few syntactical and implementation details. Firstly, words beginning in lower case are
either predicates or constants in Prolog, while those beginning with an upper-case letter are variables
that Prolog can try to unify with other variables or constants. An underscore ( ) in Prolog represents an
anonymous variable, which are only used in cases where the previous value of the expected parameter
no longer needs to be kept.

Secondly, keep in mind Prolog’s list syntax: both X and [X |Y ] are variable formats that can match
with a list. The first will match X to the whole list, whereas the second notation assigns X to the first
element of the list, and Y to the remainder. The variable names, of course, may vary as long as the first
letter is capitalized. Lastly, we use a built-in predicate, select(X ,A,A1). It succeeds if X is a member
of list A, and A1 is the result of removing X from A. Another built-in predicate, member(X ,List), is
self-evident.
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3.3 Kernel Implementation Details

In our implementation, we use x(P) to denote an atomic formula and not(x(P)) to denote a negative
atomic formula. When we need to negate a non-atomic formula (which only occurs in one rule), we can
use the negate() predicate. The helper predicates, isPositive(Formula) and isNegative(Formula),
succeed if Formula is positive or negative, respectively. As mentioned in Sec. 2.3, ∧ (and) is assigned a
positive polarity; ∨ (or) a negative polarity. Atomic formulas are positive by default, and negative when
they are wrapped in the not() predicate.

When creating a proof in the PLKF system, one maintains at most two sets of formulas. One set,
denoted by Θ in Fig. 1, is the context; its formulas are neither focused nor unfocused. The other set,
depending on the phase, consists of zero or more unfocused formulas, or exactly one focused formula.
In our Prolog code, these sets are implemented as lists. The predicates unfk() and foc() are used to
differentiate unfocused and focused phases. It is the “store” rule that adds a formula to the set Γ. What
is, in PLKF, the Γ set is now divided into two lists, themselves within the store(SL,NL) predicate.

One list, referred to by the NL variable, contains only negative atomic formulas; SL contains the
rest of the stored formulas. This division, implemented in the “store” rule, improves the efficiency of
the “init” rule, which would otherwise need to check the whole list for a negative atomic formula. It
has no impact on the soundness or completeness of the system since according to the rules of PLKF,
when deciding on a stored formula, negative atoms cannot be chosen. This division then necessitates two
versions of the “store” rule: one that applies to positive formulas and stores them in the SL, and another
that applies to negative atoms and stores them in NL. Having two versions does not affect the kernel
since they are mutually exclusive and never conflict or overlap.

The resulting trusted kernel is as follows:

%t r u e f o c u s e d , u n f o c u s e d
check ( , , f o c ( t rue ) ) .
check ( , , unfk ( [ t rue | ] ) ) .

%f a l s e u n f o c u s e d
check ( Cer t , S t o r e , unfk ( [ f a l s e |Gamma] ) ) : − check ( Cer t , S t o r e , unfk (Gamma ) ) .

%i n i t
check ( Cer t , s t o r e ( ,NL) , f o c ( x ( P ) ) ) : − i n i t e ( C e r t ) , member ( not ( x ( P ) ) ,NL ) .

%r e l e a s e ; N i s a n e g a t i v e l i t e r a l or f o r m u l a
check ( Cer t , SL , f o c ( Formula ) ) :−

i s N e g a t i v e ( Formula ) ,
r e l e a s e e ( Cer t , C e r t 1 ) ,
check ( Cer t1 , SL , unfk ( [ Formula ] ) ) .

%c u t
check ( Cer t , S t o r e , unfk ( [ ] ) ) :−

c u t e ( Cer t , Cer t1 , Cer t2 , Formula ) ,
n e g a t e ( Formula , NFormula ) ,
check ( Cer t1 , S t o r e , unfk ( [ Formula ] ) ) ,
check ( Cer t2 , S t o r e , unfk ( [ NFormula ] ) ) .
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%d e c i d e
check ( Cer t , s t o r e ( SL ,NL) , unfk ( [ ] ) ) :−

d e c i d e e ( Cer t , Cer t1 , Index ) ,
member ( ( Index , Formula ) , SL ) , i s P o s i t i v e ( Formula ) ,
check ( Cer t1 , s t o r e ( SL ,NL) , f o c ( Formula ) ) .

%and f o c u s e d
check ( Cer t , SL , f o c ( and (A, B ) ) ) :−

ande ( Cer t , Cer t1 , C e r t 2 ) ,
check ( Cer t1 , SL , f o c (A) ) , check ( Cer t2 , SL , f o c (B ) ) .

%or u n f o c u s e d
check ( Cer t , SL , unfk ( [ or (A, B ) |Gamma ] ) ) :−

o r e ( Cer t , C e r t 1 ) ,
check ( Cer t1 , SL , unfk ( [ A, B |Gamma ] ) ) .

%s t o r e ; n e g a t i v e atom case
check ( Cer t , s t o r e ( SL ,NL) , unfk ( [ not ( x ( P ) ) |Gamma ] ) ) :−

s t o r e e ( Cer t , Cer t1 , ) ,
check ( Cer t1 , s t o r e ( SL , [ not ( x ( P ) ) |NL ] ) , unfk (Gamma ) ) .

%s t o r e ; p o s i t i v e f o r m u l a case
check ( Cer t , s t o r e ( SL ,NL) , unfk ( [ C |Gamma ] ) ) :−

i s P o s i t i v e (C) ,
s t o r e e ( Cer t , Cer t1 , Index ) ,
check ( Cer t1 , s t o r e ( [ ( Index , C ) | SL ] ,NL) , unfk (Gamma ) ) .

Except for differences discussed above, these predicates follow precisely the modified PLKF from
Fig. 1. These rules are evidently concise, making them easier to write and test, so the likelihood of
bugs is diminished. Furthermore, because of the code’s brevity, the kernel could also be replicated in
another language, so multiple kernels could be tested on the same problem to check the result. Therefore
our kernel’s simplicity is an advantage in terms of current trustability, and could easily support further
improvements in the future.

3.4 Proof Evidence

Resolution Refutation - A Trace file succinctly represents an extended resolution refutation proof, in
conjunctive normal form (CNF). In this format, each original clause (as described in 2.3) in the Trace
corresponds to one clause, and every line is connected by a conjunction (∧). A resolution refutation uses
two or more such clauses to derive a new clause, until f alse can be derived. The original formula used to
derive f alse, then, must be unsatisfiable. If this is the case, the negation of the original formula should
be true, and this is what our theorem prover can confirm. To do this, we can simply negate the original
formula and pass it to the Prolog theorem prover.
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With this process, we would be recreating the work of the SAT solver, just with a different underlying
proof search mechanism. The purpose of our checker, however, lies in its incorporation of the Trace’s
derived clauses, each of which can be translated to an instance of the “cut” rule. In this section, we
discuss how we translate a Trace’s proof evidence into code interpretable by Prolog.

Proof evidence: format for original clauses - A simple Python program integrates the Trace proof
into the Prolog kernel syntax. It is a text-to-text translator, taking the Trace format input and returning
output readable by Prolog. The only nontrivial part is translating from Trace’s implicit infix notation to
the prefix notation accepted by our Prolog kernel, which is done recursively. In this section we explain
the syntax used in Prolog that corresponds to the different elements in a Trace.

The Trace’s list of original clauses corresponds to a single formula in disjunctive normal form (be-
cause we have negated the initial formula in order to use resolution refutation), using the predicates
and(F,F1) and or(F,F1). For example, take a single clause from a hypothetical Trace:

7 −1 2 −4 0 0 .

The first integer is the index of the clause, which we will deal with below. The rest of the clause be-
comes: and(x(1),and(not(x(2)),x(4))). The trace’s Trace’s other clauses would be similarly translated,
then they would all be linked by disjunctions using the same method, eventually resulting in a string of
the general form:
or(and(x(1),and(not(x(2)),x(4))),and(..., ...)).
Thus the first part of the proof evidence, the theorem that should be validated, is passed to Prolog as a
string recursively generated from the Trace. Prolog then reads the string as a query, which it can try to
patternmatch with the previously defined predicates. Initially, the theorem is unfocused and so the whole
formula is wrapped in the unfk() predicate.

To preserve the indices given to clauses in a Trace, there are some other adjustments. When the
“store” rule is applied, it stores the clauses as a tuple of (Index,Clause) in the SL list, wrapped in the
store(SL,NL) predicate. To do this, we add a variable, DexList, to the initial program call. DexList con-
tains the indices of all the original (as opposed to derived) clauses and ensures that when they are stored,
the clauses keep the index assigned by the SAT solver. Because the program begins in the unfocused
phase, and the original formula is a string of clauses in disjunctive normal form, individual formulas will
be progressively broken down by the unfocused “or” (∨ rule, then stored with the appropriate index by
store(SL,NL).

After this initial unfocused phase, original clauses will all have been stored with the indices assigned
them in the Trace. Subsequent calls to “store”, which will be to store positive literals on the left proof
branch, will use the index−1. Because there can be more than one stored positive literal,−1 is no longer
a unique index. So, deciding on −1 can yield any of the literals stored there. In the next section, we
discuss more specifically how the Trace proof format is mapped to a consistent syntax in Prolog.

Proof evidence: format for derived clauses - The last element of the proof evidence from Trace
are the derived clauses or chains, and the indices that the original clauses need to be stored with. As
we have seen in Sec. 2.3, a chain contains the index, a derived clause, and a list of the indices of
its antecedents. This information is stored in the predicate chain(Index,DecideList,Formula); then
multiple chain(I,D,F) objects are stored in a list, which is wrapped in a chains(...) predicate. Here,
Index is an integer, DecideList is a Prolog list of integers (the indices of antecedents), and Formula is a
single formula. Whereas the Python Trace-Prolog translation program automatically negates the original
theorem in preparation for resolution refutation, the derived clauses are not negated when translated to
Prolog.

If we add some antecedents to our previous Trace clause example, the clause becomes:
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7 −1 2 −4 0 5 6 8 0 .

This would be classified as a derived clause thanks to its nonempty antecedent list, and would be
written in Prolog as:
chain(7, [5,6,8],or(not(x(1)),or(x(2),not(x(4))))).

An entire list of derived clauses would have the following form:
chains([chain(7, [5,6,8],or(not(x(1)),or(x(2),not(x(4))))),chain(I,D,F), . . .]).

Proof evidence: combining elements to convey an entire Trace in Prolog - To summarize, a
derived clause in the Trace is negated then directly translated into Prolog. The original clauses are
translated without being negated, while their indices are stored separately as described above.

The format for calling the verification on a whole Trace is as follows:
check(Cert,Store,unfk(Formula)).

Store is a predicate of the form store(SL,NL) as mentioned in Sec. 3.3, where SL and NL are both
lists of formulas separated by formula type (positive formula or negative atom). Initially both will be
empty.

The Cert variable contains the proof evidence. It is where we keep all information that comes ex-
clusively from the Trace, that is not found in the original CNF SAT problem formulation. Thus the list
of derived clauses we saw above, chains(), is managed in the Cert variable. In the next section, we
will give details about how and when Cert is updated. For now, we simply note that the initial checker
call requires that Cert be of the form certRight(IndexList,chains(ChainList)). As noted in Sec. 3.3,
IndexList contains the assigned indices of all original clauses. In summary, we rearrange the format
and the storage of indices with respect to the original Trace proof, but otherwise the Prolog formulation
corresponds directly to the original proof.

3.5 Incorporation of the Trace: FPC File

As mentioned above, information that is obtained exclusively from the Trace is only manipulated in the
Prolog checker code through the variable Cert. Any operations updating or using information within
the Cert variable are managed not by the PLKF kernel, but by additional predicates within the FPC file.
The reader may note that while the predicates in FPC can guide or restrict the proof search, they cannot
create new branches or add elements to the search. They therefore have no impact on the soundness of
the PLKF system. Setting up the FPC code in this way allows us to include the Trace’s guidance without
impacting soundness.

After an application of the cut rule, the proof search must succeed on both resulting branches. The
left cut branch corresponds to a sub-proof, one that states that the cut formula follows from the clauses
whose indices are given in the cut’s DecideList variable. If this succeeds, then the checker proceeds to
the right branch, which repeats the same process on the remaining chains, and should be able to confirm
that all the chains together form a valid proof. Thus on the left branch, the information needed from the
Cert context is only the DecideList. On the right branch, the checker needs the information on all the
remaining chains, plus the index at which to store the current chain’s derived clause.

Thus, the left and right branches each require different information from the Cert context. So we
divide this variable into certLeft(DecideList,Flag) and certRight(IndexList,chains(ChainList)).
This improves the code’s readability as well as efficiency: rules that are only applicable on one of the
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branches can fail sooner this way. With this syntax of the Cert variable in mind, we can look at the
predicates in the FPC file.

% c u t e x p e r t
c u t e ( c e r t R i g h t ( [ ] , c h a i n s ( [ c h a i n ( StoreDex , DL, Formula ) | R e s t C h a i n s ] ) ) ,

c e r t L e f t (DL, 1 ) ,
c e r t R i g h t ( [ S toreDex ] , c h a i n s ( R e s t C h a i n s ) ) ,
Formula ) .

The cut expert is called with the following parameters: cuts(Cert,Cert1,Cert2,Formula). This
method makes sure each branch receives, through the Cert variable, the information it needs to proceed.
Then it returns two modified Cert contexts, one corresponding to the left cut branch; one to the right.
We see that this rule is only applicable when the list of unfocused formulas is empty, and when the Cert
variable is currently of type certRight.

The left branch’s certificate contains only the DecideList and a flag variable, which is initialized to
1 at the beginning of each left branch. The flag variable is only utilized in the “decide” rule, as detailed
below.

If the left branch succeeds, the kernel code will continue on the right branch, this time with informa-
tion on the remaining chains it must check, and the negated version of the cut formula. Due to the format
of Trace proofs, the negated formula will always be of positive polarity (a conjunctive clause), and thus
will be immediately stored at that index. There are also some cases where the cut formula may be an
atomic formula, in which case its negation may be either positive or negative; Store applies in either
case.

% d e c i d e e x p e r t
d e c i d e e ( c e r t L e f t (DL, 1 ) , c e r t L e f t (DL, 0 ) , −1 ) .
d e c i d e e ( c e r t L e f t (DL, 1 ) , c e r t L e f t ( DL1 , 1 ) , I ) :− s e l e c t ( I , DL, DL1 ) .

The decide expert extracts and updates the information in Cert, returning an index for the “decide”
rule and then removing that index from DecideList so it can only be selected once. In the case of
subformulas stored at the non-unique index −1, the flag variable is in charge of restricting the number
of decides so that we can only decide on one of potentially several subformulas per branch. This is not
an issue, as if it is the wrong formula, Prolog can backtrack, swapping the flag variable to 1 again, and
choosing a different formula stored with−1. As mentioned earlier, this non-determinism is very shallow.

% s t o r e e x p e r t
s t o r e e ( c e r t R i g h t ( [ Index | Res t ] , Cha ins ) , c e r t R i g h t ( Rest , Cha ins ) , Index ) .
s t o r e e ( c e r t L e f t (DL,A) , c e r t L e f t (DL,A) , −1 ) .

Both these two cases of the store expert may be called by both cases of the kernel’s “store” rule. If
we are on the right branch, we will have index(es) from either the initial unfocused phase, or from a
previous cut introduction; the next formula we store should be with that index, which we remove from
the IndexList. On the left branch there are no indices from the Trace, and we are only ever storing literals,
thus the expert makes no change to the DecideList, and returns -1 as the Index to store at.

% i n i t e x p e r t
i n i t e ( ) .

% r e l e a s e e x p e r t
r e l e a s e e ( c e r t L e f t (DL,A) , c e r t L e f t (DL,A ) ) .

% and e x p e r t
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ande ( c e r t L e f t (DL,A) , c e r t L e f t (DL,A) , c e r t L e f t (DL,A ) ) .
% or e x p e r t
o r e ( Cer t , C e r t ) .

These remaining expert predicates do nothing, and are only included to maintain a uniform syntax.
The kernel rules that call them require neither information nor changes to the Cert. “release” and “and”
experts, though, do have the advantage of making the proof search slightly more efficient by failing earlier
on a wrong branch. As “or” can be applicable on both right and left branches, this is left ambiguous.
Finally, if the kernel “init” rule succeeds, we neither need any information from Cert nor do we need to
propagate it to any other rule; to keep this clear we use Prolog’s anonymous variable.

Example of Implementation Elements -
To concretize these technical elements, we examine a few stages in the process of checking the trivial

Trace proof given from Fig. 2.

check ( c e r t R i g h t ( [ 4 , 3 , 1 , 2 ] ,
c h a i n s ( [ c h a i n ( 5 , [ 3 , 1 ] , x ( 1 ) ) , c h a i n ( 6 , [ 4 , 2 , 5 ] , f a l s e ) ] ) ) ,
s t o r e ( [ ] , [ ] ) ,
unfk ( [ or ( and ( x ( 1 ) , x ( 2 ) ) , or ( and ( not ( x ( 1 ) ) , x ( 2 ) ) ,

or ( and ( not ( x ( 1 ) ) , not ( x ( 2 ) ) ) , and ( x ( 1 ) , not ( x ( 2 ) ) ) ) ) ) ] ) ) .

As mentioned, the initial form of the query uses the certRight predicate, which contains DexList
variable with indices with which each clause should be stored, as well as the derived clauses wrapped
in the predicates of the form chain(Index,DecideList,Formula). The list variables SL and NL within
the store(SL,NL) predicate are both intially empty, and the original theorem is negated. Because the
infix-to-prefix translation is done recursively, the reader will note that the order of the conjunctions has
changed in a predictable manner. The order of their indices in the DexList variable is also adjusted to
ensure they are assigned to the correct clauses.

This query will match with the unfocused “or” rule, which is applied to leave us with the same query
as above, except we now have an unfocused set of formulas, instead of a single long one:

[ and ( x ( 1 ) , x ( 2 ) ) , or ( and ( not ( x ( 1 ) ) , x ( 2 ) ) ,
or ( and ( not ( x ( 1 ) ) , not ( x ( 2 ) ) ) , and ( x ( 1 ) , not ( x ( 2 ) ) ) ) ) ] .

Now the “store” rule is applicable, and will store the conjunction and(x(1),x(2)) with index 4 in the
SL variable. Our query is now:

check ( c e r t R i g h t ( [ 3 , 1 , 2 ] ,
c h a i n s ( [ c h a i n ( 5 , [ 3 , 1 ] , x ( 1 ) ) , c h a i n ( 6 , [ 4 , 2 , 5 ] , f a l s e ) ] ) ) ,
s t o r e ( [ ( 4 , and ( x ( 1 ) , x ( 2 ) ) ) ] , [ ] ) ,
unfk ( [ or ( and ( not ( x ( 1 ) ) , x ( 2 ) ) ,

or ( and ( not ( x ( 1 ) ) , not ( x ( 2 ) ) ) , and ( x ( 1 ) , not ( x ( 2 ) ) ) ) ) ] ) ) .

Following this pattern, the “or” and “store” rules are successively applied until the unfocused set is
empty, and each original clause and index tuplet has been added to the SL variable. At this point the
only applicable rule is the “cut” rule. This will select the first chain from the ChainList and begin a new
branch of the proof. The chain’s clause is negated, and set added to the new unfocused set. The Cert
variable now pertains only to this chain, and is wrapped in the certLeft(DecideList,Flag) predicate to
make the distinction clear, resulting in the new query:

check ( c e r t L e f t ( [ 3 , 1 ] , 1 ) ,
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s t o r e ( [ ( 2 , and ( x ( 1 ) , not ( x ( 2 ) ) ) ) , ( 1 , and ( not ( x ( 1 ) ) , not ( x ( 2 ) ) ) ) ,
( 3 , and ( not ( x ( 1 ) ) , x ( 2 ) ) ) , ( 4 , and ( x ( 1 ) , x ( 2 ) ) ) ] , [ ] ) ,

unfk ( [ x ( 1 ) ] ) ) .

From here, the branch is followed until x(1) can be derived from the clauses 3 and 1 (as is indeed
the case). When the checker has managed to apply “init” on all leaves of the proof, the left branch has
succeeded and the subsequent steps in the “cut” rule allow the right branch to continue checking other
derived clauses.

If, instead, the unfocused theorem cannot be derived from clauses indicated in the DecideList, this
indicates either an error in the SAT solver’s proof, or that the SAT problem was not UNSAT in the first
place (the first condition may obviously occur independently of the second, but not vice versa).

4 Experiments

As we have discussed in the previous sections, our checker for Trace format proofs follows the PLKF
system very closely, and can therefore be highly trusted. However, it only works for relatively small
Traces, which result from a relatively small SAT problems. The checker would be of greater practical
interest if it could handle large problems in a reasonable amount of time. Therefore, in this section
we explore why the checker currently is not efficient for large problems, and present several potential
improvements to the checker as well as to SAT solvers that output Trace. Our experiments suggest
that including the right information in a Trace could significantly improve our proof checker’s ability to
efficiently check large proofs with a high degree of trust.

4.1 Source of Non-Determinism

In the focused sequent calculus, most rules are fairly deterministic. The focused “or” (∨) rule is nonde-
terministic, but due to our choice of polarization of the formulas, it will never be applicable and we have
not implemented it. The “cut” rule would also be subject to nondeterminism, but instead we supply the
formula to cut on from the Trace, so there is no search necessary. The main source of nondeterminism
is the “decide” rule, where the checker may have arbitrarily many options to decide on, and only one
or a few of them may advance the proof. We postulate that this is where most of the non-determinism
comes into play. If we don’t know the correct order for the DecideList, the problem becomes one of
proof search. In this case, we are using an automated theorem prover to check another theorem prover. It
is a smaller proof search than we would have without incorporating the Trace proof evidence, but a proof
search nonetheless. This process can certainly increase the trust in the results of the first prover, but is
not efficient enough to easily check the results of large SAT problems.

The readme file for Booleforce’s Trace states that neither the global order of chains, nor the local
order of antecedents in a chain are guaranteed 4, rather any necessary ordering is left for the checker to
resolve by search – therefore, the current, unmodified Trace format does not allow a consistently linear
search if its antecedent lists are not reordered.

The checker is therefore expected to perform search across clauses as well as across antecedent
chains. Although the latter requirement is satisfied by our checker, the first is not. However, the global
clause order output by Booleforce is already appropriate for PLKF so this was not a problem.

On the other hand, resolution proofs do not use positive and negative phases while PLKF does, the
antedecent order in a Trace proof will rarely happen to also be the ideal order for a PLKF proof.

4http://fmv.jku.at/tracecheck/README.tracecheck
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init
(−1) `Θ,(−1,A),(¬B)⇓B

init
`Θ,(¬B),(¬A)⇓A

decide
(−1) `Θ,(−1,A),(¬B),(¬A)⇑

store
(−1) `Θ,(−1,A),(¬B)⇑¬A

release
(−1) `Θ,(−1,A),(¬B)⇓¬A

and
(−1) `Θ,(−1,A),(¬B)⇓¬A∧B

decide
(3,−1) `Θ,(−1,A),(¬B)⇑

store
(3,−1) `Θ,(−1,A)⇑¬B

release
(3,−1) `Θ,(−1,A)⇓¬B

init
(3) `Θ,(−1,A),(¬A)⇓A

decide*
(3,−1) `Θ,(−1,A),(¬A)⇑

store
(3,−1) `Θ,(−1,A)⇑¬A

release
(3,−1) `Θ,(−1,A)⇓¬A

and
(3,−1) `Θ,(−1,A)⇓¬A∧¬B

decide
(1,3,−1) `Θ,(−1,A)⇑

store
(1,3) `Θ⇑A

Figure 3: A portion of the left branch of the proof search after the first application of “cut.” The Θ here
always denotes the set of clauses (1,¬A∧−¬B),(2,A∧−¬B),(3,¬A∧− B),(4,A∧− B). Note that when
we store A, it is stored as a tuple with an index. When we store ¬A, it does not retain an index since it
will not be decided on. This corresponds to the storing of a negative atom in the NL list in our Prolog
implementation. The context variable, refered to as Ξ in Fig. 1 or as Cert in the Prolog code, changes.

fail
(1,−1) `Θ,(−1,A)⇓B

init
(1) `Θ,(−1,A),(¬A)⇓A

decide
(1,−1) `Θ,(−1,A),(¬A)⇑

store
(1,−1) `Θ,(−1,A)⇑¬A

release
(1,−1) `Θ,(−1,A)⇓¬A

and
(1,−1) `Θ,(−1,A)⇓¬A∧B

decide
(1,3,−1) `Θ,(−1,A)⇑

store
(1,3) `Θ⇑A

Figure 4: The same proof tree as in Fig. 3, but at the first “decide,” 3 is selected instead of −1.

Our first experiment is a brief example of this problem. While we can verify a small Trace proof
regardless of the local order of its chains’ antecedents, in our second experiment we demonstrate that the
order of antecedents makes a significant difference in the amount of proof search necessary to derive the
proof.

To illustrate the issue of local antecedent order, consider part of a proof branch corresponding to the
example Trace in Sec. 2.3. In Fig. 3, we see the most direct path to eventual success (application of the
“init” rule) on all branches. In the “decide” marked by *, deciding on 3 rather than −1 would result in
failure and backtracking. And in the very first “decide,” we decide on 1 rather than 3. If, at this juncture,
we instead decide on 3, one possible result is Fig. 4. In that case, the search will fail when no applicable
rule is found for a positive focused literal, and need to backtrack to the “decide.”

Despite the impending failure, we see in Fig. 4 that the right branch still succeeds as it does in
3. The checker may have to go through this successful branch before getting to the failure of our left
branch. In this trivial example, going through this small branch before reaching failure and backtracking
is a benign exercise. However, even small real SAT problems may require following much deeper trees
before reaching failure. Antecedents not taken in the right order, therefore, are potentially very costly to
the checker’s proof search. This is why we focus on the subject of antecedent list order in our research.
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4.2 Experiment 1: Global order of chains

Although the Trace format assumes the checker will take charge of global clause order and local an-
tecedent order through proof search, our checker does not support the former. This is due to our use of
the PLKF cut rule, which will only succeed when the antecedents of the newly introduced lema have
already been derived, and stored. Our checker moves linearly through the derived clauses, checking that
for each cut formula, it is derivable from the context. Therefore if a derived clause relies on another
derived clause, yet comes before, the search will fail. With our checker, we can trivially swap the order
of any derived clauses, and it will fail. We should keep in mind, therefore, that for our checker to work,
the SAT solver must maintain the correct global order of derived clauses. The SAT solver we used to
obtain Traces with, Booleforce, consistently gives correct global order, but this may not be the case for
other solvers.

4.3 Experiment 2: Local order of antecedents in a chain

In this experiment, our goal was to record the effect of antecedent order on the amount of proof search
necessary to derive a proof, in other words, the amount of non-determinism in the problem. We focus
on relatively small problems where there is only one or few chains that are longer than the rest. In these
cases, we can reasonably assume that the longest of these chains is responsible for a large portion of
the problem’s nondeterminism. Thus we can test the same problem but with different orders of that one
chain. We use runtime as a proxy for nondeterminism. If our hypothesis is correct, and antecedent order
is critical to reducing nondeterminism, we should see that the checker terminates much more rapidly
with some orders of the longest chan than with other orders. On such problems, we would expect that an
increase complexity translates into only a small (hopefully linear) increase in runtime.

Our method is fairly simple: we implemented some additional methods in the Python program that
translates the Trace format to Prolog. One method finds the derived clause with the longest list of
antecedents, and another allows us to replace the antecedent list with another list. The test identifies
the longest antecedent list, sorts the list in ascending order, and creates a lexicographic permutation
generator. For each permutation of the list, the translator replaces the original antecedent list with the
new permutation of itself (all other chains are left as they were), recreates the Prolog file, and records the
runtime of the file (as well as the output of Prolog, true or false). From these results, we can select the
best and worst performances.

These results are displayed in figures Fig. A1 through A4 given in the appendix.
There are a few things to note about these results before analyzing them. First, in order to test a

large number of permutations, we set a timeout that each test cannot exceed. This affects our data in a
few ways, but does not create an effect that doesn’t exist – if anything, it understates the effect. For the
purposes of statistical analysis, when a test times out, we assign it the timeout as its runtime. Therefore,
the average runtime figures are understated, as we do not know how long it may have taken to terminate
had the program been allowed to continue indefinitely. The worst runtimes are similarly understated.
Lastly, in cases where more than half the tests did not terminate, this can even underestimate the median
runtime. In Fig. A7, the tests that didn’t terminate are after the runtime.

Secondly, in problems where there are more than 1000 permutations of the longest chain, we don’t
test all permutations but rather test a random sample of all permutations (generated by a random shuffle).
Again, if anything this understates the effect of antecedent order, as the best and worst orders may not
have been tested. Even in these cases, there is still a significant effect in only the permutations tested.

These data show not only an effect of antecedent order on runtime (and thereby the amount of proof
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search necessary), but they also suggest that the Trace checking could be much more scalable to large
problems if the largest chains come with a correct or even nearly-correct order. This effect would be
magnified, we propose, if all chains could have the right order (this is explored in the next experiment).
Basic statistical analysis, which of course cannot be heavily relied upon in a case with a small sample
size, suggests that the model that best explains variation (with an R squared of 70%) in complexity vs.
worst runtime is exponential. On the other hand, the model that best explains variation (however, this
time with an R squared of only 25%) in complexity vs. best runtime is a power model. If all chains
were in the correct order, we would expect to see a very linear relationship between complexity and
best runtime. As it is in this experiment, the order of the longest chain clearly reduces the runtime
significantly, but other unordered chains still require some level of proof search.

The low explanatory power of complexity in both these cases is certainly partly due to the fact that
the longest chain length is not a perfect proxy for complexity. We have tried to select problems for
this portion of the experiment where the resulting Trace had only one or few long chains, but different
problems have varying numbers of medium or longer chains in addition to the longest chain, which
impacts their actual complexity but not the proxy. For this reason we have also included average and
median chain lengths for consideration. As an example, in Fig. A7 we might consider the problem
“rksat13” somewhat of an outlier because, while the longest chain has 8 antecedents, there are enough
chains with between 6 and 8 antecedents to raise the median chain length to 6. We can reasonably assume
that this is one reason why “rksat13” has slower runtimes than other problems with comparable longest
chain lengths. Therefore, we also include Fig. A6 which uses median chain length as the indicator for
complexity. We see that this, too, has some correlation.

Finally, it is worthwhile to note that we have also preserved data from this experiment detailing
which antecedent orders correspond to which runtimes. This might be interesting for further analysis to
establish a pattern or heuristic for ordering antecedent lists.

4.4 Experiment 3: Checker that succeeds only when no proof search is necessary

In this experiment, we adjusted the Prolog checker code so that it could not conduct any proof search
along an antecedent list. That is to say, if in any chain the checker decides on an antecedent index that
leads the proof to a failed branch, the checker cannot simply backtrack and try deciding on a different
index. In this way, if the proof does succeed, it means that there was no proof search necessary across
local antedecent lists, and that the antecedents of all chains were in the correct order. It should be
noted that at this point, we do not know what the correct order for all the clauses may be in any given
example; we only know that in most cases, a resolution proof is unlikely to provide the ideal order for
a nearly deterministic PLKF search, because resolution proofs do not have negative and positive phases.
Therefore the correct way to reorder clauses before passing them to the checker is another question of
interest.

To do eliminate proof search in antedecent lists, we just adjusted the decide expert so that only the
head of the DecideList can be selected, as follows:

%d e c i d e e x p e r t
d e c i d e e ( c e r t L e f t ( 1 ,DL) , c e r t L e f t ( 0 ,DL) , −1).
d e c i d e e ( c e r t L e f t ( Flag , [ I | Res t ] ) , c e r t L e f t ( Flag , Res t ) , I ) .

Testing this code requires an exhaustive enumeration of all permutations for each chain, as well as
all combinations of each of these permutations. The number of all such combinations for a Trace with n
chains, each with variable length ci is:
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c1! · c2! · c3! · · ·cn!.
As a result, we were only able to test our smaller samples, as we were working with a Cloud95

instance with limited resources.
The problems we successfully used for this experiment were: madeUp, madeup2, simpleTrace,

readme, and randKsat2; their details can be found in A7. However, in each example we can observe
that all combinations of permutations fail rapidly except for a few (between one and six), which succeed
rapidly. Although we lack data on larger problems, from the sample we do have, it appears that the
runtime has a linear relationship with problem complexity, given that the Trace has the optimal order for
every chains’ antecedent lists. Therefore we propose that the correct order of the antecedents list can
lead to nearly full determinism in our proof certification and therefore scale to the checking of very large
proofs.

Assuming every derived clause’s antecedent list is ideally ordered for PLKF proof search, is there
perfect determinism? Not quite, for at some point, a positive literal stored with −1 will need to be
selected before the checker can apply the “init” rule. Even perfect antecedent order does not advise as
to which literal should be chosen, if there are more than one marked by −1. Furthermore, in some cases
it is necessary to decide on −1 before the DecideList is empty. However, testing the −1 option is very
cheap because the selection of a stored positive literal is only correct if it leads directly to application
of “init.” If this occurs, the branch succeeds, otherwise it fails and backtracks quickly. So given perfect
antecedent list order, the remaining nondeterminism is very shallow and is a function of the number of
antecedents in each clause and the number of literals stored with −1 at each step in the proof.

Again, as in the last experiment, we do retain the information for which combination of permutations
succeeded, so this would also be an interesting subject for further analysis.

5 Conclusion and Future Work

In this paper, we considered the problem of certifying very large unsatisfiability proofs with a high degree
of trust. Our approach was to write a certifier based on the sequent calculus, a low level-proof system, in
the programming language Prolog, which supplies us with unification and backtracking needed for con-
ducting proof search. The use of the sequent calculus allows any programmer with basic understanding
in logic to implement our kernel. The use of a logic programming language allows us to separate the
implementation of the above algorithms from the amount of trust we can place in the result. The reason
for that is the existence of many implementations of Prolog, such as SWI-Prolog 6 and GNU Prolog 7

which we can use in order to execute the kernel program and, therefore, decrease the chance of a bug in
those algorithms.

Our implementation clearly shows that our approach does not scale to big proofs when using the
Trace format as proof evidence. The experiments conducted imply that the reason for that is the lack of
order between antecedents and chains in the proof evidence. It first shows that our approach does not
work at all given incorrect chain orders and we require the input chains to be correctly sorted. Sorted
chains is the behavior exhibited by the prover - Booleforce - we used in order to generate our examples.
We therefore require, for our approach to work, that this order be restricted in the evidence.

A more interesting source of complexity comes from the arbitrary orders of antecedents within the
chains. We first demonstrate the significant gap in performance as exhibited by the best and worst orders.

5https://c9.io/
6http://www.swi-prolog.org/
7http://www.gprolog.org/

https://c9.io/
http://www.swi-prolog.org/
http://www.gprolog.org/
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We follow this experiment by showing the possible scaling of our approach to more complex problems,
given a correct order of antecedents.

One way of obtaining traces of correct order is to use a theorem prover to post-process the traces
obtained from TraceCheck. Alternatively, one can require SAT solvers to produce “ordered” traces.
While the latter method produces more adequate proofs, it is clearly irrelevant for determining the level
of trust we can place in the results of SAT solvers.

Since our experiments required the generation of many permutations, we could not extend them
to problems of real complexity. We hope that our prototype prover shows the possibility of using the
ProofCert ideas in order to certify SAT refutations. At the same time, we would like to improve our
implementation to deal with problems of arbitrary complexity (given a correct order). To do so, we intend
on changing the main data structures of our program to use Prolog’s internal ones. More specifically, we
will on replace data structures based on lists and their associated relations for testing for membership with
language level predicates and meta relations for testing the existence of such a predicate. Luckily, this
type of support exists in some Prolog distributions under meta relations such as assert and retract.
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Figure A2: Longest chain length vs. best runtime in seconds (due to correct order of longest chain);
scale left the same as the previous graph for comparison.

Figure A3: Fig. A1 where the y-axis is logscaled to highlight pattern in very small changes.
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Figure A4: Fig. A2 where the y-axis is logscaled to highlight pattern in very small changes.

Figure A5: Longest chain length vs. best and worst runtimes (due to reordering the longest chain).
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Figure A6: Median chain length vs. best and worst runtimes (due to reordering the longest chain).

Figure A7: Data summary. ’C’ stands for chain, ’R’ stands for runtime, ’avg’ and ’med’ stand for average
and median.
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