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Most categorical models of meaning use a functor from theagyic category to the semantic cate-
gory. When semantic information is available, the probldmgrammar induction can therefore be
defined as finding preimages of the semantic types underdigetful functor, lifting the informa-
tion flow from the semantic level to a valid reduction at thatsgtic level. We study the complexity
of grammar induction, and show that for a variety of type eps, including pivotal and compact
closed categories, the grammar induction problem is NPptete. Our approach could be extended
to linguistic type systems such as autonomous or bi-cloatsjories.

1 Introduction

1.1 Overview

Category theoretic approaches to linguistics are flourgshirhey provide a convenient abstract frame-
work for both syntax and semantics [4], and these insightblensome progress on natural language
processing tasks [11]. This framework is flexible, becatiakbaws for different types of grammars, such
as the Syntactic Calculus of Lambék [16] or Compact Bilieagic [19], also known as pregroups [15].
It also allows for different kinds of compositional semanstiwhich can be distributionéll[4], Montago-
vian and extensional [18], Montagovian and intensional ¢rleven hybrid models [20]. But whatever
the syntax or the semantics are, these approaches rely arctoifdrom the syntactic category to the
semantic category to give meaning to a sentence.
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We propose to study the complexity of lifting the informatifiow at the semantic level to a valid ex-
pression at the syntactic level. In a quantum setting, thiddccorrespond to representing a family of
guantum circuits as (planar) string diagrams, for instarinea linguistic framework, this is the task of
grammar induction. Given a set of example sentences belgrgia language, the problem is to infer a
grammar of this language. Originally motivated by the stofljanguage acquisition by children [17],
this task has been widely investigated in the field of forraabuages [6]. If the example sentences are
just raw strings, the problem is known to be intractable farstrexpressive classes of grammars [10].
Hence variations have been introduced, one of them camgigti adding some semantic information
about the words in the example sentences. In a categorarakivork, words are given syntactic types,
which are objects in a monoidal category. The semantic typeamrd is the image of this syntactic type
under a monoidal functor to the semantic category. The oatgwe will use are defined in Sectionl2.2
and are summarised in figure 1. Our results focus on the loar¢opour hierarchy of categories, which
consists in quantum structures, whereas the linguistie systems are higher up in the hierarchy.
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Figure 1: A hierarchy of type systems

Since the grammatical correctness of a sentence is witthégsan arrow from the product of its
syntactic types t& (the type of a sentence), the problem of grammar inductiorbeaseen alfting an
arrow from the semantic category to the syntactic categmyye will see in Sectidn 4.1.

It turns out that many instances of this problem laaed, in the sense of computational complexity
theory. This is mainly because we require that the syntagire assigned to each word remains consistent
among all the example sentences. This creates global aoristwhich restrict the solutions of the
inference problem. In Sectidd 4, we use this fact to reducectifplete problems to our grammar
learning problem.

1.2 Anexample

Suppose we use a compact closed category for the semantiesavotal category for the syntax. We
have to infer the possible syntactic typggsased on their imagés(t; ), whereF is the canonical monoidal
functor from the free pivotal category to the free compaotet category on a given set of generators.
In the following expressions, the tensor prodgcis implicit.

Syntax t1 to t3 ta —S ()
Semantics ABC BA'A C'A*A A'S —S 2

There are many different arrows of the required domain addrr@in at the semantic level. One of them
is

A B C B* A* A C° A A A* S
W ~_
As the only difference between a free compact closed categaa a free pivotal category is the
symmetry, the problem bends down to finding a permutatiomefdasic types of eadhsuch that the

type reduction holds at the syntactic level. In other worgle,have to find a diagrammatic reduction
without crossing, such as this one:
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C B A A B A A C A A S

T~ —

In this particular example, one can see that it is neceshkatZtoccurs beford in t;. We can add a
second sentence:

Syntax 15} ts5 17 t7 —S (3)
Semantics ABC BC*C A'C*C c's — S 4

This examples forcea to occur beforeB in t;. Hence every solution of the learning problem made of
these two sentences will be such t@aandA occur beforeB in t;. In Sectior 4, this technique enables
us to reduce the problem of betweennéss [12] to our gramftiaglproblem. This problem is known to
be NP-complete.

2 A grammar hierarchy

2.1 Monoidal categories as type systems

We define how monoidal categories can be used as type sysiuwits.the syntactic and the semantic
categories will be seen as type systems in our inductionlgmab

Definition 1. Atype system (¢,S) is a strict monoidal category” with a distinguished object S f#.
When the objecSis clear from the context, the type system is simply ndted The objects of this
category will be used to denote types. We require the cagdgdye monoidal, so that we can define the
sentence type as the product of the types of its words. Thiaglisshed object will play the role of the
type for a grammatical sentence. The arrows in the catedagytpe role of reductionsA reduces t@B
when% (A, B) is not empty.

The type systems we will consider are monoidal categori¢s same additional structure (which
will be detailed in sectioh 212), and freely generated bysidoeategory, whose objects are callsbic
types and morphisms are understood as subtyping relations: theranorphism between two basic
typesA andB whenA is a subtype oB.

Definition 2. Alexicon | over a set of words W and a type systé&gn S) is a function : W — 7.
Although it is interesting to consider the case where migitippes can be assigned to a single word, the
previous definition restricts our lexicons to one type perdvdVe restruct ourselves to rigid grammars,
according to the terminology dfl[1].

Definition 3. A sequence of wordsiw..,w, € W isgrammatical for a lexicon | wher&' (I(w;) ® -+ ®
[(wn),S) is not empty.

In this definition,Sis the distinguished type of the underlying type system.

Definition 4. A functor of type systems frorf¥1,S;) to (42,S) is a functor of monoidal categories
F:%1 — % suchthatKS) = S,.

From this definition, the following property follows immexely:

Proposition 1. Let F: 73 — 2 be a functor of type systems. If a sentenge w,w, is grammatical
for the lexicon%; over 73, then it is grammatical for the lexicon &%, over .

This property expresses that if a sentence is correct aytitadic level, then there is a valid reduction
at the semantic level.



A. Delpeuch 239

2.2 Various structures in monoidal categories

We now move on to the definition of the categories involvedchmtiierarchy of figurg]1.

Definition 5. A bi-closed category is a monoidal category in which for all object B, the functor B

has a right adjoint /B and the functor Bo_ has a right adjoint B_.

In other words, this means that for every pair of objegtB, we have morphisms e\'@é :B® (B\A) —

A and eanB : (A/B) ® B — A satisfying some coherence equations, and similarly somgphrems
A— (A®B)/BandA— B\(B®A). Type systems built on bi-closed categories correspondatmgars
defined in the Syntactic Calculus of Lambek.

Definition 6. Anautonomous categorﬂ is a monoidal category where for each object A, there are two
objects, the left (A and right (X) adjoints, equipped with four morphisras: A @ A— 1, 5 : AQ A" —

1, n'A :1— A®A and na:1— A" ® A satisfying the following equalities :

(EA®1p) 0 (1Ia®@Np) = 1A (Ea®1a) o (1a @ Np) = 1a
(la® &) o (NA®1a) = 1a (1o @ €4) o (NA® 1) = 1ar

Type systems built on a free autonomous category define qupggrammars. For instance, letbe
the type of a noun phrase asde the distinguished type of a sentence. If we give the type the
words Mary and John and the typef” @ s nl to loves the sentenc#ary loves Johrhas the type
nen’ ®@s®n @n. This type reduces tsthrough the morphism

(gh@lswe):non @son@n—s

See|[15] for a linguistic presentation of pregroup gramnaauc [19] for the links with category theory.

The distinction between' andn’ is important at a syntactical level to reject ill-formed serTes.
For instance, we can give the tygex sto adverbs placed at the end of a sentence 4f &', then the
types @ s= s ®sreduces to 1 througkl, hence the adverb can be written at any place in the sentence,
which does not reflect the usual rules of grammar. As one caw hat for any objech, n”! ~n~n'",
the iterated adjoints of a typeare of the form

r s rrr
ontntn nn",n™ N

sowe canwrite! =n2,n' =n1,n=n%n" =n!,n" =n?, and so on.

However, it makes sense to drop the distinction betweerateftright adjoints at the semantic level:
in terms of flow of information, an adjoint is just somethirigat can consume a resource, no matter
whether it comes from the left or the right side.

Definition 7. A pivotal category is an autonomous category with a monoidal natural isomaphbe-
tween Aand A. We set A=Al

Pivotal categories correspond to groups, in the sensertlafree pivotal category, two objects have an
arrow between them if and only if they are equal in the cowadjng free group (wheréplays the role

of the inverse, hencewill be sometimes noted?).

The canonical morphism between the free pregroup and teeyfaup is defined by
hitte ottt e ot

wheret$! ® --- ®t is the canonical form of a pregroup element.

1Some authors use the nam@mpact closed categorynstead, but this term has been used for both symmetric @mpl
categories. As we want to insist on the fact that these cetegare not symmetric (contrary to some other ones in thicley,
we follow the terminology ofi[22].
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Definition 8. A compact closed category is an autonomous category which is symmetric, i.e. for each
objects A and B there is a monoidal natural isomorphis/g SA® B — B® A such that 55 = S a.

For instance, the category of finite-dimensional vectocepas compact closed. One can wonder why
we introduced the isomorphisAl ~ A" before adding the symmetrigsg. The following fact explains
our choice.

Proposition 2. Compact closed categories are pivotal.
This property is well known (it is stated inl[4], and impligiin [22]) but | have never seen a proof of it.

Proof. Let gy and i be the following morphisms :

AI'
Al ml
VAR A A
AAA >
/
A R Al

We haveyia o gn = 15 andgn o Ya = 1a. By symmetry, let us show the first equality only.

=] ng

Moreover, one can check with similar techniques that tlimi@rphism is monoidal and naturalC]

Definition 9. A self-dual compact closed category is a compact closed category with a family of iso-
morphisms R: A — A*,
Self-dual compact closed categories have been studiedail Og Selinger in[[21]. The definition we
adopt here corresponds to his first option, namely selfiguaithout coherence. As a finite-dimensional
vector space is isomorphic to its dual, the category of fiditeensional vector spaces is self-dual. This
category has been widely used as the underlying semanégargtfor models of meaning, such as in
[4], [2Q] or [7]. The objects in this category have also beeadiin [1] as semantic types in a learning
task. However, they did not introduce a whole typing systethesemantic level, as they had no notion
of reduction on semantic types.

We have introduced the commutativity first and then the ispmem betwee andA*. Itis possible
to swap these properties, although it requires to be moedfudar
Definition 10. A freeself-dual pivotal category is the free pivotal category generated by a categéry
where for each object A ¢, A~ A*.

A self-dual pivotal category models a rewriting system vehamy two identical adjacent letters cancel.
It is important to notice that we require that~ A* only for basic objects. If this were true for all
objects, then as noted by Selinger|[22], we would get thedilg isomorphism

ARB~ (A®B)"~B"®@A"~B®A
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. This isomorphism is not a symmetry in general but would hheesame effects on our type system.
A widespread category for semantic types in the linguistiézdture is the free symmetric monoidal
closed category. It has been used, among others|, in [2] dnd [9

Definition 11. A symmetric closed category is a symmetric bi-closed category. For all objects A and B,
B\A~ A/B, so we note /8 = A/B.

The objects of this category can be thought of simple type#® simply-typedA -calculus with pairs.
The objectA|B plays the role of the typ®& — A and we have a morphism exa : (A|B) @ B — A
satisfying the required coherence conditions.

3 Functional types

3.1 Restricting the set of possible types

Not all types are likely to be used in a type-logical gramrvee expect types to be functional, i.e. to be
built using only abstractions, the operationand/.

For instance, the typa® s® n belongs to the free pregroup generatednbgnds, but cannot be
constructed by iterated abstractions. The tybe s® n' however can be constructed as(s/n) or

(n\s)/n.
Definition 12. Let.Z be the free bi-closed monoidal category. The set ®b(L) is the closure by

and) of the set of basic types. Given a type systéfS) and a bi-closed functor F.£ — % the set of
functional typesin ¢ is F(P).

Restricting our search of types to this form of type reduagssearch space. This restriction makes
sense because these types are more likely to be relevanaflioguistic point of view. For instance, [[15]
builds a fairly advanced grammar of English and he uses amlgtional types in his grammar, while not
mentioning this constraint at all.

3.2 Properties of functional types

The generative power of pregroup grammars is not reduced whkeaequire functional types: the proof
given in [3] that evene-free context free grammar is weakly equivalent to a preggrammar uses only
functional types.

For group grammars (i.e. type systems built on pivotal aaieg), restricting the assignments to
functional types does not harm the expressiveness eithérjsaenough to multiply bya—'a the types
that are not functional to get an equivalent grammar witlefiomal types only. This remark will be made
clear by the following proposition, which characterisesdiional types in pivotal categories.

Proposition 3. In a pivotal category, functional types are exactly thoséctviare either
e basic types (generators of the free autonomous categary), o
e products of basic types with exponerﬁsgs - ®@tsh, where at least one és —1 and at least one
g is—+1

Proof. By induction on a functional Lambek type let us show thaf (t) satisfies the characteriza-
tion above. Ift = a, a basic type, thef (t) = a, falling into the first option. It = u/v, thenF(t) =
F(u)F (v)~1. By induction, there is a basic type occurring with-& exponent irF (u), so it occurs again
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with the same exponent i(t). Similarly, there is a basic type occurring with+d exponent i (v),
so it occurs with a-1 exponent irf(t).

Conversely, let us show by induction on the length of a gromet =t* ® --- @ t& satisfying the
characterization that it is the image of a functional Lambygle. If n =1, thent = awherea s a basic
type, soF (a) =t. If n> 1, there are several cases:

e &= —1ande,...,e,_1 satisfies the characterization. Then by induction we candifuthctional
Lambek typeu such thaF (u) =t;* @ --- @t} and hencé (u/t,) = F(U)F (t,) L =t.

e 6,=—1andey,...,e,_1 = +1: then(—e),...,(—&,) satisfies the characterization and hence
there is a functionall such thaf (u) ! =t ® --- ®t%, henceF (t1/u) =t.

e if e,=+1and(—ey),...,(—en1) satisfies the characterization. Then by induction we candind
functional Lambek type such thaf (u) ! =t ®--- @t and henc& (u\tn) = F (u) 1F (ty) =t

e if &, =-+1andey,...,e,_1 = —1: theney, ..., g, satisfies the characterization and hence there is a
functionalu such thaf (u) =t ®...t%, henceF (t;\u) = F (t;) "1F (u) =t.

This completes the proof. O

Corollary 1. In a compact closed category, the characterization of fioned types is the same. In a
self-dual compact closed category, every typelhstfunctional.

4 Complexity of the grammar induction problem

4.1 Definition of the problem

We study the complexity of learning syntactic types basegasitive samples (i.e. a set of grammatical
sentences) with semantic types. Each word occurrence isatigles comes with a semantic type. The
nature of the syntactic and semantic types depends on théepro

Definition 13. A training sample for a type systent%’,S) and a finite set of variables V is a finite set
of sentences, where each sentence is a finite sequence ofrthe/f,t1),..., (Vn,tn), where ye V and
tj € ¥ is functional, and such that all the sentences are gramrabfiic their respective type assignment.

Note that we do not require that a variable is always pairdl ssingle type. The type of the word can
depend on the context in which it appears.

In the following sections, we study the complexity of inchgia grammar, given a finite training
sample. First we give a definition of the problem.

Definition 14. Let (¢,S) be the syntactic type syste(f’,S) be the semantic type system and F be a
morphism from(¢,S) to (¢”,S). We callgrammar induction the problem of, given a training sample T
for the type systertis”,S), find a lexicon hV x Ob(¢”) — ¢ such that

for all pair (vi,t;) € T,F(h(vi,t)) ~ti and h(v,t;) is functional

and for all sentencévy,ty), ..., (Vn,th) € T, € (h(vy,t1) ® - -- @ h(vp,tn), S) is not empty

In other words, the problem is to find functional syntactipday that are compatible with the semantic
types and all the sentences are grammatical at the syntaetic Note that we require that each pair
(variable, semantic type) is associated to an unique syntgpe, following [1]. Without this restriction,
the problem is trivial as the syntactic types can be chosgependently for each sentence.
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4.2 Learning pivotal categories from compact closed categes

Theorem 1. Type inference from a compact closed category to a pivotageay is NP-complete.

Proof. We give a reduction of the betweenness problem [12] to oungrar induction problem. The
betweenness problem is as follows. Given a finiteAsand a set of triple€ c A3, the problem is to
find a total ordering of\ such that for eaclia, b, c) € C, eithera< b < corc < b < a. This problem is
NP-completel[12].

The compact closed category we will consider contains thectda for eacha € A andd,p¢ for
each(a,b,c) € C, with the following reduction between basic types:+ dapc andc — dapc. We set
Y =[NxeaX. The preimage of this type will define the total order satrgfythe constraints induced by the
sentences. For each tripla,b,c) € C, we define the following compact closed types:

W= X o =dtwlw o =btwlw
x€A\{a,b,c}

and add the following sentence to the training sample:

(Y,y) (Wayb,ql ,C1) (Wayb,c727 C2) (Wayb,cs, c1) (Wa,b7c,47 Wﬁl)

where théV are words chosen to be different from any word previousiynsee

This reduction is polynomial. Let us show that this gramnmatuction problem has a solution if
and only if the corresponding betweenness problem has #muluf there is a total ordering: of A
satisfying the constraints, I8t= {xs,...,X,} wherex; < --- < X,. One can check that with the following
preimages, the sample is grammatical in the pivotal cayegor

e The type ofY becomey’ = L, %.
e Foreacha,b,c) € C, let p,g,r andsbe such that

)/:p.a.q.b.r.c.s or y:p.c.q.b.r.a.s

(wherep, g, r ands are possibly equal to 1)/ reduces t@-dapc-0-b-r-dapc-s.
P possible type assignment for fkis:

Wapc1:S ‘dy;Sparpan ™ Wapcz: (rs) b rs(pa)(pa) ™+ Wapcs: (ars) ‘dyp.(ars)pp

One can check that the image of this assignment is equal tagsignment from the training
sample and that it makes the sentences grammatical in tb@apoategory.

Conversely, if there exists a pivotal type assignment, therhe typeb does not occur in the types
assigned tW, p ¢ 1 andW, ¢ 3, there is ara or ac on the right side of the occurrence lmfand similarly
on the left side. But as there cannot be two occurrences o$ah®e basic type iy, we have either
a<b<corc<b<a

Hence the problem is NP-hard. As one can check a solution lynpmial time, the problem is
NP-complete. O

4.3 Learning self-dual pivotal categories from self-dual ompact closed categories

Similarly, the previous proof can also be carried when a—*, giving the following theorem:

Theorem 2. Type inference from a self-dual compact closed categorydelfedual pivotal category is
NP-complete.
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4.4 Learning compact closed categories from self-dual conagt closed categories

The problem of grammar induction from a self-dual compasset category to a compact closed cate-
gory bends down to assigning exponents to the types. It caedaeed to an integer linear programming
problem where we are interested in nonnegative solutiohs drnis problem is NP-complete and we
will show that the grammar induction problem itself is adiu&lP-complete.

Theorem 3. Type inference from a self-dual compact closed categorydonapact closed category is
NP-complete.

We give a polynomial reduction from 3-SAT to the problem darl@ing symmetric pivotal types from
self-adjoint (symmetric pivotal) types. As 3-SAT is NP-qalete [14], and the learning problem is in NP,
this will complete the proof. Lep =c1 A--- AC, be a conjunction of 3-clauses. We adopt an approach
similar to the strategy of [5]:

(i) We replace each positive occurrence of a variapley a new variable; 1 and each negative occur-
rence by a different variabbg o. We add to the training sample one sentence, ensuring trtaeal
clauses are satisfied (lemina 1).

(i) We add one sentence for each pair of variabiggx 1, ensuring that they are assigned opposite
truth values (lemmal 2).

The full training example will hence encode satisfiabildgmpleting the proof.

Letc =X, n, VX,b VX,b, D€ @ 3-clause, whepg 1 stands forx andx; o for —x;. For each andb
we define a self-adjoint typ&, = Z pYi pYib. Lett(c) = dz, p,7, 1,2, b, e a self-adjoint type. Our idea
is that we will forced to have a—1 exponent in the corresponding group type, and hence tbigdype
will be functional if and only if one of the,, occurs with at-1 exponent. As a clause is true when at
least one of the literals it contains is true, this will eneagtisfiability.

Lemma 1. For each literal >P,i €{1,...p},be {0,1}, let np, be the number of occurrences @fxn @.
The assignments making the following sentence grammatical

(Ss) il_ﬂl((ci ,t(c))(Dy,d)) iI_El t!j)(xib’vi’b)nib

are exactly those for whichy,X11,%2,0,X21,--.,Xp,0,Xp,1 are assigned values making all the clauses
true.

Proof. Let us show first that ifp is satisfiable, then the grammar induction problem has displuLet
X1 = a&,...,Xp = ap be a satisfying boolean assignment. We @i&fbthe group typezﬁby[blyhb, where
e= —1if b=a ande= 1 otherwise. This type is functional.

We giveC; the typec*1z|-"11’bi’1;-e;{bizzs’bi’3 whereg, = 1 if bjx = &, andex = —1 otherwise. As the
clauseg; is satisfied, there is at least oke {1,2,3} such thab; x = &;,, hence the type is functional.

Let us show that the sentence is grammatical. As the expafent, in the type assigned to a
clause only depends @y, there aren; ,, occurrences df; , with the same exponent, 'm’j‘:l(cj ,tj). By
construction, the exponent nf; is inversed in the type assignedxfb and there arg; ;, such occurrences
in the sentence. Hence all thg cancel. The type assigned t®; cancels withd— in the type assigned
tot(c), and they;, cancel as well. Hence onlremains: the sentence is grammatical.

Conversely, suppose there are functional group typgseimage ot(c;j) andw;, preimage o,
such that the sentences are grammatical at the syntactc Iswte that the types of the wor&and
D; are basic types, so the only functional syntactic types @il with the learning problem are these
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basic types. As the pregroup tygeccurs with exponent-1 ntimes in the product due to the worDs,
all the occurences af in ther have the exponent 1, otherwise they would not cancel. For eaght is
functional so one of the , has exponent-1. For eachq-b, Z p occursn; , times with the same exponent,
thanks tow; ,, andn; ,, other times in the clauses, so the exponent assigne&g, e the same in every
I’j. O

Lemma 2. The assignments making the following sentence grammatical
(S 9%, Vi0)(Zi,2,02,1) (X, Vi)
are exactly those for which thegzand z 1 in vi g and v 1 get opposite exponents.
Proof. One can check that the following assignment is valid gfer +1:
S Z0Yi0Yi0 40% Z1YiiYia S

Conversely, as the type assignedZfdas to be functionak; o andz 1 get opposite exponents in any
solution of the grammar inference problem. O

4.5 Learning pivotal categories from self-dual pivotal caggories

The construction of Theorehh 3 can be adapted to work in nemamatative structures, hence the follow-
ing theorem:

Theorem 4. Type inference from self-dual pivotal categories to pilzotdegories is NP-complete.

4.6 Composing complexity results

Suppose we know the complexity of the grammar induction lpratbetweeris; and %>, and between
¢» andé3. What can be said about grammar induction betw&eand%3?

G G - %3

Given a syntactic categof and a semantic catego#y, we introduce the notion of exact samples.

Definition 15. A training sample is saidxact for some syntactic type t when it contains a word-type
pair (w,F(t)) such that for all solutions h of this training sampléwhF (t)) =t.

We say that a grammar induction problemas exact samples when there exists exact samples for
each syntactic type t.

In other words, a grammar induction problem has exact sawyen we can build sentences forcing
the preimage of a particular type.

Lemma 3. If the grammar induction problem has exact samples, thealfdinite set of syntactic types
T ={t1,...,ty} there exists a training sample which is exact for t., t,.

Proof. Take an exact training samples for each elemerit.oMake these training samples disjoint by
ensuring that they use different words. The concatenatfidinese training samples satisfies the property
claimed. O
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Lemma 4. If grammar induction fromé; to %> and from%, to %3 has exact samples, then so does
grammar induction fron¥%i to 3.

Proof. Take an exact samp&&for t from %5 to ¢3. For each typ# occurring inS, take exact samples for
t’ from €1 to 4>. Concatenate these samples with the imagguwider the functor fron®, to ¢:. O

Proposition 4. If grammar induction fronig; to %> has (polynomial) exact samples and grammar in-
duction from%5 to €3 is NP-complete, then grammar induction fréfto 43 is NP-complete.

Proof. Take an instance of SAT. It can be represented as an equivedéring sample fron¥s to 43.
Take the image of this training sample by the functor frépto 41 and force this new sample to have
the original preimages i, by adding an exact sample. This problem has a solution if ahdibthe

instance of SAT is satisfiable. O
exact samples  exact samples exact samples  NP-complete
1- ) ~ 63 b1 - ) - 63
exact 'Svarhples NP‘-’(':cv)vmp'Iete

Lemma 5. The following grammar induction problems have exact sample
e from self-dual compact closed to self-dual pivotal
o from self-dual compact closed to compact closed
o from self-dual pivotal to pivotal

e from compact closed to pivotal
Proof. Use the same techniques as the ones we developped for oatioedu O

Corollary 2. Grammar induction from a self-dual compact closed categora pivotal category is
NP-complete.

Proof. Combine Lemm@]5 and Theorém 1 with Proposifibn 4. O

5 Future work

A number of questions remain open. Being able to classifyctimaplexity of the inference problem in
the higher half of the hierarchy would enable us to give caxipf results on the problems studied|in [1]
and [8].

Another issue is the expressivity of the classes of gramumelised by the categories in the lower
half of the hierarchy. These grammars generate sub-clatthe context-free grammars, but it would
be interesting to relate these sub-classes to known classeshe field of formal languages.

One could also use this framework to study inference problenwhich the structure of a parse is
known, but the types are unknown. This notion of learnindnwituctural examples has been studied for
the syntactic calculus [13].
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