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Abstract
The ZX calculus is a mathematical tool to represent and analyse quantum operations by manipulating
diagrams which in effect represent tensor networks. Two families of nodes of these networks are ones
which commute with either Z rotations or X rotations, usually called “green nodes” and “red nodes”
respectively. The original formulation of the ZX calculus was motivated in part by properties of
the algebras formed by the green and red nodes: notably, that they form a bialgebra — but only up
to scalar factors. As a consequence, the diagram transformations and notation for certain unitary
operations involve “scalar gadgets” which denote contributions to a normalising factor. We present
renormalised generators for the ZX calculus, which form a bialgebra precisely. As a result, no scalar
gadgets are required to represent the most common unitary transformations, and the corresponding
diagram transformations are generally simpler. We also present a similar renormalised version of the
ZH calculus. We obtain these results by an analysis of conditions under which various “idealised”
rewrites are sound, leveraging the existing presentations of the ZX and ZH calculi.

1 Introduction
The ZX calculus [1–15] is a mathematical tool to reason about quantum computation using diagrams. It
uses a graph-based notation broadly similar to quantum circuit notation to represent transformations on
one or more qubits, augmented with rules to rewrite diagrams in order to perform computations without
recourse to matrices. While the analysis of complicated procedures may require diagrams of mounting
complexity, the ZX calculus makes it easy in many cases to quickly analyse many-qubit procedures. As
well as being potentially less resource-intensive than matrix-based computations, the ZX calculus is more
versatile than circuit diagrams. Specifically, the objects represented by ZX diagrams are in general tensor
networks, in which any arrow of time is merely imposed by convention. As a result of this flexibility,
it has found to be productive in application to quantum technologies, for error correction [16–18] and
circuit optimisation problems such as reduction of phase gates and CNOT allocation [19–23].

Modern treatments of the ZX calculus [3–15] are “scalar exact”, in that they allow one to infer not
only whether T1 ∝ T2 for two transformations T1,T2, but also whether T1 = λT2 for a particular scalar λ ∈
C (as when T1 realises T2 with some probability of success |λ |2). This distinction is important in principle
in describing the effect of teleportation [24], measurement-based computations [25–27], surface-code
lattice surgery [28, 16] in different computational branches; and to distinguish what can be achieved
efficiently, as opposed to what can be achieved through postselection [29, 30]. However, to do so, the user
must keep track of “scalar gadgets” — small sub-diagrams which obliquely denote specific scalar factors,
which are necessary to represent certain unitary transformations exactly, and which change frequently
with rewrites. This is a consequence of the original way in which the ZX calculus was formulated, in
which the principal generators of the ZX calculus form a bialgebra only up to scalar factor corrections.

A related diagrammatic calculus to the ZX calculus is the ZH calculus [31–33], which was motivated
in part by unitary circuits over the Hadamard+Toffoli gate set [34, 35]. The ZH calculus is equivalent in
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14 Well-tempered ZX and ZH calculi

expressive power to the ZX calculus, and in particular is also scalar exact. However, while it has a supe-
rior facility for expressing these scalar factors, some of its most important rewrites involves accounting
for these scalar factors, as does representing a single-qubit Hadamard gates in quantum circuits.

In this article, we present versions of the ZX and ZH calculi whose rewrite rules involve fewer scalar
gadgets, and which can represent basic unitary transformations more simply. This is achieved through a
change in normalisation of the generators. We expect that these “well-tempered” versions will reduce the
work required to perform scalar-exact computation with these calculi, by simplifying the rules which are
most commonly used in practise. To summarise our results, we present these calculi immediately below:

A “well-tempered” ZX calculus — We present a version of the ZX calculus, with generator nodes

θ...m
{

...

}
n ,

θ...m
{

...

}
n , H , ν

k , (1)

where m,n ∈ N.1 We call these “green dots” (or “Z dots”), “red dots” (or “X dots”), “Hadamard boxes”,
and “nu boxes”. We may represent Hadamard boxes by small unlabelled degree-2 boxes for the sake of
brevity. The indicated generators take parameters θ ∈R (which may be omitted if θ = 0) or k ∈R (which
may be omitted if k = 1; the parameter in this case is always to be written at the upper-right corner). We
define a calculus on these generators with the following axioms:

←→ θ (IdZ)

θ...
... ←→

θ...
... (Change)

θ...
...

δ

...
...

←→
θ+δ...

... (FuseZ)

θ ←→ (ProjZ)

ν
0 ←→ (Idν)

←→ θ (IdX)

...
...

..

.

..

. ←→ ...
... (Bialg)

θ−δ

θ−δ θ+δ
←→ ϕ1 ϕ2 ϕ3

π γ

π γ

(Euler)

ν
h

ν
k ←→ ν

h+k (Fuseν)

θ ←→
π θ/2

ν 2λ (Scaleν)

These axioms largely follow the “near minimal axiomatization” of Vilmart [11, Fig. 2], but with fewer
scalar gadgets, and with three additional rules to define the behaviour of the nu boxes. The principal
difference to the usual presentation of the ZX calculus is that the green dots and the red dots form
a bialgebra, and not a scaled bialgebra. The right-hand sides of the rewrites (ProjZ) and (Idν) are the
empty diagram, the parameters h,k ∈R and angles θ ,δ ∈R may be arbitrary, the angles ϕ1,ϕ2,ϕ3,γ ∈R
in rule (Euler) are given by

ϕ1 = arg
(
z1
)
+ arg

(
z2
)
+ π

2 , ϕ2 = 2arg
(
z3
)
, ϕ3 = arg

(
z1
)
− arg

(
z2
)
+ π

2 , (2a)

γ = θ − arg
(
z1
)
− arg(z3), (2b)

where z1 = cos(δ )+ isin(θ), z2 = cos(θ)+ isin(δ ), and z3 = |z1|+ i|z2|; and the parameter λ on the
right-hand side of (Scaleν) is given by λ = log2

(
sec2(θ/2)

)
−1 for θ not an odd multiple of π .

1Diagrams in this article are read with “inputs” on the left and “outputs” on the right (similarly to quantum circuit diagrams).



Niel de Beaudrap 15

A “well-tempered” ZH calculus — We also present a version of the ZH calculus, with generator nodes
...m

{
...

}
n ,

a...m
{

...

}
n ,

...m
{

...

}
n , , (3)

where m,n ∈ N. We call these “white dots”, “H-boxes”, “gray dots”, and “not dots”. The latter two
correspond to gadgets (“derived generators”) in the original presentation of Ref. [31]; we elevate them
to the status of generators for the sake of our analysis. H-boxes take parameters a ∈ C (which may be
omitted for a =−1).2 We define a calculus on these generators with the following axioms:

←→ θ (IdZ)

←→ +1 (UnitH)

...
...

...
...

←→ ...
... (FuseZ)

a...
...

...
...

←→ a...
...

(FuseH)

...
... ←→ ...

... (Change)

←→ (Not)

←→
√

2

√
2

(Ortho)

←→ θ (IdH)

b

a ←→ ab (MultH)

←→ θ√
2

√
2

(SpecZ)

...
..
.

..

.
... ←→ ...

... (BialgZH)

...
...

..

.

..

. ←→ ...
... (BialgZX)

a ←→
a

a

(Dilem)

b

a

←→ a+b
2 √

2

(Avg)

These axioms are closely related to the original axioms presented by Backens and Kissinger [31], with
the principal difference that fewer of the rules introduce scalar gadgets.
A common standard model [[ · ]]ν for these calculi — The calculi above are sound with respect to a
common model [[ · ]]ν (described by Eqn. (62), on page 45 in Appendix E) which identifies the families
of white dots and green dots, and the Hadamard with the phase-free H-box. This model differs from the
standard models of the existing versions of the ZX and ZH calculi in the normalisations of the generators.
In particular, defining the constant ν = 2−1/4, the following equalities hold (c.f. Eqns. (11) for some of
the corresponding diagrams in the pre-existing versions of the ZX and ZH calculi):

[[
ν

]]
ν
= |0〉 ,

[[
ν

]]
ν
= |+〉 ,

[[
ν

]]
ν = |+〉 ,

[[
ν

]]
ν = |--〉 , (4a)

[[ θ

θ

]]

ν
= |0〉〈0|+ eiθ |1〉〈1| ,

[[ θ

θ

]]

ν
= |+〉〈+|+ eiθ |--〉〈--| ,

[[ ]]
ν
= 1√

2

[
1 1
1 −1

]
,

[[ ]]
ν
=

[
0 1
1 0

]
, (4b)

[[ ]]

ν

=

[[ ]]

ν

= CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


,







−1
...k−1

{ 





ν

= Ck−1Z =




1 0 ··· 0
0 ...

...... 1 0
0 ··· 0 −1


. (4c)

2Not-dots may be labeled with a “¬” symbol, as in Ref. [31]; we use a dark gray node instead to simplify our diagrams.
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An analysis of normalisation constraints for idealised rewrites — Our well-tempered calculi do not
banish scalar adjustments to the normalisation altogether for the analysis of unitary circuits.3 One may
show in fact that it is not possible to do so. While the construction of the calculi of pages 14 and 15 is the
motivation for this article, our main technical contribution (in Appendices C and D) are the constraints
and trade-offs in “reasonable” models for which various simplified rewrites are sound, by reduction to
the existing versions of these calculi.

Related work — To the best of our knowledge, our presentation is the first work on either the ZX or
ZH calculi which attempts to describe simplified rewrites while remaining sound for a model of com-
plex matrices (rather than equivalence classes of such matrices). Concurrently, Carette and Jeandel [36]
developed a classification of all “Z∗ calculi”, including the ZX calculus and the ZH calculus: the well-
tempered calculi correspond to the calculi Z(

√
2,1)X(

√
2,1) and Z(1,1)H(

√
2,−1/2) up to a symmetrising iso-

mophism (see the discussion in Section 4 on page 24). — We note that our versions of the ZX and ZH
calculi are not intended to simply replace the pre-existing versions, for all foreseeable applications:

• The standard model of the pre-existing scalar exact ZX calculus is ideally suited to describe surface
code lattice surgery [16, 37];

• The original version of the ZH calculus denotes integer matrices whenever the H-boxes take integer
parameters, and thus is ideally suited for analyses of counting and and gap complexity [38, 39].

What these new versions of the ZX and ZH calculi are intended to do, is to simplify the task of per-
forming scalar-exact computations for procedures which are dominated by unitary transformations, and
to facilitate using the two calculi interoperably (through the common standard model [[ · ]]ν ) for that task.

Structure of the paper — Section 2 provides background on string diagrams and the existing presen-
tations of the ZX and ZH calculi (extended remarks on the normalisations of their standard models is
left to Appendix A). Section 3 summarises the way in which we may construct the model [[ · ]]ν from
a parameterised model by imposing successive constraints (supported by analysis in Appendices B–E).
Section 4 describes some features of interest of these calculi, contrasting them to the pre-existing ZX
and ZH calculi — presenting a few simple examples of derivations in doing so — and describing their
relationships to other work on the ZX and ZH calculi. We conclude in Section 5 with a few pragmatic
remarks concerning the use of these diagrammatic calculi.

2 Preliminaries
In this section, we present the background for our work, including descriptions of the pre-existing ver-
sions of the ZX and ZH calculus for ease of reference and comparison.

2.1 String diagrams

The ZX and ZH calculi are both systems to represent quantum operations by “string diagrams”. These
diagrams consist of dots or boxes, connected by wires, in effect denoting tensor networks4 whose coeffi-
cients range over a set such as C or N. A wire can have one or two “loose” ends which are not connected
to a dot or box: these represent inputs and outputs of the operation. In this article, we consider string
diagrams in which wires represent the state-space of a qubit, and loose ends of wires will be oriented
towards the left (for inputs) or the right (for outputs) of the diagram.

3See, e.g., the discussion preceding Lemma 4 on page 22, or the discussion of specialness and supplementarity on page 23.
4That this notation represents a tensor network — or indeed represents anything whatsoever in a well-defined way — can

be established using category theory; however, no category theory will be needed to understand our results.
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θ...
... ←→

θ...
... (Xα ) ←→ θ (Iαg ) ←→ θ (Iαr )

←→ (Bα ) ←→ (Cα
r )

θ ←→ (Eα )

θ...
...

δ

...
...

←→
θ+δ...

... (Fα
g ) ←→ θ (Sα

g )
θ−δ

θ−δ θ+δ

xy

ϕ1 ϕ2 ϕ3

π γ

(EUα )

Figure 1: A slight modification of the rules of Ref. [11, Fig. 2], taken here as a representative of the pre-existing
versions of the ZX calculus. Throughout, “ ... ” indicates zero or more wires, and θ ,δ ∈ R may be arbitrary (sums
may be taken modulo 2π). The rules (Fα

g ) and (Sα
g ) together are equivalent to the rule (S) of Ref. [11], and the

rule (Xα) is equivalent to the rule (H) of Ref. [11]. The other rules are identical to (Ig), (Ir), (B), (CP), (IV), and
(EU′) of Ref. [11, Fig. 2]. Note that the right-hand side of the rule (Eα) is the empty diagram, whose interpretation
is the scalar 1; and ϕ1, ϕ2, ϕ3, and γ in the rule (EUα) are as described in Eqns. (2)

As with standard quantum circuit diagrams, we may build diagrams from basic generators which
represent matrices. Connecting diagrams left-to-right represents multiplying matrices sequentially, and
juxtaposing diagrams vertically represents taking the tensor product. We may also permute qubit state-
spaces by crossing wires over one another (corresponding to exchanging tensor indices) and bend wires
back on themselves (corresponding to a basis-dependent isomorphism between the space C2 and its
dual). The correspondence between diagrams and matrices (defined even for diagrams consisting only
of wires with loose ends) is provided by a “model” [[ · ]], which maps each diagram to some matrix over
C. In this work, we consider only models [[ · ]] for which the following equations hold:

[[
θ
]]
=
[

1 0
0 1

]
,

[[ ]]
=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


,

[[ ]]
= |00〉+|11〉 ,

[[ ]]
= 〈00|+〈11| . (5)

If the meaning of each node as tensor in the model [[ · ]] (its semantics) is symmetric, i.e. unaffected by
permuting its tensor factors — and if their coefficients are defined with respect to a basis of real vectors
— we may ignore the directions of wires when interpreting or transforming the diagrams. This is often
described as a rule of “only the topology matters”, which we use freely in our work.

As with any notation, it is possible to do calculations with string diagrams, provided that there are
enough “rules” describing how to manipulate diagrams in a meaning-preserving way (i.e., preserving the
semantics in a model [[ · ]]). A set of rules (or “basic rewrites”) to do so defines a diagrammatic calculus.
In this article, we consider two specific examples: the “ZX calculus” and “ZH calculus”, described below.

2.2 The ZX and ZH calculi
The ZX calculus is in fact a collection of closely related diagrammatic calculi of the sort described above
— all equivalent up to scalar factors, and the most recent versions of which are exactly equivalent. It is
effective for representing operations generated by single-qubit rotations and controlled-NOT gates. The
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ZH calculus [31, 32] was developed as an alternative to the ZX calculus for reasoning about quantum
computation, in which higher-arity generalisations of the Hadamard box play a central role. Such nodes
are suitable for representing multiply-controlled-Z operations, and thus for representing circuits over the
Hadamard-Toffoli gate set [34, 35]. In this section, we describe examples of the ZX and ZH calculi
(minor variations of the pre-existing presentations of these calculi) as the starting point of our analysis.

The ZX calculus. We take a slightly modified version of the presentation of Vilmart [11, Fig. 2] as
representative of existing versions of the ZX calculus. In addition to the wire diagrams of Eqn. (5), it has
the following “dot” and “box” generators, where m,n ∈ N may be arbitrary:

θ...m
{

...

}
n ,

θ...m
{

...

}
n , H . (6)

The first (lighter coloured) family and the second (darker coloured) family each contain nodes of type
m→ n for arbitrary m,n ∈ N, and admit a “phase” parameter θ ∈ R. We call these families “green” and
“red” nodes respectively (or occasionally “Z” and “X” nodes); the third generator we call the Hadamard
box. (We frequently omit the phase parameter for green nodes with θ = 0, which we call “phase-free”;
we may also represent Hadamard boxes by boxes without the H symbol.) We interpret these as tensors
using a model [[ · ]]α , defined by:[[

θ...m
{

...

}
n

]]

α

= |0〉⊗n〈0|⊗m + eiθ |1〉⊗n〈1|⊗m ,

[[
θ...m

{
...

}
n

]]

α

= |+〉⊗n〈+|⊗m + eiθ |--〉⊗n〈--|⊗m ,

[[
H

]]
α
= 1√

2

[
1 1
1 −1

]
. (7)

The basic rewrites of the calculus are shown in Figure 1 (where in the rule (EUα), the angles ϕ1,ϕ2,ϕ3,γ ∈
R satisfy Eqn. (2)).

The ZH calculus. We consider a presentation of the “original” ZH calculus which differs slightly
from the presentation of Backens and Kissinger [31].5 In addition to the wire diagrams of Eqn. (5), our
presentation of the ZH calculus has the following “dot” and “box” generators, for m,n ∈ N arbitrary:

...m
{

...

}
n ,

a...m
{

...

}
n ,

...m
{

...

}
n , . (8)

The first three families each contain nodes of type m→ n for arbitrary m,n ∈N, and the second admits a
“phase” parameter a ∈ C. We call these families “white dots”, “H boxes”, and “gray dots” respectively;
the fourth generator we call the “not-dot”.6 (We may omit the phase of H-boxes with a = −1.) We
interpret these as tensors using a model [[ · ]]β , defined as follows:
[[

...m
{

...

}
n

]]

β

= |0〉⊗n〈0|⊗m + |1〉⊗n〈1|⊗m ,

[[
...m

{
...

}
n

]]

β

= ∑ ∑
x∈{0,1}m, y∈{0,1}n

w(x)+w(y)∈2Z

|y〉〈x|,

[[
a...m

{
...

}
n

]]

β

= ∑ ∑
x∈{0,1}m
y∈{0,1}n

ax1···xmy1···yn |y〉〈x| ,
[[ ]]

β
=

[
0 1
1 0

]
.

(9)

5In fact, our version of the ZH calculus is a conservative extension of that of Ref. [31]: strictly speaking, only the equiva-
lences involving only white dots and H-boxes are common to both. To simplify the presentation, we prefer to take gray dots and
not-dots as generators which may have different interpretations under different models [[ · ]], rather than gadgets with varying
definitions with respect to different calculi. Despite this technical difference, we feel this is still in the vein of “the ZH calculus”.

6Backens and Kissinger [31] treat the gray nodes and the not-dot as gadgets (“derived generators”), defined in order to
simplify the presentation of their rewrites, rather than primitive nodes. We find it useful to treat them as primitive generators.
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←→ θ (I
β
w)

...
...

...
...

←→ ...
... (F

β
w)

←→ θ (S
β
w)

...
...
←→ ...

...

2

2

(Xβ )

←→ θ
2

2
(I

β
h )

a...
...

...
...

←→

2

a...
...

2

(F
β
h )

←→ +1 (Uβ )
...

...
..
.

..

. ←→ ...
... (BA

β
1 )

b

a ←→ ab (Mβ )
...m

{
..
.

..

.
...

}
n ←→

...m

{
...

}
n

2n−1

2

(BA
β
2 )

←→
2

2
(Nβ )

a

a

←→ a (Dβ )

←→
2

(Oβ )

b

a

←→ a+b
2

2

(Aβ )

Figure 2: A set of rules, representing the pre-existing version of the ZH calculus but modifying the rules of
Ref. [31, Fig. 1]. Throughout, “ ... ” indicates zero or more wires, and m,n ∈ N and a,b ∈ C may be arbitrary.
We introduce rewrites (Nβ ) and (Xβ ) in place of the definitions in Ref. [31, Eqns. 1 & 2]. Otherwise, the cor-
respondence between the rewrites above and those of Ref. [31] is as follows: (Fβ

z )≡ (ZS1); (Fβ
h )≡ (HS1);

(Iβz )& (S
β
z )≡ (ZS2); (Iβh )≡ (HS2); (BAβ

1 )≡ (BA1); (BAβ
2 )≡ (BA2); (Dβ

h )≡ (I); (Uβ
h )≡ (U); (Mβ

h )≡ (M);
(Oβ

h )≡ (O); and (Aβ
h )≡ (A). In particular, (BAβ

2 ) follows by post-composion of both sides of (BA2) with phase-
free H-boxes, and we relabel the “intro” rule (I) as (Dβ ) to avoid notational clash (we pronounce it as “dilemma”).

Note in particular that any degree-0 H box denotes a scalar factor:
[[

a
]]

β
= ∑

(singleton)
a(empty product) ·1 = a1 = a. (10)

The rules of our variant of the ZH calculus are shown in Figure 2. We introduce rules (Xβ ) and (Nβ )
to syntactically provide the same meaning for gray dots and the not-dot as in [31, Eqns. 1 & 2]. Note
that our rule (BAβ

2 ) differs significantly from the corresponding rule (BA2): in particular, (BA2) doesn’t
introduce a scalar factor, and involves a gray node of type 1→ n node in place of a Z node of type 1→ n.
Our alternative rule (BA

β
2 ) instead highlights how the gadget of two phase-free H boxes itself interacts

with the Z dots in a similar way to how the gray dots do in (BA
β
1 ) — i.e., as a scaled bialgebra.7 As it

seems likely to that this interaction will play an important role in how the ZH calculus may be used in
practise, we adopt the rule (BA

β
2 ) in place of (BA2) in our reference presentation of the ZH calculus.

7This observation is implicit in Ref. [31], which describes (BA2) as a “bialgebra rule”.
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2.3 The situation with scalars in the existing presentations of the ZX and ZH calculi

In the existing versions of the ZX and ZH calculus, “scalar gadgets” (closed sub-diagrams) are involved
both in common basic rewrites, and in the representation of common unitary gates. We first consider
representations of quantum operations which require scalar gadgets. For the ZX calculus, we have

|0〉 =
[[ ]]

α
|+〉 =

[[ ]]
α
, CNOT =













α

, (11a)

These diagrams involve scalar gadgets with one green dot and one red dot, representing the constants
1/
√

2 and
√

2. (As an exercise, the reader is invited to prove which is which from first principles.) Using
scalar boxes, the ZH calculus more transparently represents its needed corrections to the normalisation:

|+〉 =
[[

1√
2

]]
β

|--〉 =
[[

1√
2

]]
β

H = 1√
2

[
1 1
1 −1

]
=







1√
2

1√
2







β

. (11b)

Compared to conventional quantum circuit notations, the use of scalar gadgets to represent such basic
operations is conspicuous. This might be dismissed as a one-time inconvenience for any given quantum
procedure to be represented, if not for the similar scalar gadgets which are introduced or removed by
several of the rewrite rules — most notably, the rules (Bα), (Cα

r ), and (EUα) for the ZX calculus, and
rules (Xβ ), (Iβh ), (F

β
h ), (BA

β
2 ) of the ZH calculus. As a result, frequent bookkeeping of these gadgets is

required for scalar exact reasoning.
Partly as a result of the inconvenience of tracking scalar gadgets [40], the research programme on

the ZX calculus has sometimes ignored scalar factors altogether (see, e.g., Ref. [2]).8 This suffices to
consider the question of how to prove, for two diagrams D1 and D2, when the operators [[D1]] and [[D2]]
are proportional by a non-zero scalar. For some tasks in quantum information theory, this is adequate —
for instance, two unitary operators are proportional to one another if and only if they differ by at most
an unimportant global phase. Thus, one may produce useful results with the ZX calculus without taking
the effort to maintain the normalisation of terms; and the same is true of the ZH calculus. However,
tracking normalisation is important in application to quantum information processing in general, as it
may correspond to the probability with which a given transformation or physical effect is realised, which
is an important issue in quantum technologies.

There are good theoretical motivations for the original standard models (and therefore also for the
rewrites of Figures 1 and 2) for the ZX and ZH calculi as presented in Eqns. (7) and (9). For some
applications, the models [[ · ]]α and [[ · ]]β also have good practical motivations. (These motivations are
discussed in some detail in Appendix A.) However, it would be helpful to have scalar-exact variants of
the ZX and ZH calculi in which neither the representations of basic unitary gates, nor the most important
rewrite rules, involved scalar gadgets. This serves as the motivation for this work.

3 Constructing differently normalised ZX and ZH calcului

In this section, we prove the soundness and completeness of the calculi presented on pages 14 and 15,
by reduction to the pre-existing versions of the ZX and ZH calculi. We do this by constructing the model
[[ · ]]ν as a notation supporting both simple representations of unitary operators and simple rewrites, and
considering the scalar differences between [[ · ]]ν and the models [[ · ]]α and [[ · ]]β .

8Indeed, some well-regarded participants in this programme [40, 41] feel that scalar factors are still of minor importance.
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3.1 Constraints on denotation
We define [[ · ]]ν to satisfy Eqn. (5), and so that [[A]]ν ∝ [[A]]α for each ZX generator A, and [[B]]ν ∝ [[B]]β
for each ZH generator B. From this, it follows that

[[
...m

{
...

}
n

]]

ν
∝

[[
...m

{
...

}
n

]]

ν
,

[[
H

]]
ν

∝

[[
−1

−1 ]]
ν
. (12)

To help the calculi to work interoperably, we define [[ · ]]ν so that in fact these proportionalities hold
with equality. Apart from this, we define [[ · ]]ν as flexibly as possible (subject to an “only the topology
matters” constraint), to maximise the chances of finding normalisations of the generators which satisfy
the constraints we impose. To this end, we define the semantics of the generators up to some families of
non-negative coefficients (uk)k∈N, (vk)k∈N, (gk)k∈N, (hk)k∈N, and ξ . For the ZX calculus, we define[[

θ...m
{

...

}
n

]]

ν

= um+n

(
|0〉⊗n〈0|⊗m + eiθ |1〉⊗n〈1|⊗m

)
, (13a)

[[
θ...m

{
...

}
n

]]

ν

= vm+n

(
|+〉⊗n〈+|⊗m + eiθ |--〉⊗n〈--|⊗m

)
, (13b)

and for the ZH calculus (and for the Hadamard box of the ZX calculus, taking a =−1 and m = n = 1):[[
...m

{
...

}
n

]]

ν

= um+n

(
|0〉⊗n〈0|⊗m + |1〉⊗n〈1|⊗m

)
,

[[ ]]
ν
= ξ

[
0 1
1 0

]
, (13c)

[[
a...m

{
...

}
n

]]

ν

= hm+n ∑ ∑
x∈{0,1}m
y∈{0,1}n

ax1···xmy1···yn |y〉〈x| ,
[[

...m
{

...

}
n

]]

ν

= gm+n ∑ ∑
x∈{0,1}m, y∈{0,1}n

w(x)+w(y)∈2Z

|y〉〈x| . (13d)

We next impose constraints to yield calculi with our preferred features. We first constrain [[ · ]]ν to express
certain unitary operators simply — specifically:

[[ ]]
ν =

[[ ]]
ν =

[[ ]]
ν =

[[ ]]
ν = 1 =

[
1 0
0 1

]
, (14a)

[[ ]]
ν = NOT =

[
0 1
1 0

]
,

[[
H

]]
ν
= H =

1√
2

[
1 1
1 −1

]
, (14b)

[[ ]]

ν

=

[[ ]]

ν

= CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


, (14c)







−1
...k−1

{






ν

= Ck−1Z =




1 0 ··· 0
0 ...

...... 1 0
0 ··· 0 −1


, (14d)

where Ck−1Z ∈ U(2k). Furthermore, as it is a priori unlikely that we can obtain a calculus in which all
rules are free from scalar gadgets, we wish to retain the ability (at least in the ZH calculus) to directly
express arbitrary scalars, as in Eqn. (10). We require that [[ · ]]ν be able to do the same, so that

[[
a
]]

ν
= a. (15)

These equations impose the following constraints on the model [[ · ]]ν (as we prove in Appendix B):

Lemma 1. Eqns. (13)–(15) hold iff u2 = v2 =ξ =1, u3 = v3 =g−1
3 =21/4, and hk =2−k/4 for all k > 0.
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3.2 Asserting favourable rewrite rules
Subject to the above, we intend for [[ · ]]ν to be a model for calculi whose most important rewrites are
free of scalar gadgets. As [[ · ]]ν is as yet under-determined, we may define it so that certain “idealised”
rewrites are sound. In Appendices C and D, we characterise normalisation constraints which would be
imposed by various rewrites, emphasising those which are necessary for the green and red nodes for the
ZX calculus to form either special dagger-Frobenius algebras or bialgebras. In Appendix E, we draw up
a “wish-list” of such rewrites and introduce the soundness of each one in turn as constraints (subject to
consistency with those that came before) to fix a single model [[ · ]]ν , presented in Eqns. (62) on page 45.
Below, we summarise the result of imposing these successive constraints (with proofs in Appendix E):

Corollary 1.1. If Eqns. (13)–(15) hold, then the rewrites (IdZ) and (IdX) on page 14 and the rewrites (IdZ),
(IdH), (Not), (BialgZX), (MultH), and (FuseH) on page 15 are sound.

Lemma 2. Eqns. (13) and the two rewrites (Change) on pages 14–15 are sound, iff uk=vk and gk=2hk
2uk

for all k > 0. In particular, Eqns. (13) and (14b) hold and the two rewrites (Change) are sound, iff
h2 =2−1/2, ξ =1, and uk = vk =2(k−2)/2gk for all k > 0.

Lemma 3. Let ν = 2−1/4. Then Eqns. (13)–(15) hold and the rewrites (Change), (FuseZ), and (BialgZX)
on pages 14–15 are sound, iff ξ = 1, uk = vk = g−1

k = ν−(k−2) for all k > 0, and hk = νk for all k > 0.
Under these conditions, the alternative ZH rewrites of page 15 are sound.

Note that u1 = 2−1/4 under the conditions of the second part of Lemmas 2 and 3. Among other things, this
implies that [[ ]]ν = 21/4 |0〉, so that we must do some bookkeeping of scalars to represent unit vectors.
As we show in Corollary C.9.1 (Appendix C), the diagram [[ ]] having non-unit norm is a necessary
compromise for any version of the ZX calculus with what one might consider to be “reasonable” rewrites.
To mitigate the bookkeeping of scalars that we then require for single-qubit states and projections, we
introduce the nu-box generator to represent powers of ν = 2−1/4, so that we may easily represent |0〉 =[[

ν
]]

ν as illustrated in Eqn. (4a). The rewrites involving the nu-box are then motivated by the
following Lemma (proven in Appendix E):

Lemma 4. Define
[[

ν
k ]]

ν = νk. Under the conditions of Lemma 3, for θ not an odd multiple of π ,

[[
θ
]]

ν =
√

1+ cos(θ)eiθ/2 =
[[ π θ/2

ν 2λ
]]

ν
, (16)

where λ = log2
(
sec2(θ/2)

)
− 1. Under these conditions, the alternative ZX rewrites of page 14 are

sound.

By introducing the rule (Scaleν) in the well-tempered ZX calculus, we provide a means to convert
representations of scalar factors arising from isolated green dots or red dots to nu-boxes, representing
them (somewhat) more easily using the rules (Fuseν) and (Idν). The question of the soundness and
completeness of the version of the ZX calculus on page 14 may then be reduced to that of the sub-theory
of green, red, and Hadamard nodes.

3.3 Completeness of the new calculi

The rewrites of the ZH calculus variant on page 15 are in clear one-to-one correspondence with those in
Figure 2 (which are equivalent to those of Ref. [31]). As we construct [[ · ]]ν by reduction to the original
standard model [[ · ]]β , the completeness of the calculus of page 15 for [[ · ]]ν is underwritten by that of the
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original presentation of the ZH calculus. Similarly, for the ZX calculus variant on page 14, (Bialg) is
equivalent to the simplified versions of (Bα) and (Cα

r ) of Figure 1, conditioned on the two rules (Fα
g ) and

(Xα) also holding. As [[ · ]]ν is constructed by reduction to [[ · ]]α and supports those rules, the completeness
of the well-tempered ZX calculus for [[ · ]]ν also follows (given the remarks above regarding ν-boxes).

4 Features of the well-tempered calculi
We now remark on a number of features of the ZX calculus on page 14 (and also some features of the
ZH calculus on page 15) which we consider practically important.

Hopf Law, local complementation, and phase gadgets — One of the objectives of developing the
well-tempered ZX calculus is to simplify some of the most important known theorems and gadgets of the
ZX calculus. A particular rule which holds exactly in our well-tempered ZX calculus is the Hopf Law.9

Using an easy theorem (FuseX), corresponding to (FuseZ) with green nodes exchanged for red nodes
and provable using the (Change) rewrite, we may prove the Hopf law following Ref. [1, Example 2.5]:

=
(IdZ), (FuseZ)←−−−−−−−−−−→
(IdX ), (FuseX )

(Bialg)←−−−−−→ (Bialg)←−−−−−→ (FuseX )←−−−−−→
(IdX )

. (17)

Another result which simplifies is the transformation of graph states under local Clifford operations.
Following Ref. [2], and using as a Lemma the rewrite (EU) of Jeandel et al. [6, Fig. 1] for the model [[ · ]]α
(which one may verify is also sound in [[ · ]]ν ), one may show that a scalar-exact version of Van den Nest’s
theorem holds for [[ · ]]ν : for instance,

�p/2

p/2

p/2

(FuseX ) �����!
(Bialg)

�p/2

p/2

p/2

(Change)
⇤

 ��������!
(IdZ)

⇤
, (IdX )

⇤

p/2

p/2

�p/2 (FuseZ)
⇤

 ������!
p/2

p/2
�p/2

(EU) ���! . (18)

This derivation features a phase gadget [20, 23], a ZX term of independent interest which denotes a
diagonal operation inducing a relative phase eiθ on standard basis states |x〉 for which x · z ≡ 1 (mod 2)
for some z ∈ {0,1}n. One may show that the gadgets are precisely unitary in [[ · ]]ν by induction on n > 1:

n
{

... θ
(FuseZ)
(FuseZ)←−−−−−→ n

{
... θ (Bialg)←−−−−−→ n

{
... θ (FuseX )←−−−−−→ n

{
... θ

. (19)

Scaled specialness and supplementarity — A compromise which is made in the well-tempered ZX
and ZH calculi is that some well-known (but less-often used) results which are free of scalar gadgets
in the pre-existing calculi, now do involve scalar gadgets. The most noteworthy of these is the rule
corresponding to (Sα

g ) in Figure 1 and (S
β
w) in Figure 2 (c.f. Rule (SpecZ) on page 15):

(IdX )←−−−→ (FuseZ)←−−−−−→ (Hopf)←−−−−−→ (IdZ)←−−−−−−−→
(Change)

ν
−2(Scaleν )←−−−−−−−→ . (20)

9The “Hopf Law” is a property of bialgebras (not specific to the well-tempered ZX calculus), which here amounts to the first
and last diagrams of Eqn. (17) being equivalent. By an abuse of terminology, we refer below to the “Hopf Law” when the red
and green dot may have zero or multiple free edges (these are easy corollaries, provable with (FuseX ) and (FuseZ) rewrites).
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Another noteworthy rewrite which does not hold in a simplified form in the ZX calculus of page 14,
despite holding in a simple form in the pre-existing ZX calculi, is the “supplementarity” rewrite [4,
Lemma 1]:





θ π+θ





ν

= ν






θ π+θ





α

= ν






π+2θ





α

= ν−2






π+2θ





ν

=






π+2θ





ν

=






π+2θ





ν

, (21)

where the second equality is the usual supplementarity rewrite in pre-existing scalar-exact versions of
ZX, the first and third equalities follow from the normalisation of the generators in [[ · ]]ν , the penultimate
equality follows from Lemma 4, and the final equality is again the Hopf Law.

Upgrading ZX congruences to ZX equalities — As we note in Section 2.3, it is a common prac-
tise to perform calculations in the ZX calculus by disregarding scalar factors altogether, only reasoning
about congruency of diagrams up to a non-zero proportionality factor. However, the only “traditional”
ZX rewrites whose corresponding versions introduce scalar gadgets in the well-tempered calculus are
(SpecZ) and (Euler). Thus, any calculation of ZX terms which neglected scalar factors, but could be
expressed without either of these rewrites, can without modification now be regarded as a scalar-exact
derivation with respect to the model [[ · ]]ν . (Those which involve involve (Euler) but not (SpecZ) will be
correct up to a global phase factor.)

Classification as Z* calculi — As we note on page 16, Carrette and Jeandel [36] describe a classifica-
tion of “Z∗ calculi”, consisting of bialgebras involving the monoid of the “Z algebra” (the green dots of
the ZX calculus and white dots of the ZH calculus) with a co-monoid of some other Frobenius algebra (in
our case, the red dots and yellow boxes respectively). Following Ref. [36, Appendices B.2.1 & B.3.3],
the bialgebras of the well-tempered ZX and ZH calculi may be characterised as follows:

• The bialgebra of the green and red dots of the well-tempered ZX calculus, is equivalent to the
calculus Z(

√
2,1)X(

√
2,1), by an isomorphism Λ = 21/4 ·1 applied to the outputs of operations (and

applying Λ−1 to the inputs);

• The bialgebra of the white dots and H-boxes in the well-tempered ZH calculus is equivalent to
the calculus Z(1,1)X(

√
2,−1/2) — albeit with a different representation for the phases of H-boxes,

as with the original ZH calculus [36, p. 11] — via the isomorphism Λ−1 applied to the outputs of
operations (and applying Λ to the inputs).

5 Concluding remarks
Our aim in this article was to present versions of the ZX and ZH calculi — equivalent in denotation up to
scalar factors to the existing versions — which supported simpler representations of unitary transforma-
tions, and simpler versions of the most commonly used rewrites. This makes the ZX and ZH calculi more
practcal as a tool for routine scalar-exact calculation. While efficient reasoning about quantum processes
is part of the research programme of diagrammatic calculi for quantum computation, for historical rea-
sons the aim of doing so with precision with scalars has often been considered a second-order priority,
which can be done post-hoc if strictly necessary. Our results demonstrate how, by a careful choice of
notation, one can maintain scalar exactness at every step without too much trouble in practise.

At this point, we confess that the inclusion of nu-boxes in our version of the ZX calculus is only half-
seriously intended. It supports the objective of maintaining scalar exactness as a matter of routine, while
supporting the conventional design of the ZX calculus of all parameters being drawn from an additive
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group. Nevertheless, as a representation even of just positive scalar factors, nu-boxes leave much to be
desired. A more transparent way to represent scalar factors would be to treat the diagrams as an algebra
over C, and simply multiply diagrams by complex scalars to modify the normalisation. The ZH calculus
provides a compromise between these two positions, allowing any global scalar factor to be taken as a
parameter of an H-box. We would advocate a further revision of the ZX calculus presented on page 14,
to include more direct and flexible means of representing scalar factors along these lines.

Taking things one step further: [[ · ]]ν is designed to allow the ZX and ZH calculi to “interoperate”,
e.g., by using hybrid diagrams consisting of compositions of ZX and ZH generators. We may thus
consider an approach to using graphical calculi (e.g., a practise of developing and using a growing corpus
of gadgets and theorems), in which one may adopt the same indifference as to which specific sound-and-
complete scalar-exact calculus forms the basis of one’s calculation, as one commonly adopts towards
set-theoretic foundations or towards constructions of the real numbers from the rationals.
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A On normalisation in the ZX and ZH calculi
We now expand on remarks Section 2.3 on page 20 about the normalisation conventions in existing
presentations of the ZX and ZH calculi.

A.1 On scalar factors in the ZX calculus
Work on the ZX calculus is concerned with revising and refine the original presentation of Ref. [1]
to provide more-or-less minimal, complete, and scalar-exact rewrite systems (so thatit represents an
alternative to computing with matrices which is sound for any application involving tensors over C in
which every index has dimension 2). As a result, much of the work on the ZX calculus [3–15] use
precisely the same standard model — i.e., the model [[ · ]]α presented in Eqns. (7), which is the simplest
possible refinement of the standard model from Ref. [1].

The model [[ · ]]α has the unfortunate feature that a user who is interested in tracking normalisation
must frequently be on guard against the introduction or cancellation of scalar factors. The rules (Bα),
(Cα

r ), (E
α), and (EUα) of Figure 1 (on page 17) demonstrate the issue of accumulation or cancellation

of scalars in the existing scalar-exact presentations of the ZX calculus. Each of these rules involve small
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gadgets of phase-free nodes, which to the initiated represent scalars of 21/2 or 2−1/2. Furthermore, while
the two-node gadget of (EUα) with non-trivial phases is necessary to represent a global phase factor,
it necessitates the inclusion of the other phase-free gadget.10 The scalars in these rewrite rules reflect
the fact that the original presentation of the ZX calculus [1, Fig. 1] prioritises the role of the green and
red dots each as special commutative dagger-Frobenius algebras,11 so that together they must form a
scaled bialgebra. Grounding the ZX calculus on such a model has the consequence that the simplest
representation of the standard basis states is only up to a supernormalised scalar factor,

[[ ]]
α =
√

2 |0〉,
[[

π
]]

α =
√

2 |1〉, (22a)

while the controlled-NOT operation is represented only up to a sub-normalised scalar factor:
[[ ]]

α
= 1√

2
CNOT . (22b)

One might suppose (uncharitably) that while lacking normalisation in one of these cases may be regarded
as a misfortune, to lack both looks like carelessness. Such a criticism would be unfair, for a few reasons.

Suppose that, we consider a parameterised model [[ · ]] for the generators of the ZX calculus, similarly
to Eqn. (13) on page 21, satisfies the “only the topology matters” meta-rule, and which for good measure
fixes the interpretation of the Hadamard box so that it is unitary:

[[
θ...m

{
...

}
n

]]
= um+n

(
|0〉⊗n〈0|⊗m + eiθ |1〉⊗n〈1|⊗m

)
,

[[
θ...m

{
...

}
n

]]
= um+n

(
|+〉⊗n〈+|⊗m + eiθ |--〉⊗n〈--|⊗m

)
,

[[
H

]]
= 1√

2

[
1 1
1 −1

]
. (23)

If we then impose the constraint
[[ ]]

= |0〉, then as we show in Corollary C.9.1 on page 33), it is
impossible for the green and red nodes to form either special commutative dagger-Frobenius algebras
(without scaling) or bialgebras (without scaling). Worse, at least one of the rewrites in each column of
the following rewrites would require an additional scalar gadget to be sound:

←→ θ ←→

←→ ←→
(24)

This would involve adjustments to the normalisation with many of the rewrites, and could be considered
a steep price to pay for a single-node representation of standard basis states, compared to correcting for
the scalar factor involved with introducing a fresh qubit (or projecting a qubit onto some single-qubit
state). On these grounds, it seems reasonable to abandon the goal of having single-node diagrams to
represent the states |0〉 or |1〉.

It remains to consider the normalisation of the left-hand side of Eqn. (22b). Subject to the pa-
rameterised model of Eqns. (23), one may show that Eqn. (22b) necessarily holds if the green and red
nodes form special commutative dagger-Frobenius algebras (this is an easy corollary of Lemma C.8, on
page 33). Thus, for a reasonably defined ZX calculus, one is confronted with the choice either to fix the
left-hand side of Eqn. (22b) to be unitary, or to define the normalisation so that the classical structures in

10It is also worth remarking that the non-phase-free gadget of (EUα ) is a somewhat indirect representation of the scalar eiγ .
11For the green nodes, this follows from the principle that only topology matters, together with the rules (Ig) and (Sα

g ), and
using the rule (Fα

g ) to define the higher arity nodes. For the red nodes, versions of (Sα
g ) and (Fα

g ) can be derived by using (Xα ).
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each basis are as nicely behaved as possible. As the latter choice is compatible with setting uk = 1 for all
k > 0, it is reasonable and unsurprising that this should be the first normalisation convention chosen.

Remarkably, there is also a strong post-hoc justification for the normalisation of Eqn. (7), in that it
corresponds precisely to the description of surface code lattice surgery in terms of CPTP maps [16]. The
sub-normalisation described in Eqn. (22b) precisely reflects the probability of 1

2 of performing a CNOT
by lattice surgery (using the simplest construction) without requiring a Pauli frame shift.

It is clear that the usual normalisation of ZX diagrams have both theoretical and practical justifica-
tions. However, for the application of reasoning about general quantum procedures in terms of unitary
circuits, it remains the case that this normalisation requires the user to be alert to changes in the normali-
sation arising from rewrites, as well as from the lack of normalisation seen in Eqns. (22). This motivates
our investigation into a renormalised version of the ZX calculus.

A.2 On scalar factors in the ZH calculus

While the ZH calculus was designed as a part of the same research programme as the ZX calculus, it was
designed with different priorities. Rather than an emphasis on strong complementarity which features in
the study of the ZX calculus, a main motivation in the development of the ZH calculus is to represent
quantum circuits specifically over the gate-set Hadamard+Toffoli [34, 35], and other closely related gate-
sets. This motivates an interest in whether the following two gadgets represent unitary operators:

,
−1

...k−1

{

. (25)

The first of these is proportional to the single-qubit Hadamard gate, and the second to a (k−1)-controlled
Z operation (i.e., a Z operation which is coherently controlled on k−1 other qubits).

The white dots play a similar role in the ZH calculus as in the ZX calculus, and form a special
commutative dagger-Frobenius algebra. Suppose that we take the usual interpretation of these nodes,
and also that our interpretation of the H boxes depends only on the topology. Then it is not difficult
to see that at most one of the two gadgets of Eqn. (25) will denote a unitary for k = 1. The simple
normalisation convention of Ref. [31] suffices for the right-hand diagram to be unitary for all k > 0,
which is particularly reasonable for representing unitary circuits which may have highly-controlled phase
operations or highly-controlled NOT gates.

The normalisation on the standard model of the ZH calculus is also notable in that it consists of
integer matrices, which means in principle that it is potentially directly useful in the analysis of counting
complexity and gap-complexity [38, 39]. Thus, the normalisation of the standard model of the ZH
calculus provides it with a potential for versatility which is worth bearing in mind.

A less desirable consequence of the choice of normalisation in Ref. [31] is that rewrite rules (such
as those in Figure 2 on page 19) must frequently account for contributions of factors of 2 (or 1

2 ) to the
normalisation. In particular, such factors of 2 are required to cancel pairs of Hadamard gates in rule (Iβh ),
in the relationships between white and grey dots in rules (Xβ ) and (Nβ ), and to fuse two H boxes in
rule (F

β
h ). Note that the contribution of 2n−1 involved in (BA

β
2 ) is a consequence of our alternative

representation, rather than being original to Ref. [31] — however, this is only avoided in the original
presentation through a hybrid-bialgebra relation between the white dots, H-boxes, and the gray dots
(which there are “derived generators” also involving a factor of 2).
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Again, as with the ZX calculus, it is clear that the original normalisation of ZH diagrams may be jus-
tified on theoretical and practical grounds. However, the application of reasoning about general quantum
processes motivates an investigation into a renormalised version of the ZH calculus as well.

B Proof of the denotational constraints on the model [[ · ]]ν
Lemma B.1 (c.f. Lemma 1). Eqns. (13)–(15) hold iff u2=v2=ξ =1, u3=v3=g−1

3 =21/4, and hk=2−k/4

for all k > 0.

Proof. From Eqns. (14a) and (14b) we have get u2 = v2 = ξ = 1 and h2 = 2−1/2, and from Eqn. (15) we
obtain h0 = 1. From Eqn. (14d) for the special case k = 1, we may show by reduction to [[ · ]]α that




 −1







ν

=





 H







ν

=
√

2h2u2
3





 H







α

= h2u2
3 CZ , (26)

from which it follows that u3 = 21/4. Similarly, we may show from Eqn. (14c) that[[ ]]

ν
= u3v3

[[ ]]

α
=

u3v3√
2

CNOT , (27)

from which it follows that v3 = u3 = 21/4; a similar argument from [[ · ]]β yields
[[ ]]

ν
= u3g3

[[ ]]

α
=

u3g3√
2

CNOT , (28)

so that g3 = 2−1/4. Finally, returning to Eqn. (14d) for arbitrary k > 1, we have






−1
...k−1

{ 





ν

= hkuk
3 ∑
x∈{0,1}k

(−1)x1x2···xk |x〉〈x| ; (29)

here, the right-hand side is a diagonal map with eigenvalues whose norms are all equal to hk2k/4. This
map is unitary iff hk = 2−k/4, in which case it equals diag(+1, · · · ,+1,−1). The converse follows easily
from the equations above.

C Compatibility of idealised rewrites in ZX calculi
In this Section, we prove the relationships between various rewrites and normalisation factors for gen-
erators, in versions of the ZX calculus with “reasonable” normalisations of its generators. In particular,
we are interested in those rewrites which, if sound, would cause the green (and the red) nodes to form a
special commutative dagger-Frobenius algebra, and for the green nodes and red nodes to form a bialge-
bra (specifically, for the phase-free green nodes to form a coalgebra which is compatible with an algebra
formed by the phase-free red nodes). Figure 3 presents candidate ZX rewrites to this effect. Note that the
properties (Unit R), (Counit Z), (Bialg ZR), and (Copy ZR) are necessary and sufficient for the green
and red nodes to form a bialgebra of the sort described above; the rules (Id Z), (Fuse Z), and (Special Z)
are necessary and sufficient for the green nodes to form a special commutative dagger-Frobenius algebra.

The main results of this Appendix are summarised in Figure 4. These describe constraints on a
model [[ · ]], defined below in terms of a family of parameters (uk)k>0, which are imposed if one requires
any given idealised rewrite to be sound.
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←→ θ (Unit R)

←→ θ (Counit Z)

←→ (Copy ZR)

←→ (Bialg ZR)

←→ θ (Id Z)

...
...

...
...

←→ ...
... (Fuse Z)

←→ θ (Special Z)

Figure 3: Idealised rewrite rules for ZX calculi, which hold variously if the green nodes form a special commuta-
tive dagger-Frobenius algebra or a bialgebra over the red nodes.

(Id Z)⇐⇒ u2 = 1
(Unit R)

(Counit R)

}
⇐⇒ u3 = u−1

1

(Copy ZR)⇐⇒ u3 =
√

2u1 (Bialg ZR)⇐⇒ u3 = 21/4

(Fuse Z)⇐⇒ uk = u2−k
1 (∀k > 0) (Special Z)⇐⇒ u3 = 1

Figure 4: Summary of the results of Section C.2(a), associating conditions for the soundness of rewrites for an
Ockhamic model of a ZX calculus.

C.1 Ockhamic models of ZX calculi
For the purposes of this Appendix, we are only interested in a particular kind of model [[ · ]], which we
call “Ockhamic”. We present this definition to describe normalisations of the ZX calculus which avoid
scalar factors arising from topology or from non-unitarity representations of Hadamard gates, in which
the bases {|0〉 , |1〉} and {|+〉 , |--〉} are on essentially an equal footing. (These models are slightly more
restrictive than the description of the model [[ · ]]ν set out in Eqns. (13), though such a model which also
satisfies Eqn. (14b) and for which the rewrite (Switch) on page 14 is sound will be Ockhamic.)

Definition I. A model [[ · ]] for a scalar-exact version of the ZX calculus is Ockhamic if it maps nodes to
complex matrices, satisfies Eqns. (5), and if there exist a sequence (uk)k∈N of positive scalars such that:

[[
θ...m

{
...

}
n

]]
= um+n

(
|0〉⊗n〈0|⊗m + eiθ |1〉⊗n〈1|⊗m

)
,

[[
θ...m

{
...

}
n

]]
= um+n

(
|+〉⊗n〈+|⊗m + eiθ |--〉⊗n〈--|⊗m

)
,

[[
H

]]
α
= 1√

2

[
1 1
1 −1

]
. (30)

We say that a (version of the) ZX calculus is itself Ockhamic if it admits an Ockhamic model.

We admit that there is at least one plausible reason to consider a “non-Ockhamic” model [[ · ]] of the
ZX generators. If one defines [[ · ]] in such a way that both components of green or red nodes may
depend on the phase parameter θ , one may define a calculus in which degree-2 green and red nodes
are mapped uniformly to elements of SU(2). This would allow for calculi which have simpler versions
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of the rule (Euler) — at the cost, however, of introducing complex scalar gadgets for the bialgebra
rule (c.f. Ref. [42]). While the theoretically-motivated may find it worth-while to consider the possible
benefits of such added flexibility, we consider those models which do not introduce complex phases in
the bialgebra rule to be of central interest.

C.2 Compatibility of rules in Ockahmic ZX calculi
We now consider conditions under which the rewrite rules of Figure 3 are sound for an Ockhamic (model
of some version of the) ZX calculus. We proceed mainly by reduction to the rewrites and model [[ · ]]α of
the existing versions of the ZX calculus, as exemplified by that of Section 2.2.

(a) Conditions for soundness of individual rules

Lemma C.1. In an Ockhamic ZX calculus, (Unit R) and (Counit Z) are each sound iff u3 = u−1
1 .

Proof. This follows from the fact that in an Ockhamic ZX calculus,
[[ ]]

= u1u3

[[ ]]

α
= u1u3

[[
θ
]]

α = u1u3
[[

θ
]]

; (31)

a similar observation holds regarding the red nodes and the rule (Unit R).

Lemma C.2. In an Ockhamic ZX calculus, the (Copy ZR) is sound iff u3 =
√

2u1.

Proof. This follows from the fact that in an Ockhamic ZX calculus,
[[ ]]

= u1u3

[[ ]]

α
=

u1u3√
2

[[ ]]

α
=

u3√
2u1

[[ ]]
.

Lemma C.3. In an Ockhamic ZX calculus, (Bialg ZR) is sound only iff u3 = 21/4.

Proof. This follows from the fact that u3 > 0, and that in an Ockhamic ZX calculus,
[[ ]]

= u4
3

[[ ]]

α
=

u4
3√
2

[[ ]]

α
=

u2
3√
2

[[ ]]
.

Lemma C.4 (trivial). In an Ockhamic ZX calculus, (Id Z) is sound iff u2 = 1.
Lemma C.5. In an Ockhamic ZX calculus, (Fuse Z) is sound iff uk = u2−k

1 for all k > 0.

Proof. This follows from the fact that in an Ockhamic ZX calculus,






θ...k
{

...

}
m

δ

...

}
n...`

{





= uk+m+1u`+n+1







θ...k
{

...

}
m

δ

...

}
n...`

{







α

= uk+m+1u`+n+1

[[
θ+δ...k+`

{
...

}
m+n

]]

α

=
uk+m+1u`+n+1

uk+`+m+n

[[
θ+δ...k+`

{
...

}
m+n

]]
. (32)

That is, (Fuse Z) is sound iff uM+N = uM+1uN+1 for all M,N > 0. Suppose that this relation holds among
the coefficients uk: then in particular,
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• setting M= 0 and N= 0, we obtain u0=u2
1;

• setting M= n and N= 0, we obtain un=un+1u1, so that un+1/un=u−1
1 .

Thus un = u0
(
un/u0

)
=
(
u2

1
)(

u−1
1

)n
= u2−n

1 . Conversely, supposing that we have un = u2−n
1 , then

uM+N

uM+1uN+1
=

u2−M−N
1

u2−(M+1)
1 u2−(N+1)

1

= 1, (33)

so that (Fuse Z) is sound.

Lemma C.6. In an Ockhamic ZX calculus, (Special Z) is sound iff u3 = 1.

Proof. This follows from u3 > 0 and that, in an Ockhamic ZX calculus, we have
[[ ]]

= u2
3

[[ ]]
α

= u2
3
[[

θ
]]

α = u2
3
[[

θ
]]
.

(b) Incompatibility results

Here, we consider characterisations of Ockhamic models in which (a) the green and red nodes form a
bialgebra, (b) the green nodes form a special commutative dagger-Frobenius algebra, and (c) the arity-1
red node precisely represents the vector |0〉.
Lemma C.7. In an Ockhamic ZX calculus, the green and red nodes form a bialgebra — that is, (Unit R),
(Counit Z), (Copy ZR), and (Bialg ZR) are all sound — iff u1 = 2−1/4 and u3 = 21/4. Furthermore, any
two of (Counit Z), (Copy ZR), and (Bialg ZR) imply the other.

Proof. First note that (Unit R) holds if and only if (Counit Z) holds. Then:

• The soundness of (Bialg ZR) is equivalent to u3 = 21/4 by Lemma C.2. Given u3 = 21/4, either of
the other two rules (Counit Z) or (Copy ZR) are equivalent to u1 = 2−1/4.

• The soundness of (Counit Z) and (Copy ZR) together is equivalent to u3 =
√

2u1 =
√

2u−1
3 , which

for u3 > 0 is equivalent to u3 = 21/4, which in turn is equivalent to (Bialg ZR).

Lemma C.8. In an Ockhamic ZX calculus, the green nodes form a special commutative dagger-Frobenius
algebra — that is, (Id Z), (Fuse Z), and (Special Z) are all sound — iff uk = 1 for all k > 0.

Proof. If (Id Z) and (Special Z) are both sound, we have u2 = u3 = 1; and conversely. Given that
u2 = u3 = 1, if (Fuse Z) is sound, then u1 = u3−2

1 = u−1
3 = 1, and more generally uk = u2−k

1 = 1; the
converse here is simple as well.

Corollary C.8.1. In an Ockhamic ZX calculus, either the green and red nodes do not form a bialgebra,
or the green nodes do not form a special commutative dagger-Frobenius algebra (nor do the red nodes).

Lemma C.9 (trivial). In an Ockhamic ZX calculus,
[[ ]]

= |0〉 iff u1 = 2−1/2.

Corollary C.9.1. In an Ockhamic ZX calculus in which
[[ ]]

= |0〉, at most one of (Counit Z),
(Bialg ZR), and (Copy ZR), are sound, and at most one of (Fuse Z) and (Special Z) are sound. In
particular, the red nodes and green nodes form neither a bialgebra nor special commutative dagger-
Frobenius algebras.

Proof. In such a ZX calculus, we have u1 = 2−1/2. Given this, we have the following equivalences:
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• (Counit Z) is sound if and only if u3 = 21/2 by Lemma C.1;

• (Copy ZR) is sound if and only if u3 = 1 by Lemma C.2;

• (Bialg ZR) is sound if and only if u3 = 21/4 by Lemma C.3;

• (Fuse Z) is sound if and only if u3 = 21/2 by Lemma C.5;

• (Special Z) is sound if and only if u3 = 1 by Lemma C.6.

The Corollary then follows.

D Compatibility of rewrite rules in ZH calculi
In this Section, we prove the relationships between various rewrites and normalisation factors for genera-
tors, in versions of the ZH calculus with “reasonable” normalisations of its generators. Figure 5 presents
the idealised ZH rewrites: each is in effect a simplified version of some rule from Figure 2.

The main results of this Appendix are summarised in Figure 6. These describe constraints on a
model [[ · ]], defined below in terms of a family of parameters (uk)k>0, which are imposed if one requires
any given idealised rewrite to be sound.

D.1 Ockhamic models of ZH calculi

Following the approach of Section C.1, we consider what constraints one might argue that “any rea-
sonable” normalisation of the ZH generators must satisfy. This may differ significantly from what a
“reasonable” normalisation is for a ZX calculus, as the ZH calculus is less closely tied to the priorities of
foundations of physics. In particular, the model described by Backens and Kissinger [31] for the calcu-
lus effectively fixes a special role for the standard basis, so that there is no reason a priori that the white
nodes, gray nodes, and H boxes should have related normalisation factors. (This is particularly true of
gray nodes, whose definition as a shorthand in Ref. [31] itself involves an additional scalar factor).

The only apparent candidates for constraints on a “reasonable” normalisation is then that, as the H
box is unitary in the ZX calculus, so too should the not-dot be in the ZH calculus; and that furthermore
a degree-0 H-box with phase a should represent the scalar a. This motivates us to define:

Definition II. A model for a scalar-exact version of the ZH calculus is Ockhamic if it maps nodes
to complex matrices, satisfies Eqns. (5), and if there exist sequences (uk)k∈N, (hk)k∈N, and (gk)k∈N of
positive scalars (where in particular h0 = 1) such that:
[[

...m
{

...

}
n

]]

β

= um+n

(
|0〉⊗n〈0|⊗m + |1〉⊗n〈1|⊗m

)
,

[[
...m

{
...

}
n

]]

β

= gm+n ∑ ∑
x∈{0,1}m, y∈{0,1}n

w(x)+w(y)∈2Z

|y〉〈x|,

[[
a...m

{
...

}
n

]]

β

= hm+n ∑ ∑
x∈{0,1}m
y∈{0,1}n

ax1···xmy1···yn |y〉〈x| ,
[[ ]]

β
=

[
0 1
1 0

]
.

(34)

We say that a (version of the) ZH calculus is itself Ockhamic if it admits an Ockhamic model.

Remark. As with the definition of Ockhamic models of ZX calculi (Definition I in Appendix C on
page 31), the models described above are slightly more restrictive than those described in Eqns. (13).
However, any model which satisfies Eqns. (13) and (15), and also specifically the constraint on the not
dot in Eqn. (14b), will be Ockhamic.
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←→ θ (Id Z)

←→ θ (Id H)

←→ (Not)

...
... ←→

...
... (Switch ZG)

b

a
←→ ab (Mult ZH)

←→ +1 (Unit ZH)

...
...

..

.

..

. ←→ ...
... (Bialg ZG)

...
..
.

..

.
... ←→ ...

... (Bialg ZH)

...
...

...
...

←→ ...
... (Fuse Z)

←→ θ (Special Z)

a...
...

...
...

←→ a...
...

(Fuse H)

←→ (Orth ZH)

a ←→

a

a

(Dilem ZH)

a+b
2 ←→

b

a

(Avg ZH)

Figure 5: Idealised rewrite rules for ZH calculi, consisting of the simplest diagram transformations which are
equivalent (up to a scalar) to the rules of Figure 1 and Figure 2. The phases a,b ∈ C may be arbitrary.

(Id Z)⇐⇒ u2 = 1 (Id H)⇐⇒ h2 = 2−1/2

(Not)⇐⇒ u3 = (2h1h2
2)
−1 (Switch ZG)⇐⇒ gk = 2hk

2uk (∀k > 0)

(Mult ZH)⇐⇒ h1 = u−1
3 (Unit ZH)⇐⇒ h1 = u1

(Bialg ZG)⇐⇒ gk = u−1
k = uk−2

1 (∀k > 1) (Bialg ZH)⇐⇒ uk =
(√

2hk
)−1

= u−(k−2)
1 (∀k > 1)

(Fuse Z)⇐⇒ uk = u−(k−2)
1 (∀k > 0) (Special Z)⇐⇒ u3 = 1

(Fuse H)⇐⇒ hk = 2−k/4 (∀k > 0) (Orth ZH)⇐⇒ u1 = 2−1/2

(Dilem ZH)⇐⇒ u1 = h1(2h2
2)
−1 (Avg ZH)⇐⇒ u3 = h1(2h2

2)
−1

Figure 6: Summary of the results of Section C.2(a), associating conditions for the soundness of rewrites for an
Ockhamic model of a ZX calculus.



36 Well-tempered ZX and ZH calculi

D.2 Compatibility of rules in Ockahmic ZH calculi
We now consider conditions under which the rewrite rules of Figure 5 are sound for an Ockhamic (model
of some version of the) ZH calculus. We proceed mainly by reduction to the rewrites and model [[ · ]]β of
the existing version of the ZH calculus, as exemplified by that of Section 2.2.

(a) Conditions for soundness of individual rules

Lemma D.1 (trivial). In an Ockhamic ZH calculus, (Id Z) is sound ifff u2 = 1.

Lemma D.2 (trivial). In an Ockhamic ZH calculus, (Id H) is sound iff h2 = 2−1/2.

Lemma D.3. In an Ockhamic ZH calculus, (Not) is sound iff u3 = (2h1h2
2)
−1.

Proof. This follows from the fact that in an Ockhamic ZH calculus,
[[ ]]

= h1h2
2u3

[[ ]]
β
= 2h1h2

2u3

[[ ]]
β
= 2h1h2

2u3

[[ ]]
.

Lemma D.4. In an Ockhamic ZH calculus, (Switch ZG) is sound iff gk = 2hk
2uk for all k > 0.

Proof. This follows from the fact that in an Ockhamic ZH calculus,
[[

...m
{

...

}
n

]]
= hm+n

2 um+n

[[
...m

{
...

}
n

]]

β

= 2hm+n
2 um+n

[[
...m

{
...

}
n

]]

β

=
2hm+n

2 um+n

gm+n

[[
...m

{
...

}
n

]]
.

Lemma D.5. In an Ockhamic ZH calculus, (Mult ZH) is sound iff u3 = h−1
1 .

Proof. This follows from the fact that in an Ockhamic ZH calculus,
[[

b

a
]]
= h2

1u3

[[

b

a
]]

β
= h2

1u3

[[
ab

]]

β
= h1u3

[[
ab

]]
.

Lemma D.6. In an Ockhamic ZH calculus, (Unit ZH) is sound iff h1 = u1.

Proof. This follows from the fact that in an Ockhamic ZH calculus,
[[ ]]

= u1
[[ ]]

β = u1
[[

+1
]]

β =
u1

h1

[[
+1

]]
.

Lemma D.7. In an Ockhamic ZH calculus, (Bialg ZG) is sound iff gk = u−1
k = uk−2

1 for all k > 1.

Proof. This follows from the fact that in an Ockhamic ZH calculus,
[[

...m
{

...

}
n

..

.

..

.

]]
= um

n+1gn
m+1

[[
...m

{
...

}
n

..

.

..

.

]]

β

= um
n+1gn

m+1

[[
...m

{
...

}
n

]]

β

=
um

n+1gn
m+1

un+1gm+1

[[
...m

{
...

}
n

]]
. (35)

That is, (Bialg ZG) is sound if and only if um−1
n+1 = g−(n−1)

m+1 for all m,n > 0. Suppose that this relation
holds among the coefficients uk and gk: then, in particular,
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• Setting m = 0, we obtain u−1
n+1 = g−(n−1)

1 , so that un+1 = gn−1
1 .

• Setting m= 2, we obtain u1
n+1 = g−(n−1)

3 . Together with the preceding case, we then have g3 = g−1
1 .

• Setting n = 0, we obtain um−1
1 = gm+1; in particular, we then have g1 = u−1

1 .

From these last equalities, we have uk = gk−2
1 = u−(k−2)

1 and gk = uk−2
1 . Conversely, if uk = gk = u−(k−2)

1
for all k > 1, we have

um
n+1gn

m+1

un+1gm+1
=

u−m(n−1)
1 un(m−1)

1

u−(n−1)
1 u(m−1)

1

=
u(mn−n)−(mn−m)

1

u−(n−1)
1 u(m−1)

1

= 1, (36)

so that (Bialg ZG) is sound, by Eqn. (35).

Lemma D.8. In an Ockhamic ZH calculus, (Bialg ZH) is sound iff uk = (
√

2hk)
−1 = u−(k−2)

1 for all
k > 1. In particular, if (Bialg ZH) is sound, then u3 = u−1

1 , u2 = 1, h3 = (2h1)
−1, and h2 = 2−1/2.

Proof. This follows from the fact that in an Ockhamic ZH calculus,
[[

...m

{
..
.

..

.
...

}
n

]]
= hn

2 hn
m+1um

n+1

[[
...m

{
..
.

..

.
...

}
n

]]

β

= 2n−1hn
2 hn

m+1um
n+1

[[
...m

{
...

}
n

]]

β

=
2n−1hn

2 hn
m+1um

n+1

hm+1h2un+1

[[
...m

{
...

}
n

]]
. (37)

That is, (Bialg ZH) is sound if and only if um−1
n+1 =

(
2h2 hm+1

)−(n−1) for all m,n > 0. Suppose that
this relation holds among the coefficients uk and hk. Considering the cases m = 1 and n = 1 yield the
equalities (2h2

2)
−(n−1) = u0

n+1 = 1 and um−1
2 = (21/2hm+1)

0 = 1, which implies that h2 = 2−1/2 and u2 = 1.
In particular, it follows that

um−1
n+1 =

(
21/2hm+1

)−(n−1) (38)

for all m,n > 0. We next consider the constraints implied by other specific values of m and n:

• Setting m = 0, we obtain u−1
n+1 = (21/2h1)

−(n−1), so that

un+1 = (21/2h1)
n−1. (39)

• Setting m = 2, we obtain u1
n+1 = (21/2h3)

−(n−1). Together with Eqn. (39), we then have

(
21/2h1

)n−1
=
(
21/2h3

)−(n−1)
=⇒ h3 = (2h1)

−1. (40)

• Setting n = 0, we obtain um−1
1 = (21/2hm+1)

1, so that

hm+1 = 2−1/2um−1
1 . (41)
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From this last equality, we have hk = 2−1/2uk−2
1 . In particular, h1 = 2−1/2u−1

1 and h3 = 2−1/2u1, so that
h3 = 2−1h−1

1 . We may then use Eqn. (39) to show uk = (21/2h1)
k−2 = u−(k−2)

1 ; in particular, u3 = u−1
1 .

Conversely, suppose that hk = 2−1/2uk−2
1 and uk = u−(k−2)

1 . It follows that, in particular, h2 = 2−1/2.
We may then show that

2n−1hn
2 hn

m+1um
n+1

hm+1h2un+1
=

(2n−1)(2−n/2)(2−n/2un(m−1)
1 )(u−m(n−1)

1 )

(2−1/2um−1
1 )(2−1/2)(u−(n−1)

1 )
=

2−1u(nm−n)−(nm−m)
1

2−1u(m−1)−(n−1)
1

= 1, (42)

so that (Bialg ZH) is sound by Eqn. (37).

Lemma D.9 (c.f. Lemma C.5). In an Ockhamic ZH calculus, (Fuse Z) is sound iff uk =u−(k−2)
1 for all

k > 0.

Lemma D.10 (c.f. Lemma C.6). In an Ockhamic ZH calculus, (Special Z) is sound iff u3 = 1.

Lemma D.11. In an Ockhamic ZH calculus, (Fuse H) is sound iff hk = 2−k:/;4 for all k > 0.

Proof. This follows from the fact that in an Ockhamic ZH calculus,






a...k
{

...

}
m

...

}
n...`

{





= h2hk+m+1h`+n+1







a...k
{

...

}
m

...

}
n...`

{







β

= 2h2hk+m+1h`+n+1

[[
a...k+`

{
...

}
m+n

]]

β

=
2h2hk+m+1h`+n+1

hk+`+m+n

[[
a...k+`

{
...

}
m+n

]]
. (43)

That is, (Fuse H) is sound iff hM+N = 2h2hM+1hN+1 for all M,N > 0. Suppose that this relation holds
among the coefficients hk: then in particular,

• setting M = 0 and N = 1, we obtain h1 = 2h2
2h1, so that h2 = 2−1/2;

• setting M = 0 and N = 0, we obtain 1 = h0 = 2h2h1h1 =
√

2h2
1, so that h1 = 2−1/4;

• then, for M = 0 in general, we have hN = 2h2h1hN+1 = 21/4hN+1.

Thus hk = h0
(
hk/h0

)
= 1 ·

(
21/4
)−1

= 2−k/4. Conversely: if we have hk = 2−k/4, then

hM+N

2h2hM+1hN+1
=

2−(M+N)/4

(24/4)(2−2/4)(2−(M+1)/4)(2−(N+1)/4)
= 1, (44)

so that (Fuse H) is sound by Eqn. (43).

Lemma D.12. In an Ockhamic ZH calculus, (Orth ZH) is sound iff u1 = 2−1/2.

Proof. This follows from the fact that in an Ockhamic ZH calculus,
[[ ]]

= h2
3u3

[[ ]]

β

=
h2

3u3

2

[[ ]]

β

=
1

2u2
1

[[ ]]
.
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Lemma D.13. In an Ockhamic ZH calculus, (Dilem ZH) is sound iff u1 = h1(2h2
2)
−1 .

Proof. This follows from the fact that in an Ockhamic ZH calculus,

[[
a

]]
= h1u1

[[
a

]]
β
=

h1u1

2

[[

a

a ]]

β

=
h1

2u1h2
2

[[

a

a ]]
.

Lemma D.14. In an Ockhamic ZH calculus, (Avg ZH) is sound iff u3 = h1(2h2
2)
−1.

Proof. This follows from the fact that in an Ockhamic ZH calculus,

[[
a+b

2

]]
= h1

[[
a+b

2

]]
β
=

h1

2

[[

b

a ]]

β

=
h1

2h2
2u3

[[

a

a ]]
.

(b) Compatibility and incompatibility results

Because a few rules of Figure 5 are infinitary (expressing equivalence of infinitely many pairs of dia-
grams), and the others concern a common set of coefficients (namely u1, u3, h1, and h2), we may easily
describe a network of rules and pairs of rules which imply or contradict others. In the following, we
pre-suppose a fixed Ockhamic model in which the coefficients uk, gk, and hk are defined.

Theorem D.15. In an Ockhamic ZH calculus, if any two of (Id H), (Not), and (Mult ZH) are sound,
then all are sound.

Proof. This follows from Lemmas D.2, D.3, and D.5, in that any two of 2h2
2 = 1, u3 = h−1

1 , and u3 =
h−1

1 (2h2
2)
−1 implies the other.

Theorem D.16. In an Ockhamic ZH calculus, if any two of (Id H), (Unit ZH), and (Dilem ZH) are
sound, then all are sound.

Proof. This follows from Lemmas D.2, D.6, and D.13, in that any two of 2h2
2 = 1, u1 = h1, and u1 =

h1(2h2
2)
−1 implies the other.

Theorem D.17. In a ZH calculus with an Ockhamic model in which gk =
√

2hk for all k > 1, (Bialg ZG)
is sound if and only if (Bialg ZH) is. Furthermore, an Ockhamic ZH calculus in which (Bialg ZG) and
(Bialg ZH) are both sound has an Ockhamic model in which gk =

√
2hk for all k > 1.

Proof. If either (Bialg ZG) or (Bialg ZH) are sound, then the relation gk =
√

2hk establishes gk =√
2hk = uk−2

1 , by Lemmas D.4 and D.8. This is then equivalent to the soundness of both (Bialg ZG)
and (Bialg ZH).

Theorem D.18. If (Switch ZG) and (Bialg ZG) are both sound, then (Id Z) and (Id H) are also sound
— but (Special Z) and (Orth ZH) are not.

Proof. By Lemmas D.4 and D.7, if (Switch ZG) and (Bialg ZG) are sound, then gk = u−1
k = 2hk

2uk and
uk = u−(k−2)

1 for all k > 1. In particular, we have g2 = u−1
2 = 1, so that (Id Z) is sound by Lemma D.1.

It also follows that 1 = g2 = 2h2
2u2 = 2h2

2, which implies that h2 = 2−1/2, so that (Id H) is sound by
Lemma D.2. We may then infer

u2
1 = g−1

1 u1 = (2h2u1)
−1u1 = 2−1/2, (45)
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so that u1 = 2−1/4; together with Lemmas D.10 and D.12, it follows that (Special Z) and (Orth ZH) are
unsound.

Theorem D.19. In an Ockhamic ZH calculus, if (Bialg ZH) is sound, then (Id Z) and (Id H) are sound.

Proof. Suppose that (Bialg ZH) is sound. By Lemma D.7, we immediately have u2 = 1 and h2 = 2−1/2,
from which it follows that (Id Z) and (Id H) are sound by Lemmas D.1 and D.2.

Theorem D.20. In an Ockhamic ZH calculus, if (Bialg ZH) is sound, then each of the rules (Not),
(Mult ZH), (Unit ZH), and (Dilem ZH) are sound if and only if the others are.

Proof. Suppose that (Bialg ZH) is sound. By Lemma D.8, we then have uk = u−(k−2)
1 and hk = 2−1/2uk−2

1 ,
and (Id H) is sound by Theorem D.19. It then follows that (Not) is sound iff (Mult ZH) is, by Theo-
rem D.15; and (Unit ZH) is sound iff (Dilem ZH) is, by Theorem D.16. We proceed by cases:

• If (Mult ZH) is sound, we then have u−1
1 = u3 = h−1

1 = 21/2u1 by Lemma D.5.

• If (Unit ZH) is sound, then u1 = h1 = 2−1/2u−1
1 by Lemma D.6.

In both cases above, we have u1 = 2−1/4. Conversely, if u1 = 2−1/4, then h1 = 2−1/2u−1
1 = u1 and

u3 = u−1
1 = 21/4, from which we may infer that (Mult ZG) and (Unit ZH) are both sound.

Corollary D.20.1. In an Ockhamic ZH calculus, if (Bialg ZH) is sound, and any of (Not), (Mult ZH),
(Unit ZH), and (Dilem ZH) are sound, then (Special Z) and (Orth ZH) are not.

Proof. From the proof of Theorem D.20, in these conditions we have u1 = 2−1/4 and u3 = 21/4, which
are inconsistent with both (Special Z) and (Orth ZH) by Lemmas D.10 and D.12.

Theorem D.21. In an Ockhamic ZH calculus for which (Bialg ZH) and (Bialg ZG) are sound, (Switch ZG)
is also sound if and only if any of the rules (Not), (Mult ZH), (Unit ZH), and (Dilem ZH) are.

Proof. Suppose that (Bialg ZG) and (Bialg ZH) are both sound. By Theorem D.17, we then have
gk =

√
2hk = u−1

k = uk−2
1 for all k > 1. If (Switch ZG) is also sound, then u2

1 = g−1
1 u1 = (2h2)

−1 =
21/2 by Lemma D.4. By the proof of Theorem D.20, this is equivalent to the soundness of each of
(Not), (Mult ZH), (Unit ZH), and (Dilem ZH). Conversely, if u1 = 2−1/4, then gk = u−1

k = uk−2
1 =

2u2k
1 u−(k−2)

1 = 2hk
2uk, so that (Switch ZG) is sound.

Theorem D.22. In a ZH calculus with an Ockhamic model in which u0 = u2
1, if (Bialg ZH) is sound,

then (Fuse Z) is sound.

Proof. This follows immediately from Lemmas D.8 and D.9.

Theorem D.23. In an Ockhamic ZH calculus, (Fuse Z) is sound only if (Id Z) is.

Proof. This follows immediately from Lemmas D.1 and D.9.

Theorem D.24. In an Ockhamic ZH calculus, at most two of (Fuse Z), (Special Z), and (Orth Z) are
sound.

Proof. This follows immediately from Lemmas D.9, D.10, and D.12.

Theorem D.25. In an Ockhamic ZH calculus, if (Special Z) is sound, then each of (Id H) or (Unit ZH)
are sound if and only if both (Not) and (Avg ZH) are sound.
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←→ θ (Id Z)

←→ θ (Id R)

←→ θ (Id H)

←→ (Not)

θ...
... ←→

θ...
... (Switch ZR)

...
... ←→ ...

... (Switch ZG)

...
...

..

.

..

. ←→ ...
... (Bialg ZG)

←→ (Copy ZR)

←→ (Bialg ZR)

θ...
...

δ

...
...

←→
θ+δ...

... (Fuse Z)

b

a
←→ ab (Mult ZH)

←→ +1 (Unit ZH)

...
..
.

..

.
... ←→ ...

... (Bialg ZH)

a...
...

...
...

←→ a...
...

(Fuse H)

θ ←→ (Empty ZR)

←→ θ (Special Z)

a ←→

a

a

(Dilem ZH)

θ−δ

θ−δ θ+δ
←→

ϕ1 ϕ2 ϕ3

π γ

π γ

(Euler)

←→ (Orth ZH)

a+b
2 ←→

b

a

(Avg ZH)

Figure 7: Idealised rewrites for ZX and ZH calculi, consisting of the simplest rewrites equivalent (up to a scalar
gadget) to the rules of Figures 1 and 2. The parameters θ,δ ∈R and a,b∈C may be arbitrary, while ϕ1,ϕ2,ϕ3,γ ∈
R in (Euler) are as described in Eqn. (2) on page 14. As we identify the Z dots of the ZX calculus with the white
dots of the ZH calculus, we represent (Sα

g ) and (Sβ
z ) by the rule (Special Z); and (Fβ

z ) corresponds to a special case
of (Fα

g ), which is represented by (Fuse Z). For ease of reading without colour, we represent every rule involving
phase-free Z dots using the corresponding generator from the ZH calculus.

Proof. If (Special Z) is sound, then u3 = 1 by Lemma D.10. If either (Id H) or (Unit ZH) are sound,
then by Lemmas D.2 and D.6 we have h1 = 1 which is equivalent to the soundness of both (Not) and
(Avg ZH) by Lemmas D.3 and D.14. Conversely, if both (Not) and (Avg ZH) are sound, we obtain
h1 = 1 and 2h2

2 = 1, which implies the soundness of each of (Id H) and (Unit ZH).

E Constructing the well-tempered calculi
In this Section, we provide the proofs of the Lemmata and Corollaries in Sections 3 and 4 which allow
us to construct the model [[ · ]]ν , and to establish the completeness of the calculi on pages 14 and 15. Our
analysis will rely on the characterisations of Appendices C and D of the conditions under which idealised
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ZX and ZH rewrites are sound.
Figure 7 presents a “wish-list” of idealised rewrite rules (which are not all compatible). These consist

of scalar-simplified versions of the ZX and ZH calculus rules from Figures 1 and 2, listed very roughly
in a proposed order of importance in routine calculations. Our proofs of the soundness of such idealised
rewrite rules will often make use of results proven in Appendices C and D, but in all cases ultimately rest
on reductions to the semantics of diagrams in the pre-existing models [[ · ]]α and [[ · ]]β for the generators
in the ZX and ZH calculi (as described in Section 2.2).

Rules which are sound by denotational constraints — From the constraints on the denotation of
specific unitary operators, which we impose in Section 3.1, we are already assured of the soundness of
several of the idealised rewrites of Figure 7. Following on from Lemma B.1, we have:

Lemma E.1 (c.f. Corollary 1.1). If Eqns. (13)–(15) hold, each of (Id Z), (Id R), (Id H), (Not), (Bialg ZR),
(Mult ZH), and (Fuse H) are sound.

Proof. This is immediately clear for (Id Z), (Id R), and (Id H). Following from Lemma B.1, from
u3 = 21/4, h1 = 2−1/4, h2 = 2−1/2, and h3 = 2−3/4 the soundness of (Bialg ZR) follows from Lemma C.3
(Appendix C, page 32) and the supplementary fact that u3 = v3; the soundness of (Not), (Mult ZH),
and (Fuse H) follow from Lemmas D.3, D.5, and D.11 respectively (Appendix D, pages 36 and 38).

Colour switch rewrites — We next impose the soundness of (Switch ZR) and (Switch ZG) as con-
straints on [[ · ]]ν , as these rewrites are helpful in reasoning about the interaction between Z dots and
H-boxes / Hadamard nodes:

[[
...

...

]]

ν
=

[[
...

...

]]

ν
=

[[
...

...

]]

ν
(46)

This effectively identifies the phase-free red nodes with the gray nodes (though the normalisation factors
vk and gk will differ for k 6= 2, as a result of how they are defined).

Lemma E.2 (c.f. Lemma 2). Eqns. (13) and (46) hold iff the rewrites (Switch ZR) and (Switch ZG) are
sound, which hold iff uk =vk and gk =2hk

2uk for all k > 0. In particular, Eqns. (13), (14b), and (46) hold
iff h2 =2−1/2, ξ =1, and uk = vk =2(k−2)/2gk for all k > 0.

Proof. Eqns. (13) and (46) are equivalent to the soundness of (Switch ZR) and (Switch ZG). The re-
lation uk = vk holds immediately, while the relation gk = 2hk

2uk then holds for all k > 0 by Lemma D.4
(Appendix D, page 36). If furthermore Eqn. (14b) holds, then ξ = 1 and h2 = 2−1/2 (and conversely);
the latter equality is then equivalent to gk = 2−(k−2)/2uk.

Corollary E.2.1 (trivial). If Eqns. (13)–(15) and (46) hold, (Switch ZR) and (Switch ZG) are sound.

Bialgebra and fusion rules — We next require soundness of (Bialg ZG), which describes the interac-
tion of gray nodes and Z dots in the ZH calculus:

[[
...

...
..
.

..

.

]]

ν

=

[[
...

...

]]

ν
. (47)

Because of the soundness of both (Switch ZR) and (Switch ZG), this would imply the soundness of
the rewrite (Copy ZR) as a special case. One may show that Eqn. (47) “nearly” implies the soundness
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of (Fuse Z) as well, as it imposes sufficiently strong constraints on the coefficients uk for k > 0, while
the coefficient u0 is independent of the rewrite (Bialg ZG). As (Fuse Z) is extremely useful in its own
right to reason about commuting diagonal operations, we also impose the soundness of (Fuse Z) as a
constraint to fix the value of u0 :







θ...
...

δ

...
...







ν

=

[[
θ+δ...

...

]]

ν

. (48)

Lemma E.3 (c.f. Lemma 3). Eqns. (13)–(15) and (46)–(48) all hold iff ξ = 1, uk = vk = g−1
k = 2(k−2)/4

for all k > 0, and hk = 2−k/4 for all k > 0.

Proof. Eqn. (47) is equivalent to the soundness of (Bialg ZG) for [[ · ]]ν , which by Lemma D.7 (Ap-
pendix D, page 36) is equivalent to gk = u−1

k = uk−2
1 for all k > 1. Furthermore, in the case θ = δ = 0,

Eqn. (48) is equivalent to the soundness of (Fuse Z) for [[ · ]]ν , which by Lemma C.5 (Appendix C,
page 32) is equivalent to u−1

k = uk−2
1 for all k > 0. Following from Lemmata E.1 and E.2, if Eqns. (13),

(14), (15), and (46) also hold, we also have ξ = 1, u2 = v2 = 1, u3 = v3 = g−1
3 = 21/4, uk = vk = 2(k−2)/2gk

for all k > 0, and hk = 2−k/4 for all k > 0. In particular, we have h2 = 2−1/2 and u3 = 21/4; it then
follows that u1 = u−1

3 = 2−1/4 and u0 = u2
1 = 2−1/2, and that g0 = 2h0

2u0 = 21/2 = u−1
0 . Conversely,

if uk = vk = g−1
k = 2(k−2)/4 for all k > 0 and hk = 2−k/4 for all k > 0, it follows in particular that

u−1
k = u−(k−2)

1 for all k > 0, that u0 = v0 = 1, and that u3 = v3 = g−1
3 = 21/4, and that gk = 2hk

2uk;
thus we may infer that Eqns. (13), (14), (46), (47), and Eqn. (48) all hold.

Corollary E.3.1. If Eqns. (13)–(15) and (46)–(48) hold, each of (Copy ZR), (Unit ZH), (Bialg ZH),
(Empty ZR), (Dilem ZH), and (Euler) are sound.

Proof. The soundness of (Copy ZR), (Unit ZH), (Bialg ZH), and (Dilem ZH) follow from Lemmas C.2,
D.6, D.8, and D.13 respectively (on pages 32, 36, and 39). For (Empty ZR) we directly compute

[[
θ
]]

ν
= 2a2

1

(
〈0|+ eiθ 〈1|

)
|0〉 = 1 =

[[ ]]
ν . (49)

For (Euler), we show that the two closed two-node gadgets in Rule (EUα) in Figure 1 (page 17) express
the same global phase factor as the single closed two-node gadget of (Euler):

[[
π γ

]]
α
=
(
〈000|+ 〈111|

)(
|+++〉+ |------〉

)
·
(
〈0|+ eiγ〈1|

)(√
2 |1〉

)

=
( 1

2
√

2
+ 1

2
√

2
+ 1

2
√

2
− 1

2
√

2
) ·
(√

2eiγ)

= eiγ =
[
u1

(
〈0|+ eiγ〈1|

)][√
2u1 |1〉

]
=
[[

π γ

]]
ν
, (50)

so that the soundness of (Euler) for the model [[ · ]]ν follows from the soundness of (EUα) for [[ · ]]α .

Scalars and unsound idealised rules — Imposing the constraints that we have on [[ · ]]ν not only selects
rewrites from Figure 7 which are sound, but also implicitly selects rewrites which are not sound:

Proposition E.4. If Eqns. (13)–(15) and (46)–(48) hold, (Special Z), (Orth ZH), and (Avg ZH) are
unsound.
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Proof. Given u1 = 2−1/4, u3 = 21/4, h1 = 2−1/4, and h2 = 2−1/2, the unsoundness of (Special Z) and
(Avg ZH) follows from Lemmata C.6, D.12, and D.14 (on pages 33 and 39). Specifically, from the proof
of Lemma C.6 (page 33), we instead have

[[ ]]
ν = u2

3
[[

θ
]]

ν =
√

2
[[

θ
]]

ν ; (51)

from the proof of Lemma D.12 (page 38), we have











ν

=
1

2u2
1











ν

=
1√
2











ν

, (52)

and from the proof of Lemma D.14 (page 39), we have

[[
a+b

2

]]
ν
=

h1

2h2
2u3

[[

b

a ]]

ν

=
1√
2

[[

b

a ]]

ν

; (53)

so that none of these rewrites are sound without additional scalar factors.

We may easily identify variants of the rewrites (Special Z), (Orth ZH), and (Avg ZH) which are sound,
by describing how to represent the appropriate scalars. In ZH diagrams, the scalars may (by construction)
be represented very directly, using Eqn. (15). We digress momentarily to describe how scalars may be
represented in the model [[ · ]]ν using ZX generators:

Lemma E.5 (c.f. Lemma 4). If Eqns. (13)–(15) and (46)–(48) hold, then for θ ∈ R we have

[[
θ
]]

ν =
[[ √

1+ cos(θ)eiθ/2

]]
ν
=
√

1+ cos(θ)eiθ/2. (54)

In particular,

[[ ]]
ν =

[[ √
2
]]

ν =
√

2 ,
[[

π
2

]]
ν =

[[ √
i
]]

ν =
√

i ,
[[

π
]]

ν =
[[

0
]]

ν = 0. (55)

Proof. Following from Lemma E.3, we have u0 = 2−1/2. From Eqn. (13), we then have

[[
θ
]]

ν = u0
[
1+ cos(θ)+ isin(θ)

]
= 1+cos(θ)√

2
+ i sin(θ)√

2
=: zθ . (56)

It is then easy to show that |zθ |=
√

1+ cos(θ) =
√

2cos2(θ/2) , and that

|zθ |eiθ/2 =
(√

2cos(θ/2)
)(

cos(θ/2)+ isin(θ/2)
)

= 1√
2

(
2cos2(θ/2)+2icos(θ/2)sin(θ/2)

)

= 1√
2

(
[1+ cos(θ)]+ isin(θ)

)
= zθ . (57)

Then Eqn. (54) holds; Eqns. (55) follow as easy corollaries.
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Corollary E.5.1 (from Eqns. (51)–(53) and Lemma E.5). If Eqns. (13)–(15) and (46)–(48) hold, then

[[ ]]
ν
=
[[ ]]

ν
=

[[
θ√

2

√
2

]]

ν
=

[[
θ

]]

ν
; (58)







√
2

√
2






ν

=











ν

; (59)




 a+b

2 √
2






ν

=






b

a 




ν

. (60)

Proof. This follows directly from Eqns. (51)–(53) and Lemma E.5.

It remains to define the meaning of the nu-boxes for the ZX calculus, which we do by setting

[[ ν
k ]]ν = νk . (61)

Corollary E.5.2. If Eqns. (13)–(15), (46)–(48), and (61) hold, then all of the rewrites of pages 14 and 15
are sound.

Proof. This follows from Lemma E.5, and from the correspondence of the rewrites of pages 14 and 15
with those of Figure 7, noting in particular that (Bialg) on page 14 is equivalent to (Bialg ZR).

The model [[ · ]]ν described explicitly — For the sake of completeness, we now describe the model
[[ · ]]ν , whose parameters we have fixed in this Appendix. Following from the conditions of Lemma E.3
and Eqn. (61), we define the model [[ · ]]ν as follows, defining the scalar ν = 2−1/4 :

[[
...m

{
...

}
n

]]

ν

=

[[
...m

{
...

}
n

]]

ν

= ν−(m+n−2)
(
|0〉⊗n〈0|⊗m + |1〉⊗n〈1|⊗m

)
; (62a)

— more generally,

[[
θ...m

{
...

}
n

]]

ν

= ν−(m+n−2)
(
|0〉⊗n〈0|⊗m + eiθ |1〉⊗n〈1|⊗m

)
; (62b)

[[
...m

{
...

}
n

]]

ν

=

[[
...m

{
...

}
n

]]

ν

= ν(m+n−2)
∑ ∑

x∈{0,1}m, y∈{0,1}n
w(x)+w(y)∈2Z

|y〉〈x|, (62c)

— more generally,

[[
θ...m

{
...

}
n

]]

ν

= ν−(m+n−2)
(
|+〉⊗n〈+|⊗m + eiθ |--〉⊗n〈--|⊗m

)
; (62d)

[[
a...m

{
...

}
n

]]

ν

= ν(m+n)
∑ ∑

x∈{0,1}m, y∈{0,1}n
ax1···xmy1···yn |y〉〈x| ,

[[ ]]
ν
=

[
0 1
1 0

]
,

[[
ν

k
]]

ν
= νk. (62e)
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