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Most categorical models of meaning use a functor from the syntactic category to the semantic cate-
gory. When semantic information is available, the problem of grammar induction can therefore be
defined as finding preimages of the semantic types under this forgetful functor, lifting the informa-
tion flow from the semantic level to a valid reduction at the syntactic level. We study the complexity
of grammar induction, and show that for a variety of type systems, including pivotal and compact
closed categories, the grammar induction problem is NP-complete. Our approach could be extended
to linguistic type systems such as autonomous or bi-closed categories.

1 Introduction

1.1 Overview

Category theoretic approaches to linguistics are flourishing. They provide a convenient abstract frame-
work for both syntax and semantics [4], and these insights enable some progress on natural language
processing tasks [11]. This framework is flexible, because it allows for different types of grammars, such
as the Syntactic Calculus of Lambek [16] or Compact BilinearLogic [19], also known as pregroups [15].
It also allows for different kinds of compositional semantics, which can be distributional [4], Montago-
vian and extensional [18], Montagovian and intensional [7], or even hybrid models [20]. But whatever
the syntax or the semantics are, these approaches rely on a functor from the syntactic category to the
semantic category to give meaning to a sentence.
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We propose to study the complexity of lifting the information flow at the semantic level to a valid ex-
pression at the syntactic level. In a quantum setting, this could correspond to representing a family of
quantum circuits as (planar) string diagrams, for instance. In a linguistic framework, this is the task of
grammar induction. Given a set of example sentences belonging to a language, the problem is to infer a
grammar of this language. Originally motivated by the studyof language acquisition by children [17],
this task has been widely investigated in the field of formal languages [6]. If the example sentences are
just raw strings, the problem is known to be intractable for most expressive classes of grammars [10].
Hence variations have been introduced, one of them consisting in adding some semantic information
about the words in the example sentences. In a categorical framework, words are given syntactic types,
which are objects in a monoidal category. The semantic type of a word is the image of this syntactic type
under a monoidal functor to the semantic category. The categories we will use are defined in Section 2.2
and are summarised in figure 1. Our results focus on the lower part of our hierarchy of categories, which
consists in quantum structures, whereas the linguistic type systems are higher up in the hierarchy.
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Figure 1: A hierarchy of type systems

Since the grammatical correctness of a sentence is witnessed by an arrow from the product of its
syntactic types toS (the type of a sentence), the problem of grammar induction can be seen aslifting an
arrow from the semantic category to the syntactic category,as we will see in Section 4.1.

It turns out that many instances of this problem arehard, in the sense of computational complexity
theory. This is mainly because we require that the syntactictype assigned to each word remains consistent
among all the example sentences. This creates global constraints which restrict the solutions of the
inference problem. In Section 4, we use this fact to reduce NP-complete problems to our grammar
learning problem.

1.2 An example

Suppose we use a compact closed category for the semantics and a pivotal category for the syntax. We
have to infer the possible syntactic typesti based on their imagesF(ti), whereF is the canonical monoidal
functor from the free pivotal category to the free compact closed category on a given set of generators.
In the following expressions, the tensor product⊗ is implicit.

Syntax t1 t2 t3 t4 → S (1)

Semantics ABC B∗A∗A C∗A∗A A∗S → S (2)

There are many different arrows of the required domain and codomain at the semantic level. One of them
is

A B C B∗ A∗ A C∗ A∗ A A∗ S.

As the only difference between a free compact closed category and a free pivotal category is the
symmetry, the problem bends down to finding a permutation of the basic types of eachti such that the
type reduction holds at the syntactic level. In other words,we have to find a diagrammatic reduction
without crossing, such as this one:
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C B A A∗ B∗ A A∗ C∗ A A∗ S

In this particular example, one can see that it is necessary thatC occurs beforeB in t1. We can add a
second sentence:

Syntax t1 t5 t6 t7 → S (3)

Semantics ABC B∗C∗C A∗C∗C C∗S → S (4)

This examples forcesA to occur beforeB in t1. Hence every solution of the learning problem made of
these two sentences will be such thatC andA occur beforeB in t1. In Section 4, this technique enables
us to reduce the problem of betweenness [12] to our grammar lifting problem. This problem is known to
be NP-complete.

2 A grammar hierarchy

2.1 Monoidal categories as type systems

We define how monoidal categories can be used as type systems.Both the syntactic and the semantic
categories will be seen as type systems in our induction problem.

Definition 1. A type system (C ,S) is a strict monoidal categoryC with a distinguished object S inC .

When the objectS is clear from the context, the type system is simply notedC . The objects of this
category will be used to denote types. We require the category to be monoidal, so that we can define the
sentence type as the product of the types of its words. The distinguished object will play the role of the
type for a grammatical sentence. The arrows in the category play the role of reductions:A reduces toB
whenC (A,B) is not empty.

The type systems we will consider are monoidal categories with some additional structure (which
will be detailed in section 2.2), and freely generated by a basic category, whose objects are calledbasic
types and morphisms are understood as subtyping relations: thereis a morphism between two basic
typesA andB whenA is a subtype ofB.

Definition 2. A lexicon l over a set of words W and a type system(C ,S) is a function l: W → C .

Although it is interesting to consider the case where multiple types can be assigned to a single word, the
previous definition restricts our lexicons to one type per word. We restruct ourselves to rigid grammars,
according to the terminology of [1].

Definition 3. A sequence of words w1, . . . ,wn ∈W isgrammatical for a lexicon l whenC (l(w1)⊗·· ·⊗
l(wn),S) is not empty.

In this definition,S is the distinguished type of the underlying type system.

Definition 4. A functor of type systems from(C1,S1) to (C2,S2) is a functor of monoidal categories
F : C1 → C2 such that F(S1) = S2.

From this definition, the following property follows immediately:

Proposition 1. Let F : T1 → T2 be a functor of type systems. If a sentence w1, . . . ,wn is grammatical
for the lexiconL1 overT1, then it is grammatical for the lexicon F◦L1 overT2.

This property expresses that if a sentence is correct at the syntactic level, then there is a valid reduction
at the semantic level.
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2.2 Various structures in monoidal categories

We now move on to the definition of the categories involved in the hierarchy of figure 1.
Definition 5. A bi-closed category is a monoidal category in which for all object B, the functor _⊗B
has a right adjoint _/B and the functor B⊗_ has a right adjoint B\_.

In other words, this means that for every pair of objectsA, B, we have morphisms evall
A,B : B⊗ (B\A)→

A and evalrA,B : (A/B)⊗B → A satisfying some coherence equations, and similarly some morphisms
A→ (A⊗B)/B andA→ B\(B⊗A). Type systems built on bi-closed categories correspond to grammars
defined in the Syntactic Calculus of Lambek.
Definition 6. An autonomous category1 is a monoidal category where for each object A, there are two
objects, the left (Al ) and right (Ar) adjoints, equipped with four morphismsε l

A : Al ⊗A→ 1, ε r
A : A⊗Ar →

1, η l
A : 1→ A⊗Al andη r

A : 1→ Ar ⊗A satisfying the following equalities :

(ε r
A⊗1A)◦ (1A⊗η r

A) = 1A (ε l
A⊗1Al )◦ (1Al ⊗η l

A) = 1Al

(1A⊗ ε l
A)◦ (η l

A⊗1A) = 1A (1Ar ⊗ ε r
A)◦ (η r

A⊗1Ar ) = 1Ar

Type systems built on a free autonomous category define pregroup grammars. For instance, letn be
the type of a noun phrase ands be the distinguished type of a sentence. If we give the typen to the
words Mary and John, and the typenr ⊗ s⊗ nl to loves, the sentenceMary loves Johnhas the type
n⊗nr ⊗s⊗nl ⊗n. This type reduces tos through the morphism

(ε r
n⊗1s⊗ ε l

n) : n⊗nr ⊗s⊗nl ⊗n→ s

See [15] for a linguistic presentation of pregroup grammarsand [19] for the links with category theory.
The distinction betweennl andnr is important at a syntactical level to reject ill-formed sentences.

For instance, we can give the typesr ⊗ s to adverbs placed at the end of a sentence. Ifsl = sr , then the
typesr ⊗s= sl ⊗s reduces to 1 throughε l

s, hence the adverb can be written at any place in the sentence,
which does not reflect the usual rules of grammar. As one can show that for any objectn, nrl ≃ n≃ nlr ,
the iterated adjoints of a typen are of the form

. . . ,nlll ,nll ,nl ,n,nr ,nrr ,nrrr . . .

so we can writenll = n−2,nl = n−1,n= n0,nr = n1,nrr = n2, and so on.
However, it makes sense to drop the distinction between leftand right adjoints at the semantic level:

in terms of flow of information, an adjoint is just something that can consume a resource, no matter
whether it comes from the left or the right side.
Definition 7. A pivotal category is an autonomous category with a monoidal natural isomorphism be-
tween Ar and Al . We set A∗ = Al .

Pivotal categories correspond to groups, in the sense that in a free pivotal category, two objects have an
arrow between them if and only if they are equal in the corresponding free group (where∗ plays the role
of the inverse, hence∗ will be sometimes noted−1).

The canonical morphism between the free pregroup and the free group is defined by

h : te1
1 ⊗·· ·⊗ ten

n 7→ t(−1)e1

1 ⊗·· ·⊗ t(−1)en

n

wherete1
1 ⊗·· ·⊗ ten

n is the canonical form of a pregroup element.

1Some authors use the namecompact closed categoryinstead, but this term has been used for both symmetric and planar
categories. As we want to insist on the fact that these categories are not symmetric (contrary to some other ones in this article),
we follow the terminology of [22].
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Definition 8. A compact closed category is an autonomous category which is symmetric, i.e. for each
objects A and B there is a monoidal natural isomorphism sA,B : A⊗B→ B⊗A such that s−1

A,B = sB,A.

For instance, the category of finite-dimensional vector spaces is compact closed. One can wonder why
we introduced the isomorphismAl ≃ Ar before adding the symmetriessA,B. The following fact explains
our choice.

Proposition 2. Compact closed categories are pivotal.

This property is well known (it is stated in [4], and implicitly in [22]) but I have never seen a proof of it.

Proof. Let φA andψA be the following morphisms :

Al

Al

Ar

Ar

Ar A

Al A
φA =

A Al

Ar

Al A Ar

Al

ψA =

We haveψA ◦φA = 1Al andφA◦ψA = 1Ar . By symmetry, let us show the first equality only.

= = = = =

Moreover, one can check with similar techniques that this isomorphism is monoidal and natural.

Definition 9. A self-dual compact closed category is a compact closed category with a family of iso-
morphisms hA : A→ A∗.

Self-dual compact closed categories have been studied in detail by Selinger in [21]. The definition we
adopt here corresponds to his first option, namely self-duality without coherence. As a finite-dimensional
vector space is isomorphic to its dual, the category of finite-dimensional vector spaces is self-dual. This
category has been widely used as the underlying semantic category for models of meaning, such as in
[4], [20] or [7]. The objects in this category have also been used in [1] as semantic types in a learning
task. However, they did not introduce a whole typing system at the semantic level, as they had no notion
of reduction on semantic types.

We have introduced the commutativity first and then the isomorphism betweenAandA∗. It is possible
to swap these properties, although it requires to be more careful:

Definition 10. A freeself-dual pivotal category is the free pivotal category generated by a categoryC

where for each object A∈ C , A≃ A∗.

A self-dual pivotal category models a rewriting system where any two identical adjacent letters cancel.
It is important to notice that we require thatA≃ A∗ only for basic objects. If this were true for all

objects, then as noted by Selinger [22], we would get the following isomorphism

A⊗B≃ (A⊗B)∗ ≃ B∗⊗A∗ ≃ B⊗A
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. This isomorphism is not a symmetry in general but would havethe same effects on our type system.
A widespread category for semantic types in the linguistic literature is the free symmetric monoidal

closed category. It has been used, among others, in [2] and [9].

Definition 11. A symmetric closed category is a symmetric bi-closed category. For all objects A and B,
B\A≃ A/B, so we note A|B= A/B.

The objects of this category can be thought of simple types for the simply-typedλ -calculus with pairs.
The objectA|B plays the role of the typeB → A and we have a morphism evalA,B : (A|B)⊗B → A
satisfying the required coherence conditions.

3 Functional types

3.1 Restricting the set of possible types

Not all types are likely to be used in a type-logical grammar.We expect types to be functional, i.e. to be
built using only abstractions, the operations\ and/.

For instance, the typen⊗ s⊗ n belongs to the free pregroup generated byn ands, but cannot be
constructed by iterated abstractions. The typenr ⊗ s⊗ nl however can be constructed asn\(s/n) or
(n\s)/n.

Definition 12. Let L be the free bi-closed monoidal category. The set P⊂ Ob(L) is the closure by/
and\ of the set of basic types. Given a type system(C ,S) and a bi-closed functor F: L → C the set of
functional types in C is F(P).

Restricting our search of types to this form of type reduces our search space. This restriction makes
sense because these types are more likely to be relevant froma linguistic point of view. For instance, [15]
builds a fairly advanced grammar of English and he uses only functional types in his grammar, while not
mentioning this constraint at all.

3.2 Properties of functional types

The generative power of pregroup grammars is not reduced when we require functional types: the proof
given in [3] that everyε-free context free grammar is weakly equivalent to a pregroup grammar uses only
functional types.

For group grammars (i.e. type systems built on pivotal categories), restricting the assignments to
functional types does not harm the expressiveness either, as it is enough to multiply bya−1a the types
that are not functional to get an equivalent grammar with functional types only. This remark will be made
clear by the following proposition, which characterises functional types in pivotal categories.

Proposition 3. In a pivotal category, functional types are exactly those which are either

• basic types (generators of the free autonomous category), or

• products of basic types with exponents te1
1 ⊗·· ·⊗ ten

n , where at least one ei is −1 and at least one
ei is +1.

Proof. By induction on a functional Lambek typet, let us show thatF(t) satisfies the characteriza-
tion above. Ift = a, a basic type, thenF(t) = a, falling into the first option. Ift = u/v, thenF(t) =
F(u)F(v)−1. By induction, there is a basic type occurring with a+1 exponent inF(u), so it occurs again
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with the same exponent inF(t). Similarly, there is a basic type occurring with a+1 exponent inF(v),
so it occurs with a−1 exponent inF(t).

Conversely, let us show by induction on the length of a group type t = te1
1 ⊗·· ·⊗ ten

n satisfying the
characterization that it is the image of a functional Lambektype. If n= 1, thent = a wherea is a basic
type, soF(a) = t. If n> 1, there are several cases:

• en =−1 ande1, . . . ,en−1 satisfies the characterization. Then by induction we can finda functional
Lambek typeu such thatF(u) = te1

1 ⊗·· ·⊗ ten−1
n−1 and henceF(u/tn) = F(u)F(tn)−1 = t.

• en = −1 ande1, . . . ,en−1 = +1 : then(−e2), . . . ,(−en) satisfies the characterization and hence
there is a functionalu such thatF(u)−1 = te2

2 ⊗·· ·⊗ ten
n , henceF(t1/u) = t.

• if en = +1 and(−e1), . . . ,(−en−1) satisfies the characterization. Then by induction we can finda
functional Lambek typeu such thatF(u)−1 = te1

1 ⊗·· ·⊗ten−1
n−1 and henceF(u\tn) =F(u)−1F(tn) = t

• if en =+1 ande1, . . . ,en−1 =−1: thene2, . . . ,en satisfies the characterization and hence there is a
functionalu such thatF(u) = te2

2 ⊗ . . . ten
n , henceF(t1\u) = F(t1)−1F(u) = t.

This completes the proof.

Corollary 1. In a compact closed category, the characterization of functional types is the same. In a
self-dual compact closed category, every type but1 is functional.

4 Complexity of the grammar induction problem

4.1 Definition of the problem

We study the complexity of learning syntactic types based onpositive samples (i.e. a set of grammatical
sentences) with semantic types. Each word occurrence in thesamples comes with a semantic type. The
nature of the syntactic and semantic types depends on the problem.

Definition 13. A training sample for a type system(C ,S) and a finite set of variables V is a finite set
of sentences, where each sentence is a finite sequence of the form (v1, t1), . . . ,(vn, tn), where vi ∈V and
ti ∈C is functional, and such that all the sentences are grammatical for their respective type assignment.

Note that we do not require that a variable is always paired with a single type. The type of the word can
depend on the context in which it appears.

In the following sections, we study the complexity of inducing a grammar, given a finite training
sample. First we give a definition of the problem.

Definition 14. Let (C ,S) be the syntactic type system,(C ′,S′) be the semantic type system and F be a
morphism from(C ,S) to (C ′,S′). We callgrammar induction the problem of, given a training sample T
for the type system(C ′,S′), find a lexicon h: V ×Ob(C ′)→ C such that

for all pair (vi , ti) ∈ T,F(h(vi , ti))≃ ti and h(vi , ti) is functional

and for all sentence(v1, t1), . . . ,(vn, tn) ∈ T,C (h(v1, t1)⊗·· ·⊗h(vn, tn),S) is not empty

In other words, the problem is to find functional syntactic types that are compatible with the semantic
types and all the sentences are grammatical at the syntacticlevel. Note that we require that each pair
(variable, semantic type) is associated to an unique syntactic type, following [1]. Without this restriction,
the problem is trivial as the syntactic types can be chosen independently for each sentence.
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4.2 Learning pivotal categories from compact closed categories

Theorem 1. Type inference from a compact closed category to a pivotal category is NP-complete.

Proof. We give a reduction of the betweenness problem [12] to our grammar induction problem. The
betweenness problem is as follows. Given a finite setA and a set of triplesC ⊂ A3, the problem is to
find a total ordering ofA such that for each(a,b,c) ∈C, eithera< b< c or c< b< a. This problem is
NP-complete [12].

The compact closed category we will consider contains the objectsa for eacha ∈ A andda,b,c for
each(a,b,c) ∈ C, with the following reduction between basic types:a→ da,b,c andc → da,b,c. We set
y= ∏x∈A x. The preimage of this type will define the total order satisfying the constraints induced by the
sentences. For each triple(a,b,c) ∈C, we define the following compact closed types:

w= ∏
x∈A\{a,b,c}

x c1 = d−1
a,b,cw

−1w c2 = b−1w−1w

and add the following sentence to the training sample:

(Y,y)(Wa,b,c,1,c1)(Wa,b,c,2,c2)(Wa,b,c,3,c1)(Wa,b,c,4,w
−1)

where theW are words chosen to be different from any word previously seen.
This reduction is polynomial. Let us show that this grammar induction problem has a solution if

and only if the corresponding betweenness problem has a solution. If there is a total ordering< of A
satisfying the constraints, letA= {x1, . . . ,xn} wherex1 < · · ·< xn. One can check that with the following
preimages, the sample is grammatical in the pivotal category:

• The type ofY becomesy′ = ∏n
i=1 xi .

• For each(a,b,c) ∈C, let p,q,r andsbe such that

y′ = p·a·q·b· r ·c·s or y′ = p·c·q·b· r ·a·s

(wherep, q, r ands are possibly equal to 1).y′ reduces top·da,b,c ·q·b· r ·da,b,c ·s.

P possible type assignment for theW is:

Wa,b,c,1 : s−1d−1
a,b,cspqr(pqr)−1 Wa,b,c,2 : (rs)−1b−1rs(pq)(pq)−1 Wa,b,c,3 : (qrs)−1d−1

a,b,c(qrs)pp−1

One can check that the image of this assignment is equal to theassignment from the training
sample and that it makes the sentences grammatical in the pivotal category.

Conversely, if there exists a pivotal type assignment, thenas the typeb does not occur in the types
assigned toWa,b,c,1 andWa,b,c,3, there is ana or ac on the right side of the occurrence ofb, and similarly
on the left side. But as there cannot be two occurrences of thesame basic type iny′, we have either
a< b< c or c< b< a.

Hence the problem is NP-hard. As one can check a solution in polynomial time, the problem is
NP-complete.

4.3 Learning self-dual pivotal categories from self-dual compact closed categories

Similarly, the previous proof can also be carried whena≃ a−1, giving the following theorem:

Theorem 2. Type inference from a self-dual compact closed category to aself-dual pivotal category is
NP-complete.
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4.4 Learning compact closed categories from self-dual compact closed categories

The problem of grammar induction from a self-dual compact closed category to a compact closed cate-
gory bends down to assigning exponents to the types. It can bereduced to an integer linear programming
problem where we are interested in nonnegative solutions only. This problem is NP-complete and we
will show that the grammar induction problem itself is actually NP-complete.

Theorem 3. Type inference from a self-dual compact closed category to acompact closed category is
NP-complete.

We give a polynomial reduction from 3-SAT to the problem of learning symmetric pivotal types from
self-adjoint (symmetric pivotal) types. As 3-SAT is NP-complete [14], and the learning problem is in NP,
this will complete the proof. Letφ = c1∧ ·· · ∧cn be a conjunction of 3-clauses. We adopt an approach
similar to the strategy of [5]:

(i) We replace each positive occurrence of a variablexi by a new variablexi,1 and each negative occur-
rence by a different variablexi,0. We add to the training sample one sentence, ensuring that all the
clauses are satisfied (lemma 1).

(ii) We add one sentence for each pair of variablesxi,0,xi,1, ensuring that they are assigned opposite
truth values (lemma 2).

The full training example will hence encode satisfiability,completing the proof.
Let c= xi1,b1 ∨ xi2,b2 ∨ xi3,b3 be a 3-clause, wherexi,1 stands forxi andxi,0 for ¬xi. For eachi andb

we define a self-adjoint typevi,b = zi,byi,byi,b. Let t(c) = dzi1,b1zi2,b2zi3,b3 be a self-adjoint type. Our idea
is that we will forced to have a−1 exponent in the corresponding group type, and hence this group type
will be functional if and only if one of theza,b occurs with a+1 exponent. As a clause is true when at
least one of the literals it contains is true, this will encode satisfiability.

Lemma 1. For each literal xbi , i ∈ {1, . . . p},b∈ {0,1}, let ni,b be the number of occurrences of xi,b in φ .
The assignments making the following sentence grammatical

(S,s)
n

∏
i=1

((Ci , t(ci))(Di ,d))
p

∏
i=1

1

∏
b=0

(Xb
i ,vi,b)

ni,b

are exactly those for which x1,0,x1,1,x2,0,x2,1, . . . ,xp,0,xp,1 are assigned values making all the clauses
true.

Proof. Let us show first that ifφ is satisfiable, then the grammar induction problem has a solution. Let
x1 = a1, . . . ,xp = ap be a satisfying boolean assignment. We giveXb

i the group typeze
i,by−1

i,b yi,b, where
e=−1 if b= ai ande= 1 otherwise. This type is functional.

We giveCi the typec−1ze1
i1,bi,1

ze2
i2,bi,2

ze3
i3,bi,3

whereek = 1 if bi,k = aik andek = −1 otherwise. As the
clauseci is satisfied, there is at least onek∈ {1,2,3} such thatbi,k = aik, hence the type is functional.

Let us show that the sentence is grammatical. As the exponentof zi,b in the type assigned to a
clause only depends onai , there areni,b occurrences ofzi,b, with the same exponent, in∏n

j=1(c j , t j). By
construction, the exponent ofzi,b is inversed in the type assigned toxb

i , and there areni,b such occurrences
in the sentence. Hence all thezi,b cancel. The typed assigned toDi cancels withd−1 in the type assigned
to t(ci), and theyi,b cancel as well. Hence onlys remains: the sentence is grammatical.

Conversely, suppose there are functional group typesr j preimage oft(c j) andwi,b preimage ofvi,b

such that the sentences are grammatical at the syntactic level. Note that the types of the wordsS and
Di are basic types, so the only functional syntactic types compatible with the learning problem are these
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basic types. As the pregroup typed occurs with exponent+1 n times in the product due to the wordsD j ,
all the occurences ofd in ther j have the exponent−1, otherwise they would not cancel. For eachr j , it is
functional so one of thezi,b has exponent+1. For eachxb

i , zi,b occursni,b times with the same exponent,
thanks towi,b, andni,b other times in the clauses, so the exponent assigned tozi,b is the same in every
r j .

Lemma 2. The assignments making the following sentence grammatical

(S,s)(X0
i ,vi,0)(Zi ,zi,0zi,1)(X

1
i ,vi,1)

are exactly those for which the zi,0 and zi,1 in vi,0 and vi,1 get opposite exponents.

Proof. One can check that the following assignment is valid, fore=±1:

s·ze
i,0y−1

i,0 yi,0 ·z
−e
i,0 ze

i,1 ·z
−e
i,1 y−1

i,1 yi,1 → s

Conversely, as the type assigned toZi has to be functional,zi,0 andzi,1 get opposite exponents in any
solution of the grammar inference problem.

4.5 Learning pivotal categories from self-dual pivotal categories

The construction of Theorem 3 can be adapted to work in non-commutative structures, hence the follow-
ing theorem:

Theorem 4. Type inference from self-dual pivotal categories to pivotal categories is NP-complete.

4.6 Composing complexity results

Suppose we know the complexity of the grammar induction problem betweenC1 andC2, and between
C2 andC3. What can be said about grammar induction betweenC1 andC3?

C1 C2 C3

?

Given a syntactic categoryC and a semantic categoryC ′, we introduce the notion of exact samples.

Definition 15. A training sample is saidexact for some syntactic type t when it contains a word-type
pair (w,F(t)) such that for all solutions h of this training sample, h(w,F(t)) = t.

We say that a grammar induction problemhas exact samples when there exists exact samples for
each syntactic type t.

In other words, a grammar induction problem has exact samples when we can build sentences forcing
the preimage of a particular type.

Lemma 3. If the grammar induction problem has exact samples, then forall finite set of syntactic types
T = {t1, . . . , tn} there exists a training sample which is exact for t1, . . . , tn.

Proof. Take an exact training samples for each element ofT. Make these training samples disjoint by
ensuring that they use different words. The concatenation of these training samples satisfies the property
claimed.
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Lemma 4. If grammar induction fromC1 to C2 and fromC2 to C3 has exact samples, then so does
grammar induction fromC1 to C3.

Proof. Take an exact sampleSfor t from C2 to C3. For each typet ′ occurring inS, take exact samples for
t ′ from C1 to C2. Concatenate these samples with the image ofSunder the functor fromC2 to C1.

Proposition 4. If grammar induction fromC1 to C2 has (polynomial) exact samples and grammar in-
duction fromC2 to C3 is NP-complete, then grammar induction fromC1 to C3 is NP-complete.

Proof. Take an instance of SAT. It can be represented as an equivalent training sample fromC2 to C3.
Take the image of this training sample by the functor fromC2 to C1 and force this new sample to have
the original preimages inC2 by adding an exact sample. This problem has a solution if and only if the
instance of SAT is satisfiable.

C1 C2 C3
exact samples exact samples

exact samples

C1 C2 C3
exact samples NP-complete

NP-complete

Lemma 5. The following grammar induction problems have exact samples:

• from self-dual compact closed to self-dual pivotal

• from self-dual compact closed to compact closed

• from self-dual pivotal to pivotal

• from compact closed to pivotal

Proof. Use the same techniques as the ones we developped for our reductions.

Corollary 2. Grammar induction from a self-dual compact closed categoryto a pivotal category is
NP-complete.

Proof. Combine Lemma 5 and Theorem 1 with Proposition 4.

5 Future work

A number of questions remain open. Being able to classify thecomplexity of the inference problem in
the higher half of the hierarchy would enable us to give complexity results on the problems studied in [1]
and [8].

Another issue is the expressivity of the classes of grammarsdefined by the categories in the lower
half of the hierarchy. These grammars generate sub-classesof the context-free grammars, but it would
be interesting to relate these sub-classes to known classesfrom the field of formal languages.

One could also use this framework to study inference problems in which the structure of a parse is
known, but the types are unknown. This notion of learning with structural examples has been studied for
the syntactic calculus [13].
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