
B. Coecke, I. Hasuo & P. Panangaden (Eds.):
Quantum Physics and Logic 2014 (QPL 2014).
EPTCS 172, 2014, pp. 133–153, doi:10.4204/EPTCS.172.10

QPEL: Quantum Program and Effect Language

Robin Adams
Radboud University Nijmegen

r.adams@cs.ru.nl

We present the syntax and rules of deduction of QPEL (Quantum Program and Effect Language),
a language for describing both quantum programs, and properties of quantum programs — effects
on the appropriate Hilbert space. We show how semantics may be given in terms of state-and-effect
triangles, a categorical setting that allows semantics in terms of Hilbert spaces, C∗-algebras, and
other categories. We prove soundness and completeness results that show the derivable judgements
are exactly those provable in all state-and-effect triangles.

1 Introduction

There is a growing number of quantum programming languages, and there is a need for a syntactic
method of reasoning about these quantum programs: both in the hope of making automated tools for
proving the correctness of programs, and because experience in other fields shows that many problems
that are difficult when treated semantically

We present QPEL, a syntax for both describing quantum programs, and properties of quantum pro-
grams (quantum predicates, or effects). This system should be useful for reasoning about quantum
programs and proving their correctness, as well as showing more generally how a language for quantum
effects may be added on top of any quantum programming language. The part of the system that descibes
quantum programs is loosely based on Selinger’s Quantum Programming Language (QPL) [16].

The part of the system that describes quantum programs is a linear type theory (see [6, 7]): we are
not able to duplicate data. Duplication of quantum data would violate the no-cloning theorem. We do
allow deletion of data (which corresponds to e.g. measuring a qubit then throwing away the outcome of
the measurement).

The part of the system that describes quantum predicates is based on the fact that the effects on a
Hilbert state or C∗-algebra form an effect algebra - in fact, an effect module over the appropriate effect
monoid [14].

There is a categorical structure called the state-and-effect triangle that has been shown to gener-
alise several different ways of giving semantics to quantum computing, including Hilbert spaces and
C∗-algebras. The first version of QPEL we present captures all and only the structure of a state-and-
effect triangle. We show how to give semantics in an arbitrary triangle, and prove a Soundness and
Completeness Theorem. We proceed to discuss what would need to be added to the system to represent
other features of a quantum programming language, particularly qubits.

The language QPEL has a homepage at www.cs.ru.nl/∼robina/QPEL

http://dx.doi.org/10.4204/EPTCS.172.10

134 QPEL

2 Preliminaries

2.1 Notation

If E and F are expressions involving partial functions, we write:
• E = F to denote: E and F are both defined, and their values are equal;

• E ' F to denote: E is defined if and only if F is defined, in which case their values are equal (this
is sometimes known as Kleene equality);

• E ∼→ F to denote: if E is defined, then F is defined and their values are equal (this is sometimes
known as directed equality).

2.2 Effect Algebras and Effect Monoids

We represent the effects on a quantum system by the elements of an effect module over an effect monoid
M, whose elements we call scalars. The canonical example is the effects on a Hilbert space or C∗-
algebra, which form an effect module over [0,1], with the scalars being probabilities. These concepts
were introduced in [12].
Definition 1 (Partial Commutative Monoid). A partial commutative monoid consists of a set M; an
element 0 ∈M, the zero; and a partial binary operation > : M2 ⇀ M, the (partial) sum; such that:
• x> y' y> x

• x> (y> z)' (x> y)> z

• x>0 = x
for all x,y,z ∈M.

We write x⊥ y, x is orthogonal to y, iff x> y is defined.
Definition 2 (Effect Algebra). An effect algebra is a partial commutative monoid E with a (total) function
(−)⊥ : E→ E, the orthosupplement, such that
• x> y = 0⊥ iff y = x⊥.

• If x⊥ 0⊥ then x = 0.
We write 1 for 0⊥.

Definition 3 (Effect Algebra Homomorphism). Let E and F be effect algebras. An effect algebra homo-
morphism φ : E→ F is a function such that, for all x,y ∈ E:

φ(x> y) ∼→ φ(x)>φ(y)

φ(x⊥) = φ(x)⊥

Lemma 4. For any effect algebra homomorphism φ , we have φ(0) = 0.

Proof.

φ(0>0) = φ(0)

∴ φ(0)>φ(0) = φ(0)

= φ(0)>0

∴ φ(0) = 0

since any effect algebra satisfies cancellation [10].

Robin Adams 135

Definition 5 (Effect Monoid). An effect monoid is an effect algebra E with a binary operation · : E2→ E,
the multiplication, such that

• (x> y) · z ∼→ (x · z)> (y · z)

• x · (y> z) ∼→ (x · y)> (x · z)

• 1 · x = x ·1 = x

• x · (y · z) = (x · y) · z

The effect monoid is commutative iff x · y = y · x for all x, y.

An effect monoid is a monoid in the category of effect algebras [12].

Lemma 6. In any effect monoid, x ·0 = 0 · x = 0.

Proof. We have

x · (0>0) = x ·0
∴ x ·0> x ·0 = x ·0

= x ·0>0

∴ x ·0 = 0

by cancellation. Similarly for 0 · x.

Definition 7 (Effect Module). An effect module over an effect monoid E is an effect algebra A with a
binary operation · : E×A→ A called scalar multiplication such that, for all x,y,z ∈ E:

• r · (x> y) ∼→ (r · x)> (r · y)

• (r > s) · x ∼→ (r · x)> (s · x)

• (r · s) · x = r · (s · x)

• 1 · x = x

Definition 8 (Effect Module Homomorphism). Let A and B be effect modules over E. An effect module
homomorphism φ : A→ B is an effect algebra homomorphism such that, for all r ∈ E and x ∈ A,

φ(r · x) = r ·φ(x) .

2.2.1 Examples

1. For any Hilbert space H, the set of effects over H forms an effect module over the effect monoid
[0,1], with F >G = F +G iff F +G is an effect [14].

2. Given a C∗-algebra A, the set of effects in A (positive elements below the unit) form an effect
module over the real numbers [0,1].

136 QPEL

2.3 Convex Sets

We describe the category of convex sets over any effect monoid. The states of a quantum system will
form a convex set over the effect monoid of probabilities.

Definition 9. Given an effect monoid E, the distribution monad DE : Set→ Set is defined as follows.

DEX = {φ : X → E : suppφ is finite, ∑
x∈X

φ(x) exists and is equal to 1}

where suppφ = {x ∈ X : φ(x) 6= 0}.
For f : X → Y ,

DE f (φ)(y) = ∑
f (x)=y

φ(x) (φ ∈DEX ,y ∈ Y) .

The unit ηA : A→DEA is defined by

ηA(a)(a′) =

{
1 if a = a′

0 if a 6= a′

The multiplication µA : D2
EA→DEA is defined by

µA(Φ)(a) = ∑
φ∈DE A

(Φ(φ) ·φ(a)) .

The category ConvE of convex sets and affine functions over E is the Eilengberg-Moore category of
DE . A convex set may thus be thought of as a set X together with a function mapping any finite tuple
〈r1, . . . ,rn〉 of elements of M that sum to 1, and any tuple 〈x1, . . . ,xn〉 of elements of X , to an element
r1x1 + · · ·+ rnxn of X .

Theorem 10. The distribution monad is a strong monad. It is a commutative monad iff E is commutative.

Proof. The tensorial strength tAB : A×DEB→DE(A×B) is given by

tAB(a,φ)(a′,b) =

{
φ(b) if a = a′

0 if a 6= a′

Corollary 10.1. If E is commutative, then ConvE is a symmetric monoidal category.

Proof. See [15].

The convex set A⊗B consists of all sums r1(a1,b1)+ · · ·+ rn(an,bn) (r1 > · · ·> rn = 1,ai ∈ A,bi ∈
B), quotiented by the appropriate equivalence relation. An affine function f : A⊗B→ C in ConvM is
determined by the values f (a,b) for a ∈ A and b ∈ B

Theorem 11. The hom-functors ConvE [−,E] a EModE [−,E] : ConvE � EModop
E form an adjunction.

Proof. To appear in [13]. The special case E = [0,1] was proved in [11].

Robin Adams 137

3 Syntax and Rules of Deduction

We begin with a system that represents a symmetric monoidal closed category with distributive coprod-
ucts, with an effect module of predicates over each object.

Type A ::= A⊗A | I | A+B
Term M ::= x |M⊗M | let x⊗ x = M in M | 〈〉 |

inl(M) | inr (M) |
(case M of inl(x) 7→M | inr (x) 7→M) |
(measure φ 7→M | · · · | φ 7→M)

Effect φ ::= 0 | φ >φ | φ⊥ | φ ·ψ | (case M of inl(x) 7→ φ | inr (x) 7→ φ)
Context Γ ::= 〈〉 | Γ,x : A
Judgement J ::= Γ `M : A | Γ `M = N : A | Γ ` φ eff | Γ ` φ ≤ ψ

The intuition is as follows:

• Each type represents a state space for a quantum computer at some stage of a calculation. For
example, the type (qbit⊗qbit)+ (qbit⊗qbit⊗qbit) represents a computer that has either two
or three qubits in memory (depending on decisions earlier in the program). (The type qbit will be
introduced in Section 5.)

The type I represents a singleton data type. A term of type A⊗B is a pair consisting of a term of
type A and a term of type B (possibly entangled). A term of type A+B is either a term of type A
or a term of type B (with ’or’ understood here classically).

• A term M such that Γ ` M : A represents a quantum algorithm that takes inputs as given by the
context Γ, and returns an output of type A.

If the judgement Γ `M = N : A is derivable, then the algorithms M and N always produce the same
output state given the same input state.

• An effect in context Γ represents an observable measurement that may be performed on the system
denoted by Γ.

The effect 0 is the always false effect. The effect φ >ψ is the sum of φ and ψ , which may only be
formed if φ and ψ are orthogonal. The effect φ⊥ is the orthocomplement of φ .

We write

1 for 0⊥

>n
i=1φi for ((· · ·(φ1 >φ2)> · · ·)>φn

measure n
i=1φi 7→Mi for measure φ1 7→M1 | · · · | φn 7→Mn

φ ⊥ ψ for φ ≤ ψ
⊥

We write Γ ` φ ≡ ψ for the two judgements Γ ` φ ≤ ψ and Γ ` ψ ≤ φ .
The rules of deduction are as follows.

Note Note in particular the rule (>). For φ > ψ to be a well-formed effect in context Γ, we must first
have a derivation of Γ ` φ ⊥ ψ , i.e. Γ ` φ ≤ ψ⊥.

138 QPEL

Structural Rule
Γ,x : A,y : B,∆ `J

(exch)
Γ,y : B,x : A,∆ `J

Term Formation

(var) (x : A ∈ Γ)
Γ ` x : A

Γ `M : A ∆ ` N : B(⊗)
Γ,∆ `M⊗N : A⊗B

Γ `M : A⊗B ∆,x : A,y : B ` N : C
(let)

Γ,∆ ` let x⊗ y = M in N : C

(〈〉)
Γ ` 〈〉 : I

Γ `M : A(inl)
Γ ` inl(M) : A+B

Γ `M : B(inr)
Γ ` inr (M) : A+B

Γ `M : A+B ∆,x : A ` N : C ∆,y : B ` P : C
(case)

Γ,∆ ` case M of inl(x) 7→ N | inr (y) 7→ P : C

Γ ` 1≤>n
i=1φi ∆ `Mi : A (1≤ i≤ n)

(measure)
Γ,∆ `measure n

i=1φi 7→Mi : A

Equality of Terms
Γ `M : A(ref)

Γ `M = M : A
Γ `M = N : A(sym)
Γ ` N = M : A

Γ `M = N : A Γ ` N = P : A(trans)
Γ `M = P : A

Congruences

Γ `M = M′ : A ∆ ` N = N′ : B(⊗-eq)
Γ,∆ `M⊗N = M′⊗N′ : A⊗B

Γ `M = M′ : A⊗B ∆,x : A,y : B ` N = N′ : C
(let-eq)

Γ,∆ ` (let x⊗ y = M in N) = (let x⊗ y = M′ in N′) : C

Γ `M = N : A(inl-eq)
Γ ` inl(M) = inl(N) : A+B

Γ `M = N : B(inr-eq)
Γ ` inr (M) = inr (N) : A+B

Γ `M = M′ : A+B ∆,x : A ` N = N′ : C ∆,y : B ` P = P′ : C
(case-eq)

Γ,∆ ` (case M of inl(x) 7→ N | inr (y) 7→ P)
= (case M′ of inl(x) 7→ N′ | inr (y) 7→ P′) : C

Γ ` 1≤>n
i=1φi Γ ` φi ≡ ψi (1≤ i≤ n)

∆ `Mi = Ni : A (1≤ i≤ n)
(measure-eq)

Γ,∆ ` (measure n
i=1φi 7→Mi) = (measure n

i=1ψi 7→ Ni) : A

Robin Adams 139

β -conversions

Γ `M : A ∆ ` N : B Θ,x : A,y : B ` P : C
(β⊗)

Γ,∆,Θ ` (let x⊗ y = M⊗N in P) = [M/x,N/y]P : C

Γ `M : A ∆,x : A ` N : C ∆,y : B ` P : C
(β+1)

Γ,∆ ` case inl(M) of inl(x) 7→ N | inr (y) 7→ P = [M/x]N : C

+
Γ `M : B ∆,x : A ` N : C ∆,y : B ` P : C

(β+2)
Γ,∆ ` case inr (M) of inl(x) 7→ N | inr (y) 7→ P = [M/y]P : C

η-conversions

Γ `M : A⊗B(η⊗)
Γ `M = let x⊗ y = M in x⊗ y : A⊗B

Γ `M : I(ηI)
Γ `M = 〈〉 : I

Γ `M : A+B(η+)
Γ `M = case M of inl(x) 7→ inl(x) | inr (y) 7→ inr (y) : A+B

Commuting Conversions

Γ `M : A⊗B ∆,x : A,y : B ` N : C⊗D
Θ, t : C,u : D ` P : E

(let-commute)
Γ,∆,Θ ` (let x⊗ y = M in let t⊗u = N in P)
= (let t⊗u = let x⊗ y = M in N in P) : E

Γ `M : A+B ∆,x : A ` N : C⊗D
∆,y : B ` P : C⊗D Θ,z : C, t : D ` Q : E

(let-case)
Γ,∆,Θ ` (let z⊗ t = case M of inl(x) 7→ N | inr (y) 7→ P in Q)

= case M of inl(x) 7→ let z⊗ t = N in Q |
inr (y) 7→ let z⊗ t = P in Q : E

Γ `M : A⊗B ∆,x : A,y : B ` N : C Θ ` P : D
(let-⊗)

Γ,∆,Θ ` (let x⊗ y = M in N)⊗P = let x⊗ y = M in (N⊗P)

Γ `M : A+B ∆,x : A ` N : C+D ∆,y : B ` P : C+D
Θ,z : C ` Q : E Θ, t : D ` R : E

(case-commute)
Γ,∆,Θ ` case M of inl(x) 7→ (case N of inl(z) 7→ Q | inr (t) 7→ R) |

inr (y) 7→ (case P of inl(z) 7→ Q | inr (t) 7→ R) |
= case (case M of inl(x) 7→ N | inr (y) 7→ P) of inl(z) 7→ Q | inr (t) 7→ R : E

Γ ` Q : A+B ∆,a : A `M : C ∆,b : B ` N : C Θ ` P : D
(case-⊗)

Γ,∆,Θ ` (case Q of inl(a) 7→M | inr (b) 7→ N)⊗P
= case Q of inl(a) 7→M⊗P | inr (b) 7→ N⊗P : C⊗D

140 QPEL

Rules for Measurement

Γ ` 1≤>n
i=1φi ∆ `Mx : A (1≤ i≤ n)

(measure-perm) (p a permutation of {1, . . . ,n})
Γ,∆ ` (measure n

i=1φi 7→Mi)
= (measure n

i=1φp(i) 7→Mp(i)) : A

Γ ` 1≤>n
i=1φi

∆ `Mi : A (1≤ i≤ n+1)
(measure-0)

Γ,∆ ` (measure φ1 7→M1 | · · · | φn 7→Mn | 0 7→Mn+1)
=measure φ1 7→M1 | · · · | φn 7→Mn : A

Γ `M : A(measure-1)
Γ ` (measure 1 7→M) = M : A

` 1≤ φ >ψ > χ1 > · · ·> χn Γ `M : A Γ ` P1 : A · · · Γ ` Pn : A
(measure-plus)

Γ ` (measure φ >ψ 7→M | χ1 7→ P1 | · · · | χn 7→ Pn)
= (measure φ 7→M | ψ 7→M | χ1 7→ P1 | · · · | χn 7→ Pn)

Γ,x : A ` 1≤>n
i=1φi Γ,y : B ` 1≤>n

i=1ψi

∆ `M : A+B Θ ` Ni : C (1≤ i≤ n)
(measure-case)

Γ,∆,Θ `measure n
i=1(case M of inl(x) 7→ φi | inr (y) 7→ ψi) 7→ Ni

= case M of inl(x) 7→ (measure n
i=1φi 7→ Ni) |

inr (y) 7→ (measure n
i=1ψi 7→ Ni)

Effect Formation
(0)

Γ ` 0 eff
Γ ` φ eff

(⊥)
Γ ` φ⊥ eff

Γ ` φ ⊥ ψ
(>)

Γ ` φ >ψ eff

` φ eff Γ ` ψ eff
(mult)

Γ ` φ ·ψ eff

Γ,x : A ` φ eff Γ,y : B ` ψ eff ∆ `M : A+B
(case)

Γ,∆ ` case M of inl(x) 7→ φ | inr (y) 7→ ψ eff

Derivability
Γ ` φ eff

(≤-ref)
Γ ` φ ≤ φ

Γ ` φ ≤ ψ Γ ` ψ ≤ χ
(≤-trans)

Γ ` φ ≤ χ

Γ ` φ eff
(0-≤)

Γ ` 0≤ φ

Γ ` φ ≤ ψ
(⊥-antitone)

Γ ` ψ⊥ ≤ φ⊥
Γ ` φ eff

(⊥⊥0)
Γ ` φ ≤ φ⊥⊥

Γ ` φ ⊥ ψ
(≤->)

Γ ` φ ≤ φ >ψ

Γ ` φ ≤ ψ Γ ` ψ ≤ χ⊥
(>-mono)

Γ ` φ > χ ≤ ψ > χ

Robin Adams 141

Γ ` φ ⊥ ψ
(>-comm≤)

Γ ` φ >ψ ≤ ψ >φ

Γ ` φ >ψ ⊥ χ
(⊥-rotate)

Γ ` ψ > χ ⊥ φ

Γ ` φ >ψ ⊥ χ
(>-assoc≤)

Γ ` φ > (ψ > χ)≤ (φ >ψ)> χ

Γ ` φ eff
(>-0)

Γ ` φ >0≤ φ

Γ ` 1≤ φ >ψ
(ortho1)

Γ ` ψ⊥ ≤ φ

Γ ` φ eff
(ortho2)

Γ ` 1≤ φ >φ⊥

` φ ⊥ ψ Γ ` χ eff
(distL)

Γ ` φ ·χ ⊥ ψ ·χ
Γ ` (φ >ψ) ·χ ≡ φ ·χ >ψ ·χ

` φ eff Γ ` ψ ⊥ χ
(distR)

Γ ` φ ·ψ ⊥ φ ·χ
Γ ` φ · (ψ > χ)≡ φ ·ψ >φ ·χ

Γ ` φ eff
(unitL)

Γ ` 1 ·φ ≡ φ

` φ eff
(unitR)

Γ ` φ ·1≡ φ

` φ eff ` ψ eff Γ ` χ eff
(assoc)

Γ ` φ · (ψ ·χ)≡ (φ ·ψ) ·χ

` φ eff ` ψ eff
(comm) ` φ ·ψ ≡ ψ ·φ

Γ,x : A ` φ eff Γ,y : B ` ψ eff ∆ `M = N : A+B
(case-cong)

Γ,∆ ` case M of inl(x) 7→ φ | inr (y) 7→ ψ ≡ case N of inl(x) 7→ φ | inr (y) 7→ ψ

Γ,x : A ` φ ≤ φ ′ Γ,y : B ` ψ ≤ ψ ′ ∆ `M : A+B
(case-mono)

Γ,∆ ` case M of inl(x) 7→ φ | inr (y) 7→ ψ ≤ case M of inr (x) 7→ φ ′ | inr (y) 7→ ψ ′

Γ,x : A ` φ eff Γ,y : B ` ψ eff ∆ `M : A
(β+1-eff)

Γ,∆ ` case inl(M) of inl(x) 7→ φ | inr (y) 7→ ψ ≡ [M/x]φ

Γ,x : A ` φ eff Γ,y : B ` ψ eff ∆ `M : B
(β+2-eff)

Γ,∆ ` case inr (M) of inl(x) 7→ φ | inr (y) 7→ ψ ≡ [M/x]ψ

Γ,z : A+B ` φ eff
(η+-eff)

Γ,z : A+B ` φ ≡ case z of inl(x) 7→ [inl(x)/z]φ | inr (y) 7→ [inr (y)/z]φ

Γ,x : A ` φ ⊥ φ ′ Γ,y : B ` ψ ⊥ ψ ′ ∆ `M : A+B
(case->)

Γ,∆ ` case M of inl(x) 7→ (φ >φ ′) | inr (y) 7→ (ψ >ψ ′)
≡ (case M of inl(x) 7→ φ | inr (y) 7→ ψ)> (case M of inl(x) 7→ φ ′ | inr (y) 7→ ψ ′)

Γ,x : A ` φ eff Γ,y : B ` ψ eff ∆ `M : A+B
(case-⊥)

Γ,∆ ` case M of inl(x) 7→ φ⊥ | inr (y) 7→ ψ⊥ ≡ (case M of inl(x) 7→ φ | inr (y) 7→ ψ)⊥

Γ `M : A+B ∆,x : A ` φ ≤ χ ∆,y : B ` ψ ≤ χ
(case-≤)

Γ,∆ ` (case M of inl(x) 7→ φ | inr (y) 7→ ψ)≤ χ

Γ,x : A ` φ eff Γ,y : B ` ψ eff ∆ `M : A+B ` χ eff
(case-times)

Γ,∆ ` (case M of inl(x) 7→ χ ·φ | inr (y) 7→ χ ·ψ)
≡ χ · case M of inl(x) 7→ φ | inr (y) 7→ ψ

142 QPEL

3.1 Metatheorems

We can prove the following properties, which show that the typing system is well behaved.

Lemma 12.

1. Substitution If Γ `M : A and ∆,x : A,∆′ `J then ∆,Γ,∆′ ` [M/x]J .

2. Weakening If Γ `M : A and Γ⊆ ∆ then ∆ `M : A.

Proof. The proof is straightforward, by induction on derivations.

Lemma 13 (Equation Validity).

1. If Γ `M = N : A then Γ `M : A and Γ ` N : A.

2. If Γ ` φ ≤ ψ then Γ ` φ eff and Γ ` ψ eff.

Proof. Let QPEL′ be the system where the rule (>) is replaced with

Γ ` φ ⊥ ψ Γ ` φ eff Γ ` ψ eff
(>′)

Γ ` φ >ψ eff

It is straightforward to prove that QPEL′ satisfies Equation Validity. It follows that the derivable judge-
ments of QPEL and QPEL′ are the same, and hence that QPEL satisfies Equation Validity.

Lemma 14 (Functionality).

1. If Γ `M = N : A and ∆,x : A ` P : B then Γ,∆ ` [M/x]P = [N/x]P : B.

2. If Γ `M = N : A and ∆,x : A ` φ eff then Γ,∆ ` [M/x]φ ≡ [N/x]φ .

Proof. Let QPEL′′ be the system where (measure) is replaced with the rule

Γ ` 1≤>n
i=1φi Γ `>n

i=1φi eff ∆ `Mi : A (1≤ i≤ n)
(measure′′)

Γ,∆ `measure n
i=1φi 7→Mi : A

We can prove that QPEL′′ satisfies Equation Validity, using the same proof technique as Lemma 13.
It follows that QPEL and QPEL′′ have the same derivable judgements. It is straightforward to prove that
QPEL′′ satisfies Functionality, and so it follows that QPEL satisfies Functionality.

Lemma 15. 1. If Γ,x : A,y : B `M : C, ∆ ` N : A⊗B and Θ,z : C ` P : D, then

Γ,∆,Θ ` [let x⊗ y = N in M/z]P = (let x⊗ y = N in [M/z]P) : D

2. If Γ `M : A+B, ∆,x : A ` N : C, ∆,y : B ` P : C and Θ,z : C ` Q : D, then

Γ,∆,Θ `[case M of inl(x) 7→ N | inr (y) 7→ P/z]Q

= case M of inl(x) 7→ [N/z]Q | inr (y) 7→ [P/z]Q : D

Robin Adams 143

Proof. The proof of this lemma involves noting that local definitions can be defined from the rules for I
and ⊗, which to the best of my knowledge is a new result about linear type theory.

If Γ `M : A and ∆,x : A ` N : B, we define the term let x = M in N to be

let x⊗ y = M⊗〈〉 in N

so Γ,∆ ` let x = M in N : B and

Γ,∆ ` (let x = M in N) = [M/x]N : B .

From the rules of derivation in QPEL, we can show that:

• If Γ ` N : A⊗B and ∆,x : A,y : B `M : C and Θ,z : C ` P : D then

Γ,∆,Θ ` (let z = let x⊗ y = N in M in P) = (let x⊗ y = N in let z = M in P) : D

• If Γ `M : A+B, ∆,x : A ` N : C, ∆,y : B ` P : C, and Θ,z : C ` Q : D, then

Γ,∆,Θ `let z = (case M of inl(x) 7→ N | inr (y) 7→ P) in Q

= case M of inl(x) 7→ let z = N in Q | inr (y) 7→ let z = P in Q : D

The result then follows.

4 Semantics

4.1 State and Effect Triangles

Let E be a commutative effect monoid. Recall the adjunction ConvE [−,E] a EModE [−,E] : ConvE �
EModop

E .

Definition 16 (State-and-Effect Triangle). A state-and-effect triangle consists of:

• a symmetric monoidal category V with binary coproducts that distribute over the tensor, such that
the tensor unit is terminal;

• an effect monoid E;

• a functor P : V → EModop
E that preserves finite coproducts and the terminal object;

• a symmetric monoidal functor S : V → ConvE ;

• given a finite set r1, . . . ,rn ∈ PA such that r1 > · · ·> rn = 1, an arrow measA(r1, . . . ,rn) : A→ n · I
in V ;

• a natural transformation α : P→ ConvE [S−,E];

• a natural transformation β : S→ EModE [P−,E];

144 QPEL

such that

1. given a permutation p on {1, . . . ,n}, we have

measA(rp(1), . . . ,rp(n)) = πp ◦measA(p1, . . . , pn)

where πp : n · I→ n · I satisfies

πp ◦κi = κp(i)

2. measA(p1, . . . , pn,0) = κ1 ◦measA(p1, . . . , pn) : A→ n · I→ (n+1) · I

3. measA(p>q,r1, . . . ,rn) = [κ1,κ1,κ2, . . . ,κn+1]◦measA(p,q,r1, . . . ,rn)

4. measA is natural in A; i.e. given f : A→ B,

measA(r1, . . . ,rn)◦ f = measB(P f (r1), . . . ,P f (rn))

5. αA(p)(x) = βA(x)(p) for all A, x, p.

We think of the arrows in V as computations, the arrows SA→ SB as state transformers, and the
arrows PA→ PB as predicate transformers.

We refer to α and β as the validity transformations, since the intuition is that αA(p)(x) = βA(x)(p)
is the probability of the statement ’Predicate p is valid at state x’.

EModop
E

--> ConvEmm

V

P

\\

S

CC

1

Examples The following are all examples of state-and-effect triangles:

• Take V to be the category FdHilbUn of finite-dimensional Hilbert spaces with unitary maps, PH
to be the set of effects on H (positive operators less than I), and SH to be the set of density matrices
on H.

• Take V to be Kl(DE), the Kleisli category of the distribution monad DE . S is the canonical
functor from the Kleisli category to the Eilenberg-Moore category. For X ∈ Set, PX is the set of
all functions X →DE(2), equivalently the set of functions X → E.

• Take V to be CStarop
PU, the category of C∗-algebras and positive unital maps. PA is the set of all

effects on a, [0,1]A = {a ∈ A : 0≤ a≤ 1}. SA is the set of all positive unital maps A→ C.

• Take V to be Set, PA the power set of A, and SA = A. The effect monoid in this case is {0,1}.

Robin Adams 145

• More generally, let (V ,⊗, I) be any symmetric monoidal category with finite coproducts (0,+)
such that:

– diagrams of the following form are always pullbacks in V :

A+X
1+f //

g+1

��

A+ Y

g+1

��

Aκ1

��

A

κ2

��
B +X

1+f
// B + Y A+X

1+f
// A+ Y

1

– for each non-zero n ∈ N, the family of maps

[Bi,κ2] : n ·X +1→ X +1

are jointly monic where where, for 1 ≤ i ≤ n, the ‘partial projection’ Bi : n ·X → X + 1 is
such that

Bi ◦κ j =

{
κ1 if i = j
κ2◦! if i 6= j

Take E = V [1,2]. Denife P to be the functor V [−,2], and S to be the functor V [−,1]. Define α

and β by
α(p)(ω) = β (ω)(p) = p◦ω .

for p : A→ 2 and ω : 1→ A.

The arrow measA(r1, . . . ,rn) is the unique arrow such that Bi ◦measA(r1, . . . ,rn) = ri.

See [13] for a verification that these constructions are all well-defined and satisfy the axioms of a
state-and-effect triangle. The previous examples are all special cases of this construction.

Remarks

1. We do not want S always to be a strong monoidal functor. Intuitively, S(A)⊗ S(B) gives the
mixtures of pure states of A⊗B, while S(A⊗B) also includes entangled states, and these will not
be isomorphic in general.

2. The condition αA(p)(x) = βA(x)(p) can also be written as α = Gβ ◦ηP or as β = Fα ◦εS, where
F = EModE [−,E] : EModop

E → ConvE and G = ConvE [−,E] : ConvE → EModop
E .

4.2 Semantics

Definition 17. Given any state-and-effect triangle, we interpret the syntax as follows.

• We associate with every type A an object [[A]] of V thus:

[[I]] = I

[[A⊗B]] = [[A]]⊗ [[B]]

[[A+B]] = [[A]]+ [[B]]

146 QPEL

• We associate with every context Γ an object [[Γ]] of V as follows.

[[〈〉]] = I

[[Γ,x : A]] = [[Γ]]⊗ [[A]]

• We associate with every term Γ `M : A an arrow [[M]] = [[Γ `M : A]] : [[Γ]]→ [[A]] in V as follows.

– [[x1 : A1, . . . ,xn : An ` xi : Ai]] is the arrow

[[A1]]⊗ · · · ⊗An I ⊗ · · · ⊗ I ⊗ [[Ai]]⊗ I ⊗ · · · ⊗ I [[Ai]]
!⊗···⊗!⊗1⊗!⊗···⊗! ∼=

1

– [[M⊗N]] = [[M]]⊗ [[N]]

– [[Γ,∆ ` let x⊗ y = M in N : C]] is

[[Γ]] ⊗ [[∆]] [[A]] ⊗ [[B]] ⊗ [[∆]] [[∆]] ⊗ [[A]] ⊗ [[B]] [[C]]
[[M]]⊗1 ∼= [[N]]

1

– [[Γ ` 〈〉 : I]] =! : [[Γ]]→ I
– [[inl(M)]] = κ1 ◦ [[M]]

– [[inr (M)]] = κ2 ◦ [[M]]

– [[Γ,∆ ` case M of inl(x) 7→ N | inr (y) 7→ P : C]] is the arrow

[[Γ]] ⊗ [[∆]] ([[A]] + [[B]]) ⊗ [[∆]] ([[∆]] ⊗A) + ([[∆]] ⊗B) [[C]]
[[M]]⊗1 ∼= [[[N]],[[P]]]

1

– [[Γ,∆ `measure φ1 7→M1 | · · · | φn 7→Mn : A]] is the arrow

[[Γ]] ⊗ [[∆]] n · I ⊗ [[∆]] n · [[∆]] [[A]]
meas[[Γ]]([[φ1]],...,[[φn]])⊗1 ∼= [[[M1]],...,[[Mn]]]

1

• We associate with every proposition φ such that Γ ` φ eff, an element [[φ]] ∈ P[[Γ]] as follows.

[[0]] = 0

[[φ⊥]] = [[φ]]⊥

[[φ >ψ]] = [[φ]]> [[ψ]]

[[φ ·ψ]] = [[φ]] · [[ψ]]

In this last line, if Γ ` φ ·ψ eff then [[φ]] ∈ PI and [[ψ]] ∈ P[[Γ]]. We use the fact that E ∼= PI (since
P preserves the terminal object), so we may take [[φ]] to be an element of E.
[[Γ,∆ ` case M of inl(x) 7→ φ | inr (y) 7→ ψ]] is defined as follows. We have

1⊗ [[M]] : [[Γ]]⊗ [[∆]]→ [[Γ]]⊗ ([[A]]+ [[B]]) = ([[Γ]]⊗ [[A]])+([[Γ]]⊗ [[B]])

and so
P(1⊗ [[M]]) : P([[Γ]]⊗ [[A]])×P([[Γ]]⊗ [[B]])→ P([[Γ]]⊗ [[∆]])

Robin Adams 147

(Recall that P : V → EModop
E preserves binary coproducts, and so P(A+B) is the product of PA

and PB in EModE .)
We define [[case M of inl(x) 7→ φ | inr (y) 7→ ψ]] to be

P(1⊗ [[M]])([[φ]], [[ψ]]) .

Lemma 18. 1. If Γ,x : A `M : B and ∆ ` N : A, then [[Γ,∆ ` [N/x]M : B]] is the arrow

[[Γ]] ⊗ [[∆]] [[Γ]] ⊗ [[A]] [[B]]
1⊗[[N]] [[M]]

1

2. If Γ,x : A ` φ eff and ∆ `M : A then

[[[M/x]φ]] = P(1[[Γ]]⊗ [[M]])([[φ]])

Proof. The two parts are proved simultaneously, by induction on M and φ . All cases are straightforward.

Definition 19. In a state-and-effect triangle, a judgement Γ ` M = N : A is true iff [[Γ `M : A]] =
[[Γ ` N : A]]. A judgement Γ ` φ ≤ ψ is true iff [[Γ ` φ eff]] ≤ [[Γ ` ψ eff]], in the order in the effect
module P[[Γ]].

Theorem 20 (Soundness). Any derivable judgement is true in any state-and-effect triangle.

Proof. Straightforward induction on derivations.

Theorem 21 (Completeness). Any judgement that is true in every state-and-effect triangle is derivable.

Proof. Define a state-and-effect triangle as follows.
The category V is the category with objects the types of QPEL, and arrows A→ B the pairs (x,M)

such that x : A `M : B, quotiented by:

• (x : A `M : B) = (y : A ` [y/x]M : B) if x 6= y and y does not occur in M;

• If x : A `M = N : B is derivable, then (x : A `M : B) = (x : A ` N : B).

The identity on A is x : A ` x : A. The composite of x : A `M : B and y : B ` N : C is x : A ` [M/y]N : C.
This is well-defined by Substitution and Functionality.

We shall write an arrow x : A `M : B as M[x] : A→ B, and then write M[N] for the term [N/x]M.

Tensor Product For types A and B, the tensor product is A⊗B.
Given arrows M[a] : A→ A′ and N[b] : B→ B′, define M⊗N : A⊗B→ A′⊗B′ by

(M⊗N)[z] = let a⊗b = z in M[a]⊗N[b] .

Coproducts For types A and B, the coproduct is A+B, with injections

x : A ` inl(x) : A+B, y : B ` inr (y) : A+B .

Given M[a] : A→C and N[b] : B→C, the mediating arrow [M,N] : A+B→C is defined by

[M,N][x] = case x of inl(a) 7→M[a] | inr (b) 7→ N[b] .

148 QPEL

Effect Monoid The effect monoid E is the set of all propositions φ such that ` φ eff, quotiented
by: φ = ψ iff ` φ ≤ ψ and ` ψ ≤ φ .

We have that φ >ψ is defined iff ` φ >ψ eff (equivalently, iff ` φ ≤ ψ⊥), in which case the partial
sum is φ > ψ . The zero element is 0, and the orthocomplement of φ is φ⊥. The product of φ and ψ is
φ ·ψ .

Predicate Functor The functor P is defined by: PA is the set of all pairs (x,φ) such that x : A` φ eff,
quotiented by:

• (x,φ) = (y, [y/x]φ) if x 6≡ y and y does not occur in φ ;

• (x,φ) = (x,ψ) if x : A ` φ ≡ ψ .

This is an effect module under 0, ⊥, >, ·.
Given M[a] : A→ B, then PM : PB→ PA is defined by

PM(b,φ)≡ (a, [M[a]/b]φ) .

State Functor The functor S is defined by: SA is the set of all terms M such that `M : A, quotiented
by: M = N iff `M = N : A.

We make this into a convex set by setting

φ1M1 + · · ·+φnMn =measure φ1 7→M1 | · · · | φn 7→Mn .

Given M[a] : A→ B, we define SM : SA→ SB by

SM(N)≡M[N] .

We make S into a symmetric monoidal functor by setting

φAB : SA⊗SB→ S(A⊗B)

φAB(M,N) = M⊗N

φ : {∗}→ SI

φ(∗) = 〈〉

Measurement Morphisms We have measA(φ1, . . . ,φn) =measure φ1 7→ in1(〈〉) | · · · | φn 7→ inn(〈〉),

where the terms ini(M) are the n canonical terms such that x : A ` ini(x) :

n︷ ︸︸ ︷
A+ · · ·+A.

Validity Transformations The transformation α is given by αA(x : A ` φ eff)(` M : A) ≡ (`
[M/x]φ eff), and so β is given by βA(`M : A)(x : A ` φ eff)≡ (` [M/x]φ eff).

Proof of Completeness We will prove that, if a judgement is true in this triangle, then it is deriv-
able.

Let Γ≡ x1 : A1, . . . ,xn : An. Then a straightforward induction shows that:

[[Γ `M : B]] = z : A1⊗·· ·⊗An ` let x1⊗·· ·⊗ xn = z in M : B

[[Γ ` φ eff]] = z : A1⊗·· ·⊗An ` let x1⊗·· ·⊗ xn = z in φ eff

Robin Adams 149

where this last effect is defined inductively thus:

let x1⊗·· ·⊗ xn = z in 0≡ 0

let x1⊗·· ·⊗ xn = z in φ
⊥ ≡ (let x1⊗·· ·⊗ xn = z in φ)⊥

let x1⊗·· ·⊗ xn = z in φ >ψ ≡ (let x1⊗·· ·⊗ xn = z in φ)> (let x1⊗·· ·⊗ xn = z in ψ)

let x1⊗·· ·⊗ xn = z in
case M of inl(x) 7→ φ | inr (y) 7→ ψ

≡



case (let x1⊗·· ·⊗ xn = z in M) of

inl(x) 7→ φ | inr (y) 7→ ψ

if z occurs in M
case M of inl(x) 7→ let x1⊗·· ·⊗ xn = z in φ |

inr (y) 7→ let x1⊗·· ·⊗ xn = z in ψ

otherwise

Suppose that the judgement Γ `M = N : A is true in this triangle. Then we have

z : A1⊗·· ·⊗An ` (let x1⊗·· ·⊗ xn = z in M) = (let x1⊗·· ·⊗ xn = z in N) : A

is derivable. By Substitution, we have

Γ ` (let x1⊗·· ·⊗ xn = x1⊗·· ·⊗ xn in M) = (let x1⊗·· ·⊗ xn = x1⊗·· ·⊗ xn in N) : A

is derivable, and hence Γ `M = N : A is derivable by (η⊗).
Suppose that Γ ` φ ≤ ψ is true in this triangle. Then

z : A1⊗·· ·⊗An ` (let x1⊗·· ·⊗ xn = z in φ)≤ (let x1⊗·· ·⊗ xn = z in ψ)

is derivable. By Substitution, we have

Γ ` (let x1⊗·· ·⊗ xn = x1⊗·· ·⊗ xn in φ)≤ (let x1⊗·· ·⊗ xn = x1⊗·· ·⊗ xn in φ) .

It is easy to show, by induction on φ , that

Γ ` ((let x1⊗·· ·⊗ xn = x1⊗·· ·⊗ xn in φ)≡ φ .

It follows that Γ ` φ ≤ ψ is derivable.

5 Qubits

There are several ways in which the system may be extended to represent qubits. The details below are
based on the Measurement Calculus [8].

We extend the system with:

Type A ::= · · · | qbit
Term M ::= · · · | |+〉 | XM | ZM | EMM
Effect φ ::= · · · |M = |+α〉

where α is a real number in [0,2π).

150 QPEL

The intention is that a term of type qbit represents a qubit. The term |+〉 represents a qubit in the
phase

|+〉= 1√
2
(|0〉+ |1〉) .

The terms XM and ZM denote the result of applying the Pauli-X and Z gates to the qubit M. The term
EMN denotes the result of applying the controlled Z gate to the pair of qubits M and N. The effect
M = |+α〉 denotes the projector on

|+α〉=
1√
2
(|0〉+ eiα |1〉)

Its orthocomplement, |+α〉⊥, is the projector on

|−α〉=
1√
2
(|0〉− eiα |1〉)

We write |−〉 for Z |+〉
We extend the system with the following rules of deduction.

` new |+〉 : qbit
Γ `M : qbit

Γ ` XM : qbit
Γ `M : qbit

Γ ` ZM : qbit
Γ `M : qbit Γ ` N : qbit

Γ ` EMN : qbit⊗qbit
Γ `M : qbit

(0≤ α < 2π)
Γ `M = |+α〉 eff

Γ `M : qbit Γ ` N : qbit
Γ ` E(XM)N = let x⊗ y = EMN in Xx⊗Zy : qbit⊗qbit

Γ `M : qbit Γ ` N : qbit
Γ ` E(ZM)N = let x⊗ y = EMN in Zx⊗ y : qbit⊗qbit

Γ `M : qbit
(0≤ α < 2π)

Γ ` (XM = |+α〉)≡ (M = |+−α〉)
Γ `M : qbit

(0≤ α < 2π)
Γ ` (ZM = |+α〉)≡ (M = |+α−π〉)

Γ `M : qbit
Γ ` X(XM) = M : qbit

Γ `M : qbit
Γ ` Z(ZM) = M : qbit

Γ `M : qbit
(0≤ α < 2π)

(X(ZM) = |+α〉)≡ (Z(XM) = |+α〉)
The metatheorems in Section 3.1 all still hold for the expanded system. The expanded system can

be given semantics in CStarop
PU straightforwardly. We will show in a forthcoming paper how these rules

are sufficient to prove the correctness of several quantum algorithms, including superdense coding and
gate-based teleportation.

6 Natural Isomorphisms

It is interesting to consider the question of when the natural transformations α and β are isomorphisms.
In the FdHilbUn example, α and β are both isomorphisms. [14]. In the Kl(D) example, α is an
isomorphism but β is not. In the CStarop

PU example, β is an isomorphism but α is not.
We can extend the system so it captures the state-and-effect triangles in which β is an isomorphism

as follows.

Robin Adams 151

Theorem 22 (Completeness). Add to the system the rule

` φ eff Γ `M : A Γ ` N : A ∆,x : A ` ψ eff
Γ,∆ ` [(measure φ 7→M|φ⊥ 7→ N)/x]ψ ≡ (φ · [M/x]ψ)> (φ⊥ · [N/x]ψ)

If a judgement is true in every state-and-effect triangle in which α and β are natural isomorphisms, then
it is derivable in this system.

I do not yet have a system that captures the state-and-effect triangles in which α is a natural isomor-
phism.

The case where α is an isomorphism is particularly interesting, as it is this that allows weakest
preconditions in d’Hondt-Panangaden’s sense to be defined.

Definition 23. Let P and Q be quantum predicates, and F a quantum program. Then P is a precondition
for Q with respect to M, PFQ, iff for all density matrices ρ , tr(Pρ) ≤ tr(QF(ρ)). P is the weakest
precondition for Q with respect to M, P = wp(F)(Q) iff P is the greatest precondition for Q w.r.t. M
under the Löwner order.

The weakest precondition for Q w.r.t. F always exists and is unique [9].

Lemma 24. In the FdHilbUn state-and-effect triangle, the weakest precondition for Q∈ PH with respect
to F : SK→ SH is α−1(F ◦α(P)). The operation wp(F) is therefore the effect module homomorphism
α−1 ◦ConvM[1,F]◦α : PH→ PK. The operation wp is therefore the natural transformation

wpHK = α
−1 ◦ConvM[1,−]◦α : ConvM[SK,SH]→ EModM[PH,PK]

Lemma 25. Given Γ `M : A and x : A ` φ eff, then in the FdHilbUn semantics:

wp([[Γ `M : A]])([[x : A ` φ eff]]) = [[Γ ` [M/x]φ eff]]

7 Conclusion, Related Work and Future Work

We have presented QPEL, a syntactic system involving both terms and propositions that captures the
categorical notion of ‘state-and-effect triangle’ which has proved to be a general setting for describing
both quantum programs, and effects. It is therefore a promising candidate for a language that allows us
to reason about and prove properties of quantum programs, and shows how such a logic for quantum
effects might be added on top of any quantum programming language.

Baltag and Smets in a series of papers [2, 5, 4, 3, 1] describe the language QDL, Quantum Dynamic
Logic. This is also a language for describing quantum programs and properties of quantum programs.
Their work differs from mine because their term language is an underspecification language (as is Dy-
namic Logic’s), and their propositions can denote all propositions expressible in classical logic, not just
those that correspond to quantum effects.

d’Hondt-Panangaden [9] and Ying [18] have investigated the notion of a quantum predicate. Ying
has given a Floyd-Hoare style logic which, given a program F written in his syntax, allows the weakest
precondition of a predicate with respect to F to be calculated. Their work differs from mine because
they do not give a syntax for the predicates, instead using the effects on a Hilbert space as the predicates
directly.

In the future, the most important tasks are to apply the system to prove the correctness of a simple
quantum program (e.g. the quantum teleportation protocol or quantum broadcasting), and to look for
ways to extend the system in order to represent looping and/or recursion.

152 QPEL

I will present the system in a more modular fashion, giving subsystems that can be interpreted in
other state-and-effect triangles, for example using complete lattices instead of effect modules. This may
lead to a general notion of a (2-)category of state-and-effect triangles.

I will also try to capture the conditions that make α or β a natural isomorphism. I will investigate the
conditions that a state-and-effect triangle needs to satisfy to represent the type of qubits correctly, possi-
bly involving Selinger’s notion of a Quantum Flowchart Category. I will investigate formal translations
between this system and other quantum programming languages, such as the quantum lambda calculus
[17]. I will investigate which of Ying’s equations on weakest preconditions [18] can be derived within
our system.

Acknowlegdements Thanks to Sam Staton and Bart Jacobs for many helpful discussions.

References

[1] Alexandru Baltag & Sonja Smets (2004): The Logic of Quantum Programs. In: QPL 2004, pp. 39–56.

[2] Alexandru Baltag & Sonja Smets (2005): Complete Axiomatizations for Quantum Actions. International
Journal of Theoretical Physics 44, doi:10.1007/s10773-005-8022-2.

[3] Alexandru Baltag & Sonja Smets (2005): LQP: The Dynamic Logic of Quantum Information. Mathematical
Structures in Computer Science, doi:10.1017/s0960129506005299.

[4] Alexandru Baltag & Sonja Smets (2011): Quantum Logic as a Dynamic Logic. Synthese 179, pp. 285–306,
doi:10.1007/s11229-010-9783-6.

[5] Alexandru Baltag & Sonja Smets (2012): The Dynamic Turn in Quantum Logic. Synthese 186, pp. 753–773,
doi:10.1007/s11229-011-9915-7.

[6] Nick Benton, Gavin Bierman, Valeria De Paiva & Martin Hyland (1993): A Term Calculus for Intuition-
istic Linear Logic. In: TLCA, Lecture Notes in Computer Science 664, Springer-Verlag, pp. 75–90,
doi:10.1007/BFb0037099.

[7] P. N. Benton (1995): A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract).
In: Selected Papers from the 8th International Workshop on Computer Science Logic, CSL ’94, Springer-
Verlag, London, UK, UK, pp. 121–135, doi:10.1007/bfb0022251.

[8] Vincent Danos, Elham Kashefi, Prakash Panangaden & Simon Perdrix (2009): Extended Measurement
Calculus. In: Semantic Techniques for Quantum Computation, chapter 5, Cambridge University Press,
doi:10.1017/CBO9781139193313.008.

[9] Ellie d’Hondt & Prakash Panangaden (2006): Quantum Weakest Preconditions. Math Struct in Comp Science
16, pp. 429–451, doi:10.1017/S0960129506005251.

[10] A. Dvurečenskij & S. Pulmannov á (2000): New Trends in Quantum Structures. Kluwer Academic Publish-
ers, Dordrecht, doi:10.1007/978-94-017-2422-7.

[11] Bart Jacobs (2010): Convexity, duality, and effects. In C. S. Clade & V. Sassone, editors: IFIP Theo-
retical Computer Science2010, IFIP Adv. in Inf. and Comm. Techn. 82 (1), Springer, Boston, pp. 1–19,
doi:10.1007/978-3-642-15240-5 1.

[12] Bart Jacobs (2011): Probabilities, Distribution Monads, and Convex Categories. Theor. Comput. Sci.
412(28), pp. 3323–3336, doi:10.1016/j.tcs.2011.04.005.

[13] Bart Jacobs (2014): New Directions in Categorical Logic, for Classical, Probabilistic and Quantum Logic.
To appear in Logical Methods in Computer Science. http://arxiv.org/abs/1205.3940

[14] Bart Jacobs & Jorik Mandemaker (2013): Relating Operator Spaces via Adjunctions. In J. Chubb Reimann,
V. Harizanov & A. Eskandarian, editors: Logic and Algebraic Structures in Quantum Computing and Infor-
mation, Lect. Notes in Logic, Camb.

http://dx.doi.org/10.1007/s10773-005-8022-2
http://dx.doi.org/10.1017/s0960129506005299
http://dx.doi.org/10.1007/s11229-010-9783-6
http://dx.doi.org/10.1007/s11229-011-9915-7
http://dx.doi.org/10.1007/BFb0037099
http://dx.doi.org/10.1007/bfb0022251
http://dx.doi.org/10.1017/CBO9781139193313.008
http://dx.doi.org/10.1017/S0960129506005251
http://dx.doi.org/10.1007/978-94-017-2422-7
http://dx.doi.org/10.1007/978-3-642-15240-5$_$1
http://dx.doi.org/10.1016/j.tcs.2011.04.005
http://arxiv.org/abs/1205.3940

Robin Adams 153

[15] Anders Kock (1972): Strong functors and monoidal monads. Archiv der Mathematik 23(1), pp. 113–120,
doi:10.1007/BF01304852.

[16] Peter Selinger (2004): Towards a Quantum Programming Language. Math Struct in Comp Science 14(4),
pp. 527–586, doi:10.1017/S0960129504004256.

[17] P. Sellinger & B. Valiron (2010): Quantum Lambda Calculus. In S. Gay & I Mackie, edi-
tors: Semantical Techniques in Quantum Computation, Cambridge University Press, pp. 135–172,
doi:10.1017/cbo9781139193313.005.

[18] Mingsheng Ying (2011): Floyd-Hoare logic for quantum programs. ACM Trans. Program. Lang. Syst. 33(6),
p. 19, doi:10.1145/2049706.2049708.

http://dx.doi.org/10.1007/BF01304852
http://dx.doi.org/10.1017/S0960129504004256
http://dx.doi.org/10.1017/cbo9781139193313.005
http://dx.doi.org/10.1145/2049706.2049708

	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Effect Algebras and Effect Monoids
	2.2.1 Examples

	2.3 Convex Sets

	3 Syntax and Rules of Deduction
	3.1 Metatheorems

	4 Semantics
	4.1 State and Effect Triangles
	4.2 Semantics

	5 Qubits
	6 Natural Isomorphisms
	7 Conclusion, Related Work and Future Work

