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With Multi-lane Spatial Logic (MLSL) a powerful approach to formally reason about and
prove safety of autonomous traffic manoeuvres was introduced. Extended timed automata
controllers using MLSL were constructed to commit safe lane change manoeuvres on high-
ways. However, the approach has only few implementation and verification results. We thus
strenghen the MLSL approach by implementing their lane change controller in UPPAAL and
confirming the safety of the lane change protocol. We also detect the unlive behaviour of
the original controller and thus extend it to finally verify liveness of the new lane change
controller.
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1 Introduction

Nowadays, driving assistance systems and fully autonomously driving cars are increasingly cap-
turing the market. For such autonomous systems, traffic safety and prevention of human ca-
sualties is of the utmost importance. In this context, safety means collision freedom and thus
reasoning about car dynamics and spatial properties. A softer, but also highly desirable, re-
quirement is liveness, meaning that a good state is finally reachable.

An approach to separate the car dynamics from the spatial considerations and thereby to
simplify reasoning, was introduced in [13] with the Multi-lane Spatial Logic (MLSL) for express-
ing spatial properties on multi-lane motorways with one driving direction for all cars. The idea
to separate dynamics from control laws follows the work by Raisch et al. [20] and Van Schuppen
et al. [11].

The logic MLSL and its dedicated abstract model was extended for country roads with
oncoming traffic [I2] and urban traffic scenarios with intersecting lanes [I4, 27]. The authors
informally introduced respective controllers for safe lane change manoeuvres and safe turning
manoeuvres at intersections. The respective safety of the controllers is proven with a semi-formal
mathematical proof [13], 12} [14]. With automotive-controlling timed automata (ACTA), a formal
semantics for the previously informal controllers was later introduced [14]. (Un-) decidability
results for (parts of) the logic MLSL were provided [10, [16, 23].

MLSL itself is a thoroughly researched and strong formal approach for proving properties
of autonomous traffic manoeuvres. Recently, the first computer-based assistance for reasoning
with a new hybrid extension of MLSL (HMLSL) was introduced by Linker [I7]. The authors
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successfully investigate safety constraints for the motorway traffic scenarios from [I3] with Is-
abelle/HOL [22]. They outline an interesting extension of their work to liveness properties.

In this paper, we also focus on the motorway case. While [17] presents a strong implementa-
tion result focused directly on the spatio-temporal logic HMLSL, we instead investigate safety
and liveness of the protocol of the lane change controller for highway traffic [I3]. The controller
can be formalised as an automotive-controlling timed automaton (ACTA) [14] and uses formulas
of MLSL to reason about traffic situations and to decide, whether a car can safely change lanes.

As ACTA are extended timed automata [1], we implement the lane change controller in the
tool UPPAAL [2], which allows for model-checking of timed automata. With this, we verify the
correct behaviour of the considered lane change protocol and confirm the hitherto informally
proven safety property in a preferably generic UPPAAL model. Thus, our goal is to show
unreachability of a bad state with a collision in the overall system. With UPPAAL, we also
detect the absence of liveness in the original lane change controller from [I3]. We thus adapt
the old lane change controller and show the liveness of the new controller with UPPAAL.

In Sect. 2, we briefly introduce the abstract model and logic MLSL from [13]. We also
introduce the lane change controller and ACTA formalism. In Sect. [3], we explain the adaptions
of the lane change controller for the implementation in UPPAAL and introduce our UPPAAL
verification properties. We extend the original controller from [13] to a new live lane change
controller in Sect. Finally, we summarise our results in Sect. [4] and give ideas for future
work.

2 Preliminaries

In this section, we briefly introduce the approach from [I3]. For this, we start with an overview
over the abstract model for highway traffic in Sect. and introduce the Multi-lane Spatial Logic
in Sect. In Sect. we introduce the automotive-controlling timed automata (ACTA) from
[14], which serve to formalise the lane-change controller from [13], that we describe in Sect.

2.1 Abstract model and local view

The abstract model for highway traffic consists of neighbouring infinite lanes 0, 1,... of continuous
space, leading in the same direction from the set of all lanes .. Every car has a unique car
identifier A,B,... from the set I of all car identifiers and a real value for its position pos on a
lane. An example for a traffic situation in our abstract model is depicted in Fig. [I] We use the
concept of an ego car as the car under consideration and use the special variable ego to refer to
this car. For Fig. [I} we assume E is our ego car and thus have the valuation v(ego) =E.

In the abstract model, the space a car E is currently occupying on a lane is represented by its
reservation res(ego), while a claim clm(ego) is akin to setting the direction indicator (cf. dotted
part of cars A and B in Fig. |1} showing the desire of A and B to change to lane 1). Thus, a claim
represents the space a car plans to drive on in the future. For now we assume, that the size of
a car includes its’ physical size and its braking distance. With this, safety is already violated, if
a car invades the braking distance of another car. The idea is that every car is supposed to be
able to do an emergency brake at every moment, without causing a collision.

Static information about cars like their positions and their reserved or claimed lanes is
captured in a traffic snapshot TS = (res,clm,pos, spd,acc) from the set TS of all traffic snapshots.
E.g. res(A) = {2}, cIm(A) = {1} and pos(A) = 10 for car A in Fig. |1l As lanes are of infinite
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Figure 1: Abstract model with adjacent lanes 0 to 3 and cars A, B, E and D. Cars A and B both
plan to change to lane 1, indicated with their resp. dotted claims on lane 1. Car D is too far
away from car E to be considered in E’s standard view V(E,TS).

size, we also have an infinitely large traffic snapshot with infinitely many cars in it. However,
for checking safety and liveness properties of our lane-change controller, only cars within some
bounded view V around our ego car E are of interest.

Definition 1 (View). For an arbitrary traffic snapshot TS, the view V, owned by car E €1, is
defined by V = (L,X,E), where L C L is an interval of lanes visible in V and X =[r,t] CR is an
interval of space along the lanes.

We define the standard view of car E by V(E,TS) = (L, [pos(E) — h,pos(E) + h],E), where h
is a sufficiently large horizon for looking forwards resp. backwards from the position pos(E), as
given in the traffic snapshot TS.

Note that we assume there exists a minimal positive value for the size of all cars, thus
only finitely many cars are considered in a view. We furthermore assume that there exists a
maximum velocity for all cars and the horizon 4 is big enough to consider the fastest car that
could endanger E contained in its the standard view V(E,TS). In the example in Fig. (1| car D
is not considered in V, as it is to far away from E.

We use a car dependent sensor function Qg: I x TS — R, which, given a car identifier C € I
and a traffic snapshot TS € TS, provides the size Qg(C,TS) of C as perceived by E’s sensors.

For a view V = (L,X,E) and a traffic snapshot TS = (res,clm,pos,spd,acc), we introduce the
following abbreviations, used for the semantics definition of our logic MLSL in the next Sect.

resy: I — P(L) with resy(C) = res(C)NL (1)
clmy : 1 — P(L) with clmy(C) = clm(C)NL (2)
leny : I — P(L) with leny (C) = [pos(C), pos(C) + Qg (C,TS)|NX (3)

The functions and restrict their counterparts res(C) and cIm(C) from TS to the set of
lanes considered in V. Function defines the part of car C that E perceives with its sensors in
the extension X of the considered view V.

2.2 Multi-lane Spatial Logic

With Multi-lane Spatial Logic (MLSL), we can reason about traffic situations in our local view
V. As variables, we allow for car variables c,d, ... from the set CVar, valuated with car identifiers
from the set I and lane variables n,l,... from the set LVar, valuated with lanes from .. We define
ego € CVar.
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Definition 2 (Valuation of variables). A valuation v is a function v: Var — TUL, where Var =
CVarULVar and v: CVar — 1 and v: LVar — L.

Formulae of MLSL are built from atoms, Boolean connectors and first-order quantifiers. As
spatial atoms, we use free to represent free space on a lane and re(c) (resp. cl(c)) to formalise
the reservation (resp. claim) of a car. We also allow for the comparison of variables u = v for
variables u,v, € Var of the same type.

We use a horizontal chop operator similar to chop operations for timing intervals in Duration
Calculus [0] or interval temporal logic [21], denoted by ~. Also, we introduce a vertical chop
operator given by the vertical arrangement of formulas. Intuitively, a formula ¢; ~ ¢, holds if
we can split the view V vertically into two views V| and V, such that on V| the formula ¢; holds
and V; satisfies ¢,. Similarly a formula gf is satisfied by V, if the view can be chopped at a lane
into two subviews, V| and V,, where V; satisfies @; for i =1,2.

Definition 3 (Syntax). The syntax of a Multi-lane Spatial Logic formula @y is defined by

oy =true |u=v |free|re(c) |cl(c) | 7@ | @i A@ | 3c: @1 | o1~ @2 | %,

where ¢ € CVar and u,v € Var. We denote the set of all MLSL formulas by Ppyy.

The semantics of MLSL formulas is defined over a traffic snapshot TS, a view V and a
valuation of variables v. We denote the length of a real interval X C R by |X]|.

Definition 4 (Semantics of MLSL). The satisfaction of MLSL formulas ¢ with respect to a
traffic snapshot TS, a viewV = (L,X,E) with L=[l,n] and X = [r,t], and a valuation v of variables
1s defined inductively as follows:

TS,V,V |= true for all TS,V,v

IS,V,vEu=v <vu)=v()

TS,V,v = free S|LI=1 and |X| >0 and Vi€ ly: leny (i) N (r,t) =0

TS,V,v = re(c) <Ll =1 and |X| >0 and v(c) € Iy and resy(v(c)) =L and X = leny(v(c))
TS,V,v = cl(c) <Ll =1 and |X| >0 and v(c) € Iy and clmy(v(c)) =L and X = leny(v(c))
TS,V,v = —¢ <not TS,V,vE @

TS,V.vE o AN@y <TS,V.vE @ and TS,V,v = ¢

TS,V.vEd: ¢ <TS,V.viEJacl: TS,V,vd{c— a} E ¢

IS,VvE Qo ~¢ &IseR:ir<s<t and TS,V v = @1 and TS,V|y;],V = ¢

TS,V,v = % SdnmeN:[—-1<m<n+1 and TS,V[l’m],v):(pl and TS,V[m+]’"],v):(p2

Abbreviation. In the following we use the abbreviation (@) to state that a formula ¢ holds
somewhere in the considered view. For example, in Fig. With valuation v(ego) = E, the formula
(@) = (re(ego)) holds in V(E,Road), because there somewhere exists a reserved space for car E.
Ezample 1 (MLSL formulas). Consider Fig. |l]and assume a valuation of variables v(ego) =E,
v(a)=A, v(b) =B and v(d) = D. Consider the following MLSL formulas:

@1 = (re(ego) ~free)
¢ = (cl(a) Ncl(b) ~—cl(a) ANcl(b))
@3 = (cl(b) ~free ~re(d))
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In view V(E,TS) the formula ¢; holds, as there is free space in front of car E. Equally ¢, holds,
as there is a claim of both cars A and B at the same spot on lane 1 and after this there is a
space with only the claim of car B. Thus TS,V (E,TS),v = ¢, and TS,V (E,TS), Vv = ¢,. However,
TS,V(E,TS),V [~ @3, as car D is not part of view V(E,TS). A

2.3 Automotive-controlling timed automata

Before we introduce the actual lane change controller protocol from [I3] in Sect. we briefly
define the extended timed automata type, introduced in [14] to formalise the controller. As vari-
ables these automotive-controlling timed automata (ACTA) use both clock and data variables.
For clock variables x,y € X and clock updates we refer to the definition of timed automata [I]
and for data variables u,v € Var and data updates we refer to the extension of timed automata
proposed for UPPAAL [9]. These clock and data updates v, are allowed on transitions of
ACTA.

Further on, the controllers use MLSL formulas ¢y as well as clock and data constraints ¢@x
resp. Qg as guards @ on transitions and invariants /(g) in states g. An example for a data
constraint for a variable / € Var is [ > 1. A guard or invariant ¢ from the set ® of all guards and
invariants is defined by @ = @y | Ox | Qvar | 1 A @2 | true.

We express possible driving manoeuvres by controller actions, which may occur at the tran-
sitions of an ACTA. Controller actions e.g. enable a car to set or withdraw (wd) a claim (c) or
a reservation (r) for a lane.

Definition 5 (Controller Actions). With ¢ € CVar, a controller action ¢, is defined by
Cacet = c(c,yp) |wd c(c) | r(c) | wdz(c,yp) |7,

where yp =k | 1; |1+ |1 — L with k €N, I1,l, € LVar. The set of all controller actions is
defined by Ctrlae.

2.4 Lane change controller

In this section, we introduce the lane change controller from [I3], whose implementation into
UPPAAL we introduce in Sect. The overall goal of this controller is to safely change lanes
in freeway traffic. Here, safety of ego car means collision freedom and thus disjunction of the
reserved spaces of ego and other cars, expressed by the MLSL formula

Safe(ego) = —dc: ¢ # ego A (re(ego) Are(c)) . (4)

The main idea for the lane change controller is to first claim the space on a lane it wants to
enter and reserve it only if no collision is detected. We assume a lane change to take at most
tjc time to finish. The lane change controller is constructed for the ego car (v(ego) = E in the
example from Fig. [1)) but scales to all cars as ego can be substituted by an arbitrary car variable
c e Cvar.

We explain the construction of the controller starting with the initial state. As we want to
prevent different reservations from overlapping, we introduce a collision check for the ego car
expressed by the MLSL formula

cc = —3c: ¢ #ego(re(ego) Are(c)). (5)
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Formula is evaluated to true, iff nowhere exists a car different from the ego car whose
reservation overlaps with the actors reservation. We assume cc to hold in the initial state of our
controller. Next the lane change controller can claim some space on either the lane to its left or
right, provided such a lane exists. Here N is the lane identifier of the highest lane from the set
of all lanes L.

In order to transform a claim into a reservation and thus finally change lanes, a car first
needs to check if there are overlaps of other cars’ claims or reservations with its own claim. This
is formalised by the potential collision check

pe(c) = c#egoA{cl(ego) A(re(c)Vel(c))). (6)
Formula @ evaluates to true, iff there exists a car different from the ego car whose claim
or reservation overlaps with ego car’s own claim. A (temporary) potential collision is allowed,
because it does not endanger the safety property . However, if a potential collision is detected,
the car must withdraw its claim immediately.
When Fe: pe(c) does not hold, the actor reserves the claimed lane and starts changing lanes.
To prevent deadlocks, we set a time bound ¢ in state g, for the time that may pass between
claiming and reserving crossing segments. After ¢ time, the lane change is finished and the
reservation of actor E is reduced to the new lane.

—( qo:cC

n+1<N
/ c(ego,n+1);

x> tlc/

n:=1

Figure 2: Lane change controller from [I3].

3 UPPAAL Implementation and Verification

We first introduce the specific abstract model we examine with UPPAAL and the considered
assumptions and restrictions for it in Sect. We explain the adaptions of the lane change
controller from Sect. 2.4 to the type of extended timed automata UPPAAL accepts in Sect. [3.2]
We explain our verification method and show safety of the existing controller in Sect. We
detect liveness issues for the lane change controller from Sect. [2.4|and adapt it to a live controller
in Sect. We provide a summary of the goals and limitations of the current implementation
and give an overview over scenario and UPPAAL model extensions in Sect.
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3.1 UPPAAL-Model and Assumptions

3.1.1 Overall scenario and data structure

The model we examine with UPPAAL is the traffic situation depicted in Fig. [I, where we
consider lanes 0 to 3 and the cars A, B and E contained in view V(E,TS). We encode the traffic
snapshot TS, more precisely the positions, claims and reservations of the cars on the lanes, by a
global data structure pos_t. For reservations res this is encoded as follows:

pos_t res|[carid_t] = {
{ {0,0,1,0}, 10, 5},
{ {1,0,0,0}, 12, 5},
{ {0,0,0,1}, 40, 5}

Here e.g. the first line represents car A and the Boolean lane list {0,0,1,0} states that A has a
reservation only on lane 2. The second parameter 10 is the position of A on lane 2 and the last
parameter 5 is the size of A. Thus the space A occupies is the interval [10, 15] on lane 2. The other
lines are the respective values for cars B and E, such that B initially occupies interval [12,17] on
lane 0 and E occupies interval [40,45] on lane 3. We have a similar structure pos_t clm|carid t|
for the claims of the cars, where initially all Boolean lists for claims are empty, as all cars are
supposed to start in the initial state of the controller without any claim.

3.1.2 Distance Controller

The lane change controller is not responsible for distance keeping. However, for cars with dif-
ferent acceleration and speed, a controller for distance keeping is inevitable to avoid rear-end
collisions. Such a distance controller is outlined, but not formalised or constructed in [13]. An-
other possible distance controller is introduced and formally verified, but not yet implemented in
[8]. Recently, the group of Kim Larsen synthesised an adaptive cruise control distance controller
with the UPPAAL extension Stratego [15]. As the authors base their work on the spatial model
of MLSL, this approach is of high interest for our implementation. However, they only consider
a model consisting of one single lane without any neighbouring lanes and only two specific cars
ego and front (cf. Fig. . Their idea is, that the ego car keeps track of its distance to the front
car always. Additionally, their goal is to minimise the distance between ego and front. For this,
one UPPAAL automaton for each ego and front is used, additional to a system controller.

distance

[ |
vel_ego vel front
0 X > €go acc-ego fTOTLt > acc_front

Figure 3: One-lane scenario with distance keeping from [15].

Consider on the other hand our multi-lane scenario, e.g. in Fig. [4l It is not enough to keep
track of the distance to front, as cars A, B, C and D might change lanes and thus be in front
of ego any time. Thus, we also need to keep track of the distances to these cars. A problem
here is state space explosion, as the number of considered parallel timed automata for UPPAAL
increases significantly, when using the approach from [I5] directly. A second problem is the
discretisation of space in their approach.
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3 Cars of interest for ego
> [
0 [» D

Figure 4: Cars of interest for ego car for distance keeping in multi-lane highway scenario [13].

However, for examining the safety and liveness solely of the lane change manoeuvres with
the controller from [I3], we do not need to consider a scenario with cars with different speed
and acceleration. We restrict all cars to have the same constant speed whereby the relative
distances between the cars along the lanes never change. Although this is a strong restriction,
it is reasonable, as our goal is to show safety and liveness of lane change manoeuvres, where
collision freedom while changing lanes is considered, not rear-end collisions.

Nonetheless, as a constant speed for all cars is a strong assumption, we plan to implement a
version of the adaptive cruise controller from [I5] in future work for a more realistic model.

3.1.3 Generic model

Despite the speed limitation, we encode a preferably general behaviour. In our model, the
expected behaviour of car E is that it is always able to change lanes and that there can never
occur a potential collision or collision with E, as there is no conflicting car on any neighbouring
lane. In contrast, cars A and B can not always change lanes, as their position intervals [10,15]
and [12,17] would intersect if the cars had reservations or claims on the same lane. Thus, we
expect potential collisions between A and B, but show that the lane change controller always
prevents actual collisions.

3.2 Implementation

For the UPPAAL implementation, we adapt the lane change controller from Fig. [2|to UPPAAL
syntax, as neither formulas of Multi-lane Spatial Logic (cf. Def. [3| p. nor controller actions
for claiming or reserving lanes (cf. Def. [5| p. are directly implementable in UPPAAL. The
resulting UPPAAL lane change controller LCP is depicted in Fig. [5] Each of the cars A, B and E
in our model owns one instance LCP(i) of the controller LCP, where i ranges over A, B and E.
Note, that Fig. [5] already contains the adaptions to a live controller, we explain later in Sect.

We start with the UPPAAL representation of MLSL formulas. The only MLSL formulas
used by the lane change controller are the collision check cc (cf. formula , p. in the
initial state go and the potential collision check pc(c) (cf. formula @, p. used in several
guards and invariants of the controller. Our solution for implementing formulas and @
in UPPAAL bases on checking the intersection of position intervals of cars with the Boolean
UPPAAL function

bool intersect (const pos_t pl, const pos_t p2) {
return exists(lane: laneid_t)
pl.lane[lane] and p2.lane[lane]
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> exists (c: carid_t) pc(c)potentialcol[ego]!

wd_claim(), x:=0

lane:laneid_t

res|ego].lane[lane]
n:=lane x >=t w && exists (c: carid_t) pc(c)
potentialcol[ego]!
wd_claim(), x:=0
q_0 claiming[ego]! q_1 q_2
+1<=LANES & m !'=n+1_gm x >=t w && !exists (c: carid t) pc(cL/)
claim(n+1), l:=n+1, x:=0 B x:=0 S
cc() & x <= t idle Xx==tw X <=t &&

lexists (c: carid_t) pq(c)

n-1>=0 && m!=n-1
claim(n-1), I:=n-1, x:=0
claiminglego]! lexists (c: carid_t) pc(c)

\ q_3 reserving[ego]!
x >=t Ic finished[ego]! (™ _ reservation(), x:=0, count:=0
wd_reservation(l), n:=l, x:=0

N
x<=tlc

Figure 5: Lane-change controller implementation LCP in UPPAAL

and not (pl.pos > p2.pos+p2.size or p2.pos > pl.pos+pl.size);
¥

The function intersect checks for two position parameters pos_t (cf. Sect. if their po-
sition intervals intersect and if both positions are on the same lane. If e.g. car A and B both
claim lane 1 with ¢lm[A] = {{0,1,0,0},10,5} and c1lm[B] = {{0,1,0,0},12,5}, the function call
intersect(clm[A], c1m[B]) returns true.

With the intersect function, we encode the collision check cc from MLSL formula by the
function

bool cc () {
return not exists(c:carid_t) ¢ != ego
and intersect (res[ego],res[c]);

}

and the potential collision check pc(c) from MLSL formula (6] with

bool pc (carid-t c¢) {
return ¢ != ego
and (intersect (clm|ego],res[c])
or intersect (clmfego],clm|c]));

}

We use the functions cc() and pc(c) in the UPPAAL controller LCP in Fig. [5|exactly in the same
manner as we use the respective MLSL formulas in the original lane change controller from
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Fig. Besides MLSL formulas, we also encode controller actions for claiming and reserving
lanes and their respective withdrawal actions with UPPAAL methods. For claiming a lane for
the ego car, the related lane change controller calls the method

void claim (laneid_t lane) {
clm[ego].lane[lane]| = true;
}

where in the Boolean list {0,0,0,0} for claims, the value of the forwarded lane lane is set to
true. Upon a reservation request from a lane change controller, we have to check if there exists
a claim for the related car and only then transform the claim into a reservation. Thus,

void reservation (){
for (i:laneid_t)

{
if (clm[ego].lane[i]) {
res[ego].lane[i] = true;
clm|ego].lane[i] = false;

}

changes the value of the respective lane in the reserved lanes for the ego car to true, while
setting the value for the transformed claim for the same lane to false.
3.3 Verification of Safety with UPPAAL

The requirement queries for the verifier in UPPAAL are formulated in a computation tree logic
(CTL) [7, 26] style specification language. The first query we successfully check is

A[] not deadlock, (7)

with which we globally exclude deadlocks in an arbitrary run of our system. We checked the
query on a normal work station in 48 to 49 seconds with a memory usage peak of roughly 140KB.

safe unsafe
|
O——0
cc() cc()

Figure 6: Observerl checking for a collision.

For the second query, we introduce the Observer automaton Observer1, depicted in Fig. [6]
This Observer automaton uses a slightly adapted version of the collision check cc () to check for
a collision between any two arbitrary cars at any moment. We use the query

A[] not Observerl.unsafe (8)

to show in averagely less than 4 seconds with a memory usage peak of 46KB, that there exists
no example trace where the formula cc does not hold. With this query, we verify the safety
property (p. for the lane change controller from [13].
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3.4 Adaptions for constructing a live controller

With query , we exclude deadlocks in our system. However, the original controller in Fig. |1|is
not truly live, as e.g. livelocks exist, where no car ever changes lanes, even though in our model
at least car E, should always be able to change lanes.

To analyse liveness, we introduce a second Observer automaton Observer (i), as depicted
in Fig. [7l For every instance LCP(i) of the lane change controller, we require an automaton
Observer (i) which synchronises with LCP(i) over communication channels. E.g. on claiming
a lane for car A, LCP(A) sends over the channel claiming[A] with which Observer(A) synchro-
nises, such that both controllers simultaneously change to a new state. Upon reserving a lane,
LCP(A) sends over reserving[A] and the Observer changes to a state success. We check the

query
A<> (Observer(A).success or Observer(B).success or Observer(E).success), (9)

which states, that finally in every trace, at least one of the controllers LCP(i) is successful in
changing a lane. Remember, that we generally expect query @D to be successfully verified, as in
our model at least car C should be able to finally change a lane in every possible trace.

potentialcol[ego]? )

potentialcol[ego]?

>Wait

reserving[ego]?

/2R

claiming[ego] ?

finished[ego]l?  @m )

success

Figure 7: Observer (i) checks for every instance of the lane change controller LCP (1), if when-
ever car i claims a lane, it finally changes lanes, or if a potential collision occurs.

3.4.1 Adaption 1

Without a time invariant in state g; of the original controller from [I3] and without respective
time guards on the outgoing edges, query @ does not hold.

The reason is that there exists a trace, where cars A and B both infinitely often claim lane
1 without any elapse of time and thus both circle between their respective states gg, g1 and
q> in a livelock. As no time elapses, LCP(E) has no possibility of executing any transition and
thus starves. This problem is easily solvable by introducing the invariant x <=1, to state ¢
and placing the guard x >=1,, on the outgoing edges of g, as done in the UPPAAL automaton
depicted in Fig.[5| With these adaptions, we successfully show query @ in less than 0.5 seconds
with a memory usage peak of 40KB.
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3.4.2 Adaption 2

The verification query @ is already a weak liveness property, as it shows that in every simulation
trace, at least one of the controllers finally changes lanes. We refine this property to

A<> Observer (i) .success, (10)

which states for an arbitrary car identifier i, that the related car finally changes lanes. When
considering only the first adaption, as anticipated, this property only holds for LCP(E). The
reason is, that there still exists a trace, where cars A and B both unsuccessfully try to change
to lane 1 infinitely often and thus creating a potential collision infinitely often, preventing both
controllers from ever transforming their claim into a reservation.

To solve this, we introduce an additional state q_wait, in which the controller is forced to
wait for a bounded non-deterministic time. For now, we delimit this waiting time in q_wait by
its invariant x < 4 and the guard x > 1 on its outgoing edge. With this, cars A and B do not
permanently block each other from changing a lane and we verify both

A<> Observer (A) .success and A<> Observer(B) .success (11)

in each less than 2.7 seconds with a memory usage of each less than 76KB.

3.5 Summary and extendability of the current implementation

With the traffic situation from Fig. [I] and the corresponding implementation, as described in
this section, we presented one very specific scenario, designed for the following purposes:

e Showing the absence of collisions between any cars (i.e. proving safety ) and
e Identifying and analysing the existing livelocks (cf. location g;) and
e Eliminating the livelocks and showing liveness of the new controller.

For this, the restrictions for the scenario, e.g. on 3 cars and 4 lanes were reasonable. However,
we also tried different scenarios, with different numbers of lanes and cars. Our liveness and
safety properties were not violated for any of the considered numbers of lanes and cars. Up to
16 parallel lanes were considered without any problems. However, we observed the following
run-time issues when adding cars.

While run-time seemes to increase only linear by about 50 ms each time when we add one
lane, it appears to increase exponentially when adding a car. This observation is not surprising,
as adding only one car i means adding two timed automata and one clock variable to the
system: One timed automaton LCP (i) with its clock x and one observer automaton Observer (i).
Consider for example the model from Fig. [1] with one additional car. Now for property (11,
UPPAAL takes 1025 seconds to verify the query instead of the previously observed 2.7 seconds
for the three car scenario. While 1025 seconds for four cars is still acceptable, after including a
fifth car, UPPAAL could not finish the verification of query within one day.

Thus, for future considerations of our implementation where more than four cars should be
considered, we would have to optimise our implementation first.
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4 Conclusion

We strengthened the MLSL approach from the group of Olderog [13] 12} 14], by implementing
their lane change controller for highway traffic in UPPAAL and successfully verified their safety
property. We additionally optimised their controller by examining and implementing liveness
properties into it.

Related Work

There exist several approaches for analysis and control of traffic using intelligent transportation
systems, where e.g. in [18] traffic lights are used as a central control mechanism at intersections.
The authors verify safety of their hybrid systems with the tool KeYmaera. There also exists an
approach to synthesise intelligent traffic light control mechanisms with the UPPAAL extension
Stratego [3]. The key idea of this approach is to minimise waiting times and energy waste.

Also various approaches for safe and autonomously driving systems were implemented dur-
ing the DARPA Grand Challenge, where e.g. finite state machines were used to describe the
autonomous behaviour of the cars [25] 28].

For a hazard warning extension of MLSL, a dedicated hazard warning controller was im-
plemented in UPPAAL [24]. However, the hazard warning controller was focused on a timely
warning message delivery via broadcast channels and did not use MLSL formulas. A combined
proof of UPPAAL verification queries with a formal proof by induction was used to prove the
timely warning delivery.

Future Work

In the end of Sect. we observe that cars A and B block each other on lane 1 and suggest
an adaption ensuring the liveness of the controllers. However, this adaption does not guarantee
fairness, as one of the cars could get the right of changing lanes arbitrarily more often than the
other car. To overcome this problem, we could implement a notion of fairness into LCP (i), where
either car A or car B lets the other car go first, when they already got the right of way often
enough. Also, we could use the UPPAAL extension for stochastical model checking (UPPAAL
SMC) [4], to analyse the probabilities of unfair behaviour. We could add prices to the transitions
of our controller, which increase, when a car unsuccessfully claims too often.

In this paper, we only considered the lane change controller for highway traffic [13]. An
implementation of their lane change controller for country-roads [12] and the crossing controller
for intersections [I4] would be highly interesting. Also, they published results on a relaxation
of their assumption of perfect knowledge, where the controllers communicate, to cope for the
missing information. Also, for future considerations with more cars or different controllers, an
optimisation of our implementation is of high interest, as described in Sect.

Last but not least, for now we have the assumption of a constant speed. To verify properties
in a more realistic scenario, our cars should be able to dynamically change their speed. To this
end, we plan to implement an adaption of the existing UPPAAL Stratego distance controller
from [15], as described in Sect. Their adaptive cruise control implementation also minimises
the distance between the ego car and the car in front, which we could use to optimise the
traffic flow in our scenario. With this, we could even extend our MLSL scenario to a platooning
scenario (cf. PATH Project [19] and the European SARTRE project [5]). However, as outlined
in Sect. the adaption of the distance controller from [I5] poses some non-trivial challenges.
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