Perspicuity and Granularity in Refinement

Eerke Boiten
School of Computing, University of Kent, Canterbury, KeBf;2 7NF, UK.
E.A.Boiten@kent.ac.uk

This paper reconsiders refinements which introduce actionthe concrete level which were not
present at the abstract level. It draws a distinction betveeacrete actions which are “perspicuous”
at the abstract level, and changes of granularity of actietseen different levels of abstraction.

The main contribution of this paper is in exploring the rislatbetween these different methods
of “action refinement”, and the basic refinement relation ihased. In particular, it shows how the
“refining skip” method is incompatible with failures-basegfinement relations, and consequently
some decisions in designing Event-B refinement are entdngle

Keywords: Refinement, action refinement, stuttering steps, ASM, EBef, internal operations, weak
refinement, granularity, perspicuity, divergence.

1 Introduction

This paper discusses how different ways of introducingraxactions in refinement (such as weak re-
finement, action refinement, stuttering steps) relate tatiterlying refinement relations used (e.g. trace
refinement, failures refinement). In particular, we aim tovglmnow the choices in those two dimensions
are interdependent. The paper is not intended to be polémicformalism/refinement relation is better
than yours”) nor is it really meant to be a first introductiorthe topic. Where it appears to state the ob-
vious, this is in an attempt to ensure that commonalitidéerdinces, and design decisions in refinement
relations are exhibited in an unambiguous and uncontrialersy.

Before describing the issues in detail, we consider an elanie example is presented in Z, but
the notation used is not essential to what follows in thisgpapn general, most of what is described
in this paper could be expressed in ASMI[18], (Event)B [1][1#], binary relations[[11], UTP_[15]
or many other state-based formalisms; for the moment we malkessumptions about what refinement
relation is “in force”.

This example is due to Carroll Morgan, who presented it duan enlightening conversation at the
2009 Dagstuhl seminar “Refinement Based Methods for thet@ani®n of Dependable Systems”. The
abstract specification is essentially a priority queuerest@s a bag, so taking out an element involves
selecting the minimum of the bag. Obvious specificationsuatfionsmin on bags and (latedorted
on sequences are omitted. The schékalescribes system state§nit initial states, and the schemas
Ain and Aout the operations of adding and removing an element. The pdétamb = [[] is included
explicitly in Aout, in recognition of it having to be an explicit guard in altatiwe notations such as

J. Derrick , E.A. Boiten, S. Reeves (Eds.):
Refinement Workshop 2011.
EPTCS 55, 2011, pp. 155-165, d0i:10.4204/EPTCS.55.10

http://dx.doi.org/10.4204/EPTCS.55.10

156

Perspicuity and Granularity in Refinement

Event-B.
AS _Alnit
(b - bagN AS
b =]
_ _Aout
_Ain
ans N
x?:N 1
- b
b =bw [x7] b i I[CE’H&J [x!]
x!' = min(b)

The concrete specification uses a sequence to rep

resentehe.Removing an element is only possible

when the sequence is hon-empty and sorted, in which casdetinert to be removed is at the head of

the se@uence. The schei@artdescribes the sorting

of the sequence. The scheyakeis mostly a red

herringd and not part of Morgan'’s original example.
CSs _Clnit
’»s: seqN CS
s=()
_Cin _Cout
ACS ACS
x? N XN
s =s5"(x?) s# ()
sorteds)
_Sort s=(x)"¢
ACS _Cycle
itemss= items $ ACS
sorteds) s={()AS={()V

This paper discusses the many ways in which

s = (tails) ™ (head $

one may consideroncrete specification to refine

the abstract one, possibly after a slight modification, asjay not at all, depending on the notions of
refinement and action refinement employed. Before we move tmat level of complication, consider

the composed schensortOut== SortyCout, whose

__SortOut

meaning is given by

ACS
XN

s# ()

39" : seqN e itemss=items§ Asorteds’) A" = (x!)

g

10ne might use it to represent the non-determinism in a Hised implementation where individual clients have no aint

over the access pointer in a cyclical list, ... maybe.

E.A. Boiten 157

Then, uncontroversially, in most sensible refinement imat the operatiorAout is refined by
SortOut(or more precisely: the data tygAS Alnit, Ain, Aout) is refined by(CS Clnit, Cin, SortOu)
under the retrieve relation = itemss In fact, this is normally an equivalence: refinement alskldiin
the reverse directiéh

The rest of this paper is structured as follows. In Sedfione2describe different basic refinement
notions. Then in Sectidn 3 we discuss the various methodsiohwextra” operations may appear in
refinement steps. In Sectibh 4 we compare how these methndeaesed to model the decomposition of
actions into smaller grained ones, and how this impacts @ndhious basic refinement notions. Finally,
Sectior[b presents some conclusions.

2 Basic Notions of Refinement

We have given detailed fully formal descriptions and corguers of the different basic notions of re-
finement for state-based and concurrent systems in manjopsepapers, e.gl [6, 11} 5]. Rather than
repeating this and thereby fixing a formalism or even intoioly a new one, we remain informal here,
using various formalisms and their refinement notions astilations.

In basic data refinement, systems (or machines or abstréattyjzes) are compared which have
identical alphabets (or sets of labels of operations (dobastor events)). Apart from conditions on
initial and possibly final states, and other details whichettel on what observations can be made of
these systems, operations are compared in pairs of anetlaticha concrete operation, with refinement
conditions being some subset of the following properties:

(1) Consistency The effect of the concrete operation is one that is allowethbyabstract operation.

(2) EnablednessWhen operations can be invoked in the abstract state, thepeavoked in the con-
crete state as well.

(3) Restricted consistencyln states where the abstract operation is enabled, thet eff¢lee concrete
operation is one that is allowed by the abstract operation.

Property (1) or its weaker variant (3) represents the essehefinement: that a client would be unable
to observe conclusively that they are using the concreteerahan the abstract system. Property (2)
ensures that the client is indeed able to perform the sanpefarents” on both systems. Property (1)
obviously implies (3), and also a converse of (2): where ostecoperations are enabled (leading to an
“effect”), their abstract counterparts should be enabted,(in order to allow comparison of effects).
The properties leave out detail about what an effect is, anegsefully vague on “can be invoked” in (2)
to allow a variety of interpretations, and leave any linkbeween abstract and concrete states implicit.
They are also somewhat biased towards downward simula#iofew examples should make all this
clearer. The refinement relations described below will bereel to in later sections.

Traditional (downward simulationd] refinemen{19,(11] is characterised by properties (2) and (3),
with “can be invoked” in a state computed as individual opers’ preconditions, i.e. whether their
defining predicates can be satisfied for some after-statedi@an (2) is called “applicability” and typi-
cally formulated as

preAOpA R=> preCOp

2A refinement linkingAin to CingSortinstead is equally possible but would require strengtheetiie concrete state invariant
to sorted sequence€jngSortthen simplifies to the insert operation of insertion sort.

158 Perspicuity and Granularity in Refinement

where prédOp== 3 AS ¢ AOpdenotes the computed precondition. Condition (3) is c4dltedectness”,
and typically formulated as

preAOpA RA COp=- 3AS ¢« R AAOp

We have sometimes called this refinement relation the “actitmodel of refinement as it constrains the
implementation only within the original precondition.

Trace refinemenis characterised by (1) only, only requiring that anythihgtidoeshappen in the
concrete specification is consistent with the abstract d&wesuch, it represents preservation of safety
properties only, “nothing bad happens”. No concrete opmratbeing enabled at all, for example, is an
acceptable trace refinement.

BasicEvent-B refinemen(talled simple refinement inl[1, Ch. 14]) is characteriseql)ywith (op-
tionally) a weak alternative to (2): if the concrete statadlecks (i.e. no events are enabled), then so
should the abstract state. Enabledness of events is givergiigitly specified guards, with a “feasibil-
ity” proof obligation ensuring that they are at least asrggras any computed precondition. Abrial [1, p.
429] states that condition (2) could be imposed, but “thjgems to be sometimes too strong”. (We will
return to this.)

Failures-based variant®f refinement are characterised by (1) and (2), where (2)iderssindi-
vidual operations for “blocking Z refinement” and singletailures refinement, or sets of concurrently
enabled operations for failures refinement as in CSP. Wetee{6|,[17)5] for detailed discussion of these
refinement relations and the finer distinctions between flvdmch are not relevant in the current paper.

Note that a refinement relation characterised by propejtwitBout property (2) is nonsensical as it
is not transitive: preconditions or guards can be stremgiti€lack of (2)) and then weakened (by (3)),
but the composition of such steps does not respect (3).

3 Adding Operations in Refinement

The basic refinement rules described above deal only witkithation where the abstract and concrete
specifications have the same alphabet of operations. Thermany ways in which one could allow

a refined specification to have “extra” operations — we ds@sumber of them. First, we mention
alphabet extension and alphabet translation [11, Ch. ¥4ddmpleteness. Then, we get to the core of
this paper: stuttering steps, the introduction of intepp@rations, and action refinement, and how these
sometimes get conflated.

3.1 Alphabet Extension and Translation

The simplest way of allowing new operations in refinemerdlphabet extensionto just accept them
without any further constraints. If we make the intuitivefsof identifying a non-existent operation with
one that is never enabled, alphabet extension should bectigricceptable in traditional Z refinement:
it means we allow implementors to provide functionalitytthe had not asked for. In a process algebra
context alphabet extension is typically not allowed, ardked that would make sense in our intuitive
view: it would go against refinement property (1), by havimgmatching abstract behaviour for some
concrete behaviour.

In alphabet translationa single abstract operation is implemented by multiplecoete ones, which
requires an explicit mapping, recording for every concigieration which abstract operation it repre-
sents, and thus which operation’s behaviour it needs te@spand with. (If this mapping is not required

E.A. Boiten 159

to be total, alphabet extension is subsumed.) A typical @karfor this would be an abstract two-
dimensional grid specification with a “move” operation, ahis refined into “moveNorth”, “moveEast”,
etc. Alphabet translation is allowed in Event-B, where itadled “splitting” an abstract event.

The semantic property established in alphabet translasioevery concrete trace (with its corre-
sponding observations) is consistent with an abstrac tieat relates to it by the given mapping (applied

elementwise) with its corresponding observations.

3.2 Perspicuous Operations

State-based systems potentially change state when aperatie executed. When no operation is in-
voked, the state does not normally change. Some formaliakesthis into account by including ex-
plicitly so-called stuttering steps in their semanticgpstwhere the state does not change between two
observations, due to no event having taken place. In thé dijthat, it is intuitively obvious to accept
the introduction of additional concrete events as refinamehthe identity operation (a.k.akip) on

the abstract state. We will call theperspicuousconcrete events, to be distinguished from “internal
events” (see below) which incur additional assumptions regdirements. In particular, in subsequent
refinement steps, perspicuous operationsadave a different status from operations that were present
earlier.

Abrial [1] presents a similar motivation for the introduciof new events in Event-B, analogous to
how this is done in action systems [3], and refers to it aséoliag our discrete system in the refinement
with a finer grain than in the abstraction”. Event-B is explabout the introduction of such events as
being refinements ahodelling introducing not just aspects of a solution, but more detiaihe model.
Indeed, where refinement is viewed as only moving from a cetaplescription of a problem to its so-
lution, the introduction of perspicuous operations whichiave nothing in the abstract world can hardly
be useful by itselft. Both action systems and Event-B include a relative de&dleedom condition with
this kind of refinement: the new system should deadlock (eeminate, in the action systems view) no
more often than the old one. The semantic relation estaalibly this kind of generalised refinement is:
for every concrete trace with its corresponding obsermati@n abstract trace constructed by crossing
out all perspicuous actions is consistent with it.

In the running example, under most refinement relations aitkl tlve obvious retrieve relation
itemss= b both concrete operatior&ortandCycleare candidate perspicuous operations, as they satisfy
items s= items $and thus relate identical abstract states. They are botltable in every concrete state
and thus are refinements of an abstiskip even when property (2) is imposed.

For perspicuous operations, the notiordafergencecomes into the picture. A collection of perspic-
uous operations is divergent if infinitely often in successifrom some state, one of its members can be
invoked. In a trace-based view, where perspicuous opestiould be inserted at arbitrary points be-
tween “normal” operations, non-divergence is necessaensure that a finite trace cannot get extended
into an infinite one by that process. This is how Abrigl [1] kexps i. With additional assumptions,
such as that a system might perform perspicuous operatidepéndently, divergence becomes a prac-
tical as well as a theoretical problem. Butler [9] explaime hon-divergence requirement in Event-B by
saying “The new events introduced in a refinement step candveed as hidden events not visible to
the environment of a system and are thus outside the corfttbe@nvironment” which would suggest

SThis isnotintended to be a controversial statement or implicit déticon Event-B: the crux is in the phrabg itself and
this should become clearer later when we compare the diffevays of encoding action refinement.

4His use of the term “reachable” is a bit unfortunate, thoughis-tends to be an existential property (some path is finite)
rather than the required universal (all paths are finiteperty required.

160 Perspicuity and Granularity in Refinement

these are not just perspicuous events, but @avennal events as we will discuss next. In action systems
[3], which are viewed as a main inspiration for Event-B, alliens could be considered to be internal
(even if the variables they modify are not), which conformarenwith Abrial’s explanation than with
Butlerdd. Atypical method of proving non-divergence is by estalfigha variant (well-founded, strictly
decreasing function) on newly introduced (collectionspafjspicuous operations| 8,112, 1]. If refinement
is based on property (1) rather than property (3), i.e., iorcannot gain behaviour in refinement, then
non-divergence is preserved by subsequent refinement steps

In the example, both perspicuous operations are diverggmit is obvious from the fact that they
are enabled ireveryconcrete stateSort allows an infinite sequence of invocations of which only the
first does not necessarily correspond to a con@lkife For formalisms that use infinite traces and allow
stuttering steps, such as TLA, this may not be a problem. R&malivergence on each of the operations
can be done using several possible small modifications. Meeggnce problem faBortcould be fixed
by including a guard-sorted’s), but this makes it a refinement skiponly if property (2) is not imposed
and guards can be strengthened. Another way would be to adg thélt ensureSortis invoked exactly
once after every occurrence 6in or Cycle (possibly also preventing the nein until after sorting).
A counter could be used to remove divergenc&€yrtle with each of the other operations (excluding
Sord setting the counter to fix the maximal number of occurrermfe€ycleto follow it, and Cycle
decrementing it at every step until it is 0. None of those ricalions would retain the property th@ort
or Cyclerefinesskipif the prevalent refinement relation respects (2).

3.3 Internal Operations

An internal operation is a perspicuous operation with aigpstatus: it is assumed to be invisible to
the environment, and under internal control of the systeim dn process algebras, internal operations
naturally occur in a number of ways. In CSP[[14] they arisenfrchannels being hidden, for example
encapsulating an internal communication channel whenigdensg a system of communicating subsys-
tems. They may also be used, for example in LOTOS [7], to emau@rnal choice when only external
choice is available as a basic operator. Butler first constiéhe introduction of internal events in B
refinement([8], and based on this approach we introducedKwefmnement” for Z[[12] 10], which was
analysed and compared to ASM refinement in detail by Schallfic].

The requirements imposed in this context are inspired by pieeess algebras deal with internal
actions, for example in defining “weak” bisimulation: whestandard refinement conditions refer to
a single action, their “weak” equivalents consider the sacteon possibly prefixed and postfixed by
occurrences of internal actions. Thus, the refinement stargily property, e.g., will state that for every
concrete action, with internal concrete behaviour befagkadter, its effect is consistent with the abstract
action, possibly also pre- and postfixed with (abstrac@rimdl behaviour. E.g. in_[12] the restricted
consistency (correctness) condition for weak refinemeat(townward simulation) is phrased as

pre(Inta 3A0P) A RA (Intc§COpgIntc) = JAS ¢ R A (Inta 3AOPSINnta)
wherelntc is arbitrary internal behaviour in the concrete state,the.transitive reflexive closure of the

union of internal operations, and similar flmta. Taking this process algebra inspired approach has a
few consequences:

5Note however that Abrial]1] does recognise (on page 414jfardnt class of operation thais‘not part of the protocol: it
corresponds to a “daemon” acting ."..

E.A. Boiten 161

e internal actions have a special status which goes beyonefimement step where they are intro-
duced. They can not only be introduced this way, but mustlastaken into consideration or can
even be removed in subsequent refinement steps.

e there is an assumption that if internal actions are necgd$eaiprogress, they will “eventually”
happen, so external operations are viewed as “enabledgiif before-state is reachable through
internal behaviour; in timed process algebras in particutéernal actions are often taken as “ur-
gent” meaning they happen as soon as they are enabled.

¢ there need not be independent refinement conditions faniiteperations: all internal behaviour
is viewed in the context of its composition with external &gbur. Thus, internal operations need
not be refinements ogkip. Of course, all internal operations being perspicuoush witernal
operations corresponding as normalpre way of satisfying the refinement conditions like the
one above, but it is not the only way. In fact, in some refinemelations, it may not be a viable
way, see below.

The approaches for B and Z mentioned above only inclygtedentionof divergence in weak refinement
steps. A more general approach, also consistent with tleegsalgebraic view, is fareserveor reduce
any divergence that was already present in the abstradfispgon. This is worked out in detail in [6],
and the impact of differing notions of “livelock” or divergee is discussed in[[4]. The semantic relation
established in this case is roughly that for every concreieet an abstract trace exists that is consistent
with it, with both traces’ subsequenceseaxternalactions being identidgl

3.4 Action Refinement

Alphabet translation described above allows for arbitraatchings of an occurence of an abstract action
with the occurrence of a single concrete action. The modtaitxyway of changing the granularity of ac-
tions is to allow for matchings betweaequencesf abstract and concrete actions. This has been called
“action refinement”[[2] or “non-atomic refinement” [10]. Itsimodi general form, action refinement
corresponds to ASM 1-ta-diagrams witim possibly greater than 1 [18], generalising the normal com-
muting simulation diagram to one where the concrete effeechieved im steps, without requiring a
relation between abstract amdermediateconcrete states. In this view, all concrete operationdtiegu
from the decomposition are of the same status, with only thieler having an impact on refinement
conditions. This is also the view we took in definining nooraic refinement for Z[[10], work which
was continued by Derrick and Wehrheim [13]. This kind of aetrefinement is even possible without
changing the state space involved. It requires an expliaiiching between abstract actions and con-
crete action sequences, which also extends to traces. Tiente relation aimed for is that concrete
traces are consistent with abstract traces under this dedematching relation. The concrete and the
abstract models end up having different interfaces with #diiproach — this may be exactly what is re-
quired, though. For example, [11, Ch. 13] has an example a@talwwhich in the abstract model has
a ResetTim®peration, which in the concrete model is represented byiessef executions oButtonA
andButtonBoperations.

Considering for simplicity now only the case that= 2, the refinement requirements are like the
introduction of sequential composition in refinement chls16]. Splitting an operation in two means

6In fact it is a somewhat more subtle matching: non-detersnirincluded in a single operation on one abstraction levgl ma
be represented through a different choice of sequencearhiatactions on the other level, so itis really a relatioieen sets
of abstract vs. concrete traces with the same external guéesee.

7Avoiding for now the generalisation t-to-n diagrams wittm+ 1.

162 Perspicuity and Granularity in Refinement

finding an intermediate state (predicate) such that the"fiedf’ lands in the intermediate state, and the
second “half” moves from the intermediate to the origindé¢aétate. The problematic issue is what is or
is not allowed to happen in the intermediate state. In a aoecticontext, this comes under the heading
of “interference” — when the first “half” of an operation hasem executed, should other operations be
disabled (non-interference, as e.g. discussed for actisterss in([3]), or should their execution cancel
out the effect of this one? This is a well-known problematieaa discussed also in [10], which we
will not focus on here, as it is orthogonal to the issues dised: when an action is split with part of it
being perspicuous or internal, that also creates an inttiatgestate with the same potential interference
problems.

4 How to Reduce Granularity in Refinement

From the discussion above, it should be clear that theretdeast three semantic models for reducing
the granularity of actions in refinement:

e by introducing perspicuous actions that take on some of WaK” — possibly requiring non-
divergence;

e by introducing internal actions to the same effect — eitt@ngi the limited refinement rules for
perspicuous actions, or by using the more general “weakemémt” rules;

e by giving explicit decompositions of actions in which allisahave the same status.

We limit ourselves for now to the case where we are decomgasiraction into two actions, where the
first part could be viewed as “prepatory work”, and the seqoad as the “real work” — in other words,
the situation in our example of refiniMyoutinto Sortand Cout, where we expecBortto be executed
beforeAout However, in order to concentrate on the general situat&n)s consider refinind\Work
into PrepareandCWork

For the methods of reducing granularity by refinsigp, we aim forPrepareto be perspicuous, and
for CWorkto be a refinement oAWork Now consider an abstract state in which the operatidrfork
was applicable. If in every corresponding concrete statiild be possible to applgWork then we
have a degenerate situation: we are introducing a new aeteparewhose contribution is unnecessary
in all situations (i.e., it might as well be @ncrete skiptoo). Thus, in any relevant case of reducing
granularity, CWork can be applicable in only a subset of the corresponding etmatates — namely
those wherd@reparehas nothing (left) to do. Indeed, becalepareis a refinement of an abstraskip,
if its before-state is linked to a particular abstract stdten so should its after-state. Again in order to
ensure thaPreparedoes something useful in some circumstances, there shewddrbe abstract states
linked to the before-states Bfrepare

This is where the prevalent notion of refinement makes ardifiee. If condition (2) (“enabledness”)
is in force, we have made it impossible f@Workto be a refinement oAWork becauseCWork is
only applicable in a strict subset of the corresponding oetecstates. This holds a fortiori for stronger
versions of condition (2) such as failures refinement.

Thus, condition (2) excludes reduction of granularity byraducing perspicuous actions. It also
excludes reduction of granularity by introducing interaations using the “perspicuous actions” condi-
tions. However, the more general “weak refinement” rulesklmmised in combination with condition
(2), as we have shown inl[6] in a context with condition (1) ance, and in[[10] with condition (3) in
force. This is explained by not being constrained to comsidethe concrete operation in isolation, but
rather only considering it in the context of possible ingroncrete behaviour.

E.A. Boiten 163

The other way in which condition (2) is problematic for théimements okip is any requirements
for perspicuous actions to be non-divergent. If they araesfients ofskip respecting condition (2),
then they are by definition applicable in all states and thways applicable “again” and by definition
divergent.

Returning to the example, ignorin@ycle for now, refinement reducing granularity is possible in
several ways:

e by havingSort perspicuous, and guarded bgorteds) if it is also required to be non-divergent.
This works for trace refinement (just (1)), Event-B refinetmént not the other forms.

e by havingSortinternal, provided it is guarded bysorteds). This works according to the rules
for Event-B, establishing normal Event-B refinement. Hogrewt can also work for stronger
refinement relations respecting condition (2), but thenrttaze general weak refinement rules
need to be used to establish it. In particular, it would méatAoutis compared for refinement
with Sort* §Cout

o for explicit action refinement oAout by Sortfollowed by Cout, there is no requirement f@&ort
to be guarded (compare the watch example referred to absveoreeptionally the user presses
ButtonB there is no guard preventing the user from doing that iipivften), and refinement can
be any kind, including relations respecting property (2gwen (3). In fact, including a guard on
Sortwould disallow the combined concrete output operation atestwhich are already sorted,
and thus be unacceptable if the refinement relation obeymefso(2).

5 Conclusion

The paradox that led to the discussion with Carroll Morgdarred to earlier was the following. If the
work of one abstract operation is split between two concogetes, and one of the concrete operations
makes no progress that can be detected absamlyy do we need this action at all? And if we do
need it, how can the other concrete operation, achievingesoum not all of the work of its abstract
counterpart, be a refinement of the abstract one? The answepéfully somewhat clarified above. It
requires a notion of refinement that allows for guards to tengthened. The underlying issue may well
have been known in “folklore” but it is not presented in anplmhed papers we are aware of.
Coming back to Event-B specifically, two of its design demnsi are thus closely entangled:

e to have essentially a trace semantics with only global @ekdbrevention;
e to use stuttering step refinements for reducing granularity

Both lead to relatively simple refinement obligations, whis attractive. In order for Event-B to
strengthen refinement to preserve stronger propertiesasuehcoded in various refusal-based semantics,
it would also have to give up its simple notion of reductiorgadnularity. It could do this in at least two
ways: either by going the way of ASM and having explicit regor decomposing operations with their
corresponding conditions, or by going the way of processkatg, and giving certain operations explicit
“internal” status which they then would need to retain sgoeatly. In either case, the price of gaining
semantic strength is a considerable amount of complicatisafinement conditions, which may be too
big a price to pay, particularly for a formalism which now fsmuch (automated) proof tool support
available. Would that be what Abrial had in mind when he withigt (condition (2)) “happens to be
sometimes too strong”?

8Thus, some degree of data refinement is implied: a refinenieski pon thesamestate really cannot make any progress.

164 Perspicuity and Granularity in Refinement

Postscript

Finally, returning to the running example once more, a lastdwon theCycle operation. It makes no
useful progress whatsoever, but the constraints put ugsrcéimpletely irrelevant operation in refine-
ment in any “stuttering steps” approach (namely: tamingliégrgence), have been no more and no less
than on the supposedly enormously us&attoperation. Surely that is somewhat disappointing.

Acknowledgements

To Carroll Morgan for his explanations, to Michael Butleghd Derrick, Steve Dunne and Gerhard
Schellhorn for useful discussions, and to the reviewershfer comments.

References

[1] J.-R. Abrial (2010):Modelling in Event-B CUP.
[2] L. Aceto (1992):Action Refinement in Process Algehr&Jp.

[3] R.J.R. Back (1993)Refinement of Parallel and Reactive Progranis M. Broy, editor: Program Design
Calculi pp. 73-92.

[4] E.A. Boiten & J. Derrick (2009)Modelling divergence in Relational Concurrent Refinembmi. Leuschel
& H. Wehrheim, editorsiFM 2009: Integrated Formal MethodsSNCS5423, Springer Verlag, pp. 183—-199,
doi{10.1007/978-3-642-00255-7+13.

[5] E.A. Boiten & J. Derrick (2010)incompleteness of Relational Simulations in the Blockiagé&igm Sci-
ence of Computer Programmii§(12), pp. 1262—-1269, doi:10.1016/j.scico.2010.07.003

[6] E.A. Boiten, J. Derrick & G. Schellhorn (2009Relational Concurrent Refinement Part IlI: Internal Opera-
tions and OutputsFormal Aspects of Computirfl(1-2), pp. 65-102, doi:10.1007/s00165-007-0066-z.

[7] T. Bolognesi & E. Brinksma (1988)tntroduction to the 1ISO Specification Language LOTGSomputer
Networks and ISDN Systemisi(1), pp. 25-59, d0i:10.1016/0169-7552(87)90085-7.

[8] M. Butler (1997):An approach to the design of distributed systems with B AMN.P. Bowen, M G. Hinchey
& D. Till, editors: ZUM’97: The Z Formal Specification Notatiphecture Notes in Computer Scient212,
Springer-Verlag, pp. 223-241, c0i:10.1007/BFb0027291.

[9] M. Butler (2009): Decomposition Structures for Event-Bn M. Leuschel & H. Wehrheim, editordFM,
Lecture Notes in Computer Scierfsé23, Springer, pp. 20—38, do0i:10.1007/978-3-642-00255-

[10] J. Derrick & E.A. Boiten (1999): Non-atomic refinement in.Z In J.M. Wing, J.C P. Woodcock &
J. Davies, editorsFM’'99, Lecture Notes in Computer Scient@&08, Springer-Verlag, Berlin, pp. 1477-
1496, doi:10.1007/3-540-4811828.

[11] J. Derrick & E.A. Boiten (2001)Refinement in Z and Object-Z: Foundations and Advanced égtfiins
FACIT, Springer Verlag, dai:10.1007/978-1-4471-0257-1.

[12] J. Derrick, E.A. Boiten, H. Bowman & M.W.A. Steen (1998pecifying and Refining Internal Operations
in Z. Formal Aspects of Computirt0, pp. 125-159, d0i:10.1007/s001650050007.

[13] J. Derrick & H. Wehrheim (2003)Jsing coupled simulations in non-atomic refinemémD. Bert, J. Bowen,
S. King & M. Walden, editorsZB 2003: Formal Specification and Development in Z and &ture Notes
in Computer Scienc2651, Springer, pp. 127-147, doi:10.1007/3-540-4488@-2-

[14] C.AR. Hoare (1985)Communicating Sequential ProcessEsentice Hall.
[15] C.A.R. Hoare & He Jifeng (1998)nifying Theories of Programmindrentice Hall.

[16] C.C. Morgan (1994)Programming from Specification@nd edition. International Series in Computer Sci-
ence, Prentice Hall.

http://dx.doi.org/10.1007/978-3-642-00255-7-13
http://dx.doi.org/10.1016/j.scico.2010.07.003
http://dx.doi.org/10.1007/s00165-007-0066-z
http://dx.doi.org/10.1016/0169-7552(87)90085-7
http://dx.doi.org/10.1007/BFb0027291
http://dx.doi.org/10.1007/978-3-642-00255-7-2
http://dx.doi.org/10.1007/3-540-48118-4_28
http://dx.doi.org/10.1007/978-1-4471-0257-1
http://dx.doi.org/10.1007/s001650050007
http://dx.doi.org/10.1007/3-540-44880-2-10

E.A. Boiten 165

[17] S.Reeves & D. Streader (2008)ata refinement and singleton failures refinement are noivedent Formal
Aspects of Computing0(3), pp. 295-301, d0i:10.1007/s00165-008-0076-5.

[18] G. Schellhorn (2005)ASM Refinement and Generalizations of Forward SimulatidDdta Refinement: A
Comparison Theoretical Computer Scien886(2-3), pp. 403-436, doi:10.1016/j.tcs.2004.11.013.

[19] J.C.P. Woodcock & J. Davies (199@)sing Z: Specification, Refinement, and Prdefentice Hall.

http://dx.doi.org/10.1007/s00165-008-0076-5
http://dx.doi.org/10.1016/j.tcs.2004.11.013

	1 Introduction
	2 Basic Notions of Refinement
	3 Adding Operations in Refinement
	3.1 Alphabet Extension and Translation
	3.2 Perspicuous Operations
	3.3 Internal Operations
	3.4 Action Refinement

	4 How to Reduce Granularity in Refinement
	5 Conclusion

