
Haniel Barbosa and Giselle Reis (Eds.): Sixth Workshop
on Proof eXchange for Theorem Proving (PxTP)
EPTCS 301, 2019, pp. 51–65, doi:10.4204/EPTCS.301.7

c© F. Kallat et al.
This work is licensed under the
Creative Commons Attribution License.

CLS-SMT: Bringing Together Combinatory Logic

Synthesis and Satisfiability Modulo Theories

Fadil Kallat Tristan Schäfer Anna Vasileva

Technical University of Dortmund,
Dortmund, Germany

{fadil.kallat, tristan.schaefer, anna.vasileva}@tu-dortmund.de

We introduce an approach that aims to combine the usage of satisfiability modulo theories
(SMT) solvers with the Combinatory Logic Synthesizer (CL)S framework. (CL)S is a tool
for the automatic composition of software components from a user-specified repository. The
framework yields a tree grammar that contains all composed terms that comply with a
target type. Type specifications for (CL)S are based on combinatory logic with intersection
types. Our approach translates the tree grammar into SMT functions, which allows the
consideration of additional domain-specific constraints. We demonstrate the usefulness of
our approach in several experiments.

1 Introduction

In component-based software synthesis, programs are not build from scratch but composed
from a repository of typed combinators. Combinators help to reduce the search space so that
the inherent complexity of software synthesis problems can be handled. Moreover, additional
domain-specific knowledge is contained in the semantic type layer of a repository. The underlying
type system is well suited to express feature vectors of programs and software components.
A user-specified repository Γ includes typed combinators that represent software components
(c : σ) where c is the component name and σ is an intersection type [9, 8].

The Combinatory Logic Synthesizer (CL)S is a synthesis framework based on a type inhabi-
tation algorithm for combinatory logic with intersection types [26, 9]. The algorithm searches for
terms that are formed from the combinators and have a given target type τ . (CL)S is intended
to be used for the automatic composition of software [5, 6, 9, 15, 21]. Besides the synthesis from
software components, the (CL)S framework allows the synthesis of data structures, for instance
of BPMN 2.0 processes [9] or planning processes [33].

Obviously, the expression of domain-specific knowledge is limited by the underlying type
system. Intersection types do not explicitly take the logical connectives conjunction, disjunction
and negation into consideration. Moreover, the input-output behaviour of the resulting program
cannot be expressed by types. The combinatory approach allows to specify local typing infor-
mation of a combinator but lacks expressivity regarding the global structure of result terms. For
instance, it is not possible to state that a combinator c0 must contain combinator c1 anywhere in
the subtree of its arguments. In some situations, not all well-formed terms might be considered
to be reasonable results. Different terms might also show identical execution results and runtime
behaviour.

Software synthesis is an established research topic that offers a broad range of specification
formalisms such as examples [16, 17, 28, 32], types [16, 20, 25] or first-order-logic [27, 31]. For
this paper, we followed the intuition that the joint usage of (complementary) formalisms can

http://dx.doi.org/10.4204/EPTCS.301.7
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


52 Bringing Together (CL)S and SMT

yield a synthesis approach that combines the respective strengths of the underlying techniques.
Precisely, we identified SMT to be well working with combinatory logic. There are different
possible scenarios to incorporate these techniques. For example, SMT could generate parts of
combinators or parametrize synthesized programs. In this paper, we show how to use SMT to
filter a complete enumeration of inhabitants. We implemented our approach in a tool called
CLS-SMT.

The combinatory logic synthesis yields a tree grammar that describes the set of valid inhab-
itants. We use this grammar to automatically construct a set of adequate SMT formulas. By
solving these formulas, we receive a tree model that represents a word of the grammar. The
(possibly infinite) set of inhabitants is further narrowed by introducing domain-specific struc-
tural constraints on terms. That way, we can regulate the selection of result programs while
avoiding trivial solutions.

The paper is organized as follows: In Section 2 we briefly introduce the composition synthesis
framework (CL)S, its underlying theoretical background and the formalism of tree grammars.
Section 3 includes a presentation of CLS-SMT and the details about the translation of tree
grammars into SMT formulas. In Section 4 we evaluate our approach considering an example
for sort programs and a labyrinth example. Section 5 includes an overview of related work.
Finally, the conclusion gives a brief summary.

2 Combinatory Logic Synthesizer (CL)S

The developing tool Combinatory Logic Synthesizer (CL)S provides an implementation of a type
inhabitation algorithm for combinatory logic with intersection types that is fully integrated into
the Scala programming language. The framework is publicly available [7].

The automatic software synthesis is performed by answering the type inhabitation question:
Γ⊢? : τ . The problem of inhabitation asks for all well-typed applicative terms that can be formed
from typed combinators in a user-specified set Γ and have a given type τ . Applicative terms are
defined as:

M,N ::= c | (MN)

A term is constructed by using named component or combinator c and application of M to
N , (MN). If there exists a combinatory expression M such that Γ ⊢M : τ then M is called
inhabitant of τ . The type expressions that represent the specifications of term M are denoted
σ, τ and are defined as follows:

σ,τ ::= a | α | σ→ τ | σ ∩ τ

Type constants (a) can be native or semantic types. Type variables (α) are substituted with
type constants and facilitate generic components. Furthermore, types can be constructed from
function types (σ→ τ) or intersections (σ∩ τ).

There are four rules that control the type inhabitation process. According to these rules,
types are assigned to combinatory terms [14]. The first rule (var) allows the usage of any
combinator c from the typed repository Γ that has type τ using substitutions. It is defined as
follows:

(var)
Γ, c : τ ⊢ c : S(τ)



F. Kallat et al. 53

Furthermore, it allows to assume that this combinator c has type S(τ), where S is a well-
formed substitution on Γ(c) mapping type variables to simple types. The inhabitation problem
in general is undecidable. A restriction on variable substitution is needed to ensure decidability
[14].

The following rule, arrow elimination (→ E), allows the application of combinators with
function types to appropriately typed arguments to form terms.

Γ ⊢M : σ→ τ Γ ⊢N : σ (→ E)
Γ ⊢MN : τ

The intersection introduction rule (∩I), shown below, allows to type a term M with two types,
if there are proofs that M has type σ and type τ .

Γ ⊢M : σ Γ ⊢M : τ (∩I)
Γ ⊢M : σ∩ τ

The fourth rule (≤) deals with subtyping.

Γ ⊢M : σ σ ≤ τ
(≤)

Γ ⊢M : τ

The subtyping rules are based on the Barendregt-Coppo-Dezani-Ciancaglini (BCD) [3] subtyping
relation. These include for example:

A2 ≤A1 B1 ≤B2

A1→B1 ≤A2→B2

to allow co- and contra-variant subtyping of functions and

A∩B ≤A A∩B ≤B

to have intersection as the least upper bound. The BCD system is also extended with type
constructors, which was proposed in [23, 10].

2.1 Tree Grammar

The (CL)S framework recursively computes all possible solutions in form of tree grammars [11].
We consider the generalized case of normalized regular tree grammars, which are well-known
from literature [13].

Definition 1 (Tree Grammars, Tree Grammar Languages)

A tree grammar G is a 4-tuple (S,N ,F ,R) with

• a start symbol S ∈N

• a set N of nonterminals,

• a set F of terminal symbols,

• a set R of productions rules of form α1 7→ {c1(β1,β2, . . . βn), c2(γ1,γ2, . . .γm)}, where n,m≥
0, α1,β1,β2, . . . ,βn,γ1,γ2, . . . ,γm ∈N are nonterminal and c1, c2 ∈ F are terminal symbols.

We consider tree grammars without restriction on the arity of the terminal symbols, e.g.
we can have α1 7→ c1(β1,β2) and α2 7→ c1(β1) with α2 ∈ N .



54 Bringing Together (CL)S and SMT

For a given tree grammar G = (S,N ,F ,R) and nonterminal α∈N , Lα(G) is the least set closed
under the rule

if α 7→ c(β1,β2, . . . ,βn) ∈R and for all 1≤ k ≤ n : tk ∈ Lβk
(G) then

c(t1, t2, . . . , tn) ∈ Lα(G)

We define L(G) = LS(G) to be the language of grammar G.

For request Γ ⊢? : τ , (CL)S constructs a tree grammar G = (τ,N ,F ,R) where τ ∈ N . The
right hand sides of rules start with a combinator symbol c where c ∈ F is followed by the
types of arguments required to obtain the type on the left hand side of the rule by applying
the combinator. When (CL)S constructs a tree grammar, we have a word M ∈ Lτ (G). The
computed grammar G is sound because the word M is well-typed term. Furthermore, G is
complete because all requested well-typed terms are words of the grammar derived for the target
type τ .

2.2 Scala Implementation

The integration of the (CL)S algorithm into Scala allows simple specification of combinators
[11]. A typical type specification of the repository Γ for two combinators describing a start

position and an up movement in a game is

Γ = {start : Pos(3,4),

up : (Pos(3,4)→ Pos(3,3))∩ (Pos(3,3)→ Pos(3,2))}.

Here, arrows are function types and the binary intersection type operator ∩ means that a
combinator has two types simultaneously. Similar to dependent types [12], specifications can
include arbitrary constants and types can encode precomputed function tables. This specification
mechanism is Turing complete in general [14], but in practice we use some restrictions, rendering
the existence of terms for the type inhabitation problem decidable. In the current version, (CL)S
accepts specifications in almost mathematical notation, allowing to state the example for Γ above
as:

va l Gamma = Map(” s t a r t ” −> ’ Pos ( ’ 3 , ’ 4 ) ,
”up” −> ( ’ Pos ( ’ 3 , ’ 4 ) =>: ’ Pos ( ’ 3 , ’ 3 ) ) :&:

( ’ Pos ( ’ 3 , ’ 3 ) =>: ’ Pos ( ’ 3 , ’ 2 ) ) )

It can also extract type information from combinators with implementations attached to them,
allowing to enter the combinator up from Γ according to the Scala representation in Listing 1. We
obtain the specification with native and semantic types: (Pos(3,4)→ Pos(3,3))∩ (Pos(3,3)→
Pos(3,2))∩ (Player→ Player).

@combinator ob j ec t up {
def apply ( p layer : Player ) : Player = p layer . goUp ( )
va l semanticType =

( ’ Pos ( ’ 3 , ’ 4 ) =>: ’ Pos ( ’ 3 , ’ 3 ) ) :&:
( ’ Pos ( ’ 3 , ’ 3 ) =>: ’ Pos ( ’ 3 , ’ 2 ) ) ) }

Listing 1: Scala representation of a combinator with native and semantic types



F. Kallat et al. 55

The intersection type operator is represented by : & : and the function types by =>:. The
signature of apply is automatically translated from its native Scala type. Additional semantic
type information is taken as-is and used only to impose more conditions on the use of up,
which are user specified. The term returned for question Γ ⊢? : Pos(3,3) is up(start), which,
when providing combinator implementations, is automatically translated to the method calls
up.apply(start.apply). The following tree grammar is the result of the inhabitation:

G = {Pos(3,4) 7→ {start()},

Pos(3,3) 7→ {up(Pos(3,4))},

Pos(3,2) 7→ {up(Pos(3,3))} }

3 CLS-SMT

This section describes the key aspects of CLS-SMT. The production rules in the grammar are
used to formulate SMT constraints by using uninterpreted functions. Any SMT model satisfying
the given constraints represents a tree, which is necessarily a word of the tree grammar.

We define a data structure that represents applicative terms and show how a (CL)S tree
grammar can be translated to an adequate SMT formulation.

Definition 2 (Inhabitant Tree)
An inhabitant tree is a binary tree over integers. Let n denote the finite number of combina-

tors used in the tree grammar and C ⊂ N range over {1, ...,n}. With c ∈ C, an inhabitant tree
is defined as follows:

inhabT ree = 0 (leftChild inhabT ree) (rightChild inhabT ree) | c

Accordingly, the tree’s alphabet of vertex labels ΣV is {0}∪C. A vertex labeled 0 is called
application node and denoted by @. An @ node has exactly two children (i.e. 0 is a binary sym-
bol), the function is the left child and argument is the right child. All elements of C are constants
so that @ nodes are the only elements of the tree that are allowed to have children. A combinator
with n arguments is represented by a tree that consists of (at least1) n application nodes and
the combinator symbol on the leftmost leaf. The n-th argument of a combinator is the right
child of the combinators n-th parent. As an example, we consider the term ((c (arg1)) arg2),
which represents the application of the binary combinator c to the arguments arg1 and arg2.

We assume that c is encoded as 1, arg1 as 2 and arg2 as 3. The corresponding inhabitant
tree is 0 (leftChild (0 (leftChild 1) (rightChild 2)) (rightChild 3). A visual representation is
as follows:

@

@

c arg1

arg2

3.1 Constraint Representation

Due to the completeness of the inhabitation algorithm, there is at least one applicative term that
can be build from a non-empty tree grammar. Thus, an SMT encoding of the tree grammar on its

1more @ nodes could be contained in the subtrees representing the arguments



56 Bringing Together (CL)S and SMT

own will always be satisfiable. There is no need for an encoding of the subtyping relation because
subtyping is considered in the inhabitation algorithm. Accordingly, the tree grammar only
contains nonterminals representing types and there is a production rule for every nonterminal
used.

Let V be the finite set of vertices. The labelling function inhabitant : V 7→ ΣV can be used
for a total representation of a tree if the rules given in Definition 2 are respected. We use
the production rules in the tree grammar to formulate structural constraints on the tree. Let
n ∈N and N denote the set of nonterminals of the grammar. We introduce the partial function
ty : V 7→N , which maps vertices of a tree to a nonterminal representing a type. The information
provided by a production rule of the tree grammar can now be used to systematically build
constraints for the corresponding subtree. We consider the production rule {α 7→ {(c(β1, β2)}}
and its incomplete tree representation that is supplemented with the associated nonterminals:

@:α

@

c ?:β1

?:β2

Its possible to derive the following constraints from this production rule. Let i denote the
root node of the applicative composition of the combinator and its arguments. If node i has
type represented by nonterminal α then the vertex (leftChild (leftChild i)) must be c, the
first argument (at position (rightChild (leftChild i))) must be typed according to β1 and
the second argument (at (rightChild i)) must be typed corresponding to β2. The constraints
for subtrees denoted by β1 and β2 can be formulated accordingly. Following this approach,
the contents of a tree grammar can be translated into SMT constraints. Adequate assertions
are formulated and supplied to the SMT solver to find implementations for the uninterpreted
functions inhabitant and ty. We currently use Z3 from Microsoft Research [24] to solve our
formulation with the background theory LIA [4] (i.e. the linear fragment of the theory of
Integers). A more detailed look at the translation will be given in the next section.

3.2 Grammar Translation

We translate the grammar by applying Translate Production Rule shown in Algorithm
1 to every production rule of the grammar. The algorithm produces SMT boolean expressions
that must evaluate to true for all vertices of a valid tree. We make use of the aforementioned
functions inhabitant and ty to formulate these constraints. The set of constraint functions is
incorporated in an assertion with a forall expression where the universal quantified variable i

represents the vertices. Consequently, every solution found by the SMT solver must be a word
of the grammar.

Inside Translate Production Rule, the function Translate_Combinator is applied to
every possible combinator listed in this specific production rule. The resulting set of boolean
expressions is joined with the xor connective as we must use one combinator subtree exclusively
at a given type annotated vertex. For the sake of readability, we assume that xor and and are
applicable to sets.

An n-ary combinator is translated by using the universal quantified variable i and its asso-
ciated children to describe the vertices of the respective subtree. The labelling is formulated
by placing constraints on the ty and inhabitant functions. We reverse the list of nonterminals



F. Kallat et al. 57

args that describes the required types of a combinator’s arguments in order to address the struc-
ture of inhabitant trees. That way, we can start at the root node of the current subtree and build
successive address terms for each loop iteration by applying leftChild to the current address
term. The complete structure of the subtree must satisfy all constraints that were produced
in the loop, so we return the corresponding conjunction. After translating the grammar rules,
we also include a root node constraint. It states that ty must map node 1 of the tree to the
nonterminal representing the synthesis goal type.

Algorithm 1 Production Rule Translation

function Translate Production Rule(typeId,values)
xorSet←∅

for all (combinator,parameters) in values do

cT ransl←Translate Combinator(combinator, parameters)
xorSet ← xorSet ∪ cT ransl

end for

return (ite (= (ty i) typeId) (xor xorSet) true)

end function

function Translate Combinator(combinator,args)
constrSet←∅

currentAddress← i

pList← args.reverse

for all p in pList do

constrSet← constrSet ∪ (= (ty (rightChild currentAddress)) p)

constrSet← constrSet ∪ (= (inhabitant currentAddress) 0)

currentAddress← (leftChild currentAddress)

end for

combinatorConstraint← (= (inhabitant currentAddress) combinator)

combinedSet← combinatorConstraint∪ constrSet

return (and (combinedSet))

end function

Any tree model M∗ that satisfies these constraints represents a word M of the grammar and
every word M can be translated to a model M∗ that satisfies these constraints. The translation
is straight-forward and is thus be omitted. Let ϕ denote the conjunction of the constraints and
τ denote the inhabitation target type, then: M∗ �LIA ϕ⇔M ∈ Lτ (G).

4 Experiments

In this section, we discuss the advantages and the usefulness of our approach by means of a
composition of sort programs and a path finding scenario.

4.1 Sort

We consider a small repository Γ shown in Fig. 1 that can be used to compose sort programs.
It contains a sort combinator for lists that applies a function to each element before performing



58 Bringing Together (CL)S and SMT

the sorting. The id combinator typed α→ α can be used if we want to sort the unmodified list
values. Moreover, the inverse function can be applied to double values. Further combinators
could include the abs function to compare absolute values or a dist combinator to calculate the
distance to a given value.

Γ = { values : List(double),

id : α→ α,

inv : double→ double,

sortmap : (α→ α)→ List(α)→ SortedList(α),

min : double→ SortedList(double)→minimal∩double,

default : double }

Figure 1: Repository for the sort example

In some cases, it might be required to sort a double list and additionally determine its
minimal value. The corresponding combinator min will be implemented by extracting the first
value of a sorted list (assuming that we always sort in an ascending order). The result type of
min is an intersection of minimal and double. For empty lists, a default value will be returned.
In this example, such a value is held in the component default, which has the type double. The
inhabitation request Γ ⊢? : minimal∩double yields the following grammar G:

G = {SortedList(double) 7→ {sortmap(double→ double,List(double))},

minimal∩double 7→ {id(minimal∩double),min(double,SortedList(double))},

double 7→ {id(double),default(), inv(double),min(double,SortedList(double))},

double→ double 7→ {id(), inv()}

List(double) 7→ {id(List(double)),values()} }

Figure 2: Tree grammar for the sort example, Γ ⊢? : minimal∩double

A double value can be formed by applying id or inv to any term with type double. Obviously,
terms like inv and id can be applied an arbitrary number of times to arguments of type double.
Thus, the range of terms with type double is infinite. Moreover, a term typed minimal∩double

can also be used as the first argument of the min operator. The grammar describes all well-
formed solutions that comply to the target type. However, it is clearly not desirable to compose
infinite range of trivial solutions. With extensions formulated as SMT constraints, we can further
filter the result set without specializing Γ too much.

In order to avoid trivial solutions, we specify id and inv to be used only as arguments.
Moreover, the first argument of min must be a terminal. Given the indices 2, 3 and 5 for the
combinators id, min and inv, the following assertions are added to the SMT script:

( a s s e r t ( f o r a l l ( ( i In t ) ) ( not (= ( inhab i tan t ( l e f t C h i l d i ) ) 2 ) ) ) )
( a s s e r t ( f o r a l l ( ( i In t ) ) ( not (= ( inhab i tan t ( l e f t C h i l d i ) ) 5 ) ) ) )
( a s s e r t ( f o r a l l ( ( i In t ) )

( i t e (= ( inhab i tan t ( l e f t C h i l d i ) ) 3)



F. Kallat et al. 59

( not (= ( inhab i tan t ( r i gh tCh i ld i ) ) 0 ) ) true ) ) )

With these constraints at hand, only two valid solutions are found for the inhabitation
request Γ ⊢? : minimal∩double:

((min default) ((sortmap inv) values)) and
((min default) ((sortmap id) values))

The combinator min is applied to the terms yielded by the combinators default and sortmap.
For this particular example, the combinator mapping in the table shown below was used. In
order to illustrate the first result term as a tree, we use the following labelling pattern:
combinator name : (vertex id, combinator id)

name id

default 1
id 2
min 3
values 4
inv 5
sortmap 6

@:(1,0)

@:(2,0)

min:(4,3) default:(5,1)

@:(3,0)

@:(6,0)

sortmap:(12,6) inv:(13,5)

values:(7,4)

4.2 Labyrinth Example

In the following labyrinth example, it is possible to go up, down, left or right, if the new position
is not occupied by obstacles [11]. Fig. 3 illustrates a 3 × 4 labyrinth example. The starting
position is (0,2) (shown as •) and the goal position (1,0) (shown as ⋆).

0 1 2

0 ⋆

1

2 •
3

Figure 3: Labyrinth example

The repository with typed combinators for this example is represented in Fig. 4.



60 Bringing Together (CL)S and SMT

ΓLab = { left : (Pos(1,1)→ Pos(0,1))∩Pos(2,1)→ Pos(1,1)) ∩

(Pos(1,3)→ Pos(0,3))∩ (Pos(2,3)→ Pos(1,3)),

right : (Pos(0,1)→ Pos(1,1))∩ (Pos(1,1)→ Pos(2,1)) ∩

(Pos(0,3)→ Pos(1,3))∩ (Pos(1,3)→ Pos(2,3)),

up : (Pos(0,3)→ Pos(0,2))∩ (Pos(2,3)→ Pos(2,2)) ∩

(Pos(1,1)→ Pos(1,0))∩ (Pos(0,2)→ Pos(0,1)) ∩

(Pos(2,2)→ Pos(2,1)),

down : (Pos(1,0)→ Pos(1,1))∩ (Pos(0,1)→ Pos(0,2)) ∩

(Pos(2,1)→ Pos(2,2))∩ (Pos(0,2)→ Pos(0,3)) ∩

(Pos(2,2)→ Pos(2,3)),

start : Pos(0,2) }

Figure 4: Repository for the labyrinth example shown in Fig. 3

The combinators up, down, left, and right can be used to go from position Pos(x,y) to an
accessible neighbouring position. The types Pos(x,y) represent the column and row positions.
For example, combinator left can be used to go from position Pos(1,1) to position Pos(0,1) as
well as from Pos(2,1) to Pos(1,1), from Pos(1,3) to Pos(0,3), and from Pos(2,3) to Pos(1,3).
The combinator start provides the starting position.

To get all possible paths from start (0,2) to goal position (1,0), we ask for:

Γ ⊢? : Pos(1,0)

For this goal position the algorithm computes the grammar shown in Fig. 5.

G = {Pos(1,0) 7→ {up(Pos(1,1))},

Pos(1,1) 7→ {right(Pos(0,1)), left(Pos(2,1)), down(Pos(1,0))},

Pos(1,1) 7→ {up(Pos(0,2)), left(Pos(1,1))},

Pos(2,1) 7→ {up(Pos(2,2)), right(Pos(1,1))},

Pos(2,2) 7→ {down(Pos(2,1)), up(Pos(2,3))},

Pos(0,1) 7→ {up(Pos(0,2)), left(Pos(1,1))},

Pos(0,3) 7→ {down(Pos(0,2)), left(Pos(1,3))},

Pos(0,2) 7→ {down(Pos(0,1)), up(Pos(0,3)), start()},

Pos(1,3) 7→ {left(Pos(2,3)), right(Pos(0,3))},

Pos(2,3) 7→ {down(Pos(2,2)), right(Pos(1,3))}}

Figure 5: Tree grammar for the labyrinth example

For the path going up, right, and up the algorithm constructs a term up(right(up(start))).
In this example, there are also terms that represent trivial paths with cycles. For example:

up(right(up(down(up(down(up(start))))))),

down(up(up(right(up(start))))), ...



F. Kallat et al. 61

By means of SMT solvers, we can restrict the number of solutions computed by (CL)S in order
to avoid trivial terms. For example, we can decide, which combinators have to be used and how
often. As presented in Section 3 we translate the computed tree grammar (s. Fig. 5) to SMT
expressions by means of algorithm 1.

In order to filter the inhabitants, we consider domain-specific constraints. We are able to
select, which combinators should be used in the solution. For instance, Fig. 6 shows a formula
that states a term should not include combinator down (translated as (= (inhabitant i) 1)).
This way, we constrain the usage of certain combinator. In this particular example (see Fig. 3),
we might want to avoid the down combinator, because the robot has to get to the top-right goal
position.

( a s s e r t ( f o r a l l ( ( i In t ) ) ( not (= ( inhab i tan t i ) 1 ) ) ) )

Figure 6: Assertion for filtering of combinator

We reduce the number of cycles and define the order of usage of the combinators in order to
avoid unnecessary paths. For example, we can formulate a constraint that forbids the application
of combinator down (index 1) to combinator up (index 2) and vice versa. The same applies to
combinators left (index 3) and right (index 4). Fig. 7 shows the definition of this rule.

( a s s e r t ( f o r a l l ( ( i In t ) )
( and

( not ( and (= ( inhab i tan t ( l e f t C h i l d i ) ) 3)
(= ( inhab i tan t ( l e f t C h i l d ( r i gh tCh i ld i ) ) ) 4 ) ) )
( not ( and (= ( inhab i tan t ( l e f t C h i l d i ) ) 4)
(= ( inhab i tan t ( l e f t C h i l d ( r i gh tCh i ld i ) ) ) 3 ) ) )
( not ( and (= ( inhab i tan t ( l e f t C h i l d i ) ) 2)
(= ( inhab i tan t ( l e f t C h i l d ( r i gh tCh i ld i ) ) ) 1 ) ) )
( not ( and (= ( inhab i tan t ( l e f t C h i l d i ) ) 1)
(= ( inhab i tan t ( l e f t C h i l d ( r i gh tCh i ld i ) ) ) 2 ) ) ) )

) )

Figure 7: Formula for definition of order

5 Related Work

Type-theoretical specification

There are various approaches to solve synthesis problems by means of type theory. For in-
stance, Polikarpova et al. synthesized recursive functions satisfying a specification in the form
of polymorphic refinement types [25]. Zdancewic et al. demonstrated that examples in example-
directed synthesis can be interpreted as refinement types [16]. They provided an example-based
specification language by using intersection types with singletons. In contrast, (CL)S expresses
semantic specifications with intersection types. Kuncak et al. used type inhabitation in the



62 Bringing Together (CL)S and SMT

simply typed lambda calculus to support developers by generating a list of valid expressions of
a given type for code completion [20].

SMT

In the last decades, there have been many approaches using SMT solvers for synthesis. A
common property of those methodologies is the use of syntactic constraints and a correctness
specification. In 2006, preliminary work in template-based synthesis was undertaken by Solar-
Lezama et al. [29]. In Sketching, a partial implementation is given and synthesis completes
missing parts by considering a specification of the desired functionality [29]. Following this
idea, loop-free bitvector programs [18] and deobfuscating programs [22] were synthesized in a
component-based manner. In contrast to our work, desired functionality and components were
specified as logical relations between the input and output variables [18, 22]. Another approach
in SMT based synthesis is programming by examples. A user specifies the behaviour of the
desired program by a number of input-output examples [19]. Singh and Gulwani transformed
strings and data types in spreadsheets [17, 28] and Udupa et al. were able to synthesize protocols
from a given skeleton and examples [32].

In 2013, a number of researchers picked up the main ideas of the projects above to formulate
the problem of syntax-guided synthesis (SyGuS) [1]. The Counterexample-Guided Inductive
Synthesis (CEGIS) architecture describes how SyGuS problems can be tackled by learning from
counterexamples provided by a verification oracle, which is often implemented by off-the-shelf
SMT solvers [1].

Most of the synthesis algorithms based on CEGIS variants are solving ∃∀-formulas iteratively
using SMT solvers [1]. Similar to Reynolds et al. we consider synthesis as a theorem-proving
problem. In our case, the problem is solved in combinatory logic and later refined by a SMT
solver, whereas in [27] the problem is solely solved within the SMT solver. The main difference is
the way of specification. Like in many traditional synthesis approaches [16, 17, 28, 32], targets in
[27] are specified by using properties of executed programs. More specifically, relations on inputs
and outputs are defined. This allows for a fine-granular specification on program behaviour, but
it is hard to control the structure of synthesized programs. It can also be hard to specify the
program behaviour in the SMT solver, which becomes especially apparent in the presence of
side effects or exceptions. In (CL)S, these concerns are hidden behind the interfaces of types.
Types are particularly easy to define, because they already exist in most programming languages
and do not need to be specified just for synthesis. They can encode taxonomic concepts via
semantic types and subtyping, which is usually a very natural way of expression [30]. In future
work, it might be interesting to consider bridging the gap between behavioural and type-based
specifications. In particular, the approach in [27] could be used to synthesize the implementation
for individual combinators, which are then composed by (CL)S and CLS-SMT.

6 Conclusion

In our work we combined Combinatory Logic Synthesis and Satisfiability Modulo Theories in a
tool called CLS-SMT. In this way, we are able to compensate limitations of one technology by
taking advantage of the other and vice versa. The synthesis framework (CL)S generates a tree
grammar from a given repository of typed components that contains domain-specific knowledge.
We should emphasize that the tree grammar is complete and describes all well-formed solutions.



F. Kallat et al. 63

CLS-SMT translates the grammar into SMT formulas and further domain-specific constraints
are added. The SMT solver Z3 finds a model considering the translated tree grammar and
constraints.

By having further constraints formulated as SMT formulas, we are able to restrict inhabitants
without restricting the types of the (CL)S component repository. That way, we benefit from
the expressiveness of first-order logic and background theories. Combinatory logic synthesis
reduces the search space of the SMT solver. In general, SMT considers this structure of the
programs, whereas components in (CL)S contain domain-specific details. Combinatory logic
with intersection types is a Turing complete formalism that allows to define semantic taxonomies
based on subtyping [9].

Although SMT solvers are highly efficient through decades of research and improvements,
handling quantified formulas is still challenging. Congruence Closure with Free Variables (CCFV)
[2] is a framework that is based on the E-ground (dis)unification problem and unifies major in-
stantiation techniques in SMT solving. Experimental evaluation shows that CCFV improved
the performance of the solvers CVC4 and veriT significantly, so that the former outranks the
state-of-the-art in instantiation based SMT solving. Within our research, the replacement of
solvers is possible with reasonable effort due to the SMT-LIB standard. Further performance
enhancements could be achieved by exploring the usage of data types to express the tree.

We have applied CLS-SMT to synthesize sort programs and motion plans. Motion plan-
ning problems are an interesting topic for program synthesis because of the associated scaling
problems. Our examination shows that synthesis of small motion plans is successful. On the
other hand, we found that larger examples do not scale properly. Our approach is well-suited
for motion plans with up to 10×10 tiles. Scaling problems do not apply to other use cases such
as the sort example. Future work considers an investigation of motion planning problems with
multiple robot instances and obstacles.

Acknowledgement. The work presented in this paper was partly funded by the GRK 2193
(www.grk2193.tu-dortmund.de/de/) and the Center of Excellence for Logistics and IT (www.

leistungszentrum-logistik-it.de/) located in Dortmund.

References

[1] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-
Lezama, E. Torlak & A. Udupa (2013): Syntax-guided synthesis. In: 2013 Formal Methods in
Computer-Aided Design, pp. 1–8, doi:10.1109/FMCAD.2013.6679385.

[2] Haniel Barbosa, Pascal Fontaine & Andrew Reynolds (2017): Congruence Closure with Free Vari-
ables. In Axel Legay & Tiziana Margaria, editors: Tools and Algorithms for the Construction and
Analysis of Systems, Lecture Notes in Computer Science 10206, Springer, Berlin, Heidelberg, pp.
214–230, doi:10.1007/978-3-662-54580-5_13.

[3] H. P. Barendregt, M. Coppo & M. Dezani-Ciancaglini (1983): A Filter Lambda Model and the
Completeness of Type Assignment. Journal of Symbolic Logic 48(4), pp. 931–940, doi:10.2307/

2273659.

[4] Barrett, C., Fontaine, P., Tinelli, C.: SMT-LIB Logics. Available at http://smtlib.cs.uiowa.

edu/logics.shtml.

[5] Jan Bessai, Tzu-Chun Chen, Andrej Dudenhefner, Boris Düdder, Ugo de’Liguoro & Jakob Rehof
(2018): Mixin Composition Synthesis based on Intersection Types. Logical Methods in Computer
Science Volume 14, Issue 1, doi:10.23638/LMCS-14(1:18)2018.

www.grk2193.tu-dortmund.de/de/
www.leistungszentrum-logistik-it.de/
www.leistungszentrum-logistik-it.de/
http://dx.doi.org/10.1109/FMCAD.2013.6679385
http://dx.doi.org/10.1007/978-3-662-54580-5_13
http://dx.doi.org/10.2307/2273659
http://dx.doi.org/10.2307/2273659
http://smtlib.cs.uiowa.edu/logics.shtml
http://smtlib.cs.uiowa.edu/logics.shtml
http://dx.doi.org/10.23638/LMCS-14(1:18)2018


64 Bringing Together (CL)S and SMT

[6] Jan Bessai, Boris Düdder, George T. Heineman & Jakob Rehof (2015): Combinatory Synthesis of
Classes Using Feature Grammars. In: Revised selected papers of the 12th International Conference
on Formal Aspects of Component Software, pp. 123–140, doi:10.1007/978-3-319-28934-2_7.

[7] Jan Bessai, Boris Düdder, Geroge T. Heineman et al. (2018): (CL)S Framework. Available at
http://www.combinators.org. Accessed: 2018-04-30.

[8] Jan Bessai, Andrej Dudenhefner, Boris Düdder, Moritz Martens & Jakob Rehof (2014): Combinatory
Logic Synthesizer. In Tiziana Margaria & Bernhard Steffen, editors: Leveraging Applications of
Formal Methods, Verification and Validation. Technologies for Mastering Change, Lecture Notes in
Computer Science 8802, Springer, Berlin, Heidelberg, pp. 26–40, doi:10.1007/978-3-662-45234-9_

3.

[9] Jan Bessai, Andrej Dudenhefner, Boris Düdder, Moritz Martens & Jakob Rehof (2016): Combinatory
Process Synthesis. In: Leveraging Applications of Formal Methods, Verification and Validation:
Foundational Techniques - 7th International Symposium, ISoLA 2016, Imperial, Corfu, Greece,
October 10-14, 2016, Proceedings, Part I, pp. 266–281, doi:10.1007/978-3-319-47166-2_19.

[10] Jan Bessai, Jakob Rehof & Boris Düdder (2019): Fast Verified BCD Subtyping. In: Models, Mindsets,
Meta: The What, the How, and the Why Not?, Lecture Notes in Computer Science 11200, Springer,
Cham, [S.l.], pp. 356–371, doi:10.1007/978-3-030-22348-9_21.

[11] Jan Bessai & Anna Vasileva (2018): User Support for the Combinator Logic Synthesizer Framework.
Electronic Proceedings in Theoretical Computer Science 284, pp. 16–25, doi:10.4204/EPTCS.284.2.

[12] Edwin Brady (2017): Type-driven development with Idris. Manning Publications Co, Shelter Island,
NY.

[13] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison & M. Tom-
masi (2007): Tree Automata Techniques and Applications. Available online: http://www.grappa.

univ-lille3.fr/tata. Release October, 12th 2007.

[14] Boris Düdder, Moritz Martens, Jakob Rehof & Pawe l Urzyczyn (2012): Bounded Combinatory
Logic. In Patrick Cégielski & Arnaud Durand, editors: Computer Science Logic (CSL’12) - 26th
International Workshop/21st Annual Conference of the EACSL, CSL 2012, September 3-6, 2012,
Fontainebleau, France, LIPIcs 16, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 243–258,
doi:10.4230/LIPIcs.CSL.2012.243.

[15] Boris Düdder, Jakob Rehof & George T. Heineman (2015): Synthesizing type-safe compositions in
feature oriented software designs using staged composition. In: Proceedings of the 19th International
Conference on Software Product Lines, pp. 398–401, doi:10.1145/2791060.2793677.

[16] Jonathan Frankle, Peter-Michael Osera, David Walker & Steve Zdancewic (2016): Example-directed
Synthesis: A Type-theoretic Interpretation. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16, ACM, New York, NY,
USA, pp. 802–815, doi:10.1145/2837614.2837629.

[17] Sumit Gulwani, William R. Harris & Rishabh Singh (2012): Spreadsheet data manipulation using
examples. Communications of the ACM 55(8), pp. 97–105, doi:10.1145/2240236.2240260.

[18] Sumit Gulwani, Susmit Jha, Ashish Tiwari & Ramarathnam Venkatesan (2011): Synthesis of Loop-
free Programs. In: Proceedings of PLDI’11, ACM, p. 62, doi:10.1145/1993498.1993506.

[19] Sumit Gulwani, Oleksandr Polozov & Rishabh Singh (2017): Program Synthesis. Foundations and
Trendsr in Programming Languages 4(1-2), pp. 1–119, doi:10.1561/2500000010.

[20] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj & Ruzica Piskac (2013): Complete Completion Using
Types and Weights. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, ACM, New York, NY, USA, pp. 27–38, doi:10.

1145/2491956.2462192.

http://dx.doi.org/10.1007/978-3-319-28934-2_7
http://www.combinators.org
http://dx.doi.org/10.1007/978-3-662-45234-9_3
http://dx.doi.org/10.1007/978-3-662-45234-9_3
http://dx.doi.org/10.1007/978-3-319-47166-2_19
http://dx.doi.org/10.1007/978-3-030-22348-9_21
http://dx.doi.org/10.4204/EPTCS.284.2
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.243
http://dx.doi.org/10.1145/2791060.2793677
http://dx.doi.org/10.1145/2837614.2837629
http://dx.doi.org/10.1145/2240236.2240260
http://dx.doi.org/10.1145/1993498.1993506
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1145/2491956.2462192
http://dx.doi.org/10.1145/2491956.2462192


F. Kallat et al. 65

[21] George T. Heineman, Jan Bessai, Boris Düdder & Jakob Rehof (2016): A Long and Winding Road
Towards Modular Synthesis. In: Leveraging Applications of Formal Methods, Verification and Val-
idation: Foundational Techniques - 7th International Symposium, ISoLA 2016, Imperial, Corfu,
Greece, October 10-14, 2016, Proceedings, Part I, pp. 303–317, doi:10.1007/978-3-319-47166-2_

21.

[22] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia & Ashish Tiwari (2010): Oracle-guided component-
based program synthesis. In Jeff Kramer, Judith Bishop, Prem Devanbu & Sebastian Uchitel, editors:
ACM/IEEE 32nd International Conference on Software Engineering, 2010, IEEE, NJ, USA, p. 215,
doi:10.1145/1806799.1806833.

[23] Olivier Laurent (2018): Intersection Subtyping with Constructors. In Michele Pagani & Sandra Alves,
editors: Proceedings DCM 2018 and ITRS 2018, EPTCS 293, Oxford, UK, pp. 73–84, doi:10.4204/

EPTCS.293.6.

[24] Leonardo de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In C. R. Ramakrish-
nan & Jakob Rehof, editors: Tools and Algorithms for the Construction and Analysis of Systems,
Lecture Notes in Computer Science 4963, Springer, Berlin, Heidelberg, pp. 337–340, doi:10.1007/

978-3-540-78800-3_24.

[25] Nadia Polikarpova, Ivan Kuraj & Armando Solar-Lezama (2016): Program Synthesis from Polymor-
phic Refinement Types. In: Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’16, ACM, New York, NY, USA, pp. 522–538, doi:10.

1145/2908080.2908093.

[26] Jakob Rehof (2013): Towards Combinatory Logic Synthesis. In: BEAT 2013, 1st International
Workshop on Behavioural Types, ACM.

[27] Andrew Reynolds, Viktor Kuncak, Cesare Tinelli, Clark Barrett & Morgan Deters (2017):
Refutation-based synthesis in SMT. Formal Methods in System Design, doi:10.1007/

s10703-017-0270-2.

[28] Rishabh Singh & Sumit Gulwani (2016): Transforming spreadsheet data types using examples. In
Rastislav Bodik & Rupak Majumdar, editors: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages - POPL 2016, ACM, New York, NY,
USA, pp. 343–356, doi:10.1145/2837614.2837668.

[29] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia & Vijay Saraswat (2006):
Combinatorial sketching for finite programs. In John Paul Shen, editor: Proceedings of the 12th
international conference on Architectural support for programming languages and operating systems,
ACM, New York, NY, USA, p. 404, doi:10.1145/1168857.1168907.

[30] Bernhard Steffen, Tiziana Margaria & Michael von der Beeck (1997): Automatic Synthesis of Linear
Process Models from Temporal Constraints: An Incremental Approach. In: ACM/SIGPLAN Int.
Workshop on Automated Analysis of Software (AAS’97).

[31] Ashish Tiwari, Adrià Gascón & Bruno Dutertre (2015): Program Synthesis Using Dual Interpreta-
tion. In Amy Felty & Aart Middeldorp, editors: Automated deduction – CADE-25, LNCS sublibrary.
SL 7, Artificial intelligence 9195, Springer, Cham, pp. 482–497, doi:10.1007/978-3-319-21401-6_

33.

[32] Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-Haim, Milo M.K. Martin &
Rajeev Alur (2013): TRANSIT: Specifying Protocols with Concolic Snippets. SIGPLAN Not. 48(6),
pp. 287–296, doi:10.1145/2499370.2462174.

[33] Jan Winkels, Julian Graefenstein, Tristan Schäfer, David Scholz, Jakob Rehof & Michael Henke
(2018): Automatic Composition of Rough Solution Possibilities in the Target Planning of Factory
Planning Projects by Means of Combinatory Logic. In Tiziana Margaria & Bernhard Steffen, editors:
Leveraging Applications of Formal Methods, Verification and Validation. Industrial Practice, Lecture
Notes in Computer Science 11247, Springer, Cham, pp. 487–503, doi:10.1007/978-3-030-03427-6_

36.

http://dx.doi.org/10.1007/978-3-319-47166-2_21
http://dx.doi.org/10.1007/978-3-319-47166-2_21
http://dx.doi.org/10.1145/1806799.1806833
http://dx.doi.org/10.4204/EPTCS.293.6
http://dx.doi.org/10.4204/EPTCS.293.6
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1145/2908080.2908093
http://dx.doi.org/10.1145/2908080.2908093
http://dx.doi.org/10.1007/s10703-017-0270-2
http://dx.doi.org/10.1007/s10703-017-0270-2
http://dx.doi.org/10.1145/2837614.2837668
http://dx.doi.org/10.1145/1168857.1168907
http://dx.doi.org/10.1007/978-3-319-21401-6_33
http://dx.doi.org/10.1007/978-3-319-21401-6_33
http://dx.doi.org/10.1145/2499370.2462174
http://dx.doi.org/10.1007/978-3-030-03427-6_36
http://dx.doi.org/10.1007/978-3-030-03427-6_36

	1 Introduction
	2 Combinatory Logic Synthesizer (CL)S
	2.1 Tree Grammar
	2.2 Scala Implementation

	3 CLS-SMT
	3.1 Constraint Representation
	3.2 Grammar Translation

	4 Experiments
	4.1 Sort
	4.2 Labyrinth Example

	5 Related Work
	6 Conclusion

