
Haniel Barbosa and Giselle Reis (Eds.): Sixth Workshop
on Proof eXchange for Theorem Proving (PxTP)
EPTCS 301, 2019, pp. 3–17, doi:10.4204/EPTCS.301.3

c© E. Palmeira, F. Freitas & J. Otten
This work is licensed under the
Creative Commons Attribution License.

ConvertingALC Connection Proofs intoALC Sequents

Eunice Palmeira
Federal Institute of Alagoas

Maceió - AL, Brazil
eunicepalmeira@ifal.edu.br

Fred Freitas Jens Otten
Federal University of Pernambuco University of Oslo

Recife - PE, Brazil Oslo, Norway
fred@cin.ufpe.br jeotten@ifi.uio.no

The connection method has earned good reputation in the area of automated theorem proving, due
to its simplicity, efficiency and rational use of memory. This method has been applied recently
in automatic provers that reason over ontologies written in the description logic ALC. However,
proofs generated by connection calculi are difficult to understand. Proof readability is largely lost by
the transformations to disjunctive normal form applied over the formulae to be proven. Such a proof
model, albeit efficient, prevents inference systems based on it from effectively providing justifications
and/or descriptions of the steps used in inferences. To address this problem, in this paper we propose
a method for converting matricial proofs generated by theALC connection method toALC sequent
proofs, which are much easier to understand, and whose translation to natural language is more
straightforward. We also describe a calculus that accepts the input formula in a non-clausal ALC
format, what simplifies the translation.

1 Introduction

Description Logics (DLs) [1] are a family of knowledge representation formalisms considered as a fun-
damental foundation for the Semantic Web, as it constitutes the formalism underlying the Web Ontology
Language (OWL) language. DL is an expressive, decidable subset of First Order Logic (FOL), success-
fully applied in several areas. DL provides a precise and unambiguous meaning to DL descriptions due
to its formal semantics, and fast reasoners have been produced to the many fragments available [7].

One of them, the ALC θ-Connections Calculus, and its automated reasoner RACCOON (Reasoner
based on the Connection Calculus Over ONtologies), is based on the Connection Method [5, 8], and was
specifically developed to infer over the Description Logic ALC [5, 8]. The calculus includes typical
DL features and techniques, such as notation without variables, absence of Skolem functions/unification
and, inclusion of a blocking rule to handle cycles, which guarantees termination to make for the case of
cyclic ontologies. The Connection Calculus has earned good reputation in the area of automated theorem
proving due to its simplicity, efficiency and rational use of memory. The method represents formulae as
matrices, whose columns are conjunctive clauses; its proof procedure consists of horizontally traversing
paths through the matrix in order to connect complimentary literals (e.g., L with its complement ¬L). A
pair {L,¬L}, is called a connection, which corresponds to the validity the path being checked. Thus, a
formula is valid if every path through the matrix corresponding to it has a connection.

Both calculi mentioned above, before attempting to find a proof, convert a formula into a disjunctive
normal form. The translation to this clausal form often obscures the structure of the original formula
and transforms some simple theorem proofs into difficult ones[11]. In complex cases, the deductions’
premise(s) and conclusion can no longer be clearly identified, once the transformation has been applied
[3]. Thus, proof readability and understandability is largely lost, and consequently, it becomes quite
difficult to provide justifications and/or descriptions of the steps used during inferences.

The θ-Non-clausal ALC θ-Connection Calculus is based on the ALC θ-Connection Calculus and
works directly on the structure of the original formula, thus avoiding the translation into a clausal form.

http://dx.doi.org/10.4204/EPTCS.301.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

4 ConvertingALC Connection Proofs intoALC Sequents

Nevertheless, its proof format is still not intuitive, once, like other connection calculi, it consists of a set
of complementary pairs found in each path through the matrix, when the formula is valid.

The motivation of this work is to make a connection proof forALC more readable so that, in a near
future, justifications can be generated automatically in natural language. Therefore, this article proposes
a conversion method that translates non-clausal ALC θ-connection proofs into ALC sequent proofs.
Sequent calculi have a more friendly proof representation than connection calculus; it conveys proofs in
a formal logic argument style, where each proof line is a conditional tautology. Such translation should
therefore contribute to a better user interaction with DL reasoners based on the Connection Method.

The DL ALC is presented in the next section; Section 3 brings an ALC non-clausal Connection
Calculus forALC; Section 4 introduces theALC Sequent Calculus, to which proofs will be translated;
the conversion process and its main concepts in Section 5; an overview of the main algorithms for the
conversion method with its computational complexities in Section 6; and conclusions in Section 7.

2 The Description LogicALC

An ontology O in ALC is a set of axioms over a signature (NC ,NR,NO), where NC is the set of concept
names (unary predicate symbols), NR is the set of role or property names (binary predicate symbols); NO

is the set of individual names (constants) [1]. Concept expressions are inductively defined as follows.
NC includes >, the universal concept that subsumes all concepts, and ⊥, the bottom concept subsumed
by all concept names belong to NC . If r ∈ NR is a role and C, D ∈ NC are concepts, then th following
formulae are also concepts: (i) C u D, (ii) C t D, (iii) ¬C, (iv)∀r.C; (v) ∃r.C.

A knowledge base in DL consists of a set of basic axioms (TBox), and a set of axioms specific to a
particular situation (ABox). Two axiom types are allowed in a TBox T : (i) C v D; (ii) C ≡ D, standing
for C v D and D vC. An ABoxA w.r.t. a TBox T is a finite set of assertions of two types: (i) a concept
assertion is a statement of the form C(a), where a ∈ NO, C ∈ NC and (ii) a role assertion r(a,b), where
a,b ∈ NO, r ∈ NR. AnALC formula is either an axiom or an assertion; an ontology O is an ordered pair
(T ,A). The semantics of concepts and ontologies is defined in the usual way - see, e.g., [1].

3 The Non-clausalALC θ-Connection Calculus

Definition 1. (Query). A query O |= α is an ALC formula to be proven valid, where O is an ALC
ontology, and α is either a TBox or an ABox axiom to be proven a logical consequence from O.

Definition 2. (Literal, clause, matrix). ALC Literals are atomic concepts or roles, possibly negated
or instantiated in the form L or ¬L. An ALC disjunction is either a literal L, a disjunction (E0 t E1)
or an universal restriction ∀r.E0. An ALC conjunction is either a literal L, a conjunction (E0uE1) or
an existential restriction ∃r.E0, where E0 and E1 are expressions of arbitrary concepts (see DLs and its
Mapping to FOL in [2]). Clauses are conjunctions of literals and matrices in the form L1 u . . .u Lm,
where each Li is a literal or a matrix. A matrix of a formula (in DNF) is its representation as a set
{C1, . . . ,Cn}, where each Ci is a clause.

Definition 3. (Formula with polarity). A formula with polarity, denoted by F p, consists of a formula F
and a polarity p, where p ∈ {0,1}, that is, 0 is positive and 1 is negative. This concept is used to denote
negation in a matrix, i.e. literals or matrices A and ¬A are represented by A0 and A1, respectively.

Definition 4. (ALC Non-Clausal Matrix). An ALC non-clausal matrix is a set of clauses in which a
clause is a set of literals and matrices. Let F be a formula and p be a polarity. The matrix of F p, denoted

E. Palmeira, F. Freitas & J. Otten 5

by M(F p), is inductively defined according to Table 1, which indicates how the polarity is inherited by
the (sub-)matrices of an F p. The matrix of F p is the matrix M(F0). Literals or (sub-)matrices involved
in a universal restriction (∀r.C) or in an existential restriction (∃r.C) are underlined in the matrix.

Table 1: Matrix of anALC formula F p.

Type F p M(F p) Type F p M(F p)
Atomic A0 {{A0}} β (CuD)0 {{M(C0),M(D0)}}

A1 {{A1}} (CtD)1 {{M(C1),M(D1)}}
α (¬C)0 M(C1) (C v D)1 {{M(C0),M(D1)}}

(¬C)1 M(C0) γ (∀rD)1 {{M(r0),M(D1)}}
(CuD)1 {{M(C1)}, {M(D1)}} (∃rD)0 {{M(r0),M(D0)}}
(CtD)0 {{M(C0)}, {M(D0)}} δ (∀rD)0 {{M(r1)}, {M(D0)}}
(C v D)0 {{M(C1)}, {M(D0)}} (∃rD)1 {{M(r1)}, {M(D1)}}
(C |= D)0 {{M(C1)}, {M(D0)}}

Definition 5. (Positive) Graphical Representation of the Matrix). In the (positive) graphical represen-
tation of a matrix, its clauses are arranged horizontally, while the literals and (sub-)matrices of each
clause are arranged vertically. The restrictions are represented by solid lines; when a restriction involves
more than one clause, its literals are indexed in the bottom with the same index in the matrix column in
the written representation, for example, the notation Li (see example 1); restrictions with indexes are
represented with horizontal lines; restrictions without indexes with vertical lines.
Example 1. (Query, clause, ALC non-clausal matrix, formula with polarity, graphical representation
of a matrix). The query F1 = {∃hasPet.Cat v CatOwner, OldLady v ∃hasPet.Animalu∀hasPet.Cat} |=
OldLady vCatOwner is read in FOL as:

∀x((∃y hasPet(x,y)∧Cat(y))→CatOwner(x))
∀z(OldLady(z)→∃v(hasPet(z,v)∧Animal(v)))

∧∀k(hasPet(z,k)→Cat(k)))

 |= ∀u(OldLady(u)→CatOwner(u))

and is represented by the FOL matrix (a is a Skolem terms, f a function symbol):

{{hasPet(x,y),Cat(y),¬CatOwner(x)}, {OldLady(z), {{¬hasPet(z, f (z))}, {¬Animal(f (z))}, {hasPet(w,k),
¬Cat(k)}}}, {¬OldLady(a)}, {CatOwner(a)}}

and by the followingALC non-clausal matrix M1, which is defined according to 1 (column indices relate
the two clauses involved in a same restriction; variables are omitted as they are specified implicitly):

{{hasPet0,Cat0,CatOwner1}, {OldLady0, {{hasPet1
1}, {Animal11}, {hasPet0,Cat1}}},

{OldLady(a)1}, {CatOwner(a)0}}

So, the graphical representation of M1 is:
 hasPet0

Cat0

∣∣∣∣∣∣
CatOwner1




OldLady0[
[hasPet11][Animal11]

[
hasPet0

Cat1

∣∣∣∣∣∣
]] [OldLady(a)1][CatOwner(a)0]


Matrices of the form M = {. . . , {C1, . . . ,Cn}, . . .} can be simplified to M′ = {. . . ,C1, . . . , Cn, . . .}, where

C1, . . . ,Cn are clauses.
Clauses of the form C = {. . . , { M1,. . ., Mm},. . .} can be simplified to C′ = {. . . ,M1, . . . ,Mm, . . .}, where

M1, . . . ,Mm are matrices.

6 ConvertingALC Connection Proofs intoALC Sequents

Definition 6. (Path). A path through a matrix M = {C1, . . . ,Cn} is a set of literals containing a literal Li

of each clause Ci ∈M, i.e.,
⋃n

i=1{Li} with Li ∈Ci. A path through a matrix M (or a clause C) is inductively
defined as follows. The (only) path through a literal L is {L}. If p1, . . . , pn are paths through the clauses
C1, . . . ,Cn, respectively, then p1∪ . . .∪ pn is a path through the matrix M = {C1, . . . ,Cn}. If p1, . . . , pn are
paths through the matrices/literals M1, . . . ,Mn, respectively, then p1, . . . , pn are also paths through the
clause C = {M1, . . . ,Mn}.

Definition 7. (Connection, θ-substitution, θ-complementary connection). A connection is a pair of
literals {E,¬E} with the same concept/role name, but different polarities. A θ-substitution assigns to each
(possibly omitted) variable an individual or another variable (in the whole matrix). A θ-complementary
connection is a pair ofALC literals {E(x),¬E(y)} or {p(x,v),¬p(y,u)}, with θ(x) = θ(y), θ(v) = θ(u). The
complement L of a literal L is E if L = ¬E, and it is ¬E if L = E.

Simple term unification without Skolem functions is used to calculate θ-substitutions. The appli-
cation of a θ-substitution to a literal is an application to its variables, i.e. θ(E) = E(θ(x)) and θ(r) =

r(θ(x), θ(y)), where E is an atomic concept and r is a role. Furthermore, xθ = θ(x).

Example 2. (Path, Connection, θ-substitution, θ-complementary connection). In the matrix M1 of
Example 1, {hasPet0 |, hasPet1

1, Animal11, hasPet0 |, OldLady(a)1, CatOwner(a)0} and {Cat0, hasPet1
1,

Animal11, Cat1 |, OldLady(a)1, CatOwner(a)0} are some paths through M1. {Cat0 |,Cat1} is a connection.

θ(OldLady0) = OldLady(θ(y))0 and θ(hasPet0) = hasPet(θ(y), x)0, where θ(y) = a, are examples of θ-
substitution, and {OldLady0,OldLady(a)1} is a θ-complementary connection,

Definition 8. (Set of concepts, Skolem condition). The set of concepts τ(x) of a variable or individual x

contains all concepts that were substituted/ instantiated by x so far, i.e. τ(x)
def
= {E(x) ∈ Path}, where E is

a concept and E(x) is a substituted/instantiated literal coming from this concept. The Skolem condition
ensures that at most one concept is underlined in the graphical matrix. The condition is formally stated
as, ∀a|{Ei(a) ∈ Path}| ≤ 1, with a a variable/individual, and i a column index.

Definition 9. (α-Related Clause). Let C be a clause in a matrix M and L be a literal in M. C is α-
related to L, iff M contains (or is equal to) a matrix {C1, . . . ,Cn} such that C = Ci or Ci contains C, and
C j contains L for some 1 ≤ i, j ≤ n with i , j. C is α-related clause to a set of literals L, iff C is α-related
to all literals L ∈ L.

Example 3. (α-Related Clause) In the matrix of Example 1, {Animal11} is α-related to {hasPet0,Cat1}.

Definition 10. (Parent Clause). Let M be a matrix and C be a clause in M. The clause C′ = {M1, . . . ,Mn}

in M is called the parent clause of C iff C ∈ Mi for some 1 ≤ i ≤ n.

Example 4. (Parent Clause). In Example 1, {OldLady0, {{hasPet1
1}, {Animal11}, {hasPet0,Cat1}}} is par-

ent clause of {hasPet1
1}.

Definition 11. (Extension Clause). Let M be a matrix and P a path (be a set of literals). Then the
clause C in M is an extension clause of M with respect to P, iff either C contains a literal of P, or C is
α-related to all literals of P occurring in M and if C has a parent clause, it contains a literal of P.

In the extension rule of theALC θ-Connection Calculus (3.1) the new subgoal clause (set of literals
that need to be connected) is C2 \ {L2}. In the non-clausal connection calculus the extension clause C2
might contain clauses that are α-related to L2 and do not need to be considered for the new subgoal
clause. Hence, these clauses can be deleted from the subgoal clause. The resulting clause is called the
β-clause of C2 with respect to L2.

E. Palmeira, F. Freitas & J. Otten 7

Definition 12. (β-Clause). Let C = {M1, . . . ,Mn} be a clause and L be a literal in C. The β-Clause of C
with respect to L, denoted by β-ClauseL(C), is inductively defined:

β-ClauseL(C) :=
{

C \ {L} if L ∈C,
M1, . . . ,Mi−1, {Cβ},Mi+1, . . . ,Mn otherwise,

where C′ ∈ Mi contains L and Cβ := β-ClauseL(C′).

Example 5. (Extension Clause, β-Clause). In Example 1, C = {OldLady0, {{hasPet1
1},

{Animal11}, {hasPet0, Cat1}}} is an extension clause with respect to p = {CatOwner(a)0,Cat0}, while the

clause {OldLady0, {{hasPet1
1}, {Animal11}, {hasPet0}}} is a β-Clause of C with respect to L = Cat1.

3.1 The Formal Non-ClausalALC θ-Connection Calculus

Suppose we wish to entail if O |= α is valid using a direct method, like the Connection Method (CM).
By the Deduction Theorem [3], we must then prove directly if O→ α, or, in other words, if ¬O∨α is
valid. This opposes to classical refutation methods, like tableaux and resolution, which builds a proof
by testing whether O∪{¬α} |= ⊥. Hence, in the CM, the whole knowledge base KB should be negated.
Given O = {α1,α2, . . . ,αn} , αi being literal conjunctions in the clausal connection method, all (negated
KB) formulae are converted to the Disjunctive Normal Form (DNF). A query then is the matrix ¬O∨α
(i.e., ¬α1∨¬α2∨ . . .∨¬αn∨α) to be proven valid. In the non-clausal calculus, instead of having clauses
only with literals, they can also contain matrices, and no conversion is needed. If every path contains
a (θ-complementary) connection (representing a subformula At¬A in a disjunction, what makes this
disjunction valid), then the matrix is valid.

Definition 13. (Non-ClausalALC θ-Connection Calculus) Figure 1 shows the rules of the formal non-
clausal ALC θ-connection calculus. Rules are applied bottom-up. The words of the calculus are tuples
C,M,Path, where C is a clause, M is a matrix corresponding to query O |= α and Path is a set of literals.
C is called the subgoal clause. C1, C2 and C3 are clauses. The index µ ∈ N of a clause Cµ denotes that
Cµ is the µ-th copy of clause C, increased when Copy is applied for that clause (the variable x in Cµ

is denoted xµ). When Copy is used, it has to be followed by the application of Extension or Reduction,
to avoid non-determinism in the rules application. The Blocking Condition is defined as follows: the
new individual xθµ (if it is new, then xθµ < NO, as in the condition) is only created if the set of concepts of
the previously created individual τ(xθ

µ−1) is not a subset of the set of concepts of the penultimate copied
individual, i.e., τ(xθ

µ−1) * τ(xθ
µ−2).

The calculus consists of six rules. The Axiom, Start, Reduction and Copy rules are the same as the
ones from theALC θ-Connection Calculus. The Extension rule was modified to contain a β-Clause and
the Decomposition rule [9] splits subgoal clauses into their sub-clauses.

Lemma 1. (Matrix characterization). A matrix M is valid iff there exist an index µ, a set of θ-
substitutions 〈θi〉 and a set of connections S, s.t. every path through Mµ, the matrix with copied clauses,
contains a θ-complementary connection Lθ1,L

θ
2 in S, i.e. a connection with θ (L1) = θ

(
L2

)
. The tuple

〈µ, 〈θi〉,S 〉 is called a matrix proof.

Example 6. (Non-Clausal ALC θ-Connection Calculus). Figure 2 shows the proof for the F1 of Ex-
ample 1 using the matrix representation.

The proof starts (1) by choosing a clause from the consequent as the start clause, in this case,
{CatOwner(a)}, and a literal of that clause is selected, CatOwner(a)0. This literal is connected to

8 ConvertingALC Connection Proofs intoALC Sequents

Axiom(A)
{},M,Path

S tart(S)
C1,M, {}
ε,M, ε

with C1 ∈ α

Reduction(R)
C,M,Path∪{L2}

C∪{L1},M,Path∪{L2}

with θ(L1) = θ(L2) and the Skolem condition holds

Extension(E)
C3,M,Path∪{L1} C,M,Path

C∪{L1},M,Path
with C3 := β−clauseL2 (C2),

C2 is an extension clause of M wrt. Path∪{L1},

L2 ∈C2, θ(L1) = θ(L2) and the Skolem condition holds

Decomposition(D)
C∪C1,M,Path

C∪{M1},M,Path
with C1 ∈ M1

Copy(C)
C∪{L1},M∪{C

µ
2 },Path

C∪{L1},M,Path
with Cµ

2 is a copy of C1,

L2 ∈Cµ
2 , θ(L1) = θ(L2) and the blocking condition holds

Figure 1: Non-clausalALC θ-Connection Calculus.

CatOwner1 by an extension step and instance a is the θ-substitution of CatOwner1 and CatOwner(a)0.
This connection is still not enough to prove all the paths starting from CatOwner(a)0; the paths that start
in it and pass through the literals from the other connected clause, namely, Cat0 and hasPet0, are still
to be verified. Indeed, each connection creates two sets of literals to be checked, the remaining liter-
als from each of the clauses involved in the connection. In the new extension step (2), the connection
{Cat0,Cat1} is established on the variable (or fictitious individual) x, as it is not necessary yet to commit
the substitution with an already existing individual. There is still remaining literals to be verified, the
ones resulting from the clause to which Cat0 belongs. Next (3), the hasPet0 predicate is connected,
and the θ-substitution generates the pair (y,x) (not shown in figure), for the connection. OldLady0 is
connected to OldLady(a)1 (4), and then (5), when the connection {hasPet0,hasPet1} is settled (using a
reduction step, as there was already a connection with the same literal in the path), y was θ-substituted
by y (i.e., θ(y) = a), thus forming the pair (a,x). This θ-substitution over y is then propagated through
the path. Since every path through M1 contains a θ-complementary connection, F1 is valid. However,
the readability of the proof is largely lost by the transformations applied on the formulas to be proven,
making it difficult to translate the steps into natural language.

Figure 2: TheALC non-clausal matrix proof of the F1 using the graphical matrix representation.

Next, we present the Sequent Calculus to whichALC non-clausal proofs will be translated.

E. Palmeira, F. Freitas & J. Otten 9

4 AnALC Sequent Calculus

According to [4], sequent calculi axiomatizes the relation of logical consequence (entailment), and this
has an obvious parallel with the relation of subsumption, which is a keystone for DL representation and
calculi. Bearing this in mind, Borgida et al proposed a sequent calculus for subsumption inferences in
ALC as an extension of the standard sequent calculus, in which there are no rules of implication, as
they are indeed subsumption rules, so implication is replaced by ` without loss of meaning. In their
calculus, terms are not moved from one side to the other of the turnstile during the proof, thus preserving
the structure of the original subsumption, and in the case of multiple subsumptions, parentheses help in
identifying the main subsumptions. Because of that, additional rules were created in which the negation
is inserted in front of each construct, thus eliminating negation rules (l¬, r¬), what requires changing
sequent antecedents to successors and vice versa. The calculus is divided in three parts: the first two
describe sets of rules, while the last describes a set of axioms (see Figure 3, where a and b are arbitrary
formulas and X and Y are arbitrary sequences of formulae).

• Rules for propositional formulae: rules u and t are duplicated by adding the negation rules
for these connectives (¬u,¬t), while the proper negation rules (¬) were modified to include the
double negation rule (¬¬);

• Rules for quantified formulae: in [4], modal formulae are used (r�, l^) and their negated rules
(l¬�, r¬^). Here, we replace these rules by their equivalents (r∀, l∃) and (l¬∀, r¬∃). The ∃-rules
are the dual ∀-rules. A condition is explicitly considered for the application of these rules: the
rule applies only if all homologous universal and existential formulae (e.g. ∀h.C and ∃h.C are
homologous, ∀h.C and ∃ f .C not) are joined together on the left and right sides of the sequent in
the precondition. The rule is then applied only once;

• Termination axioms: unlike the standard sequent calculus, there are six termination axioms;
all of them can be reduced to X,a ` a,Y by applying the rules. The application of the ¬-rules
forces formulae from the antecedent to the successor or vice versa, to be transformed until it gets
to X,a ` a,Y , a procedure that is avoided in this calculus. Therefore, the additional termination
axioms are necessary to ensure that formulae are never shifted from one side of the sequent to the
other.

Although not stated explicitly, the calculus contains a cut rule, and the cut elimination theorem is
valid in this case; it is stated below.
Theorem 1. Cut Elimination Theorem [6]. Let S be a set of sequents (axioms) and s an individual
sequent. S `S C s, if and only if, there is a proof in S C of s whose leaves are either logical or sequent
axioms obtained by the substitution of S -belonging sequents, where the cut rule, Γ ` ∆,A A,Σ ` Π

Γ,Σ ` ∆,Π , is
only applied with a premise being an axiom.
Example 7. (Sequent Proof for ALC Subsumption). Figure 4 shows Example 1’s proof using the
sequent calculus forALC. The cut rule is applied to the initial assumptions, according to theorem 1.

This proof tree could be described by the following text in natural language: (1) If individuals who
own at least one cat as a pet are owners of cats; and if the old ladies are, individuals who have at least one
animal as a pet and all individuals who have only cat as pet. So this implies that old ladies own cats. (2)
So, the old ladies are all people who have at least one cat as a pet. And all individuals who own at least
one cat as a pet, own cats. (3) In addition to old ladies are all individuals who have at least one animal as
a pet and all individuals who have only cat as pets; all individuals who have at least one animal as a pet
and all individuals who have only cat as pets, are all individuals who have at least one cat as a pet. (4)
Thus, an animal or a cat implies in a cat.

10 ConvertingALC Connection Proofs intoALC Sequents

Rules for propositional formulae
X ,a ,b ` Y

X , aub ` Y (lu)
X ` a ,Y X ` b ,Y

X , ` aub ,Y (ru)

X ,¬a ` Y X ,¬b ` Y
X ,¬(aub) ` Y (l¬u)

X ` ¬a ,¬b , Y
X ` ¬(aub) , Y (r¬u)

X , a ` Y X , b ` Y
X , atb ` Y (lt)

X ` a ,b ,Y
X ` atb , Y (rt)

X ,¬a ,¬b ` Y
X ,¬(atb) ` Y (l¬t)

X ` ¬a ,Y X ` ¬b ,Y
X ` ¬(atb) ,Y (r¬t)

X , a ` Y
X ,¬¬a ` Y (l¬¬)

X ` a ,Y
X ` ¬¬a ,Y (r¬¬)

Rules for quantified formulae
X′ ` b ,Y′

X ` ∀r.b , Y (r∀)
X′ ,b ` Y′

X , ∃r.b ` Y (l∃)

X′ , ¬b ` Y′
X ,¬∀r.b ` Y (l¬∀)

X′ ` ¬b ,Y′
X ` ¬∃r.b ,Y (r¬∃)

where X′ = {a | ∀r.a ∈ X}∪ {¬a | ¬∃r.a ∈ X}, and
Y′ = {a | ∃r.a ∈ Y}∪ {¬a | ¬∀r.a ∈ Y}

Termination axioms
X, a ` a , Y (=) X ,¬a ` ¬a , Y (=)

X, a , ¬a ` Y (l↑) X ` a , ¬a , Y (r↑)
X ,⊥ ` Y (l⊥) X ` > , Y (l>)

Cut rule
Γ ` ∆,A A,Σ ` Π

Γ,Σ ` ∆,Π

Figure 3: The Sequent Calculus forALC Subsumption [4].

OL ` ∃h.Au∀h.C

TRUE =
A,C ` C

l∃
∃h.A,∀h.C ` ∃h.C

lu
∃h.Au∀h.C ` ∃h.C cut

OL ` ∃h.C ∃h.C ` CO cut
(∃h.C ` CO, OL ` ∃h.Au∀h.C) ` (OL ` CO)

lu((
(∃h.C ` CO)u (OL ` ∃h.Au∀h.C)

)
` (OL ` CO)

)
Figure 4: ALC sequent proof for F1. The names of the clauses and the roles are abbreviated.

5 Conversion Method

The process consists of two steps: building a formula tree and then converting this formula tree into
sequents, given anALC query and its matrix non-clausal connection proof. They are explained below.

5.1 Building the Formula Tree

Definition 14. (Formula Tree, Position, Label, Polarity, Type). A formula tree is a syntactic represen-
tation of a formula F as a tree, where each node can have up to two child nodes. Each node has:

Position: an index that identifies each element (predicate or connective) in the formula. Its repre-
sented as a0,a1,a2, . . .; Label: either a connective (u,t,¬,v, |=), quantifier or predicate, if it is an atomic

E. Palmeira, F. Freitas & J. Otten 11

(sub-)formula. Nodes whose label is a predicate are leaves of the tree (figure 5b), while other nodes are
internal (figure 5a); Polarity: can be 0 or 1. It is determined by the label and the parent node polarity.
The root node of the tree has polarity 0; Type: the type of a node is a Greek letter: α, β, α′, β′, γ and δ.
It is determined by its label and its polarity. Leaf nodes have no type. The polarity and type of a node
are defined in table 2. For example, in the first line of this table, (AuB)1 means that the node labelled u
and polarity 1 has type α and its successor nodes have polarity 1.

.
(a) Internal Node (b) Leaf Node

Figure 5: Node Representation.

Table 2: Polarity and types of nodes forALC

Type α Type β Type δ
(AuB)1 A1 B1 (AuB)0 A0 B0 (∀rA)0 r1 A0

(AtB)0 A0 B0 (AtB)1 A1 B1 (∃rA)1 r1 A1

(¬A)1 A0

(¬A)0 A1

Type α′ Type β′ Type γ
(A v B)0 A1 B0 (A v B)1 A0 B1 (∀rA)1 r0 A1

(A |= B)0 A1 B0 (∃rA)0 r0 A0

Nodes of type α and α′ correspond to sequent rules that do not cause proof branching. Nodes of type
γ and δ correspond to quantifier rules. Rules associated to type δ have the eigenvariable condition in
the sequent calculi (where the term t, the eingevariable in the inference, appears in the main formula of
inference and in no other formula in the sequent. In the case of the l∃ rule for the existential quantifier
and r∀ rule for the universal quantifier). Nodes of type β and β′ (i.e., u0, t1, and v1) are particularly
important, since their respective rules in sequents (described in table 3) split proof branching into two in-
dependent sub-proofs. Nodes have their types indexed in the formula tree to facilitate their identification,
for example β1, β2, β′1, β′2. Each branch whose root is of type β or β′ is marked with a letter (a,b,c,...).

Leaf nodes with instances are children of nodes type α, α′ or β. Leaf nodes without instances have
labels attached to their closest predecessor nodes’ position, according to the following criteria : (1) if the
leaf node label represents a concept, it has an unique position associated to its label; (2) if the leaf node
label represents a role, it has two positions associated to its label in the form (a1,a2), where a2 is the
of the nearest predecessor node’s position; (3) only type γ, δ and β′ node positions are associated to the
labels. This helps to check for complementarity in a connection between two nodes.

The tree construction is guided by the identification of the (sub-)formulae’s main constructor (con-
nective or quantifier), which will be a label in the tree node. This node has at most two branches that
binds them to their child nodes, i.e., new (sub-)formulas. The node type and its childrens polarities are
assigned according to table 2. If children nodes are not atomic (sub-)formulae, the process repeats itself
by identifying these (sub)-formulae’s main constructor and then generating other nodes in the tree, until
it reaches the leaves.

12 ConvertingALC Connection Proofs intoALC Sequents

The proof matrix elements must correspond to the leaf nodes in the formula tree, indicated by the
position of the corresponding predicate, as explained in section 5.2 step 2.
Example 8. (Building the Formula Tree Process). Figure 6 shows the first step in the tree construction
for F1 from Example 1:

(
(∃h.C v CO)u (OL v ∃h.Au∀h.C)

)
|=

(
OL(a) v CO(a)

)
. Its main constructor

is |=, the root node label, which, by definition has polarity 0; its position is a0. According to table 2, its
type is α′; its children nodes, on the right and left, have polarities 0 and 1, respectively, and both are
sub-formulas of |= in F1. This process continues until it reaches the leaf nodes, as shown in figure 7.

|=0 a0

α′
(OL(a) vCO(a))0(

(∃h.C vCO)u (OL v ∃h.Au∀h.C)
)1

Figure 6: Step 01 Process of building the formula tree for F1.

|=0 a0

α′ v0 a16

α′

CO(a)0 a18OL(a)1 a17

u1a1

α

v1a7

β′2

u1 a9

α

∀1 a13

γ

C(a13)1 a15h(a7,a13)0 a14

∃1 a10

δ

A(a10)1a12h(a7,a10)1a11

d

OL(a7)0 a8

c

v1a2

β′1

CO(a2)1a6

b

∃0a3

γ

C(a3)0a5h(a2,a3)0a4

a

Figure 7: Formula Tree for F1 with labels, polarities and types.

For a given formula A, A′, B, B′, Γ and ∆ are used to denote the sets of node positions of type α, α′,
β, β′, γ, and δ, respectively.
Definition 15. (Substitution of positions σδ, ordering relation @δ)). It replaces positions of type γ for
positions of type δ. A position substitution σδ is a mapping of the set Γ of type γ node positions to the
set ∆ of type δ node positions. The σδ substitution induces a partial ordering relation @δ in ∆×Γ as
follows: let u ∈ Γ and v ∈ ∆; if σδ(u) = p then v @δ u for all v ∈ ∆ occurring in position p.

Since the sequent rules r∀ and l∃ and their homologues l¬∀ and r¬∃ are restricted to the eigenvariable
condition, the relation v @δ u expresses that the node labelled by v must be reduced before reducing the
one labelled by u.
Example 9. (Substitution of positions σδ, ordering relation @δ). Consider the formula tree in figure 7.
Let u be the node labelled by ∀1, with position a13 and type γ, and let v be the node labelled by ∃1, with
position a10 and type δ. To replace the position of a Type γ node by the position of a type δ node, It is
necessary to reduce the type δ node first, then the node with the position a10 must be reduced before the
node with the position a13. Thus, for this example, the ordering relation @δ is given by ∃1a10 @δ ∀

1a13,
and the substitution σδ(∀1a13) = a10. With this, we have σδ = {a13/a10}.

E. Palmeira, F. Freitas & J. Otten 13

Definition 16. (Substitution of positions σβ′). It replaces positions of type β′, γ, δ for instances or
positions of type β′. Positions of the nodes of type β′, γ and δ, as well as instances, appear in atomic
formulas, so a substitution of positions σβ′ is a mapping of the set B′/Γ/∆ positions of nodes of type
β′/γ/δ to instances or positions of nodes of type β′. Let u be a leaf node with the positions of nodes of
type β′/γ/δ associated to its label and v ∈ B′; if σβ′(u) = p, where p ∈ B′ or p is an instance.

Reducing a node means applying the sequent rule that corresponds to that node over a given (sub-)for-
mula. Leaf nodes are not reduced.

Example 10. (Substitution of positions σβ′). Consider the formula tree in Figure 7. Let u be the node
labelled by OL0, with position a8 and position a7 of type β′ associated to its label, and let v be the
node labelled by OL1, with position a17 and instance a. The substitution for this in leaf u in this case is
σβ′(OL(a7)0) = a. Therefore, σβ′ = {a7/a}.

Definition 17. (Substitution σFinal). It is a combination of σδ and σβ′ . A σFinal substitution consists of
a substitution σδ and a substitution σβ′ , where σFinal := σδ∪σβ′ .

Example 11. (Substitution σFinal). Considering the two previous examples, σFinal = {a13/a10,a7/a}.

Definition 18. (Connection, σFinal-complementary connection). A connection is a pair of leaf nodes
labelled with the same predicate symbol and the same position associated with the label or the same
instance, but with different polarities. If they are identical under σFinal, the connection is a σFinal-
complementary connection.

Example 12. (Connection, σFinal-complementary connection). Let the formula tree in figure 7 be. The
leaf nodes h(a2,a3)0 and h(a7,a10)1 with positions a4 and a11, respectively, form a connection that is
complementary under σFinal = {a2/a7,a3/a10}.

Definition 19. (Tree Ordering ≺). The tree ordering ≺ of an F formula is the partial ordering of the
nodes positions in the tree formula. ≺ is defined as follows:(i) the root occupies the smallest position
with respect to this ordering, (ii) ai ≺ a j if and only if the position ai is below a j in the formula tree.

Example 13. (Tree Ordering ≺). In the tree from Figure 7, there are examples of tree ordering: a7 ≺

a9 ≺ a13 ≺ a15 and a0 ≺ a1 ≺ a2 ≺ a3.

Definition 20. (Reduction Order C). The transitive closure of the union of @δ, @β′ and ≺ is called
reduction order C, i.e., C := (≺ ∪ @δ ∪ @β′)+.

Nodes vCu means that the node v must be reduced before the node labelled by u in the sequent poof.
C determines the nodes’ reduction order, and helps determine which sequent rules are to be used and in
which order.

Example 14. (Reduction Order C). In Figure 7, the nodes with positions a7, a10, a16 and a13, have the
following reduction order C: (i) a7 ≺ a10; (ii) a7 ≺ a13; (iii) a10 @δ a13. The orderings’ union and the tree
ordering determine the reduction order for these nodes: a7Ca10Ca13.

Definition 21. (σFinal Admissible Substitution). An σFinal Substitution is admissible if the reduction
order C is not reflexive. In this case, it is possible to construct a sequent proof.

A correspondence between node label, polarity and type with the sequent rules presented in section
4, is established in table 3. Such correspondence is useful for the sequent proof construction, where the
polarity helps in the identification of the rule. Polarity 1 represents a rule on the left (left or l); polarity 0,
on the right (right or r), for cases where there is already an associated rule. For instance, in Table 3’s first
line, for node u1 the rule is lu, while for node u0 it is ru. For cases where internal nodes are preceded
by a node labelled by a negation, correspondences are in Table 3’s last four columns.

14 ConvertingALC Connection Proofs intoALC Sequents

Table 3: Correspondence between label, polarity and type of a node, preceded or not by a node labelled
with negation, toALC Sequent rules.

Not preceded Preceded
Type α Rule Type β Rule Type δ Rule Type α Rule Type β Rule
u1 lu u0 ru ∀0 r∀ ¬1 r¬¬ u0 l¬u
t0 rt t1 lt ∃1 l∃ ¬0 l¬¬ t1 r¬t
¬1 ∅ u1 r¬u
¬0 ∅ t0 l¬t
Type α′ Rule Type β′ Rule Type γ Rule Type δ Rule
v0 ∅ v1 Cut ∀1 ∅ ∀0 l¬∀
|=0 ∅ ∃0 ∅ ∃1 r¬∃

5.2 Conversion to Sequents

Given anALC query and its matricial non-clausal connection proof, the conversion procedure transforms
this proof into anALC sequent proof. This process performs four steps, which are described below:

• Step 1- Formula tree construction: A syntactic representation in tree form is constructed for the
input formula, containing nodes, as described in 14. The position of each predicate is input to step
2, and the tree to steps 3 and 4. Example: The conversion process begins with the F1 formula tree
construction, described in definition 14, which resulted in the formula tree represented in figure 7.

• Step 2- Matrix elements’ positions assignment: Since proof matrix elements correspond to pred-
icates in the formula and also to leaf nodes in the formula tree, this step assigns to each matrix
element the position of the corresponding predicate. Its input is the matrix non-clausal connection
proof and the position of predicates. Its output is input to step 3. Example: Each element of the
matrix is assigned with the position of the corresponding predicate in the formula, see matrix in 8.

Figure 8: Steps representation in the connection proof/sequentALC for F1.

• Step 3- (partial) sequent proof structure Construction: The matrix non-clausal connection
proof with the positions of each element and the formula tree are inputs for this step. To each
matrix connection, the formula tree is examined in search for the leaf nodes that correspond to the
connection. The paths between the root node and these nodes in the tree are analyzed to determine
the order of nodes to be worked on and thus build a structure of the (partial) proof in sequents. This

E. Palmeira, F. Freitas & J. Otten 15

structure provides information about the reduction order C, which helps determine the rules to be
applied, and on the existence of the proof branch, given by the identification of the nodes of type
β and β′. The (partial) sequent proof structure constructed will be the input for step 4. Example:
The first connection links element CO(a)0, from position a18, to element CO1, of position a6,
which are complementary under the substitution σβ′ = {a2/a}, see table 4. The path between these
leaf nodes is {a18,a16,a0,a1,a2,a6}. Since there is no ordering relation @σ between the nodes of
that path and there are two tree orderings given by a0 ≺ a16 and a0 ≺ a1 ≺ a2, It is possible to
start with any of these tree orderings. Choosing the first, we have the order of reduction at that
moment equal to: a0 C a16 C a1 C a2. Since the node with position a2 is of type β′, the sequent is
divided into two branches, called a e b, as in the formula tree. Thus, this connection closes the
branch b, branch where the node CO1 is, and leads to the axiom h0,C0 ` CO1, because nodes of
type β′ are associated with the cut rule (see table 3). In the second connection, C0, with position
a5 in branch a, is connected to C1, with position a15 in branch d, and the path between them is
{a5,a3,a2,a1,a7,a9,a13,a15}. As the nodes with positions a1 and a2 have already been reduced,
it is necessary to reduce the nodes with positions, a3, a7, a9 and a13, which have tree ordering
a7 ≺ a9 ≺ a13 and the relations a10 @δ a3 and a10 @δ a13. At the moment it is only possible to
reduce the node with position a7 and then the node with position a9, that is, a7Ca9. Since the node
with position a7 is of type β′, its reduction divides branch ’a’ into branches ’c’ and ’d’. Then the
node with position a9, in branch ’d’, is reduced. Since there are pendant nodes on this path, it is not
yet possible to form an axiom and close the ’d’ branch. The third connection is analyzed, where
h0, with position a14, is connected to h1, with position a11, both in branch ’d’. The path between
the nodes is {a14,a13,a9,a10,a11}. Since a9 has already been reduced, and there are the relations
a10 @δ a13 and a10 @δ a3, the a10 position node is reduced, and ’together’ with it the nodes with
position a13 and a3. The reduction of the a10 position node makes the third and second connection
complementary under the substitutions σδ = {a13/a10, a3/a10}. With this the last two connections
are reflected in the sequent proof leading to the closure of the ’d’ branch. Notice that the second
connection was only reached in the tree after the third connection, this leads to the axiom in the
form C1 ` C0. The fourth connection connects OL0, with position a8 in branch ’c’, to OL1, with
position a17. The path between the nodes with theses positions is {a8,a7,a1,a0,a16,a17}. As all
nodes on this path have already been reduced, no reduction will be necessary in this step. Thus, ’c’
branch is closed with an axiom in the form OL0 ` h1A1,h0C1, due to the cut rule. This connection
is complementary under σβ′ = {a7/a}. On the fifth and last connection, which connects h0 to h1,
there is no need of node reduction, since all nodes in the path were reduced. The connection is
complementary under σδ = {a3/a10}. Note that a2/a and a7/a were σβ′ previous substitutions. All
connections are complementary under a substitution σFinal, all branches of the proof structure in
sequent were closed, and the reduction order is not reflexive, as shown in figure 8 and in Table 4.

• Step 4- Construction of the complete sequent proof: Here, the process builds a complete sequent
proof (output) from the (partial) sequent proof structure and the correspondence between nodes and
sequent rules, described in 3. The input is (partial) sequent proof structure, the formula tree and
ALC sequent rules. Example: The structure obtained in step 3 is traversed. The proof begins
with the reduction of a1 position node, since the first two tree nodes do not have associated rule,
because they are of type α′. Rule lu is applied. Then, the a2 position node, with type β′, reduced
by means of the cut rule on the query α, that is, on (OL `CO). The proof is divided into branches
’a’ and ’b’. The ’b’ branch is closed with the initial axiom ∃h.C ` CO, while branch ’a’ is open,
in which OL ` ∃h.C must be proved. The next node is of position a7, of type β′, and its reduction

16 ConvertingALC Connection Proofs intoALC Sequents

Table 4: Relation between connections, substitutions and orderings

N Nodes σδ σβ′ @δ C

1 CO(a2)1a6,CO(a)0a18 a2/a a0Ca16Ca1Ca2

2 C(a3)0a5,C(a13)1a15
a13/a10,
a3/a10

a10 @δ a3,
a10 @δ a13

a7Ca9

3 h(a7,a13)0a14,h(a7,a10)1a11 a13/a10 a10

4 OL(a7)0a8,OL(a)1a17 a7/a
5 h(a2,a3)0a4,h(a7,a10)1a11 a3/a10 a2/a
σFinal = a2/a, a13/a10, a3/a10, a7/a a0Ca16Ca1Ca2Ca7Ca9Ca10

divides the branch ’a’ into branches ’c’ and ’d’, by means of the application of a new cut rule on
OL ` ∃h.C. The ’c’ branch is closed with the initial axiom OL ` ∃h.Au∀h.C, while the ’d’ branch
stays open. To close the ’d’ branch, the a9 position node is reduced with the lu rule, followed by
the node with position a10, through rule l∃. This ends the F1 sequent proof, as shown in figure 9:

OL ` ∃h.Au∀h.C

=
A,C ` C

l∃
∃h.A,∀h.C ` ∃h.C

lu
∃h.Au∀h.C ` ∃h.C cut

OL ` ∃h.C ∃h.C ` CO cut
(∃h.C ` CO, OL ` ∃h.Au∀h.C) ` (OL ` CO)

lu((
(∃h.C ` CO)u (OL ` ∃h.Au∀h.C)

)
` (OL ` CO)

)
Figure 9: Complete proof inALC sequents for F1.

6 Complexity

This section presents a very brief overview of the main algorithms for the conversion method with its
complexities, according to the 4 steps seen in section 5.2. All the algorithms are demonstrated in [10].
Time complexities were analyzed according to the input size of each algorithm. For example, some
algorithms receive anALC formula F as input, so the input size n represents the number of symbols of
F. Other algorithms accept an F proof matrix as input; in this case, the input size is the matrix number
of symbols, including connections between literals. This input is represented by m.

Figure 10 presents the main algorithms’ execution order. Lines with arrows indicate that the output
of one algorithm is input to another. For example, the output from algorithm 02 (called convertsPostFix)
is conveyed as input for algorithm 03 (called buildTree and 04 (called assignPosition). The complexity
of algorithm 05 (Search Connections) is the highest among the algorithms: O(n4), up to four iterations
over structures based on the input size m.

7 Conclusions

This work presents a method to convert Non-clausalALC connections proofs into more readable proofs.
The approach consists in transforming these proofs into proofs in theALC-Sequent Calculus [4]. Hence,

E. Palmeira, F. Freitas & J. Otten 17

Figure 10: Overview of the main algorithms’ order.

this conversion assumes that the input formulae will always be in non-clausal form, i.e., without the need
to transform these formulae into any normal form. A tree representation of formulae is used as a guide
in this conversion and a sequent proof is created while the connection proof is traversed. This conversion
must contribute to describe how the reasoners based on the ALC Connection Method summon their
inferences and may facilitate the creation of natural language explanations, given the ease of converting
sequents to texts. The evaluation of the main algorithms’ computational complexities demonstrates its
practical feasibility, since they display polynomial complexity. In this perspective, the scientific contribu-
tions of this work should characterize the importance of the logical proofs, clarify the reasoning process
and increase inferences’ readability, thus providing better user interaction with connection reasoners.

References

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi & P. F. Patel-Schneider, editors (2003): The Description
Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press.

[2] F. Baader, I. Horrocks & U. Sattler (2008): Description Logics. In: Handbook of Knowledge Representation,
Foundations of Artificial Intelligence 3, Elsevier, pp. 135–179, doi:10.1016/S1574-6526(07)03003-9.

[3] W. Bibel (1993): Deduction - automated logic. Academic Press.

[4] A. Borgida, E. Franconi & I. Horrocks (2000): ExplainingALC Subsumption. In: ECAI 2000, Proceedings
of the 14th European Conference on Artificial Intelligence, Berlin, Germany, 2000, pp. 209–213.

[5] F. Freitas & J. Otten (2016): A Connection Calculus for the Description Logic ALC. In: Advances in
Artificial Intelligence - 29th Canadian Conference on Artificial Intelligence, Canadian AI 2016, Victoria,
BC, Canada, May 31 - June 3, 2016. Proceedings, pp. 243–256, doi:10.1007/978-3-319-34111-8 30.

[6] Jean-Yves Girard, Paul Taylor & Yves Lafont (1989): Proofs and Types. Cambridge University Press.

[7] I. Horrocks (2008): Ontologies and the semantic web. Commun. ACM 51(12), pp. 58–67,
doi:10.1145/1409360.1409377.

[8] D. Melo, F. Freitas & J. Otten (2017): RACCOON: A Connection Reasoner for the Description Logic ALC. In:
LPAR-21, 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning,
Maun, Botswana, May 7-12, 2017, pp. 200–211.

[9] J. Otten (2011): A Non-clausal Connection Calculus. In: Automated Reasoning with Analytic Tableaux
and Related Methods - 20th International Conference, TABLEAUX 2011, Bern, Switzerland, July 4-8, 2011.
Proceedings, pp. 226–241, doi:10.1007/978-3-642-22119-4 18.

[10] E. Palmeira (2017): Conversion of Proof in Description Logic ALC Generated by Connection Method into
Sequents. Ph.D. thesis, Federal University of Pernambuco.

[11] D. A. Plaisted & S. Greenbaum (1986): A Structure-Preserving Clause Form Translation. J. Symb. Comput.
2(3), pp. 293–304, doi:10.1016/S0747-7171(86)80028-1.

http://dx.doi.org/10.1016/S1574-6526(07)03003-9
http://dx.doi.org/10.1007/978-3-319-34111-8_30
http://dx.doi.org/10.1145/1409360.1409377
http://dx.doi.org/10.1007/978-3-642-22119-4_18
http://dx.doi.org/10.1016/S0747-7171(86)80028-1

	1 Introduction
	2 The Description Logic
	3 The Non-clausal -Connection Calculus
	3.1 The Formal Non-Clausal -Connection Calculus

	4 An Sequent Calculus
	5 Conversion Method
	5.1 Building the Formula Tree
	5.2 Conversion to Sequents

	6 Complexity
	7 Conclusions

