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Before we combine actions and probabilities two very obsiquestions should be asked. Firstly,
what does “the probability of an action” mean? Secondly, does probability interact with nonde-
terminism? Neither question has a single universally ajtggmn answer but by considering these
guestions at the outset we build a novel and hopefully intijprobabilistic event-based formalism.

In previous work we have characterised refinement via theonatf testing. Basically, if one
system passes all the tests that another system passesdgbed more) we say the first system is a
refinement of the second. This is, in our view, an important efacharacterising refinement, via the
guestion “what sort of refinement should | be using?”

We use testing in this paper as the basis for our refinementdaielop tests for probabilistic
systems by analogy with the tests developed for non-préibtibisystems. We make sure that our
probabilistic tests, when performed on non-probabil@titomata, give us refinementrelations which
agree with for those non-probabilistic automata. We forseathis property as a vertical refinement.

1 Introduction

Event-based models are frequently based on finite autorRatalso called labelled transition systems)
and probabilistic event-based systems are frequentlydo@s&A where the transitions are also labelled
by a probability as well as by an action. Before we combinentssand probabilities two very obvious
guestions then arise. Firstly, what does “the probabilftaroevent” mean, or what does it mean for an
event to “behave in a probabilistic fashion™? Secondly, lim&s probability interact with nondetermin-
ism? Neither question has a single universally agreed upswer but by considering these questions at
the outset we build a novel and hopefully intuitive probiskit event-based formalism.

Throughout we will be motivated by a wish to, in the end, deped notion of refinement for proba-
bilistic systems. In fact, refinement will be the startingnp@f our story here as well as the desired end
point.

In previous work we have characterised refinement via themaf testing. Basically, if one system
passes all the tests that another system passes (and masdenacsay the first system is a refinement
of the second. This is, in our view, an important way of chemdsing refinement since the question
“what sort of refinement should | be using?” can be answeresaying “you should be using the sort
of refinement that is characterised by the sort of tests wttieacterise the contexts within which your
system will find itself, i.e. choose your refinement by loakat what contexts your systems will be used
in.”

Because this seems such a natural and useful answer, westisg Bgain in this paper as the basis
for our refinement. We develop tests for probabilistic systdy analogy with the tests developed for
non-probabilistic systems, all the while hoping to makexghat our probabilistic tests, when performed
on non-probabilistic automata (and just noting whetherabability distribution is empty or not), give
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us refinement relations which agree with for those non-gitisic automata: this gives us confidence
that our new notions make sense. We formalise this propei®ectior V.

The real test (!) in all this comes when we consider probstitlautomata which also contain nonde-
terminism. Again, we are guided by the wish that our prolstiiltests, when used on nondeterministic,
non-probabilistic automata, give us a refinement orderihgclhvagrees with that originally given for
those automata when probability was not considered. Wefaldathat the algebraic properties that
characterise the non-probabilistic case carry over intanew domain.

We formalise a notion of refinement based upon probabiltests and then try to (re-)capture what
nondeterminism means in this probabilistic setting.

We will first introduce transition systems as a semantic flation for non-probabilistic automata
and recap previous work on using testing to define refinenoersiuich systems.

It will turn out that part of the key to doing this for probabiic systems is to be clear about two
different philosophical bases for probability, so we nesttiew those. Another part of the key to this
work will be a consideration of how nondeterminism is cherdsed, so we will go on to discuss that
subsequently. This will finally suggest how we might adapihsition systems to allow consideration of
probability, and we finally show how this adaptation can bedu® also allow a treatment of nondeter-
ministic probabilistic systems, all the while retaining éesting-based notion of refinement.

We also show (via a selection) that expected propertiesfoolour refinement.

2 Transition systems

Definition 1 Finite Automata (FA). Let Act be a set of actions and let’ A the same set along with
the special actiort, which represents actions interacting to form events. Lgb#la finite set of nodes.
The finite automatoW is given by the triplgNa, Sa, Ta) where

1. S\ € N, is a set of start nodes

2. Ta C{(n,a,m)|n,me Na Aa € Act"} shows the effect of each action.

We write x—5Y for (x,a,y) € Ta andx——y whereA is obvious from context. We write—- for
am.(n,a,m) € Ta, andm-2sn for

Hml...m.mﬂml, mlﬁwnz, e mﬂm

andm-2 for
P1 P2 pi
dmy ... M, num—my, M ——My, ... M—N

whenp = (py, ..., pi), a finite sequence of actions.

We writen=mfor n-—m, n==mfor 3j,k.n=j A j kA k=mandn== for 3j,k, m.n=j A
j—k A k=m.

m=2 andm=2>n are defined similarly to the cases for.

Wherep is a sequence of actions ovet’ we write pg for p with the Ts removed.

The traces ar@r(A) def {p|se /\s:p>}.

The complete trac@sareTrC(A) def def

{p](se SAAS=ESnA n(n) = 0) whereri(n) = {m|n—s,m}.

1We deal with only acyclic automata and so we do not need towigiinfinite traces, though all the work of this paper can
be extended to infinite traces and cyclic automata in thelsrahway [1].
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We wish to model, using our automata, components that, IR @rocesses, can immediately be
nondeterministic. But, unlike CSP, we wish hiding (abdican) to distribute through choice (s are
used only for unobservable actions or for events, and ngsprkinto service to encode nondeterministic
choice between starting states). There is a subtle differ&etween how external choice in CSP and
choice in CCS behave with processes containing initiaktions. This has been explained either by
regarding the choice operators as being different,[se€T[$ ‘Unique choice operator of CCS, denoted
by +, is a mixture between external and internal choicesyovibwing CSP’s use of actions to model
a nondetermined start state as different to CCS’s ugeacfions[[3]. By allowing automata to have a set
of start states we both avoid having to distinguish extechaice and CCS choice and allow hiding to
distribute through choice [3].

Also, choice can be defined ([4, 5]) between FAs with one stiaite each by gluing the two start
states together to make a new single start state. Here, due ¢g@neralisation, we glue together two sets
of start states.

LetS={s1,%,...,s} andS = {s;,s,,...,5,} be two sets of starting states and then defiB&s x
S} to be then substitutions{s € Ss/{(s,s;),--.,(S,Sy) } } and defing{S/Sx S} to be them substitu-
tions {5} € S|s}/{(s1,),... (s0,5)} -

We define{S$/Sx S} to be then+ msimultaneous substitutiods/Sx S}U{S/Sx S}. The first
n substitutions replace each elementsf,s,, ..., s} with a set ofm nodes and the last substitutions
simultaneously replace each elemen{sifs,,...,s,,} with a set ofn nodes. Consequent{ys,Ss /Sa x
S} will identify the two sets of nodeS, andSs asSa{SaSs/Sh X S5} andSz{SaSs/Sh x S5} are both
then x mset of node$S, x Ss.

Since single states may now become sets of states undetitégion, we also have to define what
it means to have sets of nodes in a transition:

T5T & @t tteT teT)

Definition 2 Process operators. L&t be (Na,Sa, Ta) and letB be (Ng, Sz, Tg).

Action Prefixinga.B = def ({S} UNg, {s}, {s—2+x|x € g} UTg) where s is a new state.

Internal choiceArB %' (NaUNg, SaUSs, TaUTs)
External choice is, informally, internal choice where ststiates are combined according to the substitu-

tions above. Let g beJ((SaUSs){SaSs/Sh x Sg}), i.e. we combine start states as above. Then,

ef

. d
External choiceAIB = ((NaUNg)\ (SAUSs)USaos,Saos, (TAUTE){ShSs/Sa X Ss})
Parallel compositionA ||p B def (NajpB> SajpB> Ta|pB) Where PC NANNg, Najj.g = Na X NB, Sy, =
Sh x Sg and Ty g is defined by:
nL>A|,mL>Bk,x€P
(n> m)AAHPBU»k)
I’]L>A| s (x@ZP/\meNB) nL>BI s (ng/\meNA)
(n,m)—=aj,a(1,m) (m.n)—=aa(m.1)

Example 1 LetA be
b
({s1,%,t1, 12}, {s1, %2}, {S1—>Ats, o> ato})

and letB be
({5752>t}7 {S}v {S_C_>Bt})

or, in diagram form,
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Oo——0
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Oo———0

~ 0
Oo——0

—
[u

—
N

ThenAmnB is

b
({s1,%,S t1,t2,t},{S1,%, S}, {S1——ArBt1, 2— ArBt2, S~ ArBt})

or, as a diagram,

Given that Qg is

Ufst 02, sH{s1/{(s1,9)},%2/{(52,9)},5/{(51,9), (2,9) }} = {(s1,9), (2,9)}

thenAOB is
({t27t3> (5173)7 (SQaS)}v {(5173)7 (5273)}7

{(51,9) At (82,9 —=astz, {(51,9), (82,9 }—>acst})
which is
({t27t7 (5173)7 (3275)}7 {(5175)7 (5273)}7

b
{(s1,9—>a0Bt1, (2,9 —acst2, (51,5 ——aost}, (S2,9) ——acst})

(s1,S)e (s2,)8
9\
1o to tho to

Finally, A ||{a) B with (note thatB’s action is nowa)

and as a diagram

AOB

A Sie Se B Se
al bl ai
ty t2 t
is
Al B (s1,9e (29 (s21)9
| oo o
(t,t) o (2,98 (t2,t) S

87
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3 Testing semantics

The definitions in this section are taken from [6] where thayehbeen applied to both state-based and
event-based models.

One of our tests, of a proce&s taken from a set of process&s consists of placinge in some
contextX taken from a set of possible contexs E in contextX is written [E]x. We then observe the
resulting system. Each observation made is taken from & peissible observation®.

We turn first to our general definition of testing semantiasrffondeterministic processes and con-
texts. In this setting a test may return (nondeterminiijicane observation from a set of possible
observations.

A specification is interpreted asa@ntract consisting of theassumptiorthat the process will be
placed only in one of the specified conteXtaind aguaranteethat the observation of its behaviour will
be one of the observations defined by the mapgndgE — = — [JO. The mappindgO defines what can
be observed for all processes in any of the assumed contdgtsce for any fixede andO we have a
definition of the semantics and the refinement of processes.

Definition 3 Let= be a set of contexts each of which the process€sc E can communicate privately
with, and let O E — = — [JO be a function which returns a set of observations, i.e. asubi). Then,
the relational semantics of a proceAds a subset oE x O.

[Alzo % {(x,0)xe=A0€e O([A])}

and refinement is given by

ACzoC € [Clz0C [Alzo
and equality is

A=z0C = [Clz0=[Alz0

a

Given a rich enough class of tests the use of nondeternuriesis is redundant, as what can be ob-
served using a nondeterministic test will be the union oftweha be observed using a set of deterministic
tests. Hence nondeterministic tests add no further infoomand will be ignored.

For all the processes considered in this paper, placingeeps in a contextX, i.e. [A]x, will mean
executing procesA in parallel withX, i.e. A ||y X (whereN is some set of actions over which the context
and process communicate, i.e. synchronize) and the oltiserfanction O is either the trace function
Tr (if only safety properties are of interest) or (if livenesgperties are of interest) the complete trace
functionTre.

Definition 4 Let=pa be FA and leCCgp beCz,, 1. O
Theorem 1 Refinement distributes through parallel composition: XeY,P,Q € FA

XCraY,PCraQ
XIINPERY INQ
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4 Probabilities—Two Interpretations
There are two (main) interpretations of probability, freguentistand theBayesian

The frequentists'definition sees probability as the long-run expected fraquef occurrence. The prob-
ability of eventA happening, whera is the number of times eveAtoccurs inN opportunities, is
P(A) =n/N.

The BayesiansView of probability is related to degree of belief or stat&kndwledge. It is a measure of
the plausibility of an event given incomplete knowledgee Bayesian probabilist specifies some
given or assumed prior probabilities, which are then useldrcomputation of other probabilities.
That is to say, anything that is nondeterministic or unknomust either be assigned some proba-
bility or have its probability computed from other, moremitive, known probabilities. Bayesian
statisticians have developed several “objective” mettiodspecifying prior probabilities.

The frequentists’ view is based upon repeatedly perforrthegsame test many times and, where the
behaviour of the item under test is nondeterministic, aggirg the results of all the tests. Extending
an event-based testing semantics to record not just thef peiseible observations but the probability
with which they occur is a simple uniform way to extend eveased testing semantics to event-based
probabilistic testing semantics. This can be further gaissd by representing both the process under
test and the test process itself with probabilistic autamat

The Bayesian view fits well with Hoare’s comment on nondeteism [7, p81]:

“There is nothing mysterious about this kind of nondetersniniit arises from a deliberate
decision to ignore the factors which influence the selettion

So, nondeterminism in a process is merely a case of not havialysed it enough to quantify it, i.e.
attach to it some probabilities. Nondeterministic cho&eriobabilistic choice with unknown probabili-
ties. Surprisingly, this is not how testing semantics hasenbdefined in the literature.

As probabilities quantify (i.e. attach a number to, or makargitative) hondeterministic behaviour,
it is clearly crucial when modelling some real process ttimtislish between the behaviour of the process
being deterministic and the behaviour being nondetertignisSimilarly when the process is observed
interacting in some context it is crucial to distinguish ttendeterminism of the process from the non-
determinism of the context.

Give a coin to a frequentist statistician and they experinbgrflipping the coin a large number of
times noting down the number of times they observe headg hgipermost and the number of times
they observe tails. From this experiment they can compe@itbbability.

An important point to note is that, to the frequentist, ptuilies define how likely it is that an action
is executed, or equivalently how likely it is that the exémutends in a particular state. The probability
of an event occurring when the event cannot be executed rausrb.

The Bayesian statistician, given a coin, knows that the ohlservations are heads and tails, and
has no further information. The skill of the Bayesian statign is to assign a prior probability based
on understanding the world that agrees with the frequenti§tecomes very important when we try to
add probabilities to event-based processes that we edhewfthe frequentist and perform experiments
(tests) or follow the Bayesian statistician and think dieabout the behaviour in the world of what we
are modelling.
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Figure 2: More general probabilistic combination

5 Probabilistic Finite Automata

5.1 Probability

We introduce probabilities on choice by attaching prolitsdsl to the start states of a process. There are
two things to notice here: as in the non-probabilistic caglk RAs, we represent nondeterminism on the
initial state of a process by allowing the process to stadne of asetof states; and we generalise this
idea to represent thgrobability of starting in some state of a process by attaching proliakilio each

of its start states so that we can see what the probabilitacti possible start state being actually chosen
for some particular execution of the process.

The first of these points is inherited from woik [8] which sea& remove the need to use unob-
servable actions to also “encode” or represent nondetesmiin a process by assuming the process
makes an unobserved transition to its “real” starting gtatéch may be one of many) from some single
“dummy” formal starting state. (And, of course, this is jastase of using the usual “set of states” model
uniformly for start states as well as all other states, wiscdomething we are all familiar with from the
“classic” algorithm that constructs a deterministic firstate automaton from a nondeterministic one.)
Such unobserved actions can then be used exclusively taedésymchronisation between) events. This
idea is, in the second point above, carried over into theabilitic realm so that initial probabilistic
choice is replaced by a probability distribution over thegble starting states.

So, if P is the process that starts with a choice betw&rand Q,, which have (single, for this
illustration) starting states; ands, respectively, with probabilitiep of starting in states; and 1— p of
starting in states, then we might picturé as in the left of Figur€l1l. We might represent the picture by
sayingS(P) = {s1 — p,s — 1— p}, whereSis a probability distribution function over start statedof

Further, if we now form the processP (i.e. the event happens then the proceBdhappens) then
we might picture this as in the middle of Figure 1, and herécediow the probabilities have migrated
to the occurrences of eveat This picture suggests that transitions now representfteet®f an action
on an initial state moving the system, according to someaiitiby distribution, to the next state, when
it synchronizes with the same action in some other processywhen the two actions combine to form
an event which takes place with the indicated probability.

So ina.P, the actiona has the potential to move us from stdtéo states; with probability p
and tos, with probability 1— p when synchronized to form an event which actually does td&eep
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with the indicated probabilities. We formalise all this bgysg that the transitions cd.P include
{t—=5d | d(s;) = pAd(s) = 1— p}. An alternative picture might be as shown in the right of Fig-
ure[1, and here notice how the probabilities on the new d&tesfor the new processP have migrated
from the old start states & and we haveS(a.P) = {t; — p,t, — 1— p}. This picture might be consid-
ered a useful, though perhaps more unusual, alternativeofviynking of our system in the previous
picture.

Note that the original form of transitions as in FAs can beoveced by using the domain of the
probability distribution function to tell us what the reéau post-states are.

As processes are combined together, the probabilitiehiéovdrious component start states are com-
bined to form the probabilities for the start states of thebimation. As an example, see Figlte 2, which
shows what the resultant start-state probabilities aré@er-,Q2) +4 P, wheres;, s, andt are the start
states forQ1, Q. andP respectively.

5.2 Probability and nondeterminism

From statistics, théaw of large numbersells us that nondeterministic behaviour is the same asaprob
bilistic behaviour where the probabilistic behaviour ikonown but can be found by repeating the right
experiment a large number of times.

In process algebrasactions indicate hidden, unobservable, uncontrollabl®s or events (a spe-
cial case being when two processes synchronize on somagctitnich we consider to be private and
uncontrollable). Remember Hoare’s comment that we citeSeiction 4. We have said above that we
view this as agreeing with the Bayesian idea that probgbiidicates a lack of information.

As probabilities refer to frequencies of executable beiayii.e. the probability of an event occur-
ring, they naturally occur omn actions. The intuitive relationship between nondetersmnand probabil-
ity is widely held. For example,

"nondeterminism represents possible choices that can $aved in a wholly unpredictable
way. With probabilistic constructs the resolution becomeeslictable up to a point, in that
it is quantified” [9]

We can view this as saying that probabilistic processesagomhore information than nondeter-
ministic processes but less than deterministic proces€amsequently what can be observed in any
single observation of a probabilistic process is the sametad can be observed of the underlying
non-probabilistic process. But by aggregating the obsiemna of a large number of executions we can
compute a probability distribution or verify a previouslgraputed probability distribution.

As T events are built by composing two actions that are obsezvl parallel composition, i.e.
synchronization) it would be useful to find some way to corapilie probability of the executable
event from the prior “probabilities” of their observablertsa This we do below in Definitiop] 8.

The addition of probabilities tobservableactions where there i nondeterminism has proven both
hard to interpret and hard to formalise, especially when wetwo ensure that the models have desirable
properties. One reason, in our opinion, that this has tuooetb be so hard to do is that the probabilities
on the observable actions need, obviously, to define the/imireof the processes not just in one context
but inall contexts]

2We go no further with this point in this paper, but note thatthe non-probabilistic setting, we have considered this
previously in[10].
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5.3 Nondeterminism

We represent nondeterminism not by a separate set of opetatbby allowing probabilities to be de-

noted not just by real numbers in the range 0 to 1 but also hywedaed terms (in that range) that contain
variables or parameters. This introduces the idea of drgjestate distribution which is not completely

determined or which has undetermined aspects, and hegesalk to represent nondeterminism with
the same machinery that we introduce for probabilities.

This idea is motivated by the Bayesian view that the more wakabout a mechanism, the more
certain we can be about the probabilities attached to itadietrr: to talk of nondeterministic behaviour
is merely to admit having more or less incomplete infornra@out how something behaves, and this
incomplete information can be represented by having paemm the terms which denote probabilities.
This also accords with Hoare’s view that nondeterminisrsesrfrom ignoring or hiding (or, we would go
further and say, being ignorant of) some aspects of a pro€esther analysis of the mechanism would
uncover (“unhide”) more of the mechanism. This view diseslmondeterminism; there is no such thing
really, since it is just arises from not knowing (for whatexeason) enough about the actual distribution
of probabilities amongst actions that might be taken whelncéce is presented or confronted.

5.4 Probabilistic testing semantics

For probabilistic tests all we need change is that the usmrds not just a set of observations but a

probability distribution over a set of observations, hefce™ Act* - R.

The relational semantics of proce8swhen probability distributions are observed is a subset of
= x (Act* — R). If a process is experimented upon (frequentist perspgcéind the results noted then
what is observed will be a functioR — (Act* — R) and hence there is no nondeterminism and no
possibility of refinement.

But approaching automata from the Bayesian perspectivee dan define the processes and tests as
prior “probabilistic” automata then we might be able to usghabilistic parallel composition to compute
the probabilistic relational semantics of the processemnkhe Bayesian point of view, the probabilities
on actions are prior probabilities that, until the actiokeapart in an event by being synchronized with
another process along the same action, do not play any rolo@sly the probability of an unexecuted
action is prior to the probability of an execution—in pauter, not until we factor in the probability
of the synchronizing action do we know (via their product)aivthe probability of the executed event
(denoted byr) will be. So, it is the Bayesian ideas that allow us to makesseaai attaching probabilities
to something that has not yet happened, and which will onlg part of what happens.

6 Formalising probabilistic automata

In this section we will formalise the discussion in Secfiodl &nd see that automata that contain both
probabilistic and nondeterministic choice are calpedgitially probabilistic introduced as parameterised
probabilistic finite automata (PPFA). Here we take what weaethe standard statistical approach and
model nondeterministic choice as probabilistic choicehwihknown probability. So our probabilities
are no longer only real numbers but may also be real-valuedst¢parameterised terms, hence the
name) that may contain variables, the unknown probafsliteutomata where nondeterminism has been
completely replaced by probabilistic choice deterministicprobabilistic finite automata (DPFA).

Definition 5 Parameterised Probabilistic Finite Automata (PPFA ). Let bk a finite set of nodes. The
parameterised probabilistic finite automaténs given by the triplgNa, Sa, Ta) where
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1. S is a “starting distribution”, i.e. a parameterised probdty distribution such that doifS) C
Na, Where doniSa) are the starting states @

2. Ta C{(n,a,d)[ne NaAa € Act' Ad € Da}, such that for each & Na and ac Act’ there exists
no more than one element of With first component n and second comporerdnd recall that
nondeterminism is modelled by a parameter in the range gbtbleability distribution d. Finally,
Da is a set of probability distributions over states.

Deterministic Probabilistic Finite Automata (DPFA) are PR with the restrictions that:

1. Theranges of all probability distributions are sets daflrealues, not sets of possibly parameterised
terms, i.e. the elements of the ranges contain no variables;

2. (n,a,d) € Ty impliesa € Act .
O

Let the variablesX, Y be taken from some sefar andX be a list of variables angl be an instanti-
ation of the variables in the list taken from the set of allisinstantiationsbs. We will write A(X) for a
PPFA containing variables, but where not needed the list of variables will be droppetivaa will write
A. We interpret the variables i(X) as beingglobally boundand take the usuat-congruence of terms
and identify PPFA that differ only by the names of variableedi Similarly we assumg-renaming to
prevent confusion and variable capture when composing BPFA

We write x—a py for (x,a,d) € Ta Ad(y) = p andx—+py whereA is obvious from context. In
addition when we want to talk about a “complete” transitioa, one that has its associated final state

distribution, we writex—sd for (x,a,d) € Ta.

Definition 6 The probability of the computation following a path, a semgeeof transitions starting from
a start state s, is the product of the probability of its comguat transitions and the probability of starting
in the start state §(s). Let p be the path£1—>plm1, m1ﬁ>p2mg, . mn,lﬂpnmn. Then the probability
that p is executed is
def
d(p) = Sa()x Prxp2x...pn

and we say that the path p can be observed as tmeeps, 0o, . . ., Pn.

The probability of observing a traqe is the sum of the all probabilities of the computation folilogv
any path that can be observed as trgze

dp)= Y d(p)
tr(pi)=p

def n
where ti(p) = {plp= sﬂ>p1m1, mlﬂpzmz, ... mq_1L>pnmq}.
Writing SAi>ID informs us thafp is the probability of seeing the tragewhen starting in any of the

start states illomSy ) and following some appropriate path, iddp) = p. SAi>pn means thap is the
probability of seeing the trage when starting in any of the start statesliom(S, ) and ending in state.

Definition 7 The probability distribution over complete traces is

def

D°(A) = {p— Zbc”P:{Q|n€NA/\7T(n):(D/\SAL>qn}}
V=
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Definition 8 Process operators

Action Prefixinga.B def ({Ssa} UNg, {Sa — 1}, {sa—+Sg} UTg) where § is a new state

Internal choiceAr1B %' (NaAUNg,SAT S5, TAUTg) where

(SAMSB)(N) =X x Sa(n) if n € domSa) else (1 —X) x Sg(n) if n € dom(Ss), whereX is a fresh
parameter, and note that now d¢8a MSg) = dom(Sy) Udom(Sg).

Probabilistic choiceA ¢, B def (NAUNg,SA ®pSg, TaUTg) Where(Sy ®pSg)(n) = px Sa(n) if n e

dom&y) else(1— p) x Sg(n) if n € dom(Sg ), and note that now dofB ©pSs) = dom(Sa) Udom(Sg).

We note immediately from this that internal choice is pralistic choice with unknown probability

between the two choices.

External choiceATIB 22 (NaUNg \ (dom(Sy) Udom(Sg)) Udom(Sacs ), Sace, Ta U Te{{Sx S5 /S x
Ss}}) where @Qog(ha,ng) = Sa(na) X Sg(ng) and{{SaSs/Sa x Sg}} now, of course, uses tli®mains
of the start state distributions in order to build the suhgtons over start states.

Parallel composition:

def
AllrB = (NajpB> SapBs TA|pB)

NAHPB = NA X NB
SAHPB(nA,nB) =Sa(na) X Sg(ng) if na € dom(Sa) Ang € dom(Sz)
and Ty .g is defined by:

X X
n—),/_\d/_\, m—)BdB,xeP
T
(N, M) —(a||oB)da < dg

N——ada, (x¢PAMENS) N——gdg, (x¢PAmEN,)
(n,mM)—(app)da x M (M,n)—>(ap8)Mx dg
where
daxdg 2" {(xy) > da(X).ds (y)|n—3aX A M- gy}
and
daxm L' {(x,m) — da(X)|n—ax}
and

mxdg L' {(my)— ds(y)|n">y}

Example 2 Consider the PPFAs given by the expressio®a+pQz) and aQ; +pa.Q.. Then, assum-
ing the start states, states and transitions afa@d Q are given by § $, N1, Np, T; and b respectively,
we have

aQi+paQ2= ({tr,t2} UN;UNp, {t; = p,t2 — 1— p},

{tlédl,t2$d2|dl(sl) = dz(SQ) = l} UT1U Tz)

a(Q1+pQ2) = ({t}UNJUNp, {t + 1},
{t-2+d[d(s;) = p,d(s2) =1— p}UTLUTy)

In fact, these PPFAs are indistinguishable by testing, ep #ine equal (they “refine both ways”) as far as
our testing semantics goes. This result can be generaliséthsprobability distributions on transitions
can always be “migrated” to the starting state distribution
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6.1 Testing of probabilistic processes

Recall from Sectioh]3 that we said in the definition of ouritessemantics for FA that we will ugé|x =

A |[n X andOga = TrC. For probabilistic FAs we need to use parallel compositromf Definition[8 (as
defined for DPFA and PPFA). The observation of a single exatutf a DPFA is still a trace but what
can be “observed” over many executions is no longer simplgtaktraces but, if we also record the
frequency of occurrence of the traces, a probability distion over the set of traces her®gpga = D°.
We treat PPFA similarly and |&ppra = PPFAandOppea = D€ except that now the observed probability
distributions may be parameterised.

Definition 9 The relational semantics of an entity(X) is (whereWs is the set of instantiations for the
parameters irX)

[AE)|zpprnns £ {(%,0).X € Zppran 0 € Y(DY((AK)K))) A i € W)

A(X) C=ppra,DC C(Y) d:ef [[C(Y)HEPPFADC - [[A(X)HEPPFA«,DC

A(X) :PPFAC(Y) = [[C(Y)]]EPPFA~DC = [[A(X)HEPPFAaDC
Note here that we have given the meaning of PPFAs as a refatimrcontexts (PPFAS) to probability
distributions:

[[A(X)]]EPPFA«,DC C =Zppfga X (ACt* — ReaD

by instantiating all the open distributions that might besetved to get plain probability distributions
“with no unknowns”.

Let Cppra def C=ppeabe. That is, we writeCpppa for this general definition of refinement. When
Cppra relates two DPFA processes it is of little interest, i.er¢hare no opportunities for refinement as
there is no nondeterminism (though there are, perhapsapildles).

In Sectior ¥ we will show refinement of PPFA is strongly ratate refinement of an underlying FA.

6.2 Simple results from the definitions

Theorem 2 Refinement distributes through parallel composition. X,eY, P andQ be arbitrary PPFAs
and let NC Act. Then

X EppraY,P CppraQ
XN PCEppraY [N Q

For an arbitrary PPFR(Y) we have the following theorems.
Theorem 3 M is idempotentP(Y) =pppa P(Y) M P(Y)

Proof: From Definitiof B it can be seen that the grapR(@f ) P(Y) consists of two copies of the graph
of P(Y) which ever copy is selected the behaviour is exactly th&(&f). Hence he equality.

Theorem 4 @, is idempoten?(Y) =ppra P(Y) &, P(Y)

Proof: Similar to Theorem]3.
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7 Relating finite automata to parameterised probabilistic fnite automata

We construct]_ ]]PPFA, an embedding of FA into PPFA and a forgetful mapping from #RFFA, and
then show that these mappings form a Galois connection ketti® refinement relatioriSppra and
LFA

The embedding_]E8¢A of FA in PPFA will map all nondeterministic choices in FA pesses into
probabilistic choice with unknown probabilities in the PRgrocesses.

Definition 10 Semantic mappingf [Epe, and vARe, between finite automata and parameterised
probabilistic finite automat@p are defined so that:

[(Na,Sa,Ta)]Fpra £ (Nap, Saps Tap)

where
Nap = Na

and

Sap % 1(sX)|se SAAXis freshh (Znedomsy,) Sap(N)) = 1}

Tap ={(n,a,d) [d = {m—v|n-mAvis fresh A (Zpegon(a)d(M) = 1}

The mapping VEQFAfrom PPFA in to FA forgets all probability distributions:

VAOI;I/_;FA(NAP?SAP?TAP) = (Na,sa,Ta)

where
Na &' Nap
and
Su £ domSs,)
and

Ta = {(n,a,m)[n—52,d Ame don(d)}

a

The pair of mapping$[_[Epra VAERE,) define a vertical refinementEa ., as they are a Galois con-
nection [10]. This is the content of TheorEr]n 7, but first somadiminary results.

Lemma 1 For any FAsX andY
Tré(X) S Tré(Y) = D([X]5Ren)  D([Y]55E

Proof (Sketch) The application @f]]PPFA to a FA simply adds parameterised probabilities spanning
any nondeterministic choice. The set of all possible ofa@mw traces iFr¢(X). This is also the set of
all possible observation traces[o€]E5g, but now what is “observed” is not one trace but any probapbilit
distribution over any subset @(X) (we need to use subset as when the probability of observirara t
is 0 it is no longer in the domain of the distribution).

Henced € DE([X]ERga) < dom(d) C Tr¢(X). Consequently id € D¢([X]Epgs) thendom(d) C
Tr¢(X) and sinceTr¢(X) C Tre(Y), from the assumption of the lemma, we further haam(d) C
Tre(Y). Thend € DS([Y]ERga) follows from the argument above within place ofX. .
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Theorem 5 LetX andY be FAs, and let NC Act. Then,

[[X ”N YHPPFA_ [[XHPPFAHN [[YHEI/_;FA

Theorem 6 LetX andY be PPFAs, and let NC Act. Then,

VAGBEAX [N Y) = VARBEAXX) [In VASBEA(Y)

Definition 11 Deterministic automata.
Detea def {P|(n—>k/\ n—=l| = k= )A|Sa| =1}

Detpra = {P|(n—5pkAN—3¢l = k=1 Ap=g=1)A|Sa| =1}
Lemma 2 Results involving deterministic automata.

1. (a) {Xe€Detal[X] F,PFA} Detopra and
(b) {Y € Defppra| VASBEA(Y)} = Detea
2. LetA andC be FAs. The\ T C < Vyepets - TIE([Alx) 2 Tré([Cx)

3. LetA andC be PPFAS. TheA Cppea C < Vxeperpea- D ([Alx) 2 D([Clx)

Proof (Sketch).

1(a) and 1b) follow from definitions.

Re 2. With non-probabilistic processes and tests, what eamblserved when applying a nondeter-
ministic test is the union of what can be observed when apglgach element of the set of deterministic
alternatives (where here we picture, as usual, a nondetestinicomputation as a set of deterministic
ones which covers all the possible choices) and hence:

A EFA C = vXeDetFA.TrC([A]X) 2 Trc([c]x)

Re 3: With probabilistic processes and tests, what can benads$ when applying a probabilistic
test is the distribution, inferred from the test, of what tenobserved when applying the deterministic
components that the probabilistic choice spans. Henceaf sest processes for PPFA that is sufficient
to establish refinement is the image after applyjrigae, to a sufficient set of FA processes, i.e. since
Detr, is sufficient for FA therDetpppa is sufficient for PPFA, hence:

A Cppra C ¢ Vxebeppra-D([Alx) 2 D([Clx)

Theorem 7
VX € FAY € PPFA[X]EReaCppraY < X Cra VAEREA(Y)

Proof: (Sketch)
It is a well-known result (e.g/ [11]) that to prove a Galoimnection it is sufficient to prove for
arbitrary X

epra( [XTFprA) Cra idraX

and for arbitraryy
[VAGREA(Y ) TFPrA CrPraidppEaY

and in addition to prove both relatiofis|5p e, andvASR, are monotone.
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We can see directly from the definitions tiat5s-, adds parameterised probabilities to any nonde-
terministic choice ana@tASpe, forgets this addition hence, for arbitraXy:

epra( [XIFRrA) =Fa idraX

which gives our first inequality.

The effect of[VAESEAY [EBr4 IS to first replace probabilistic choice with nondeternticighoice (by
ignoring probabilities) and then reintroducing probaigs-with-parameters due to the nondeterminism
and this can be refined, along with other possibilities, battkits original value, which gives our second
inequality.

Re: show[_]|ERgais monotoneA Cea C = [A]ERea Crpra [CIEREA

From Definition[3 we havé\ Cpa C < Vxez., . Tr¢([Alx) 2 Tr¢([Clx) and asDetra C Zpa We also
have

A Cra C 4 Vxepepa - TIE([Alx) 2 Tre([Cly) 1)

From Lemmall we then have

A Era C = Yyepera DE([[AIIEREA) 2 DE(I[CIxIFRen)-

Then,

v><eDetFA-|:)C([H ] HPPFA) 2 D° [H ]X]]PPF

VxeDetea-D( [[A]]pPFA]IIXHFA ) D D¢( [[CHPPFA][[XHPPFA from Theoreni b
VxeDewpea- DO ([[A]ppralx) 2 D([[CIFREAX) Lemmd 2 part 1(a)
[[AHPPFA CpPPFA [[C]]PPFA from Definition[9

4. Re: showASR, is monotoneA Cppra C = VASREAA Cra VAEREAC
FromA Cppra C and definitions we haveiyc=,..,.D([A]x) 2 D([C]x)
asDetpppa C ZppraWe have
vxeDetPPFA'DC([A]X) = DC([C]X) (2)
For alloin Tré(VAEB-A([Clx)) there must exist d in D¢([C]x) such thab € dom(d) and from (2) we
know thatd is in DC([A] ) and witho € dom(d) we can conclude thatin Tré(vVASS£A([Alx)) so:

VXEDetPPFA TFC(V PFA( [A] )) 2 TrC(V FéFA( [C] ))

VxeDewpra- T ([VASBEAAL, FA_ x) 2 Tre([VASBEACl s PFAx) Theoreni b
VxeDeta - Tr(VABBEAALX) 2 T"C([V pprAClx) from Lemmé.2 part 1(b)
Vxezea- TIC(VAEBEAA]X) 2 Tre([VAEBEAC]K) from Lemmd2 part 3
VAEBEAA Cra VAEREAC Definition[3

[ ]
The embedding_]53 can be used to add probability to a non-probabilistic finitomata during
the stepwise development, i.e. refinement, of a model oifsgsi®n. This use of Galois connections is
nothing new but to the best of our knowledge it is the first titheas been used to allow the introduction
of probability part of the way through the development of agesss.

8 Conclusions

Others have used the same testing framework to treat pi@bialgprocesses, but in one notable case [9]
it was found that many of the expected algebraic results fedse according to the testing used. This
meant the abandonment of testing as a basis for refinemerd aation of simulation was introduced.
We believe that the reason that many of the “sanity checksietiliout to be false for the testing-based
refinement in that paper was that the original formalisatibmondeterminism found in non-probabilistic
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systems was kept and that this led to problems when prostbilests on nondeterministic probabilistic
systems were considered.

Instead of abandoning refinement based on testing, we haadbeterminism in a way that is com-
patible with probability, rather than using the originatrf@lisations of testing nondeterminism found in
non-probabilistic systems.

We also note that, having shown we can (as a (vertical) refimdmove from non-probabilistic
models to probabilistic ones (and back again, if we wishg ititroduction of probabilities can happen as
a design stepuring development of a system via refinement steps. So, we areoftakd a very general
non-probabilistic specification and, if it turns out to beessary to do so to deal with some aspects of the
specification, introduce probabilities as we make progr@ssards a more concrete form of the system.
We have not yet explored this possibility, but it does introel another freedom to the developer which
might turn out to be useful.

The framework we have introduced in this paper is really arfiyst step towards a sensible language
for specifying systems containing probability. What stileds to be done is to recognise that some sorts
of probabilistic choice do not “make sense”, i.e. that themeeright and wrong places to use such choice.
For example, if we have a vending machine with two buttonsae,for tea and one for coffee, it clearly
does not make sense to specify the choice here as a protahitie—the vending machine would be a
very odd one if it allowed me to choose tea only 75% of the time!

On the other hand, it does make sense (though perhaps mygaiusible uses for such a thing might
be hard!) to specify a robot which can make choices from aingnohachine that offers tea or coffee,
where the robot prefers tea over coffee, so it chooses teaofH8é time.

The difference between these two cases is oneaagality The robot’s actions cause the vending
machine’s, and notice versa So, our specification language would need to allow us to nthise
distinction and, most helpfully, only allow probabilistiboice to be specified in situations where it makes
sense, as in the case of specifying the robot. We have dovepsevork on adding causality (back) into
process algebras, and the work presented here forms thefbaai probabilistic causal process algebra
(CPA) [12], or for a probabilistic language for interactimanching processes (IBPs) [10] which we have
also talked about before, which forms the subject of angihper yet to be published.

A final interesting point to note is that, because we can atwaigrate probabilities on actions right
up the probabilities on start states, we have a normal forrodoautomata. In this form, the only place
that probabilities appear is on the start states (so thermmytrivial probabilistic distribution over states
is the start-state distribution). This makes it very cldwt bne needs only one roll (of dice with enough
faces) in order to conduct a probabilistic computation.
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