Towards a General Framework for Formal Reasoning about
Java Bytecode Transformation

Razika Lounas Mohamed Mezghiche Jean-Louis Lanet
University of Boumerdes,Algeria University of Boumerdes,Algeria University of Limoges, France
razika_lounas@umbb.dz mohamed .mezghiche@umbb.dz jean-louis.lanet@xlim.fr

Program transformation has gained a wide interest since it is used for several purposes: altering
semantics of a program, adding features to a program or performing optimizations. In this paper
we focus on program transformations at the bytecode level. Because these transformations may
introduce errors, our goal is to provide a formal way to verify the update and establish its correctness.
The formal framework presented includes a definition of a formal semantics of updates which is the
base of a static verification and a scheme based on Hoare triples and weakest precondition calculus
to reason about behavioral aspects in bytecode transformation.

1 Introduction

Program transformation is a technique used for several proposes: altering semantics of a program, per-
forming optimizations or adding features. Several tools were developed in this domain, for example,
Java Syntactic Extender (JSE) [2] and BCEL [i6] for Java. However, in some cases, the source code is not
available (or not distributed). Transforming a program at bytecode level is an interesting alternative since
several languages like Java, Java Card or Cf are based on virtual machines executing bytecode. Besides,
in transformations at bytecode level we don’t need recompiling (which may take time) as in the case of
transformations at source code level. On the other hand, bytecode level transformation is more complex
than source-level manipulation to the users because they have to know bytecode language very well and
because of the many low-level details one needs to deal with, in contrast with source code level.

Bytecode transformation is used in several applications. In [17]], the authors developed an algorithm
to ensure portable thread migration in Java. This algorithm is based on bytecode transformation. Byte-
code is transformed in order to enable programs to save and restore their execution state after migration
through the network. Another purpose for bytecode transformation is presented in [3] where a frame-
work based on bytecode transformation is developed in order to enable Java applications to perform CPU
management

Transforming a program may occur at runtime. The update is then said to be dynamic (Dynamic
Software Update: DSU). In [14] [16], the authors presented a system to perform dynamic software
update: while the Java Card virtual machine is executing the program, the bytecode is updated. In [7] , a
tool is developed in order to perform runtime bytecode update for Smalltalk.

This large interest of bytecode transformation and its use in many applications lead to the question
of its correctness. In fact, a transformation may introduce an error which may alter the bytecode in a
different way from that is expected by the programmer. In addition, some applications where the update
occurs are critical, such as in Java Card. In these applications where security issues are involved the
update must pass certification procedure for example Common Criteria [1]] . For a certain certification
level one has to provide a formal proof of the security mechanism implemented. A formal way to reason
about transformations and verify their validity is then necessary.

Adel Bouhoula, Tetsuo Ida and Fairouz Kamareddine (Eds.):
Symbolic Computation in Software Science 2012 (SCSS2012)
EPTCS 122, 2013, pp. 6373} doi{10.4204/EPTCS.122.6

http://dx.doi.org/10.4204/EPTCS.122.6

64 Towards a General Framework for Formal Reasoning about Java Bytecode Transformation

In this work, we present a first step for a general framework for reasoning about bytecode transfor-
mation. We focus on Java bytecode and the system presented in [16] called embedDSU: a system to
update dynamically Java Card applications. But this is not restrictive: the framework developed may be
applied to other systems and for this it is general. The framework is divided in two parts: we propose an
approach for a static analysis by defining a formal semantics for update to ensure the absence of type er-
rors and then in the second part we propose an approach to reason about behavioral aspects using Hoare
triples and predicate transformations.

This paper is organized as follow: in section 2 we give an overview of embedDSU. Section 3 intro-
duces a verification approach through a static analysis of the bytecode. In section 4 we present the part
of the framework which talks about reasoning on the behavioral aspects of updates. We present related
work in section 5 and conclude in section 6.

2 Overview of EmbedDSU

EmbedDSU [14] [L5][16], is a software-based DSU technique for Java based smart cards which relies on
the Java virtual machine. It is based on the modification of an embedded virtual machine. EmbedDSU is
divided in two parts: off-card and on-card:

e In off-card, in order to apply the update only to the parts of the application that are really affected
by the update, a module called DIFF generator determines the syntactic changes between versions
of classes. The changes are expressed using a Domain Specific Language (DSL). Then, the DIFF
file result is transfered to the card and used to perform the update.

e The on-card part is divided into two layers: 1) Application Layer: The binary DIFF file is uploaded
into the card. After a signature check with the wrapper, the binary DIFF is interpreted and the
resulting instructions are transferred to the Patcher in order to perform the update. The Patcher
has the role of initializing update data structures. These data structures are read by the updater
module to determine what to update and how to update, by the safeUpdatePoint detector module
to determine when to apply the update and by the rollbacker to determine how to return to the
previous version in case of update failure. All these issues pass through the introspection of the
virtual machine. 2)System Layer: The modified virtual machine supports the followings features:
(1) Introspection module which provides search functions to go through VM data structures like the
references tables, the threads table, the class table, the static object table, the heap and stack frames
for retrieving information necessary to other modules; (2) updater module which can modify and
update object instances, method bodies, class metadata, references, affected registers in the stack
thread and affected VM data structures; (3) SafeUpdatePoint detector module which permits to
detect safe point in which we can apply the update by preserving coherence of the system.

EmbedDSU updates three principal parts:

e The bytecode: The process updates first the bytecode of the updated class and the meta data
associated with it: constant pool, fields table, methods table...

e The heap: The process updates the instances of the updated class in the heap, obtains new refer-
ences for modified objects and updates instances using these references.

e The frames: The process updates in each frame in the thread stack the references of updated objects
to point to new instances.

Razika Lounas, Mohamed Mezghiche & Jean-Louis Lanet 65

Off-card On-card
(oo T g
: 3 & Modified
i = I = VM !
o [=R+ i - o ;
= o B . i = !
- [= - i a2 _© :
5 2 8 g P2 £ %5 i
o T e B ic £ 8 B35 i
o & s o i S 2 oo C
= [=R — P! v o &0 :
3] TR = ; o o 20 d
—* H -— H [-1) 1
o £ L Do =3 2 :
= 1= ' g] J
i g L oL £ @ :
! [m] I C :
i H i -
On the server : s P ;
' Application layer | i
S I S System layer :

Figure 1: Architecture of EmbedDSU

This paper addresses the first part: bytecode update at the method level. The types of updates that may
occur are: adding, modifying or suppressing bytecode instructions, changing the signatures of a method
or modifying local variables. These updates are contained in the DIFF file (also called patch) which
indicates exactly which is the update and where it occurs in the bytecode. For example, when adding an
instruction, the patch informs the system which instruction to add and where to add it (information about
the program pointer)

3 Updated Bytecode analysis for static verification

We present an approach for transformation validation based on static semantics of bytecode (figure 2)
in order to avoid type errors in transformed programs. From a first versionBC_V 1 and a second version
BC_V2 (Version one transformed), we have a DIFF file. This DIFF file is applied to the first version. We
obtain a version BC_V 1.2 (annotated BC_V 1 on the figure). The goal of the validation is to establish that
BC_V1.2 and BC_V2 are semantically equivalent by comparing V _Sem S1 and V _Sem S2 representing
the semantics of BC_V'1.2 and BC_V 2 respectively.

'

Annotations
. :>

VALIDATION —»

{'I V_Sem §1 | |V_SemS2 l‘.
’

~

Figure 2: Approach for static verification

66 Towards a General Framework for Formal Reasoning about Java Bytecode Transformation

The application of the DIFF to the first version is modeled syntactically as annotations (figure 3). We
insert annotations to indicate instructions addition and suppression. For example, Del \%2 : deletes the
instruction at program counter (pc) 2 and add \%6 inc, adds the instruction inc at pc 6.

3.1 The language

For the definition of the static semantics, we adopt the formalism used by Freund and Mitchell [9]. The
authors define a type system for a small subset of Java bytecode. We extend this subset with instructions
to indicate updates called update instructions (Upd_instr)for instruction addition, deletion and modifica-
tion. In this definition, x is a local variable; L is an instruction address; A is a class name; f is a field
name; / is a method name and pc the program counter.

Instruction::= | pop | if L| store x| load x| new A| goto L|inc
ladd |invokevirtual A 1 t|getfield A f tlputfield A f t
Upd_Instr::= Add_Inst Instruction at pc
ID1t_Inst Instruction at pc |Mod_Inst Instruction at pc

1-newe
1- newe i* Del new e i@ 2
2. new e 2-newe
3. store O OHDIFE =dlass = { 3- store 0
Mefhod
4-load 0 + | Ny |:> 4-load 0
o ine B2 T Addie @6
mc
Cale AL1% 6 e} end_meih 6. use ¢ e

Figure 3: Bytecode annotation with update instructions

3.2 Formal semantics

We propose a static semantics to express the effect of update instructions on a configuration of the
bytecode. In the four rules shown in Fig 4 , F is a mapping from a program point to a mapping from a
frame variable to a type. S is a mapping from a program point to an ordered sequence of types, i denotes
a program point or an address of code. The map F; gives a type of local variables at program point i. The
string S; gives the types of entries in the operand stack at program point i. These F and S are useful to
our semantics since they contain typing information about valid local variables and entries in the operand
stack respectively. SD represent the stack depth and M (mapping) is a function that associate a number
to each line. Dom is the set of addresses used by the method. A configuration at line i is represented by
< (F,S8,SD,M),i >.

For illustration, the add of the instruction new A at line i 4- 1 allows us to obtain a new configuration
if the stack depth is incremented, local variables are not affected and in the stack, the type A is inserted.
M?2 is the result of operations on M1. These operations which represent manipulations on bytecode are:
range and shift. The operation range extracts from a mapping M1 a part M2 included between line n and
line m. The operation shift shifts a part from a mapping between n and m for p positions. Both operations

Razika Lounas, Mohamed Mezghiche & Jean-Louis Lanet 67

Add_inst load x(i+ 1) Add_inst new A(i+1)
SD;y=8D; +1 SD;.y =5D; +1
Sg_]_ = F?[Q‘Sz Fg_J_ = Fi PC_MAX ++ Sg_]_ = J-‘]..Si Fg_J_ = _f"_'!2
M2 = Add_inst(M1,load =i + 1) M2 = Add_inst(M1,new A i+ 1)
i+1e DOM(BC) z e VAR(BC) PCMAX ++ i+1e DOM(BC)
“(F2,5:,9D;, M1} i>—<(Fr21,541.90011,M2),i42> < (Fy,5,8D0,,M1),i>—<(Fiy1.511,5D::1,M2),i+2>
Add_inst add(i + 1) Add_inst getfield(A, f,t)(i + 1)
SD;1=5D; -1 SD; = 5D;
Si = 'i?lt.'i??.t.S() = S.,;+1 = 'f-?!-f.S[) S.a = A..S(] = Si+l = t.S()
M2 = Add_inst(M1,add,i + 1) M2 = Add_inst(M 1, get field(A, f,t).i+ 1)
i+1e DOM(BC) Fiy1=F; PC_MAX +3 F..,=F
(F0,5,5D, M1)i>—<(F; 11,501 1,5D::1,M2),i42> < (F¢,8:,9D;, M1),i>—<(Fr1 1,511,807 1,M2),i43>

Figure 4: Rules for update instructions

are of type:
mapping x int x intx — mapping

In order to take into account jumps in bytecode transformation, we define two other operations:
look _for_jumps which returns from a mapping a list of jumps instructions represented by their line num-
ber and the operation update_jumps to update jump instruction:
Look_for_jumps : mapping — intlist
Update_jumps : mapping x intlist x int — mapping

Due to a matter of space, we don’t give in this paper rules for ordinary bytecode instructions, rules
for instruction suppression and the remaining rules for instruction addition.

4 An approach for reasoning about transformations

In this section, we present an approach to reason about behavioral aspects of transformations on byte-
code. This approach is based on bytecode specification in term of preconditions and postconditions and
on predicate transformation to generate verification conditions. We give first some definitions before
presenting the scheme of the approach.

4.1 Definitions

Definition 1. Hoare triplet A Hoare triple is the basic object in Hoare logic [13]] . It has the form of {P}
S {Q} where P and Q are logical formulas and S a program. The interpretation of {P} S {Q} regarding
partial correctness is: If S is executed in a state in which P holds, then it terminates in a state in which Q
holds unless it aborts or runs forever. The interpretation in total correctness is: if S is executed in a state
in which P holds, then it terminates in a state in which Q holds.
Reasoning in Hoare logic is based on inference rules. Here is an example of a general rule:
P=Pl {P1}5{Q1} Q1=Q
{P} S {0}

Definition 2. Weakest precondition (WP) calculus The Weakest Precondition calculus [8]lis a predicate
transformer that takes a code S and a postcondition Q and returns a precondition. We write WP(S,
Q): "the weakest precondition of S regarding Q”. WP(S,Q) is a precondition for S that ensures Q as a
postcondition. It is weakest in the sense that if we take any P such that {P} S {Q} then P = WP(S,Q).
It satisfies {WP(S,Q)} S {Q}.

68 Towards a General Framework for Formal Reasoning about Java Bytecode Transformation

Definition3. Strongest postcondition (SP) calculus The Strongest Postcondition calculus [8] is a pred-
icate transformer that takes a precondition P and a code S and returns a postcondition. We write SP(P,
S) as "the strongest postcondition of S regarding P”. SP(P, S) is a postcondition for S that is ensured by
precondition P. It is strongest in the sense that if we take any Q such that {P} S {Q} then SP(P,S) = Q.
It satisfies {P} S {SP(P, S)}.

4.2 Approach Description

We propose an approach based on the definition of the concept of triple transformation. 1t represents the
idea that an update of an existing method M1 with precondition and postcondition P1 and Q1 results of
a new method M2 with a new specification P2 and Q2. The triple {P1} M1 {Q1} is transformed via the
update to a new triple {P2} M2 {Q2}. The approach defines these concepts: initial triplet, target triplet
and calculated triplet:

Definition 4.Initial triplet An initial triple {P1} M1 {Q1} represents a method M1, its precondition P1
and its postcondition Q1 at the initial state, that means before an update. This triple represents a method
and its specification in the running code.

Definition 5. Target triplet A target triple {P2} M2 {Q2} represent a new version M2 of the initial ver-
sion M1 and its specifications P2 and Q2. It is the goal of the update as it is written by the programmer.
The methods M1 and M2 are written in bytecode. Pre/post-conditions (P1, Q1, P2 and Q2) are written
using existing specification languages and tools by the programmer.

Definition 6.Calculated Triplet A calculated triple is a triple obtained starting from an initial triple with
the application of the transformations contained in a patch (list of update instruction). It is the result of
the transformation of an initial triple.It is calculated using the Transform _triple algorithm.

Java Bytecode and existing specification tools & languages
Initial triplet Target tripiet
{P1} | M1 {a1} {P2} | M2 {2}
New veryion

Theorem Prover

P3} | M3 | {Q3) 03=>02
P2==>pP3

Calezlaied tripler

Figure 5: The proposed Approach for reasoning

As shown in figure 5, the approach is based on three steps:

Razika Lounas, Mohamed Mezghiche & Jean-Louis Lanet 69

e Step (1): Programming and specification The initial code M1 is written in bytecode and the
specification (pre/post-condition) is written using existing specification language and tools. The
new version of M1 called M2 is written in bytecode. The desired specification of the update
is expressed by the programmer using existing tools too and is expressed in term of pre/post-
conditions of the new code M2.

e Step (2): Triple transformation Given an initial triple and a list of update instructions contained
in a patch, this calculus transforms the initial triple step by step. Each step correspond to the
application of an update instruction. We take the case of instruction insertion. The application of
an update instruction returns an intermediate triple that will be taken as an argument of the calculus
for the next update instruction. This is represented as a recursive algorithm called Transform_triple.
It is based on the predicate transformation calculus: weakest precondition (wp) and strongest
postcondition (sp).

Transform_triple (pl, ql, ml, patchl) = match patchl with
| [1->return (pi1,ql)
| Add_instr (X,i)::patch2-> let n=last_line(ml) in
let m2=m1(+) (X,i) in let wpl = WP (m1[i,n], q1) in
if wpl != WP(m2[i+1,n], q1)
then Raise Exception
else
let p2=WP(m2 [1,i], wpl) in
let spl = SP (ml [1,i-1], pl) in
if sp1!=SP (m2[1,i-1], p1)
then Raise Exception
else
let g2 = SP (m2[I,n], spl) in
Transform_triple(p2,q2,m2,patch2)

The algorithm Transform_triple represents the application of a patch parchl to a method m/with
specification pl and gl.The patch contains update instructions about inserting instructions (X)at
an indicated line i (ADD_instr (X,i). As a result of the insertion of X, (represented by (+)), the
code m/ is transformed to m2. Then Transform_triple calculates a new precondition for m2 using
the wp calculus starting from the last line of m2 and calculates a new postcondition using the sp
calculus. The result is an intermediate triple {P2} m2 {Q2} that will be taken as an argument in
the recursive call with the remaining patch patch2. The algorithm stops when the patch is empty
and raises exceptions when errors occur in the calculus.

e Step (3): Implication proof The calculated triple needs to be matched to the target triple to estab-
lish the correctness of the transformation. The property that needs to be shown here is implication.
We show that the calculated postcondition implies the target postcondition and that the target pre-
condition implies the calculated postcondition: O3 = Q2 A P2 = P3.

5 Related work

Several studies have been conducted in order to use static semantics to prevent type errors in bytecode.
Our work extends the formalism presented in [9)]. This work defined semantics and a type system to

70 Towards a General Framework for Formal Reasoning about Java Bytecode Transformation

study object initialization in bytecode. The original idea was developed in [18]] to study bytecode sub-
routines. In [10], the authors extended the work [9]] to bytecode subroutines, virtual method invocation
and exceptions. On the behavioral side, using predicate transformation to reason about bytecode prop-
erties has been studied in [[12]] . The authors presented a verification condition generator for bytecode
formalized in the Coq proof assistant and based on weakest precondition calculus. Another work using
wp to generate verification conditions from an annotated bytecode is presented in [5] [4]. The use of
strongest postcondition calculus is not as popular as the wp calculus. A study is presented in [11] as a
basis for formal reverse engineering for an imperative language. Our work is close to [9]] in the sense of
the use of static semantics to analyze bytecode. The specificity of our work is the definition of semantics
for updates. We use predicate transformation to reason about bytecode properties using existing tools for
specification and proofs. Our framework uses both weakest precondition and strongest postcondition to
reason about transformations.

6 Conclusion and future work

In this paper we propose a general framework for a formalization, verification and reasoning about Java
bytecode transformation. We gave first an approach for verification by analyzing the modified bytecode
to ensure absence of type errors. We gave then an approach for reasoning about bytecode transformation
by using predicate transformations. The aim of the two methods combined is to provide a complete
framework that provides the two aspects: static and behavioral. The second method focuses on behavioral
aspects and aims to the definition to a rich assertion language to capture dynamic update features and
effects on execution structures such as frames and objects in the heap (in a Java Card virtual machine
for example). These structures are not available in the static aspect of the framework.

This work is on-going. Our aim immediately is to complete the implementation by extending the
language to other instructions in bytecode and to the other possible transformations for methods (adding
arguments for example). On the other side, we aim to complete the work concerning behavioral as-
pects by defining algorithms to take into account deleting instructions in predicate transformation and
to choose a configuration of existing tools for specification and reasoning. The verification presented is
implemented using the functional language Ocaml. We aim to use mathematical reasoning to prove its
correctness. In the longer term, we wish to use a proof assistant to reason about bytecode transformation.

References

[1] Common Criteria. Available athttp://www.commmoncriteria.org/.

[2] Jonathan Bachrach & Keith Playford (2001): The Java Syntactic Extender. In: OOPSLA, pp. 31-42,
doi:10.1145/504311.504285.

[3] Walter Binder & Jarle Hulaas (2005): Java Bytecode Transformations for Efficient, Portable CPU Account-
ing. Electron. Notes Theor. Comput. Sci. 141(1), pp. 53-73, doi;10.1016/j.entcs.2005.02.037,

[4] Lilian Burdy, Marieke Huisman & Mariela Pavlova (2007): Preliminary Design of BML: A Behavioral In-
terface Specification Language for Java Bytecode. In: FASE, pp. 215-229. Available at http://dx.doi.
org/10.1007/978-3-540-71289-3_18.

[5] Lilian Burdy & Mariela Pavlova (20006): Java bytecode specification and verification. In: SAC, pp. 1835—
1839, doi:10.1145/1141277.1141708.

[6] Markus Dahm (1999): Byte Code Engineering. In: Java-Informations-Tage, pp. 267-277.

http://www.commmoncriteria.org/
http://dx.doi.org/10.1145/504311.504285
http://dx.doi.org/10.1016/j.entcs.2005.02.037
http://dx.doi.org/10.1007/978-3-540-71289-3_18
http://dx.doi.org/10.1007/978-3-540-71289-3_18
http://dx.doi.org/10.1145/1141277.1141708

Razika Lounas, Mohamed Mezghiche & Jean-Louis Lanet 71

[7] Marcus Denker, Stéphane Ducasse & iric Tanter (2006): Runtime bytecode transformation for Smalltalk.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Comput. Lang. Syst. Struct. 32(2-3), pp. 125-139, doi:10.1016/j.c1.2005.10.002|

Edsger W. Dijkstra (1972): Structured programming, chapter Notes on structured programming, pp. 1—
82. Academic Press Ltd., London, UK. Available at http://dl.acm.org/citation.cfm?id=1243380.
1243381.

Stephen N. Freund & John C. Mitchell (1999): A type system for object initialization in the Java bytecode
language. ACM Trans. Program. Lang. Syst. 21(6), pp. 1196-1250. Available at http://doi.acm.org/
10.1145/330643.330646.

Stephen N. Freund & John C. Mitchell (2003): A Type System for the Java Bytecode Language and Verifier.
J. Autom. Reasoning 30(3-4), pp. 271-321, doi:10.1023/A:1025011624925|

Gerald C. Gannod & Betty H. C. Cheng (1996): Strongest Postcondition Semantics as the Formal Basis for
Reverse Engineering. Autom. Softw. Eng. 3(1/2), pp. 139-164. Available at http://dx.doi.org/10.
1007/BF00126962.

Benjamin Grégoire & Jorge Luis Sacchini (2008): Combining a verification condition generator for a byte-
code language with static analyses. In: Proceedings of the 3rd conference on Trustworthy global computing,
TGC’07, Springer-Verlag, Berlin, Heidelberg, pp. 2340, doi;10.1007/978-3-540-78663-4_4. Available at
http://dl.acm.org/citation.cfm?id=1793574.1793580.

C. A. R. Hoare (1969): An Axiomatic Basis for Computer Programming. Commun. ACM 12(10), pp. 576—
580, doi:10.1145/363235.363259.

A.C. Noubissi (2011): Mise d jour dynamique et scurisée de composants systéme dans une carte d puce.
Ph.D. thesis, University of Limoges, France.

Agnes C. Noubissi, Julien Iguchi-Cartigny & Jean-Louis Lanet (2010): Incremental Dynamic Up-
date for Java-Based Smart Cards. 2010 Fifth International Conference on Systems 0, pp. 110-113,
doii10.1109/ICONS.2010.27.

Agnes C. Noubissi, Julien Iguchi-Cartigny & Jean-Louis Lanet (2011): Hot updates for Java based smart
cards. In: ICDE Workshops, pp. 168-173. Available at http://dx.doi.org/10.1109/ICDEW.2011.
5767630.

Takahiro Sakamoto, Tatsurou Sekiguchi & Akinori Yonezawa (2000): Bytecode Transformation for Portable
Thread Migration in Java. In: ASA/MA, pp. 16-28. Available at http://dx.doi.org/10.1007/
978-3-540-45347-5_3.

Raymie Stata & Martin Abadi (1999): A Type System for Java Bytecode Subroutines. ACM Trans. Program.
Lang. Syst. 21(1), pp. 90-137. Available athttp://doi.acm.org/10.1145/314602.314606|

APPENDIX: More rules for static semantics

A. For instructions addition

Add _inst goto L(i+1) Add _inst pop (i+1)

SD;.1 = SD; SDji1 = SD; — 1

Siv1=3S; Fiy1 =F PC.MAX ++ Si=t.80—>Sir1=8 Fi=F
M2 = Add _inst(M1,goto L,i+1) M2 = Add_inst(M1, pop,i+1)
i+1,L € DOM(BC) PC_MAX ++ i+1€ DOM(BC)

<(F;,8i,SDij,M1),i>— <(Fiy1,8i41,5Diy1,M2),i42> <(F;,8;,SD;,M1),i>—<(Fiy1,Si+1,5Diy1,M2),i+2>

http://dx.doi.org/10.1016/j.cl.2005.10.002
http://dl.acm.org/citation.cfm?id=1243380.1243381
http://dl.acm.org/citation.cfm?id=1243380.1243381
http://doi.acm.org/10.1145/330643.330646
http://doi.acm.org/10.1145/330643.330646
http://dx.doi.org/10.1023/A:1025011624925
http://dx.doi.org/10.1007/BF00126962
http://dx.doi.org/10.1007/BF00126962
http://dx.doi.org/10.1007/978-3-540-78663-4_4
http://dl.acm.org/citation.cfm?id=1793574.1793580
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1109/ICONS.2010.27
http://dx.doi.org/10.1109/ICDEW.2011.5767630
http://dx.doi.org/10.1109/ICDEW.2011.5767630
http://dx.doi.org/10.1007/978-3-540-45347-5_3
http://dx.doi.org/10.1007/978-3-540-45347-5_3
http://doi.acm.org/10.1145/314602.314606

72 Towards a General Framework for Formal Reasoning about Java Bytecode Transformation

Add_inst store x(i+1) Add _inst put field(A, f,t)(i+1)

SDiy1 = SD; — 1 PC_MAX + + SDiy1 = SD; —2

Si=1.80 Fir1 :E[x<—t] Siv1 =380 Si=1.A.50 = Si+1 =350

M2 = Add_inst(M1,store x,i+ 1) M2 = Add _inst(M1, put field(A, f,t),i+ 1)

i+1 € DOM(BC) x € VAR(BC) PCMAX +3 Fy=F i+1cDOM(BC)
<(F;,51,SDi,M1),i>— <(Fis1,51+1,5Di+1,M2),i+2> <(F3,8:,8D;,M1),i>—<(Fi1,8i11,5Di+1,M2) i+ 3>

Add _inst invokevirtuel (A,1,t)(i+1)

SDi+1 = SD; — (card*(dom*(t)) + 1)

Siv1 =tny.tny...tn,.So — Sit1 = So

M2 = Add _inst(M1,invokevirtuel (A,l,t),i+ 1)

i+1€DOM(BC) Fyy =F, PC_.MAX +3
<(F.8:.8Di,M1),i>— <(Fir1,51+1,5Di+1,M2),i+2>

*Notations
e dom: represents the domain of the invoked function (types of its arguments)

e card: represents the number of elements in the domain.

B. For instructions suppression

Dlt_inst pop (i+1))

SD;=a — SDj+1 = E ffects_ SD**(a,M2[i + 1])
Si=1t.50— [M2]S,~+1 = EffectLS‘TK** (M2[i—i— 1],I.S())
(M2)*Fy1 = Effects F*(M2[i+ 1], F)

M2 = DIt _inst(M1, pop,i+1)

i+1€ DOM(BC) PC_.MAX — —
<(F;,Si,SDi,M1),i>—<(F;4+1,Si+1,SDi11,M2),i+Instr_length(M2[1+i])>

Dlt_inst new A (i+1))

SD; =a — SDjy| = E ffects_SD(a,M2[i+ 1])

S =1.80 — [M2)Sis1 = Ef fects_STK(M2[i+1],1.50)
(M2)F;.1 = Effects F(M2[i+ 1], F)

M2 = DIt _inst(M1,new A,i+ 1)

i+1€ DOM(BC) PC_.MAX — —
<(F;,81,8D;,M1),i>—<(Fiy1,8i+1,5Di+1,M2),i-+Instr _length(M2[1+i])>

Dlt_inst load x (i+1))

SD; =a— SDjy1 = Effects-SD(a,M2[i+ 1])

S;i =58y — (Ml)Si+1 =1.50, (Ml)FiH(x) =t—

(M2)S;Effects STK(M2[i+1],S0)

(M2)Fy — Ef fects F(M2[i+1].E)

M2 = Dlt_inst(M1,load x,i+ 1)

i+ 1€ DOM(BC) PC_.MAX — —
<(F;,8i,SDi,M1),i>—<(F11,Si+1,5Di+1,M2) i+Instr _length(M2[1+i])>

**Notations:
e Effect_STK (a,b): represents the effect of the instruction a on the stack a.

e Effect_F(a,b): represents the effect on the instruction a on F.

Razika Lounas, Mohamed Mezghiche & Jean-Louis Lanet

e Effect_SD(a,b): represents the effect of then instruction b on the stack depth a.
o (M2)F: represents F according to the mapping M2.

73

	1 Introduction
	2 Overview of EmbedDSU
	3 Updated Bytecode analysis for static verification
	3.1 The language
	3.2 Formal semantics

	4 An approach for reasoning about transformations
	4.1 Definitions
	4.2 Approach Description

	5 Related work
	6 Conclusion and future work

