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In this paper we exploit the utility of the triangle symbol which has a complicated expression in

terms of spider diagrams in ZX-calculus, and its role within the ZX-representation of AND-gates in

particular. First, we derive spider nest identities which are of key importance to recent developments

in quantum circuit optimisation and T-count reduction in particular. Then, using the same rule set,

we prove a completeness theorem for quantum Boolean circuits (QBCs) whose rewriting rules can be

directly used for a new method of T-count reduction. We give an algorithm based on this method and

show that the results of our algorithm outperform the results of all the previous best non-probabilistic

algorithms.

1 Introduction

The ZX-calculus [12, 13] is a universal graphical language for qubit theory, which comes equipped with

simple rewriting rules that enable one to transform diagrams representing one quantum process into

another quantum process. More broadly, it is the work-horse of categorical quantum mechanics, which

aims for a high-level formulation of quantum theory [1, 15].

Recently ZX-calculus has been completed by Ng and Wang [25], that is, provided with sufficient

additional rules so that any equation between matrices in Hilbert space can be derived in ZX-calculus.

This followed earlier completions by Backens for stabiliser theory [3] and one-qubit Clifford+T circuits

[4], and by Jeandel, Perdrix and Vilmart for general Clifford+T theory [19].

This paper concerns with the ‘utility’ of ZX-rules. While in principle the rules in [25] are sufficient

to any other rule, it is by no means guaranteed that it is in any way intuitive, easy, or even realistic to

do so. While the original rules of [12, 13] have been inherited by all ZX-calculi, comparing [25] with

two more recent universal completeness results [20, 28] one immediately notices that the additional rules

that give completeness are entirely different in each of the papers, and their relationship is by no means

obvious.

Consequently, the new game in town is to match rules on their utility, and in some cases we will

need to derive new rules. In fact, the new rule of the completeness theorem of [28] was in fact discov-

ered/derived by two of the current authors with the particular purpose of quantum circuit simplification

in mind [11], and this utility preceded the completeness result. One ingredient of the axiomatisation of

the original universal completeness result [25] is a new primitive of ZX-calculus, the triangle, which is

one of the key components to make an algebraic axiomatisation of ZX-calculus [30]. Although it seems

that the triangle is an extension of the original form of ZX-calculus, it actually can be expressed in terms

of original generators such as green and red spiders [19, 25].

We will explore one utility of the triangle, namely the role of standard rules governing the AND-gate

when translated as ZX-rules. In its simplest form the ZX-encoding of the AND-gate directly involves
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the triangle, this fact was firstly found in [26], while its semantically equivalent form was already shown

in [15] (see Exercise 12.10 there). We in particular derive three results based on a same rule set:

Derivation of spider nest identities. Recently ZX-calculus has been used to outperform all other

methods in the area of circuit optimisation [23, 21, 7, 6]. Key to these for the purpose of T-gate reductions

are so-called ‘phase gadgets’ named by Kissinger and van de Wetering [23], and were independently

introduced by de Beaudrap and Wang, summarised in [7]. Decomposing larger π/4-phase gadgets into

smaller ones (less than 4 lines) is vital for reducing T-count further than reduction effect of phase gadget

fusion. In this paper, we derive a general decomposition theorem for arbitrary phase gadget in terms of

AND-gates. As a consequence, we obtain all the spider nest identities which play a key role in [7, 6]. We

note that the spider nest identities were derived in this way before the papers [7, 6] were formed, while

this paper was in the process of preparing.

ZX-completeness for quantum Boolean circuits. Using the same rule set, we prove a completeness

theorem for quantum Boolean circuits. Circuit relations by Iwama, Kambayashi and Yamashita that

achieve this have been known for a while [18], also Cockett and Comfort have proved Iwama et al.’s rules

in the symmetric monoidal category, TOF, generated by the Toffoli gate and computational ancillary bits

[10]. We obtain our ZX-completeness result by proving Iwama et al.’s rules in the ZX-calculus with the

rule set established in this paper, without any resort to having a Toffoli gate as the generator. This work

does place results in circuit re-writing all under the umbrella of ZX-calculus. One particular advantage

of this is the availability of automation tools which already has proved to be very useful for the above

mentioned circuit optimisation results [22].

Algorithm for reducing T-count of quantum circuits. Based on the rules of completeness for

quantum Boolean circuits, we give an algorithm for reducing the T-count (number of T-gates) of a family

of benchmark circuits called Galois field multipliers [9]. We show in a table that the results of our

algorithm outperform the results of all the previous best non-probabilistic algorithms. The technique in

our algorithm can be applied to more benchmark circuits beyond Galois field multipliers.

Other work. An early motivation for the GHZ/W-calculus [14], now completed by Hadzihasanovic

[16, 17] and known as ZW-calculus, was extended control operations, which is also one of the motiva-

tional upshots of the triangle symbol. The triangle symbol entered the ZX-picture when ZW-calculus was

translated to the ZX-context. After the ZX-encoding of the AND-gate with triangles was given in [26],

there came a very recent ZX-alike calculus called ZH-calculus [5], which also allows easy representation

of the AND-gate composed of fewer nodes than that of the ZX-encoding, however, it is not just about the

denotation of the AND-gate, all the rules about the triangle in this paper are also important for the utility

of the AND-gate. For now, ZX-calculus is (still) the umbrella under which quantum circuit optimisation

is outperforming all competition, and were most completeness theorems have been stated, so a study of

the AND-gate within this context is more than justified.

2 ZX-calculus generators

The ZX-calculus lives in a compact closed category whose objects are the natural numbers N and whose

monoidal product is addition, a⊗ b = a+ b. A general morphism k → l in this category is simply a

k-input, l-output diagram generated, via finite sequential composition with outputs from one diagram

connecting to inputs form another diagram and tensor composition with diagrams in parallel, by the

following elementary diagrams:
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Z
(n,m)
α : n → m

m

n

...

α

...
X
(n,m)
α : n → m

m

n

α

...

...

T : 1 → 1 I : 1 → 1

Cu : 2 → 0 Ca : 0 → 2

σ : 2 → 2

where α ∈ [0,2π). Throughout this paper, all the diagrams are read from top to bottom, and non-zero

scalars are ignored. Note that the triangle node generator is firstly introduced in [19] which has forms

purely composed of green and red notes, here we show one of them as given in [15]:

π
4

π
4

−π
4

−π
4

= (1)

This means the triangle is not totally external to the original ZX-calculus, but we won’t use (1) as a rule

in this paper.

Each generating diagram D : k → l above has a standard interpretation as a linear map between Hilbert

spaces, JDK : (C2)⊗k → (C2)⊗l . By endowing each tensor factor C2 with its standard inner product and

by identifying its elements (1,0)T and (0,1)T as the qubit Z-basis states |0〉 and |1〉, we can present each

map JDK as a matrix:u
wwwwwwwv

m

n

...

α

...

}
�������~

= |0〉⊗m〈0|⊗n+eiα |1〉⊗m〈1|⊗n;

u
wwwwwwwv

m

n

α

...

...

}
�������~

= |+〉⊗m〈+|⊗n+eiα |−〉⊗m〈−|⊗n,

where |+〉= 1√
2

(

|0〉+ |1〉
)

and |−〉= 1√
2

(

|0〉− |1〉
)

are the qubit X-basis states:t |
=
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where

. .. . .

.. . . .

.

.

.

.

.

. represents an empty diagram. We can extend these matrix interpretations to general ZX-

diagrams simply by demanding that the composition operations for ZX-diagrams are compatible with

those for matrices, namely that JD1 ◦D2K = JD1K◦ JD2K and JD1 ⊗D2K = JD1K⊗ JD2K for every suitable

pair of ZX-diagrams D1 and D2.

3 ZX-calculus rules

Here is the fragment of stabilizer-style ZX-calculus rules that we will make use of in this paper, where

α ,β ∈ [0, 2π),κ ∈ {0,π}. All of these rules also hold when the colours red and green swapped. We also

assume a meta rule that “only topology/connectedness matters” [13].

...

α+β

...

==

...

α
...

...

β

...
· · ·

...

α+β

...

...

(S1)

= (S2) = (S3)

κ

π =

κ

(B1) =

κ
κ κ

(B2)

= (B3)

Noting that we haven’t mentioned adjoints, we represent the transpose as follows:

:= (2)

We will make use of the following simple triangle rules of the universal complete rules of [25]:

= (T1)

π

= (T2)

-1
π

=

π

(T3)

π

=

π

(T4)
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These rules represent the fact that the triangle breaks down of unitarity, or equivalently, the non-preservation

of unitarity, more specifically, given that the red spider states X
(0,1)
α are the qubit Z-basis states:

s {
= |0〉

s
π

{
= |1〉 (3)

we have:

• Rules (T1) and (T2) show that the triangle turns orthonormal states into unbiased states.

• Rules (T3) and (T4) show that the inverse of the triangle is not equal to its adjoint.

This breakdown of unitarity greatly extends expressiveness, for example, for control operations where a

basis can be used to switch between unbiased vectors.

4 ZX rules on AND-gates

In this section, we demonstrate how to obtain ZX rules on AND-gates. To save space, we have placed all

the Propositions in the appendix.

The interpretation (3) also enables us to view each red spider state as a diagrammatic representation

of a classical bit value. As such, the standard ZX-rules (S1) and (B2) easily demonstrate how the classical

processes COPY and XOR are represented as ZX-diagrams:

COPY := XOR := .

Also, the unit of the copy process can be seen as a classical deleting process:

:=

Proposition 1 shows how the green spider X
(1,m)
0 defines the m-output generalized COPY for any m ≥ 1:

mm

m-COPY :=
......

.

The quantum AND gate is a quantum version of the basic digital logic AND gate, which has the following

form

|0〉〈00|+ |0〉〈01|+ |0〉〈10|+ |1〉〈11|.
The first ZX-form of quantum AND gate was given in [15] with slash boxes which represent the diagram

on the right side of (1). It is first realised in [26] that the quantum AND gate can be simply represented

by triangle nodes, thus has a neat representation for its generalisation, the n-AND [29]:

-1
:=AND

n

n

n-AND :=
-1

... ...

.
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It is straightforward to see that these diagrams give a proper representation of the n-input generalized

AND. For, by Proposition 6, the 0-AND process simply returns |1〉; and, for all n ≥ 0, the (n+1)-AND

process returns |1〉 whenever its input bit string consists solely of |1〉 states:

n
n

=
T2

π

-1

...
π

πS1
=

...

-1
-1

P6
=

and returns |0〉 whenever its input bit string contains at least one |0〉 state:

n+1 n n
n

-1

...

=

-1

...

-1

...

=
T1

=
P3 P7P1

...

α1 αn α1 αn α1 αn

α1 αn

=

where αi ∈ {0,π}, i = 1, · · · ,n. By identifying the COPY, XOR, and AND in ZX-diagrams, we have

demonstrated that the ZX-calculus has all the machinery necessary to represent Boolean algebra. In light

of this fact, we expect that the Boolean identities (p⊕q) · r = (p · r)⊕ (q · r) and p · p = p to hold:

XOR

AND AND

COPY

XOR

AND

=

AND

COPY

=

Furthermore, AND is actually a function map, so a homomorphism for COPY and its unit (see e.g., [15]):

AND

COPY

AND

AND
=

COPY

COPY

AND =

In terms of ZX-diagrams, these equations for AND translate as:
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-1-1
=

-1

(A1) =

-1

(A2)

=

-1 -1

-1 (A3)

The ZX form of the second equality for the AND process as a function map is not listed as a rule, since

it can be derived from other rules (see Proposition 8 in the Appendix). The rules (A1) and (A3) have the

following useful generalisations whose proofs can be found in the Appendix:

n
n

...

-1

=
...

...

-1 -1

...
(L2)

. . .

-1

. . .

-1

=
-1

...

(L3)

We note that (A1) and (A3) can be derived from another set of rules which give an algebraic axioma-

tisation of ZX-calculus [30].

5 AND-gates and spider nest identities

In this section, using the AND-gate representation and rules presented in the previous section, we derive

so-called spider nest identities which have been shown to be of vital importance in reducing T-count with

ZX-calculus [7, 6]. For this purpose, in addition to the rules listed in the figures of previous section, we
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assume the following equality with AND-gates:

-1

α

-1

α

-1

α

-1

−2α

= α
2

−α
2

α
2

α
2 (4)

where α ∈ [0,2π). It can be checked that the two diagrams on both sides of (4) have the same standard

interpretation up to some scalar. If we plug and respectively onto the bottom and top of the leftmost

lines of both sides of (4), then we get:

=

−α
2

α
2

α
2

α

-1

(5)

which represents the controlled phase shift gate ΛZα [13] in two different ways.

The following theorem generalises (5) from 2 qubits to n qubits in terms of AND-gates, as is proved

in the Appendix.

Theorem 5.1. For any α ∈ [0,2π), n ≥ 2, we have:

n

n

=

· · · · · ·
α
2

α
2

−α
2

α
2

-1

α2

-1

α2α2

-1

α2

-1

· · · · · ·· · · · · ·

-1

αk

αn

-1

· · · · · ·· · ·

· · ·

...
... (6)

where for each k ∈ {2, · · · ,n} lines of the RHS of (6), there locates one and only one k-AND gate plugged

with a phase with angle αk = (−1)k2k−2α . Clearly αk+1 =−2αk.
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Using the the terminology of [23], we denote the following diagram as a phase n-gadget:

n

α

· · ·· · ·

where n ≥ 1.

Corollary 5.2.

n

n

π
4

τ

τ
σ

τ

· · ·

π
4

=

· · ·

σ σ
· · · · · ·

(7)

where n ≥ 3, for the RHS of (7), on each line, there is a 1-gadget with phase angle σ = (n−2)(n−3)π
8

, for

every two of the n lines, there is a 2-gadget with phase angle τ = (3−n)π
4

, and for every three of the n

lines, there is a 3-gadget with phase angle π
4

.

Proof. Since the angle of the phase gadget is π
4

, we let α = −π
2

in (6). Then on the RHS of (6),

αk = 0,∀k ≥ 4. Thus all the k-AND gates plugged with phase αk and k ≥ 4 become identities, which

means we just have phase-plugged 2-AND gates and 3-AND gates left in the RHS of (6). Now if we

replace all phase-plugged 2-AND gates and 3-AND gates by the phase gadgets in (5) and (4) respectively,

after phase gadget fusion, we then have the equality (7).

We note that the above proof can be generalised to more general cases if we consider the phase angle

on the left of (7) to be π
2k for any k ≥ 0.

Now if we plug the inverse of the phase gadget on the LHS of (7) to its both sides, then we get the
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spider nest identities [7, 6] as follows:

n

n

τ

· · ·

−π
4

· · ·

σ

π
4

· · ·

σ

=

· · ·
τ

σ

τ

· · ·· · ·

6 CNOT-based Quantum Boolean Circuits

In [18], a CNOT gate is defined as an n-bit Toffoli gate [27] denoted by [t,C], where |xt〉 is a target bit

and |xk〉 is a control bit with k ∈C ⊆ {1, · · · ,n}. A quantum Boolean circuit is defined as follows:

• A quantum Boolean circuit of size M over qubits |x1〉, ..., |xN〉 is a sequence of CNOT gates

[t1,C1] · · · [ti,Ci] · · · [tM ,CM] where 1 ≤ ti ≤ N and Ci ⊆ {1, ...,N}.

A quantum Boolean circuit is said to be proper and to compute a Boolean function f (x1, · · · ,xn) iff

(i) the input state of the circuit S0 = |a1〉|a2〉 · · · |an+1〉|0〉 · · · |0〉, (ii) the final state of the circuit SM =
|a1〉|a2〉 · · · |an+1⊕ f (x1, · · · ,xn)〉|0〉 · · · |0〉. There are six transformation rules introduced in [18] for quan-

tum Boolean circuits:

(1) [t1,C1] · [t1,C1] ⇐⇒ ε ,

(2) [t1,C1] · [t2,C2] ⇐⇒ [t2,C2] · [t1,C1], if t1 6∈C2 and t2 6∈C1,

(3) [t1,C1] · [t2,C2] ⇐⇒ [t2,C2] · [t1,C1] · [t1,C1 ∪C2 −{t2}] if t1 6∈C2 and t2 ∈C1,

(4) [t1,C1] · [t2,C2] ⇐⇒ [t2,C1 ∪C2 −{t1}] · [t2,C2] · [t1,C1] if t1 ∈C2 and t2 6∈C1,

(5) [t1,{c1}] · [t2,C2 ∪{c1}] ⇐⇒ [t1,{c1}] · [t2,C2 ∪{t1}] if t1 > n+1 and no CNOTt1 before [t1,{c1}],
(6) [t,C] ⇐⇒ ε if there is an integer i such that i ∈C, i > n+1, and there is no CNOTi before [t,C],
where ε represent the ‘identity’ gate and ⇐⇒ denote a transformation.

As a main result of [18], this set of transformation rules is proved to be complete for proper quantum

Boolean circuits: any two proper quantum Boolean circuits which are equivalent (computing the same

Boolean function) can be derived from each other via these transformation rules. This result is claimed

by the authors to be “quite non-trivial and theoretically interesting on its own.”

In this section, we represent each quantum Boolean circuit by ZX diagrams and then obtain the

ZX-completeness result for quantum Boolean circuits by proving in ZX-calculus the complete set of

six transformation rules presented in [18]. Moreover, we give an algorithm for T-count reduction based

on these transformation rules and show its outperformance in contrast with results of state-of-the-art

algorithms.

Now we give diagrammatic representation for CNOT gates. The ZX-diagram for a CNOT gate is

simply (see e.g., [29]):
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n

-1

...

.

As a check to this representation, the reader can verify that in the n = 0 and n = 1 cases, this representa-

tion reduces to the NOT gate and the standard CNOT gate, as expected:

π ,

We have now developed the necessary machinery to assert and prove the completeness of our ZX-rules

for quantum Boolean circuits. Let ZX ⊢ denote what can be inferred from the ZX rules listed in this

paper: (S1), (S2), (S3), (B1), (B2), (B3), (T1), (T2), (T3), (T4), (A1), (A2), (A3).

Theorem 6.1. If D1 and D2 are any two CNOT-based circuits expressed as ZX-diagrams such that

JD1K = JD2K, then ZX ⊢ D1 = D2.

The proof is given in the appendix.

Remark 6.2. Theorem 6.1 does not directly follows from the universal completeness of ZX-calculus,

because the rules used for the proof of universal completeness are beyond the rules we presented in this

paper.

Below we give an algorithm for reducing T-count (number of T-gates, denoted as #T) of quantum

circuits based on the transformation rules. The transformation rules (3) and (4) are all about how to

commute two CNOTi gates when exactly one target meets the other’s control bit. Especially, when one

of the two gates is the standard CNOT gate and the other an n-bit Toffoli gate, then there will be a new

n-bit Toffoli gate produced after their commuting. Based on this fact and the algorithms in [7] and [6],

we have the following algorithm for reducing the T-count of a family of benchmark circuits—Galois

field multipliers which are composed of standard CNOT gates in the middle and standard Toffoli gates

on both left and right ends [9]:

1. Input a circuit of Galois field multiplier.

2. Turn the circuit into a ZX-diagram.

3. Start from the left most standard CNOT gate, commute it through to the left or right end of the

circuit (outside of all standard Toffoli gates) with standard Toffoli gates using the transformation

rule (3) or (4). The commuting direction (to left or right) depends on the number of Toffoli gates it

needs to commute with, the direction with fewer commutations will be chosen; if both directions

have the same commuting number, then we choose the left direction.

4. Repeat the above step until all the CNOT gates are moved out.

5. Turn all the Toffoli gates into phase gadgets and do the phase gadget fusion, using the method

from [7, 6].

6. Output the circuit form and give the T-count.

The following table presents a comparison of the results of our algorithm with the previous best (non-

probabilistic) algorithms for reducing T-count.
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Table 1: T-count performance comparison.

Circuit Initial #T #T in [24] #T in [23] #T in [31] Ours

GF(24)-mult 112 68 68 68 62

GF(25)-mult 175 115 115 115 97

GF(26)-mult 252 150 150 150 131

GF(27)-mult 343 217 217 217 183

GF(28)-mult 448 264 264 264 263

GF(29)-mult 567 351 - 351 299

GF(210)-mult 700 410 - 410 361

GF(216)-mult 1792 1040 - 1040 1038

The circuits we obtained by running our algorithms can be found at [8], they have been verified by

feynver [2].

As one can see from Table 1, our results outperform all the results of previous non-probabilistic

algorithms. Note that the spider nest identities can be separately applied with after running the above

described algorithm, yet we didn’t apply these identities in our algorithm just because we want to see

its own performance. We would expect better results if we use those identities. Probabilistic method in

addition to our algorithm is in the similar situation as the spider nest identities. We also point out that the

technique used in our algorithm can be applied to more benchmark circuits beyond the family of circuits

of Galois field multipliers.
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Appendix: Propositions, Lemmas and Proofs

In this appendix we give the Propositions, Lemmas and Proofs. Note that in the proofs we just indicate

the main rules which are used in derivations, for the sake of simplicity.

Proposition 1

For m ≥ 1,

m
m

...

α α
α

...= (P1)

Proof. Using S1 we can decompose an R
(1,m)
Z diagram into an (m− 1)-fold composition of R

(1,2)
Z

diagrams. Repeatedly applying B2 then yields the desired result.

Proposition 2

= (P2)

Proof. =
S1 S2 S1

= =
B3

=
B2

= =

Proposition 3

= (P3)

Proof.
π
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=π

π
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T4 B1S1 T2

Proposition 4

π π

= (P4)
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Proof.

π

=

π
π

π

π
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π

π
π

π

π

π= =
T3 B1S1 T2

Proposition 5

π

= (P5)

Proof.

π
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S1T4

π

π
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π
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Proposition 6

π

=
-1

(P6)

Proof.
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Proposition 7
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Proof. =-1
T3 π

π

=
P5

π =
B1

B2
=
P3

Lemma 1

For all n ≥ 0,

n
n

=

-1

-1

-1

...

...

...

...
(L1)

Proof. The n = 0 case follows from B2 and P6, the n = 1 case follows from (S2) and (T3), and the

n = 2 case is simply A1. The lemma is true in all other cases, since whenever it holds for some n ≥ 2, it

is also valid for n+1:

n+1
n+1

n

n
n
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Lemma 2

For all n ≥ 0,
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-1 -1
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Proof. The n = 0 case follows from S2 and T3. We obtain all other cases by applying Lemma 1:

n

n n
n
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Proof.
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Proof.
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Proof of Theorem 5.1

First, we need the following lemmas.

Lemma 6.3. For any α ∈ [0,2π), we have:

=
-1-1

α

α

-1

α

-1 -1

−2α

(8)
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Proof.
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Lemma 6.4. For any α ∈ [0,2π), k ≥ 1, we have
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Proof.

k k

k

k
k

k

-1

−2α

-1

-1

-1

-1
α

· · ·

=

-1

-1

L3

−2α

· · ·

α

· · ·

α

α

-1

· · ·

(8)

· · ·

· · ·

=

α

=
α

=

-1
-1

=

α

-1

L2

-1

-1

α
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Now we are ready to prove Theorem 5.1.

Proof. We prove by induction on n. If n = 2, it is just the equality (5) which can be derived from (4).
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Assume that (6) holds for n = m. Then for n = m+1, we have

m+1 m m
m m

m
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Therefore, (6) holds for n = m+1. This completes the proof.

Proof of Theorem 6.1

Proof. It suffices to prove that each of the six transformation rules, expressed as ZX-diagrams, are deriv-

able using only the rule set given in the tables above.

(1) [t1,C1] · [t1,C1] ⇐⇒ ε

C1

C1

C1

C1

-1

. . .

=

-1

-1

-1

S1

. . .

. . .
. . .

=
L3
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=
-1P2

t1

t1

t1

t1
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C1 C1 C1 C1

π =
S1 S2

=

...

π

P5 B1

t1
t1

... P1 P3
=

...

t1

S1 S2
=

t1

...

(2) [t1,C1] · [t2,C2] ⇐⇒ [t2,C2] · [t1,C1], if t1 6∈C2 and t2 6∈C1

This is a simple consequence of (S1). The case in which t1 6= t2 is shown below.
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-1

. . .
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t1 t2

. . .

t2t1

. . .

. . .

-1
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=

(3) [t1,C1] · [t2,C2] ⇐⇒ [t2,C2] · [t1,C1] · [t1,C1 ∪C2 −{t2}] if t1 6∈C2 and t2 ∈C1
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C1
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C2 C2
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The second-to-last equality comes from rule 1.

(4) [t1,C1] · [t2,C2] ⇐⇒ [t2,C1 ∪C2 −{t1}] · [t2,C2] · [t1,C1] if t1 ∈C2 and t2 6∈C1

This follows immediately from rule 3:

C1
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t1

. . .

. . .

t2

=

(5) [t1,{c1}] · [t2,C2∪{c1}] ⇐⇒ [t1,{c1}] · [t2,C2∪{t1}] if t1 > n+1 and no CNOTt1 before [t1,{c1}]

Note that we must assume t1 6= t2 for the generalized CNOT gate [t2,C2 ∪{t1}] to be well-defined.
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C2 C2
C2

C2 C2
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c1 t1c1 t1

(6) [t,C] ⇐⇒ ε if there is an integer i such that i ∈C, i > n+1, and there is no CNOTi before [t,C]

C C C
C Ct i
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P3 P7P1B2 T1
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