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Before we combine actions and probabilities two very obvious questions should be asked. Firstly,
what does “the probability of an action” mean? Secondly, howdoes probability interact with nonde-
terminism? Neither question has a single universally agreed upon answer but by considering these
questions at the outset we build a novel and hopefully intuitive probabilistic event-based formalism.

In previous work we have characterised refinement via the notion of testing. Basically, if one
system passes all the tests that another system passes (and maybe more) we say the first system is a
refinement of the second. This is, in our view, an important way of characterising refinement, via the
question “what sort of refinement should I be using?”

We use testing in this paper as the basis for our refinement. Wedevelop tests for probabilistic
systems by analogy with the tests developed for non-probabilistic systems. We make sure that our
probabilistic tests, when performed on non-probabilisticautomata, give us refinement relations which
agree with for those non-probabilistic automata. We formalise this property as a vertical refinement.

1 Introduction

Event-based models are frequently based on finite automata (FA, also called labelled transition systems)
and probabilistic event-based systems are frequently based on FA where the transitions are also labelled
by a probability as well as by an action. Before we combine events and probabilities two very obvious
questions then arise. Firstly, what does “the probability of an event” mean, or what does it mean for an
event to “behave in a probabilistic fashion”? Secondly, howdoes probability interact with nondetermin-
ism? Neither question has a single universally agreed upon answer but by considering these questions at
the outset we build a novel and hopefully intuitive probabilistic event-based formalism.

Throughout we will be motivated by a wish to, in the end, develop a notion of refinement for proba-
bilistic systems. In fact, refinement will be the starting point of our story here as well as the desired end
point.

In previous work we have characterised refinement via the notion of testing. Basically, if one system
passes all the tests that another system passes (and maybe more) we say the first system is a refinement
of the second. This is, in our view, an important way of characterising refinement since the question
“what sort of refinement should I be using?” can be answered bysaying “you should be using the sort
of refinement that is characterised by the sort of tests whichcharacterise the contexts within which your
system will find itself, i.e. choose your refinement by looking at what contexts your systems will be used
in.”

Because this seems such a natural and useful answer, we use testing again in this paper as the basis
for our refinement. We develop tests for probabilistic systems by analogy with the tests developed for
non-probabilistic systems, all the while hoping to make sure that our probabilistic tests, when performed
on non-probabilistic automata (and just noting whether a probability distribution is empty or not), give

http://dx.doi.org/10.4204/EPTCS.55.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


Steve Reeves & David Streader 85

us refinement relations which agree with for those non-probabilistic automata: this gives us confidence
that our new notions make sense. We formalise this property in Section 7.

The real test (!) in all this comes when we consider probabilistic automata which also contain nonde-
terminism. Again, we are guided by the wish that our probabilistic tests, when used on nondeterministic,
non-probabilistic automata, give us a refinement ordering which agrees with that originally given for
those automata when probability was not considered. We alsofind that the algebraic properties that
characterise the non-probabilistic case carry over into our new domain.

We formalise a notion of refinement based upon probabilistictests and then try to (re-)capture what
nondeterminism means in this probabilistic setting.

We will first introduce transition systems as a semantic foundation for non-probabilistic automata
and recap previous work on using testing to define refinement for such systems.

It will turn out that part of the key to doing this for probabilistic systems is to be clear about two
different philosophical bases for probability, so we next review those. Another part of the key to this
work will be a consideration of how nondeterminism is characterised, so we will go on to discuss that
subsequently. This will finally suggest how we might adapt transition systems to allow consideration of
probability, and we finally show how this adaptation can be used to also allow a treatment of nondeter-
ministic probabilistic systems, all the while retaining our testing-based notion of refinement.

We also show (via a selection) that expected properties holdfor our refinement.

2 Transition systems

Definition 1 Finite Automata (FA). Let Act be a set of actions and let Actτ be the same set along with
the special actionτ , which represents actions interacting to form events. Let NA be a finite set of nodes.

The finite automatonA is given by the triple(NA,SA,TA) where

1. SA ⊆ NA is a set of start nodes

2. TA ⊆ {(n,a,m)|n,m∈ NA∧ a ∈ Actτ} shows the effect of each action.

We write x
a

−→Ay for (x,a,y) ∈ TA and x
a

−→y whereA is obvious from context. We writen
a

−→ for

∃m.(n,a,m) ∈ TA, andm
ρ

−→n for

∃m1 . . .mi.m
ρ1
−→m1,m1

ρ2
−→m2, . . .mi

ρi
−→n

andm
ρ

−→ for
∃m1 . . .mi,n.m

ρ1
−→m1,m1

ρ2
−→m2, . . .mi

ρi
−→n

whenρ = (ρ1, ...,ρi), a finite sequence of actions.

We writen=⇒m for n
τ∗
−→m, n

a
=⇒m for ∃ j,k.n=⇒ j ∧ j

a
−→k∧k=⇒mandn

a
=⇒ for ∃ j,k,m.n=⇒ j ∧

j
a

−→k∧k=⇒m.

m
ρ

=⇒ andm
ρ

=⇒n are defined similarly to the cases for−→.
Whereρ is a sequence of actions overActτ we writeρ0 for ρ with theτs removed.

The traces areTr(A)
def
= {ρ | s∈ SA∧s

ρ
=⇒}.

The complete traces1 areTrc(A)
def
= {ρ | (s∈ SA∧s

ρ
=⇒n∧π(n) = /0) whereπ(n) def

= {m | n
x

−→Am}.

1We deal with only acyclic automata and so we do not need to dealwith infinite traces, though all the work of this paper can
be extended to infinite traces and cyclic automata in the standard way [1].
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We wish to model, using our automata, components that, like CSP processes, can immediately be
nondeterministic. But, unlike CSP, we wish hiding (abstraction) to distribute through choice (soτs are
used only for unobservable actions or for events, and not pressed into service to encode nondeterministic
choice between starting states). There is a subtle difference between how external choice in CSP and
choice in CCS behave with processes containing initialτ actions. This has been explained either by
regarding the choice operators as being different, see [2] “The unique choice operator of CCS, denoted
by +, is a mixture between external and internal choices” or by viewing CSP’s use ofτ actions to model
a nondetermined start state as different to CCS’s use ofτ actions [3]. By allowing automata to have a set
of start states we both avoid having to distinguish externalchoice and CCS choice and allow hiding to
distribute through choice [3].

Also, choice can be defined ([4, 5]) between FAs with one startstate each by gluing the two start
states together to make a new single start state. Here, due toour generalisation, we glue together two sets
of start states.

Let S= {s1,s2, . . . ,sn} andS′ = {s′1,s
′
2, . . . ,s

′
m} be two sets of starting states and then define{S/S×

S′} to be then substitutions{si ∈ S|si/{(si ,s′1), . . . ,(si ,s′m)}} and define{S′/S×S′} to be themsubstitu-
tions{s′j ∈ S′|s′j/{(s1,s′j), . . . ,(sn,s′j)}}.

We define{SS′/S×S′} to be then+msimultaneous substitutions{S/S×S′}∪{S′/S×S′}. The first
n substitutions replace each element of{s1,s2, . . . ,sn} with a set ofm nodes and the lastm substitutions
simultaneously replace each element of{s′1,s

′
2, . . . ,s

′
m} with a set ofn nodes. Consequently{SASB/SA×

SB} will identify the two sets of nodesSA andSB asSA{SASB/SA×SB} andSB{SASB/SA×SB} are both
then×mset of nodesSA×SB.

Since single states may now become sets of states under the substitution, we also have to define what
it means to have sets of nodes in a transition:

T
x

−→T ′ def
= {t

x
−→t ′|t ∈ T, t ′ ∈ T ′}

Definition 2 Process operators. LetA be(NA,SA,TA) and letB be(NB,SB,TB).

Action Prefixinga.B=
def
= ({s}∪NB,{s},{s

a
−→x|x∈ SB}∪TB) where s is a new state.

Internal choiceA⊓B
def
= (NA∪NB,SA∪SB,TA∪TB)

External choice is, informally, internal choice where start states are combined according to the substitu-
tions above. Let SA�B be

⋃
((SA∪SB){SASB/SA×SB}), i.e. we combine start states as above. Then,

External choiceA�B
def
= ((NA∪NB)\ (SA∪SB)∪SA�B,SA�B,(TA∪TB){SASB/SA×SB})

Parallel composition:A ‖P B
def
= (NA‖PB,SA‖PB,TA‖PB) where P⊆NA∩NB, NA‖PB =NA×NB, SA‖PB =

SA×SB and TA‖PB is defined by:

n
x

−→Al ,m
x

−→Bk, x∈P

(n,m)
τ

−→A‖PB(l ,k)

n
x

−→Al , (x 6∈P∧m∈NB)

(n,m)
x

−→A‖PB(l ,m)

n
x

−→Bl , (x 6∈P∧m∈NA)

(m,n)
x

−→A‖PB(m, l)

Example 1 LetA be

({s1,s2, t1, t2},{s1,s2},{s1
a

−→At1,s2
b

−→At2})

and letB be
({s,s2, t},{s},{s

c
−→Bt})

or, in diagram form,
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A •s1

◦t1

•s2

◦t2

a b

B •s

◦t

c

ThenA⊓B is

({s1,s2,s, t1, t2, t},{s1,s2,s},{s1
a

−→A⊓Bt1,s2
b

−→A⊓Bt2,s
c

−→A⊓Bt})

or, as a diagram,

A⊓B •s1

◦t1

•s2

◦t2

a b

•s

◦t

c

Given that SA�B is

⋃
{s1,s2,s}{s1/{(s1,s)},s2/{(s2,s)},s/{(s1,s),(s2,s)}} = {(s1,s),(s2,s)}

thenA�B is

({t2, t3,(s1,s),(s2,s)},{(s1,s),(s2,s)},

{(s1,s)
a

−→A�Bt1,(s2,s)
b

−→A�Bt2,{(s1,s),(s2,s)}
c

−→A�Bt})

which is

({t2, t,(s1,s),(s2,s)},{(s1,s),(s2,s)},

{(s1,s)
a

−→A�Bt1,(s2,s)
b

−→A�Bt2,(s1,s)
c

−→A�Bt},(s2,s)
c

−→A�Bt})

and as a diagram

A�B •(s1,s)

◦t1

•(s2,s)

◦t2

a b

◦t ◦t

c c

Finally, A ‖{a} B with (note thatB’s action is nowa)

A •s1

◦t1

a

•s2

◦t2

b

B •s

◦t

a

is

A ‖{a} B •(s1,s)

◦(t1, t)

τ
•(s2,s)

◦(t2,s)

b

◦(s2, t)

◦(t2, t)

b

�
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3 Testing semantics

The definitions in this section are taken from [6] where they have been applied to both state-based and
event-based models.

One of our tests, of a processE, taken from a set of processesE, consists of placingE in some
contextX taken from a set of possible contextsΞ. E in contextX is written [E]X. We then observe the
resulting system. Each observation made is taken from a set of possible observationsO.

We turn first to our general definition of testing semantics for nondeterministic processes and con-
texts. In this setting a test may return (nondeterministically) one observation from a set of possible
observations.

A specification is interpreted as acontract consisting of theassumptionthat the process will be
placed only in one of the specified contextsΞ and aguaranteethat the observation of its behaviour will
be one of the observations defined by the mappingO : E→ Ξ →℘O. The mappingO defines what can
be observed for all processes in any of the assumed contexts.Hence for any fixedΞ andO we have a
definition of the semantics and the refinement of processes.

Definition 3 LetΞ be a set of contexts each of which the processesA,C ∈ E can communicate privately
with, and let O: E→ Ξ →℘O be a function which returns a set of observations, i.e. a subset ofO. Then,
the relational semantics of a processA is a subset ofΞ×O.

JAKΞ,O
def
= {(x,o)|x∈ Ξ∧o∈ O([A]x)}

and refinement is given by

A⊑Ξ,O C
def
= JCKΞ,O ⊆ JAKΞ,O

and equality is

A=Ξ,O C
def
= JCKΞ,O = JAKΞ,O

✷

Given a rich enough class of tests the use of nondeterministic tests is redundant, as what can be ob-
served using a nondeterministic test will be the union of what can be observed using a set of deterministic
tests. Hence nondeterministic tests add no further information and will be ignored.

For all the processes considered in this paper, placing a processA in a contextX, i.e. [A]X, will mean
executing processA in parallel withX, i.e.A ‖N X (whereN is some set of actions over which the context
and process communicate, i.e. synchronize) and the observation functionO is either the trace function
Tr (if only safety properties are of interest) or (if liveness properties are of interest) the complete trace
functionTrc.

Definition 4 Let ΞFA be FA and let⊑FA be⊑ΞFA,Trc. ✷

Theorem 1 Refinement distributes through parallel composition: LetX,Y,P,Q ∈ FA

X⊑FA Y,P⊑FA Q

X ‖N P⊑FA Y ‖N Q

✷
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4 Probabilities—Two Interpretations

There are two (main) interpretations of probability, thefrequentistand theBayesian.

The frequentists’definition sees probability as the long-run expected frequency of occurrence. The prob-
ability of eventA happening, wheren is the number of times eventA occurs inN opportunities, is
P(A) = n/N.

The Bayesians’view of probability is related to degree of belief or state ofknowledge. It is a measure of
the plausibility of an event given incomplete knowledge. The Bayesian probabilist specifies some
given or assumed prior probabilities, which are then used inthe computation of other probabilities.
That is to say, anything that is nondeterministic or unknownmust either be assigned some proba-
bility or have its probability computed from other, more primitive, known probabilities. Bayesian
statisticians have developed several “objective” methodsfor specifying prior probabilities.

The frequentists’ view is based upon repeatedly performingthe same test many times and, where the
behaviour of the item under test is nondeterministic, aggregating the results of all the tests. Extending
an event-based testing semantics to record not just the set of possible observations but the probability
with which they occur is a simple uniform way to extend event-based testing semantics to event-based
probabilistic testing semantics. This can be further generalised by representing both the process under
test and the test process itself with probabilistic automata.

The Bayesian view fits well with Hoare’s comment on nondeterminism [7, p81]:

“There is nothing mysterious about this kind of nondeterminism: it arises from a deliberate
decision to ignore the factors which influence the selection”

So, nondeterminism in a process is merely a case of not havinganalysed it enough to quantify it, i.e.
attach to it some probabilities. Nondeterministic choice is probabilistic choice with unknown probabili-
ties. Surprisingly, this is not how testing semantics have been defined in the literature.

As probabilities quantify (i.e. attach a number to, or make quantitative) nondeterministic behaviour,
it is clearly crucial when modelling some real process to distinguish between the behaviour of the process
being deterministic and the behaviour being nondeterministic. Similarly when the process is observed
interacting in some context it is crucial to distinguish thenondeterminism of the process from the non-
determinism of the context.

Give a coin to a frequentist statistician and they experiment by flipping the coin a large number of
times noting down the number of times they observe heads being uppermost and the number of times
they observe tails. From this experiment they can compute the probability.

An important point to note is that, to the frequentist, probabilities define how likely it is that an action
is executed, or equivalently how likely it is that the execution ends in a particular state. The probability
of an event occurring when the event cannot be executed must be zero.

The Bayesian statistician, given a coin, knows that the onlyobservations are heads and tails, and
has no further information. The skill of the Bayesian statistician is to assign a prior probability based
on understanding the world that agrees with the frequentist. It becomes very important when we try to
add probabilities to event-based processes that we either follow the frequentist and perform experiments
(tests) or follow the Bayesian statistician and think clearly about the behaviour in the world of what we
are modelling.
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•s1 p

Q1

•s2 1− p

Q2

•

◦

t

s1

Q1

a p

◦s2

Q2

a 1− p
•

◦s1

t1 p

Q1

a
•

◦s2

t2 1− p

Q2

a

Figure 1: Probabilities on starting states

•s1 p.q

Q1

•s2 (1− p).q

Q2

•t 1−q

P

Figure 2: More general probabilistic combination

5 Probabilistic Finite Automata

5.1 Probability

We introduce probabilities on choice by attaching probabilities to the start states of a process. There are
two things to notice here: as in the non-probabilistic case with FAs, we represent nondeterminism on the
initial state of a process by allowing the process to start inone of asetof states; and we generalise this
idea to represent theprobability of starting in some state of a process by attaching probabilities to each
of its start states so that we can see what the probability of each possible start state being actually chosen
for some particular execution of the process.

The first of these points is inherited from work [8] which seeks to remove the need to use unob-
servable actions to also “encode” or represent nondeterminism in a process by assuming the process
makes an unobserved transition to its “real” starting state(which may be one of many) from some single
“dummy” formal starting state. (And, of course, this is justa case of using the usual “set of states” model
uniformly for start states as well as all other states, whichis something we are all familiar with from the
“classic” algorithm that constructs a deterministic finite-state automaton from a nondeterministic one.)
Such unobserved actions can then be used exclusively to denote (synchronisation between) events. This
idea is, in the second point above, carried over into the probabilistic realm so that initial probabilistic
choice is replaced by a probability distribution over the possible starting states.

So, if P is the process that starts with a choice betweenQ1 and Q2, which have (single, for this
illustration) starting statess1 ands2 respectively, with probabilitiesp of starting in states1 and 1− p of
starting in states2 then we might pictureP as in the left of Figure 1. We might represent the picture by
sayingS(P) = {s1 7→ p,s2 7→ 1− p}, whereS is a probability distribution function over start states ofP.

Further, if we now form the processa.P (i.e. the eventa happens then the processP happens) then
we might picture this as in the middle of Figure 1, and here notice how the probabilities have migrated
to the occurrences of eventa. This picture suggests that transitions now represent the effect of an action
on an initial state moving the system, according to some probability distribution, to the next state, when
it synchronizes with the same action in some other process, i.e. when the two actions combine to form
an event which takes place with the indicated probability.

So in a.P, the actiona has the potential to move us from statet to states1 with probability p
and tos2 with probability 1− p when synchronized to form an event which actually does take place
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with the indicated probabilities. We formalise all this by saying that the transitions ofa.P include
{t

a
−→d | d(s1) = p∧ d(s2) = 1− p}. An alternative picture might be as shown in the right of Fig-

ure 1, and here notice how the probabilities on the new start states for the new processa.P have migrated
from the old start states ofP and we haveS(a.P) = {t1 7→ p, t2 7→ 1− p}. This picture might be consid-
ered a useful, though perhaps more unusual, alternative wayof thinking of our system in the previous
picture.

Note that the original form of transitions as in FAs can be recovered by using the domain of the
probability distribution function to tell us what the relevant post-states are.

As processes are combined together, the probabilities for the various component start states are com-
bined to form the probabilities for the start states of the combination. As an example, see Figure 2, which
shows what the resultant start-state probabilities are for(Q1+p Q2)+q P, wheres1,s2 andt are the start
states forQ1,Q2 andP respectively.

5.2 Probability and nondeterminism

From statistics, thelaw of large numberstells us that nondeterministic behaviour is the same as proba-
bilistic behaviour where the probabilistic behaviour is unknown but can be found by repeating the right
experiment a large number of times.

In process algebrasτ actions indicate hidden, unobservable, uncontrollable actions or events (a spe-
cial case being when two processes synchronize on some actions, which we consider to be private and
uncontrollable). Remember Hoare’s comment that we cited inSection 4. We have said above that we
view this as agreeing with the Bayesian idea that probability indicates a lack of information.

As probabilities refer to frequencies of executable behaviour, i.e. the probability of an event occur-
ring, they naturally occur onτ actions. The intuitive relationship between nondeterminism and probabil-
ity is widely held. For example,

”nondeterminism represents possible choices that can be resolved in a wholly unpredictable
way. With probabilistic constructs the resolution becomespredictable up to a point, in that
it is quantified” [9]

We can view this as saying that probabilistic processes contain more information than nondeter-
ministic processes but less than deterministic processes.Consequently what can be observed in any
single observation of a probabilistic process is the same aswhat can be observed of the underlying
non-probabilistic process. But by aggregating the observations of a large number of executions we can
compute a probability distribution or verify a previously computed probability distribution.

As τ events are built by composing two actions that are observable (via parallel composition, i.e.
synchronization) it would be useful to find some way to compute the probability of the executableτ
event from the prior “probabilities” of their observable parts. This we do below in Definition 8.

The addition of probabilities toobservableactions where there isnonondeterminism has proven both
hard to interpret and hard to formalise, especially when we want to ensure that the models have desirable
properties. One reason, in our opinion, that this has turnedout to be so hard to do is that the probabilities
on the observable actions need, obviously, to define the behaviour of the processes not just in one context
but in all contexts.2

2We go no further with this point in this paper, but note that, in the non-probabilistic setting, we have considered this
previously in [10].
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5.3 Nondeterminism

We represent nondeterminism not by a separate set of operators but by allowing probabilities to be de-
noted not just by real numbers in the range 0 to 1 but also by real-valued terms (in that range) that contain
variables or parameters. This introduces the idea of a starting-state distribution which is not completely
determined or which has undetermined aspects, and hence allows us to represent nondeterminism with
the same machinery that we introduce for probabilities.

This idea is motivated by the Bayesian view that the more we know about a mechanism, the more
certain we can be about the probabilities attached to its behaviour: to talk of nondeterministic behaviour
is merely to admit having more or less incomplete information about how something behaves, and this
incomplete information can be represented by having parameters in the terms which denote probabilities.
This also accords with Hoare’s view that nondeterminism arises from ignoring or hiding (or, we would go
further and say, being ignorant of) some aspects of a process. Further analysis of the mechanism would
uncover (“unhide”) more of the mechanism. This view dissolves nondeterminism; there is no such thing
really, since it is just arises from not knowing (for whatever reason) enough about the actual distribution
of probabilities amongst actions that might be taken when a choice is presented or confronted.

5.4 Probabilistic testing semantics

For probabilistic tests all we need change is that the user records not just a set of observations but a

probability distribution over a set of observations, henceO
def
= Act∗ → R.

The relational semantics of processA when probability distributions are observed is a subset of
Ξ× (Act∗ → R). If a process is experimented upon (frequentist perspective) and the results noted then
what is observed will be a functionΞ → (Act∗ → R) and hence there is no nondeterminism and no
possibility of refinement.

But approaching automata from the Bayesian perspective, ifwe can define the processes and tests as
prior “probabilistic” automata then we might be able to use probabilistic parallel composition to compute
the probabilistic relational semantics of the processes. From the Bayesian point of view, the probabilities
on actions are prior probabilities that, until the action takes part in an event by being synchronized with
another process along the same action, do not play any role. Obviously the probability of an unexecuted
action is prior to the probability of an execution—in particular, not until we factor in the probability
of the synchronizing action do we know (via their product) what the probability of the executed event
(denoted byτ) will be. So, it is the Bayesian ideas that allow us to make sense of attaching probabilities
to something that has not yet happened, and which will only bea part of what happens.

6 Formalising probabilistic automata

In this section we will formalise the discussion in Section 5.2 and see that automata that contain both
probabilistic and nondeterministic choice are calledpartially probabilistic introduced as parameterised
probabilistic finite automata (PPFA). Here we take what we see as the standard statistical approach and
model nondeterministic choice as probabilistic choice with unknown probability. So our probabilities
are no longer only real numbers but may also be real-valued terms (parameterised terms, hence the
name) that may contain variables, the unknown probabilities. Automata where nondeterminism has been
completely replaced by probabilistic choice aredeterministicprobabilistic finite automata (DPFA).

Definition 5 Parameterised Probabilistic Finite Automata (PPFA ). Let NA be a finite set of nodes. The
parameterised probabilistic finite automatonA is given by the triple(NA,SA,TA) where
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1. SA is a “starting distribution”, i.e. a parameterised probability distribution such that dom(SA)⊆
NA, where dom(SA) are the starting states ofA

2. TA ⊆ {(n,a,d)|n ∈ NA∧ a ∈ Actτ ∧d ∈ DA}, such that for each n∈ NA and a∈ Actτ there exists
no more than one element of TA with first component n and second componenta, and recall that
nondeterminism is modelled by a parameter in the range of theprobability distribution d. Finally,
DA is a set of probability distributions over states.

Deterministic Probabilistic Finite Automata (DPFA) are PPFA with the restrictions that:

1. The ranges of all probability distributions are sets of real values, not sets of possibly parameterised
terms, i.e. the elements of the ranges contain no variables;

2. (n,a,d) ∈ TA impliesa ∈ Act .

✷

Let the variablesX,Y be taken from some setVar andX be a list of variables andψ
X

be an instanti-
ation of the variables in the list taken from the set of all such instantiationsΨ

X
. We will write A(X) for a

PPFA containing variablesX, but where not needed the list of variables will be dropped and we will write
A. We interpret the variables inA(X) as beingglobally boundand take the usualα-congruence of terms
and identify PPFA that differ only by the names of variables used. Similarly we assumeα-renaming to
prevent confusion and variable capture when composing PPFAs.

We write x
a

−→A,py for (x,a,d) ∈ TA ∧ d(y) = p andx
a

−→py whereA is obvious from context. In
addition when we want to talk about a “complete” transition,i.e. one that has its associated final state
distribution, we writex

a
−→Ad for (x,a,d) ∈ TA.

Definition 6 The probability of the computation following a path, a sequence of transitions starting from
a start state s, is the product of the probability of its component transitions and the probability of starting

in the start state SA(s). Let p be the path s
ρ1
−→p1m1,m1

ρ2
−→p2m2, . . .mn−1

ρn
−→pnmn. Then the probability

that p is executed is

d(p)
def
= SA(s)× p1× p2× . . . pn

and we say that the path p can be observed as traceρ = ρ1,ρ2, . . . ,ρn.
The probability of observing a traceρ is the sum of the all probabilities of the computation following

any path that can be observed as traceρ :

d(ρ) = ∑
tr(pi)=ρ

d(pi)

where tr(p)
def
= {ρ |p= s

ρ1
−→p1m1,m1

ρ2
−→p2m2, . . .mn−1

ρn
−→pnmn}.

Writing SA
ρ

−→p informs us thatp is the probability of seeing the traceρ when starting in any of the

start states indom(SA) and following some appropriate path, i.e.d(ρ) = p. SA
ρ

−→pn means thatp is the
probability of seeing the traceρ when starting in any of the start states indom(SA) and ending in staten.

Definition 7 The probability distribution over complete traces is

Dc(A)
def
= {ρ 7→ ∑

q∈P

q | P= {q | n∈ NA∧π(n) = /0∧SA
ρ

−→qn}}
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Definition 8 Process operators

Action Prefixinga.B
def
= ({sa}∪NB,{sa 7→ 1},{sa

a
−→SB}∪TB) where sa is a new state

Internal choiceA⊓B
def
= (NA∪NB,SA⊓SB,TA∪TB) where

(SA ⊓SB)(n) = X×SA(n) if n ∈ dom(SA) else(1−X)×SB(n) if n ∈ dom(SB), whereX is a fresh
parameter, and note that now dom(SA⊓SB) = dom(SA)∪dom(SB).

Probabilistic choiceA⊕pB
def
= (NA∪NB,SA⊕p SB,TA∪TB) where(SA⊕p SB)(n) = p×SA(n) if n ∈

dom(SA) else(1− p)×SB(n) if n ∈ dom(SB), and note that now dom(SA⊕p SB) = dom(SA)∪dom(SB).
We note immediately from this that internal choice is probabilistic choice with unknown probability
between the two choices.
External choiceA�B

def
= (NA∪NB \ (dom(SA)∪dom(SB))∪dom(SA�B),SA�B,TA∪TB{{SASB/SA×

SB}}) where SA�B(nA,nB) =SA(nA)×SB(nB) and{{SASB/SA×SB}} now, of course, uses thedomains
of the start state distributions in order to build the substitutions over start states.
Parallel composition:

A ‖P B
def
= (NA‖PB,SA‖PB,TA‖PB)

NA‖PB = NA×NB

SA‖PB(nA,nB) = SA(nA)×SB(nB) i f nA ∈ dom(SA)∧nB ∈ dom(SB)

and TA‖PB is defined by:

n
x

−→AdA,m
x

−→BdB, x∈P

(n,m)
τ

−→(A‖PB)dA×dB

n
x

−→AdA, (x 6∈P∧m∈NB)

(n,m)
x

−→(A‖PB)dA×m

n
x

−→BdB, (x 6∈P∧m∈NA)

(m,n)
x

−→(A‖PB)m×dB

where
dA×dB

def
= {(x,y) 7→ dA(x).dB(y)|n

x
−→Ax∧m

x
−→By}

and
dA×m

def
= {(x,m) 7→ dA(x)|n

x
−→Ax}

and
m×dB

def
= {(m,y) 7→ dB(y)|n

x
−→By}

Example 2 Consider the PPFAs given by the expressions a.(Q1+p Q2) and a.Q1+p a.Q2. Then, assum-
ing the start states, states and transitions of Q1 and Q2 are given by s1, s2, N1, N2, T1 and T2 respectively,
we have

a.Q1+p a.Q2 = ({t1, t2}∪N1∪N2,{t1 7→ p, t2 7→ 1− p},

{t1
a

−→d1, t2
a

−→d2|d1(s1) = d2(s2) = 1}∪T1∪T2)

a.(Q1+p Q2) = ({t}∪N1∪N2,{t 7→ 1},

{t
a

−→d|d(s1) = p,d(s2) = 1− p}∪T1∪T2)

In fact, these PPFAs are indistinguishable by testing, so they are equal (they “refine both ways”) as far as
our testing semantics goes. This result can be generalised so that probability distributions on transitions
can always be “migrated” to the starting state distribution.
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6.1 Testing of probabilistic processes

Recall from Section 3 that we said in the definition of our testing semantics for FA that we will use[A]X =
A ‖N X andOFA = Trc. For probabilistic FAs we need to use parallel composition from Definition 8 (as
defined for DPFA and PPFA). The observation of a single execution of a DPFA is still a trace but what
can be “observed” over many executions is no longer simply a set of traces but, if we also record the
frequency of occurrence of the traces, a probability distribution over the set of traces henceODPFA= Dc.
We treat PPFA similarly and letΞPPFA=PPFAandOPPFA=Dc except that now the observed probability
distributions may be parameterised.

Definition 9 The relational semantics of an entityA(X) is (whereΨ
X

is the set of instantiations for the
parameters inX)

JA(X)KΞPPFA,Dc
def
= {(x,o).x∈ ΞPPFA∧o∈ ψ

X
(Dc(([A(X)]x)))∧ψ

X
∈ Ψ

X
}

A(X)⊑ΞPPFA,Dc C(Y)
def
= JC(Y)KΞPPFA,Dc ⊆ JA(X)KΞPPFA,Dc

A(X) =PPFAC(Y)
def
= JC(Y)KΞPPFA,Dc = JA(X)KΞPPFA,Dc

Note here that we have given the meaning of PPFAs as a relationfrom contexts (PPFAs) to probability
distributions:

JA(X)KΞPPFA,Dc ⊆ ΞPPFA× (Act∗ → Real)

by instantiating all the open distributions that might be observed to get plain probability distributions
“with no unknowns”.

Let ⊑PPFA
def
= ⊑ΞPPFA,Dc. That is, we write⊑PPFA for this general definition of refinement. When

⊑PPFA relates two DPFA processes it is of little interest, i.e. there are no opportunities for refinement as
there is no nondeterminism (though there are, perhaps, probabilities).

In Section 7 we will show refinement of PPFA is strongly related to refinement of an underlying FA.

6.2 Simple results from the definitions

Theorem 2 Refinement distributes through parallel composition. LetX, Y, P andQ be arbitrary PPFAs
and let N⊆ Act. Then

X⊑PPFAY,P⊑PPFAQ

X ‖N P⊑PPFAY ‖N Q

For an arbitrary PPFAP(Y) we have the following theorems.

Theorem 3 ⊓ is idempotent.P(Y) =PPFAP(Y)⊓P(Y)

Proof: From Definition 8 it can be seen that the graph ofP(Y)⊓P(Y) consists of two copies of the graph
of P(Y) which ever copy is selected the behaviour is exactly that ofP(Y). Hence he equality.

Theorem 4 ⊕p is idempotentP(Y) =PPFAP(Y)⊕pP(Y)

Proof: Similar to Theorem 3.
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7 Relating finite automata to parameterised probabilistic finite automata

We constructJ KFA
PPFA, an embedding of FA into PPFA and a forgetful mapping from PPFA to FA, and

then show that these mappings form a Galois connection between the refinement relations⊑PPFA and
⊑FA.

The embeddingJ KFA
PPFA of FA in PPFA will map all nondeterministic choices in FA processes into

probabilistic choice with unknown probabilities in the PPFA processes.

Definition 10 Semantic mappingsJ KFA
PPFA and vAFA

PPFA between finite automataA and parameterised
probabilistic finite automataAp are defined so that:

J(NA,SA,TA)K
FA
PPFA

def
= (NAp,SAp,TAp)

where
NAp

def
= NA

and
SAp

def
= {(s,X) | s∈ SA∧X is f resh∧ (Σn∈dom(SAp)SAp(n)) = 1}

TAp = {(n,a,d) | d = {m 7→ v | n
a

−→m∧v is f resh}∧ (Σm∈dom(d)d(m)) = 1}

The mapping vAFA
PPFA from PPFA in to FA forgets all probability distributions:

vAFA
PPFA(NAp,sAp,TAp) = (NA,sA,TA)

where
NA

def
= NAp

and
SA

def
= dom(SSp)

and
TA = {(n,a,m)|n

a
−→Apd∧m∈ dom(d)}

✷

The pair of mappings(J KFA
PPFA,vAFA

PPFA) define a vertical refinement⊑FA
PPFA as they are a Galois con-

nection [10]. This is the content of Theorem 7, but first some preliminary results.

Lemma 1 For any FAsX andY
Trc(X)⊆ Trc(Y)⇒ Dc(JXKFA

PPFA)⊆ Dc(JYKFA
PPFA)

Proof (Sketch) The application ofJ KFA
PPFA to a FA simply adds parameterised probabilities spanning

any nondeterministic choice. The set of all possible observation traces isTrc(X). This is also the set of
all possible observation traces ofJXKFA

PPFAbut now what is “observed” is not one trace but any probability
distribution over any subset ofO(X) (we need to use subset as when the probability of observing a trace
is 0 it is no longer in the domain of the distribution).

Henced ∈ Dc(JXKFA
PPFA) ⇔ dom(d) ⊆ Trc(X). Consequently ifd ∈ Dc(JXKFA

PPFA) then dom(d) ⊆
Trc(X) and sinceTrc(X) ⊆ Trc(Y), from the assumption of the lemma, we further havedom(d) ⊆
Trc(Y). Thend ∈ Dc(JYKFA

PPFA) follows from the argument above withY in place ofX. •
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Theorem 5 LetX andY be FAs, and let N⊆ Act. Then,

JX ‖N YKFA
PPFA= JXKFA

PPFA‖N JYKFA
PPFA

Theorem 6 LetX andY be PPFAs, and let N⊆ Act. Then,

vAFA
PPFA(X ‖N Y) = vAFA

PPFA(X) ‖N vAFA
PPFA(Y)

Definition 11 Deterministic automata.
DetFA

def
= {P|(n

a
−→k∧n

a
−→l ⇒ k= l)∧ |SA|= 1}

DetPPFA
def
= {P|(n

a
−→pk∧n

a
−→ql ⇒ k= l ∧ p= q= 1)∧ |SA|= 1}

Lemma 2 Results involving deterministic automata.

1. (a) {X ∈ DetFA | JXKFA
PPFA}= DetPPFA and

(b) {Y ∈ DetPPFA | vAFA
PPFA(Y)}= DetFA

2. LetA andC be FAs. ThenA⊑FA C⇔∀x∈DetFA .Trc([A]x)⊇ Trc([C]x)

3. LetA andC be PPFAs. ThenA⊑PPFAC⇔∀x∈DetPPFA.D
c([A]x)⊇ Dc([C]x)

Proof (Sketch).
1(a) and 1(b) follow from definitions.
Re 2: With non-probabilistic processes and tests, what can be observed when applying a nondeter-

ministic test is the union of what can be observed when applying each element of the set of deterministic
alternatives (where here we picture, as usual, a nondeterministic computation as a set of deterministic
ones which covers all the possible choices) and hence:

A⊑FA C⇔∀x∈DetFA .Trc([A]x)⊇ Trc([C]x)

Re 3: With probabilistic processes and tests, what can be observed when applying a probabilistic
test is the distribution, inferred from the test, of what canbe observed when applying the deterministic
components that the probabilistic choice spans. Hence a setof test processes for PPFA that is sufficient
to establish refinement is the image after applyingJ KFA

PPFA to a sufficient set of FA processes, i.e. since
DetFA is sufficient for FA thenDetPPFA is sufficient for PPFA, hence:

A⊑PPFAC⇔∀x∈DetPPFA.D
c([A]x)⊇ Dc([C]x)

Theorem 7
∀X ∈ FA,Y ∈ PPFA.JXKFA

PPFA⊑PPFAY⇔ X⊑FA vAFA
PPFA(Y)

Proof: (Sketch)
It is a well-known result (e.g. [11]) that to prove a Galois connection it is sufficient to prove for

arbitraryX
vAFA

PPFA(JXKFA
PPFA)⊑FA idFAX

and for arbitraryY
JvAFA

PPFA(Y)K
FA
PPFA⊑PPFA idPPFAY

and in addition to prove both relationsJ KFA
PPFA andvAFA

PPFA are monotone.
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We can see directly from the definitions thatJ KFA
PPFA adds parameterised probabilities to any nonde-

terministic choice andvAFA
PPFA forgets this addition hence, for arbitraryX :

vAFA
PPFA(JXKFA

PPFA) =FA idFAX

which gives our first inequality.
The effect ofJvAFA

PPFAYKFA
PPFA is to first replace probabilistic choice with nondeterministic choice (by

ignoring probabilities) and then reintroducing probabilities-with-parameters due to the nondeterminism
and this can be refined, along with other possibilities, backinto its original value, which gives our second
inequality.

Re: showJ KFA
PPFA is monotone:A⊑FA C⇒ JAKFA

PPFA⊑PPFA JCKFA
PPFA

From Definition 3 we haveA ⊑FA C ⇔ ∀x∈ΞFA.Trc([A]x) ⊇ Trc([C]x) and asDetFA ⊆ ΞFA we also
have

A⊑FA C⇔∀x∈DetFA .Trc([A]x)⊇ Trc([C]x) (1)
From Lemma 1 we then have
A⊑FA C⇒∀x∈DetFA .D

c(J[A]xK
FA
PPFA)⊇ Dc(J[C]xK

FA
PPFA).

Then,
∀x∈DetFA .D

c(J[A]xK
FA
PPFA)⊇ Dc(J[C]xK

FA
PPFA)

∀x∈DetFA .D
c([JAKFA

PPFA]JxKFA
PPFA

)⊇ Dc([JCKFA
PPFA]JxKFA

PPFA
) from Theorem 5

∀x∈DetPPFA.D
c([JAKFA

PPFA]x)⊇ Dc([JCKFA
PPFA]x) Lemma 2 part 1(a)

JAKFA
PPFA⊑PPFA JCKFA

PPFA from Definition 9
4. Re: showvAFA

PPFA is monotone:A⊑PPFAC⇒ vAFA
PPFAA⊑FA vAFA

PPFAC

FromA⊑PPFAC and definitions we have:∀x∈ΞPPFA.D
c([A]x)⊇ Dc([C]x)

asDetPPFA⊂ ΞPPFA we have
∀x∈DetPPFA.D

c([A]x)⊇ Dc([C]x) (2)
For allo in Trc(vAFA

PPFA([C]x)) there must exist ad in Dc([C]x) such thato∈ dom(d) and from (2) we
know thatd is in Dc([A]x) and witho∈ dom(d) we can conclude thato in Trc(vAFA

PPFA([A]x)) so:
∀x∈DetPPFA.Trc(vAFA

PPFA([A]x))⊇ Trc(vAFA
PPFA([C]x))

∀x∈DetPPFA.Trc([vAFA
PPFAA]vAFA

PPFAx)⊇ Trc([vAFA
PPFAC]vAFA

PPFAx) Theorem 5

∀x∈DetFA .Trc([vAFA
PPFAA]x)⊇ Trc([vAFA

PPFAC]x) from Lemma 2 part 1(b)
∀x∈ΞFA.Trc([vAFA

PPFAA]x)⊇ Trc([vAFA
PPFAC]x) from Lemma 2 part 3

vAFA
PPFAA⊑FA vAFA

PPFAC Definition 3
•

The embeddingJ KFA
PPFA can be used to add probability to a non-probabilistic finite automata during

the stepwise development, i.e. refinement, of a model or specification. This use of Galois connections is
nothing new but to the best of our knowledge it is the first timeit has been used to allow the introduction
of probability part of the way through the development of a process.

8 Conclusions

Others have used the same testing framework to treat probabilistic processes, but in one notable case [9]
it was found that many of the expected algebraic results werefalse according to the testing used. This
meant the abandonment of testing as a basis for refinement anda notion of simulation was introduced.
We believe that the reason that many of the “sanity checks” turned out to be false for the testing-based
refinement in that paper was that the original formalisationof nondeterminism found in non-probabilistic
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systems was kept and that this led to problems when probabilistic tests on nondeterministic probabilistic
systems were considered.

Instead of abandoning refinement based on testing, we handlenondeterminism in a way that is com-
patible with probability, rather than using the original formalisations of testing nondeterminism found in
non-probabilistic systems.

We also note that, having shown we can (as a (vertical) refinement) move from non-probabilistic
models to probabilistic ones (and back again, if we wish), the introduction of probabilities can happen as
a design stepduringdevelopment of a system via refinement steps. So, we are free to take a very general
non-probabilistic specification and, if it turns out to be necessary to do so to deal with some aspects of the
specification, introduce probabilities as we make progresstowards a more concrete form of the system.
We have not yet explored this possibility, but it does introduce another freedom to the developer which
might turn out to be useful.

The framework we have introduced in this paper is really onlya first step towards a sensible language
for specifying systems containing probability. What stillneeds to be done is to recognise that some sorts
of probabilistic choice do not “make sense”, i.e. that thereare right and wrong places to use such choice.
For example, if we have a vending machine with two buttons on,one for tea and one for coffee, it clearly
does not make sense to specify the choice here as a probabilistic one—the vending machine would be a
very odd one if it allowed me to choose tea only 75% of the time!

On the other hand, it does make sense (though perhaps inventing plausible uses for such a thing might
be hard!) to specify a robot which can make choices from a vending machine that offers tea or coffee,
where the robot prefers tea over coffee, so it chooses tea 75%of the time.

The difference between these two cases is one ofcausality. The robot’s actions cause the vending
machine’s, and notvice versa. So, our specification language would need to allow us to makethis
distinction and, most helpfully, only allow probabilisticchoice to be specified in situations where it makes
sense, as in the case of specifying the robot. We have done previous work on adding causality (back) into
process algebras, and the work presented here forms the basis for a probabilistic causal process algebra
(CPA) [12], or for a probabilistic language for interactivebranching processes (IBPs) [10] which we have
also talked about before, which forms the subject of anotherpaper yet to be published.

A final interesting point to note is that, because we can always migrate probabilities on actions right
up the probabilities on start states, we have a normal form for our automata. In this form, the only place
that probabilities appear is on the start states (so the onlynon-trivial probabilistic distribution over states
is the start-state distribution). This makes it very clear that one needs only one roll (of dice with enough
faces) in order to conduct a probabilistic computation.
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