
K. Chatterjee, R. Ehlers, and S. Jha (Eds.):
Third Workshop on Synthesis (SYNT 2014)
EPTCS 157, 2014, pp. 100–116, doi:10.4204/EPTCS.157.11

c© R. Brenguier et al.
This work is licensed under the
Creative Commons Attribution License.

AbsSynthe: abstract synthesis from succinct safety
specifications∗

Romain Brenguier, Guillermo A. Pérez, Jean-François Raskin
Ocan Sankur

Université Libre de Bruxelles – Brussels, Belgium

{rbrengui,gperezme,jraskin,osankur}@ulb.ac.be

In this paper, we describe a synthesis algorithm for safety specifications described as circuits. Our
algorithm is based on fixpoint computations, abstraction and refinement, it uses binary decision dia-
grams as symbolic data structure. We evaluate our tool on the benchmarks provided by the organizers
of the synthesis competition organized within the SYNT’14 workshop.

1 Introduction

The model-checking approach to verification of reactive systems is as follows. Given a model of the
system together with a description of the environment in which it is embedded, and a specification that
formalizes a property of interest of the system, an algorithm verifies that all the possible behaviors of the
system within its environment comply with the specification. Model-checking has been proposed in the
eighties and is now a standard technique to improve the reliability of reactive systems.

Synthesis goes a step further: synthesis only requires a model of the environment together with
a specification of a property that the system must enforce within the environment, it does not require a
model of the system. From the description of the environment and the property, an algorithm tries to build
automatically a system that is correct by construction, i.e. a system which enforces the specification. If
such a system does not exist then the synthesis algorithm can also provide feedback in the form of
a strategy for the environment that enforces the negation of the specification and so shows why the
specification cannot be realized.

The synthesis problem can be formalized as a two-player game on a graph with an omega-regular
objective. While the theory that underlines those games is now well understood, see e.g. [27], there
are only a few implementations available [2, 11, 13, 24] and the sizes of systems on which synthesis has
been applied are usually much smaller than the sizes of systems for which model-checking has been
successfully applied.

This paper describes our experiences with building a prototype of tool to participate to the first
synthesis competition organized within the SYNT’14 workshop. The set up for this competition is as
follows. Given a sequential circuit description with exactly one output signal and a partition of its input
signals into controllable inputs that belongs to the system (to synthesize) and uncontrollable inputs that
belong to the environment, decide if there is a strategy to choose the controllable input signals such that
no matter how the uncontrollable input signals are updated along the execution of the circuit, the output
of the circuit is always low. In terms of two player games, the winning condition (the specification) for
the system is thus a safety objective. If a winning strategy exists for the system, then build a circuit which
implements this strategy.

∗This work was supported by the ERC inVEST (279499) project.

http://dx.doi.org/10.4204/EPTCS.157.11
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

R. Brenguier et al. 101

The realizability problem for safety specifications is known to be solvable in linear time with respect
to the size of the underlying game graph (see, e.g. [14,27]). However, here the underlying graph is given
implicitly and succinctly by the circuit description and in this case the problem is known to be complete
for EXP (see, e.g. [22]). To combat the state explosion problem, we adapt two classical techniques that
have proven useful in the context of model-checking: we use binary decision diagrams [3] as a data
structure to represent and manipulate symbolically sets of configurations of the circuit specification, and
we use abstraction and refinement to simplify the underlying game and lower its dimension (the number
of Boolean variables that are necessary for its description). The abstraction refinement algorithm that we
have defined can be seen as combining the ideas of [1] and [16] together with binary decision diagrams
(BDDs) and some additional heuristics, all this formalized with abstract interpretation as in [17].

We have implemented a fixpoint computation together with several optimizations that lead to a syn-
thesis algorithm that is able to handle circuits with several tens of latches and a few hundreds of gates.
We report on the experiments that we have conducted on all the benchmarks provided by the organizers
of the synthesis competition that were available at the time of submission. In a vast majority of the
benchmarks the best performing version of our algorithm is the plain fixpoint algorithm that does not use
abstraction at all. However, to be efficient, the explicit construction of the BDDs for the transition rela-
tion needs to be avoided [4], our solution is to use substitution of variables with BDDs as in [8] to directly
compute the effect of the transition relation backwards. Nevertheless, for some examples, abstraction and
refinement are necessary: our algorithm based on abstraction and refinement terminates while the basic
concrete fixpoint computation does not. We think that the lack of good performance of abstraction in our
experiments is partly due to the fact that there is no explicit structure in the circuit description on which
we apply our analysis. In fact, we consider circuits given in a low-level description, which is neither
hierarchical nor compositional, so the usual techniques used in program verification [5] does not seem to
be applicable here. Another reason could also be that the benchmarks considered here are control inten-
sive and not data oriented where abstraction seems to perform better [6]. We strongly believe that more
research is necessary for understanding how to recover interesting aspects of the structure present in the
circuits from their low level descriptions and use this structure in the abstraction procedure. Finally, we
also report on how to synthesize a circuit from the winning region computed by our algorithm and how
to exploit reachability information to decrease the size of the synthesized circuit with minimization of
BDDs using don’t care sets [18].

Related works Recent efforts to find efficient algorithms for synthesis have been reported in [2] where
solutions based on solvers for QBF and SAT are investigated. In that paper, the authors compare their
solutions with a BDD implementation that constructs explicitly the transition relation. The conclusions
of their paper resemble our conclusions: the BDD implementation usually outperforms the QBF-SAT
algorithms with the exception of a few examples. Our BDD implementation that does not construct the
transition relation is usually largely more efficient than the one that constructs the BDD for the transitions
relation.

In [21] the authors present an algorithm for synthesis which searches for a small set of plays that
witness a winning strategy for one of the players. They report their tool works well for games in which
winning strategies admit compact representations.

The problem of minimization of Boolean functions used in circuit constructions has been widely
studied in the logic synthesis community (e.g. [18, 20]).

102 AbsSynthe – an abstract synthesis tool.

2 Preliminaries

We will present our algorithms in set-theoretic notation. However, in order to provide symbolic represen-
tations of sets and the implementation of set operators we will also represent sets by Boolean functions,
and use both notations interchangeably. Formally, we let B = {0,1}, and if L denotes a finite set of
variables, a function L→ B is called a valuation of L. Note that a valuation v defines a subset v−1(1)
of L. We will also consider Boolean functions BL→ B to denote sets of valuations.

We will describe Boolean functions by first-order logic formulas on a given set of variables V , which
are made of propositional logic and first-order quantification on V . A formula f whose free variables
are X will be written f (X). If the free variables are X ∪Y for two sets X ,Y , we may also write f (X ,Y).
When we quantify over a set of variables L, we will write ∃L instead of ∃l1∃l2 . . .∃ln if L = {l1, . . . , ln},
and similarly for universal quantification.

Let X ,Y,Z be three sets of variables such that Y ⊆ X and X ∩Z = ∅. Consider a formula f (X) and
a set of formulas (gy(Z))y∈Y (one for each element in Y). We denote by f [y← gy]y∈Y the formula f in
which every y ∈ Y has been substituted by the corresponding gy. Formally, f [y← gy]y∈Y (X \Y,Z) =
∃Y. f (X)∧

(∧
y∈Y y⇔ gy(Z)

)
. This work has been implemented using BDDs [3] to perform all symbolic

operations on Boolean functions. BDD packages provide optimized procedures to do substitution (see
e.g. function compose in [25]).

Circuit specifications We are interested in synthesizing controllers for synchronous sequential circuits
enforcing a given safety specification, where some inputs are controllable, and others are uncontrollable.
Intuitively, controllable inputs are to be determined by the controller to be synthesized, while uncontrol-
lable inputs cannot be restricted, and are determined by the environment. A distinguished latch indicates
if an error has occurred. Formally, a synchronous sequential circuit is a tuple 〈Xu,Xc,L,(fl)l∈L, fBAD〉,
where:

• Xu,Xc,L are finite sets of boolean variables representing uncontrollable inputs, controllable inputs,
and latches respectively;

• for each latch l ∈ L, fl : BXu×BXc×BL→ B is the transition function that gives the valuation of l
in the next step;

• fBAD is the error function fBAD : BXu×BXc×BL→ B, which evaluates to true in error states.

Given a circuit, our goal is to synthesize a controller which, given any valuation of the latches and
uncontrollable inputs, sets the controllable inputs, in order to ensure that the overall system never enters
an error state.

We assume that (i) there is a latch BAD ∈ L which, once it becomes true, stays true, and (ii) that the
latches are initialized to 0, i.e. the initial valuation is v(l) = 0 for all l.

Reachability and Safety Games The problem of controller synthesis can be formalized as a game
between two players, namely, environment and controller, played on a graph (see, e.g. [27]). Formally,
an arena is a tuple G = 〈Q,qI,Σu,Σc,∆〉 where: (i) Q is a finite set of states; (ii) qI ∈ Q is the initial
state; (iii) Σu is a finite set of uncontrollable actions; (iv) Σc a finite set of controllable actions; (v) ∆ ⊆
Q×Σu×Σc×Q is a transition relation.

The game is initially in state qI and is played in rounds. At every round, from state q, environment
chooses an action au from Σu and controller responds by choosing an action ac from Σc and a successor
state s ∈ Q such that (q,au,ac,s) ∈ ∆. We write δ instead of ∆ if the transition relation is functional.

R. Brenguier et al. 103

A play in such a game consists of an infinite sequence of states, i.e. q0q1 . . . ∈ Qω , where q0 = qI .
For a play π = q0q1 . . ., we denote by π[n] its (n+ 1)-th state, i.e qn. A strategy of environment is a
function λ env : Q∗→ Σu which given a sequence of states, chooses an uncontrollable action. A strategy
of controller is a function λ ctrl : Q∗×Σu→ Σc which given a sequence of states and an uncontrollable
action, choses a controllable action. For π = q0q1 . . .qn ∈ Q∗, we denote by last(π) the last state from
π , i.e. qn. We say λ env is a memoryless strategy of environment if for any π,π ′ ∈ Q∗ then last(π) =
last(π ′) implies λ env(π) = λ env(π ′). Similarly, λ ctrl is a memoryless strategy of controller if for any
π,π ′ ∈ Q∗,au ∈ Σu, then last(π) = last(π ′) implies λ ctrl(π,au) = λ ctrl(π ′,au).

A play π is consistent with a pair of strategies (λ env,λ ctrl) if for all i≥ 0:

π[i+1] = δ (π[i],λ env(π[i]),λ ctrl(π[i],λ env(π[i]))).

Given a strategy λ ctrl of controller, we write Plays(G,λ ctrl) the set of plays that are consistent with
(λ env,λ ctrl) for some λ env.

A safety game is a pair 〈G,U 〉 where U ⊆ Q is a set of unsafe states. The objective of controller
is to keep the play within the states Q\U at all times. We say that λ ctrl is winning for controller if for
any play π ∈ Plays(G,λ ctrl), for all n ≥ 0, π[n] 6∈U . Otherwise, π is winning for environment, and we
denote by iπ the first turn in which a state in U is visited, that is iπ = min{i≥ 0 | π[i] ∈U }. Note that
in safety games, the objective of environment is to reach U . From the point of view of environment,
these are in fact reachability games.

In this work we study finite safety and reachability games for which it is known that memoryless
strategies suffice for either player (see, e.g. [14]). Thus in what follows, when we speak about strategies,
we mean memoryless strategies and we take strategies for environment and controller to be of the form
λ env : Q→ Σu and λ ctrl : Q×Σu→ Σc, respectively.

Safety Games For Circuits We formalize the controller synthesis problem for circuits as safety games.
Given a circuit specification 〈Xu,Xc,L,(fl)l∈L, fBAD〉, we define the game 〈G,U 〉with G= 〈Q,qI,Σu,Σc,δ 〉,
where Q = BL, qI = 0L (i.e. the valuation that assings 0 to all L), Σu = BXu , and Σc = BXc . So states
(resp. actions) in G are valuations on latches (resp. inputs). Let q,s be valuations on latches. We define
accordingly the transition function as δ (q,σu,σc) 7→ s if s(l) = fl(q,σu,σc) for all l ∈ L.

3 Realizability

Basic Fixpoint Algorithm We recall the basic fixpoint computation for solving safety games, ap-
plied here on safety games for circuits. Let C = 〈Xu,Xc,L,(fl)l∈L, fBAD〉 be a circuit specification and
GC = 〈Q,qI,Σu,Σc,δ ,U 〉 the associated safety game. The set of the states from which there is no
controller’s strategy to ensure the safety objective can be computed by iterating an uncontrollable prede-
cessors operator. For any S⊆ Q, the uncontrollable predecessors of S is defined as

UPRE(S) = {q ∈ Q | ∃σu ∈ Σu. ∀σc ∈ Σc : δ (q,σu,σc) ∈ S}.

We denote by UPRE∗(S) = µX .(S∪UPRE(X)), the least fixpoint of the function F : X → S∪UPRE(X)
in the µ-calculus notation (see [12]). Note that F is defined on the powerset lattice, which is finite. It
follows from Tarski-Knaster theorem [26] that, because F is monotonic, the fixpoint exists and can be
computed by iterating the application of F starting from the least value of the lattice, i.e. /0.

The following is a well-known result about the relationship between safety games and the UPRE
operator. The second part of the claim follows from the determinacy of finite safety games [14].

104 AbsSynthe – an abstract synthesis tool.

Proposition 1. Let C be a circuit specification and GC the associated safety game. Then (i) environment
has a winning strategy in GC if and only if qI ∈ UPRE∗(U); and (ii) controller has a winning strategy
in GC if and only if qI 6∈ UPRE∗(U).

Symbolic implementation of UPRE There is a plethora of symbolic algorithms to do forward and
backward state space exploration in large systems defined succinctly, e.g. [4, 7, 9] to mention a few
classic works on the topic. The construction of a symbolic (monolithic or partitioned) transition relation
is the first step of those algorithms. For deterministic systems, where the transition relation is functional,
a transition function vector can be used to represent the transitions (that is, one distinct function for each
latch). This is known to improve the performance of state space exploration algorithms in some systems,
although this is not the case systematically; see [7, 9].

We consider both monolithic and partitioned transition relations in this work. We present 1) a version
of the operators using the monolithic transition relation T (L,Xu,Xc,L′) constructed once at the beginning
of the algorithm, and 2) an alternative version using only the partitioned transition relation. Our results
also confirm that the preference between the two depends on the type of circuit (see Section 7).

More precisely, the monolithic transition relation is defined as T (L,Xu,Xc,L′)=
∧

l∈L l′⇔ fl(Xu,Xc,L),
where L′ represents the next step states. UPRE(S) can then be computed symbolically by the formula

UPRE(S) = ∃Xu. ∀Xc. ∃L′ : T (L,Xu,Xc,L′)∧S(L′).

Alternatively, we observe that since we have that ∀l′ ∈ L′ : l′⇔ fl(Xu,Xc,L) we can directly substitute
all l′ into S(L′) to obtain the desired set without using T (L,Xu,Xc,L′), i.e.

UPRE(S) = ∃Xu. ∀Xc : S(L′)[l′← fl(Xu,Xc,L)]l∈L.

4 Abstractions of Safety Games

4.1 Conservative Abstractions

Computing the fixpoint of UPRE in safety games for circuits may be infeasible due to their large state
spaces. For such circuits, we consider abstractions, which are games with smaller state spaces on which
fixpoint computations are feasible. We follow the abstract interpretation framework [10] to build con-
servative abstractions, so as to make sure that if the abstract game can be won by controller, then the
concrete game can also be won by her.

Let C be a circuit specification and GC = 〈Q,qI,Σu,Σc,δ ,U 〉 its associated safety game. Intuitively,
abstractions will be obtained by partitioning the state space of GC and defining transitions between the
elements of the partition. Formally, a game Ga

C = 〈Qa,qa
I ,Σu,Σc,∆

a,U a〉 is a conservative abstraction
of GC if

• Qa is a partition of Q;

• qa
I = {qI} ∈ Qa;

• (s,σu,σc,s′) ∈ ∆a if ∃q ∈ s. ∃q′ ∈ s′ : δ (q,σu,σc) = q′; and

• U ⊆
⋃

u∈U a u.

Notice that we require the abstractions to distinguish the initial states, and the abstract safety speci-
fication U a to cover U . Conservative abstractions give more power to environment [17]. We will show

R. Brenguier et al. 105

that if controller wins in a conservative abstraction, then it wins in the original game. We will refer to
the states of GC as concrete states, and those of Ga as abstract states.

We define the concretization function γ : P(Qa)→P(Q) for this abstraction, defined by γ(Sa) =⋃
sa∈Sa sa, which gives the set of concrete states covered by a given set of abstract states. The dual

operation is abstraction; we define two abstraction functions α,α : P(Q)→P(Qa) as follows: α(S) =
{qa ∈ Qa | S∩qa 6= /0}, and α(S) = {qa ∈ Qa | S ⊆ qa}. Intuitively, α(S) is the smallest set of abstract
states covering S; while α(S) is the largest set of abstract states entirely included in S. The pair (α,γ)
defines a Galois connection:

Lemma 1 (from [10]). The pair (α,γ) is a Galois connection, that is, for all s⊆Q and t ⊆Qa, we have
that α(s)⊆ t if, and only if s⊆ γ(t).

The following lemma shows the relation between α and α , which are, respectively, over- and under-
approximations of given sets.

Lemma 2. For any S⊆ Q, we have γ(α(S))⊆ S⊆ γ(α(S)), and α(S) = Qa \α(Q\S).

4.2 Predicate Abstraction and Localization Reduction

In order to effectively construct abstractions from the concrete circuit safety game we use predicate
abstraction [15] and localization reduction [19]. Predicate abstraction consists in defining abstractions
by partitioning the state space by predicates, and is used e.g. in CEGAR methods [5]. Localization
reduction is a special case of predicate abstraction in which predicates consist of single latches.

Consider any circuit specification C = 〈Xu,Xc,L,(fl)l∈L, fBAD〉, and the associated safety game G =
〈Q,qI,Σu,Σc,δ ,U 〉. Let P be a set of boolean variables, also called predicates, and (fp(L))p∈P be a
set of formulas. We assume that there exist pI, pU ∈ P such that fpI ≡ qI , and fpU ≡ U . The predi-
cates P partition the state space Q, i.e. BL =

⊎
v∈BP

⋂
p∈P f−1

p (v(p)). We will consider the conservative
abstraction defined on this partition.

Formally, we consider the state space Qa = BP. Given Sa ⊆ Qa, the concretization function is

γ(Sa)(L) = Sa(P)[p← fp(L)]p∈P.

The abstraction functions are defined accordingly:

α(S)(P) = ∃L : S(L)∧ (
∧
p∈P

p⇔ fp(L)),

α(S)(P) = ∃L : ¬(¬S(L)∧ (
∧
p∈P

p⇔ fp(L))). from Lemma 2

The transition relation ∆a is given by (qa,σu,σc,ra) ∈ ∆a⇔ qa,σu,σc,ra |= T a, where

T a(P,Xu,Xc,P′) = ∃L,L′ : T (L,Xu,Xc,L′)∧ (
∧
p∈P

p⇔ (fp(L))∧ (
∧

p′∈P′
p′⇔ (fp′(L′)).

4.3 Abstract uncontrollable predecessors

We now define the uncontrollable predecessors operators in the abstract games. We define two op-
erators, one yielding an over-approximation of the usual UPRE, and another one yielding an under-

106 AbsSynthe – an abstract synthesis tool.

approximation. We let

UPREa(Sa) = {qa | ∃σu. ∀σc. ∃ra : (qa,σu,σc,ra) ∈ ∆
a and ra ∈ Sa},

UPREa(S
a) = {qa | ∃σu. ∀σc. ∀ra : (qa,σu,σc,ra) ∈ ∆

a implies ra ∈ Sa}.

Given a formula Sa(P), representing a set of states from Qa, the operators can be easily computed
symbolically as follows:

UPREa(Sa) = ∃Xu. ∀Xc. ∃P′ : T a(P,Xu,Xc,P′)∧Sa(P′),

UPREa(S
a) = ∃Xu. ∀Xc. ∀P′ : T a(P,Xu,Xc,P′)⇒ Sa(P′).

The following lemma shows the relation between the abstract uncontrollable predecessor operator
and the concrete one.

Lemma 3. For any set Sa ⊆ Qa, γ(UPREa(S
a))⊆ UPRE(γ(Sa))⊆ γ(UPREa(Sa)).

Proof. We show the inequalities hold from left to right. Let qa ∈ UPREa(S
a). There is σu such that for

all σc, for any state ra, (qa,σu,σc,ra) ∈ ∆a implies ra ∈ Sa. So by construction of ∆a, for any state q in
γ(qa), for all σc, δ (q,σu,σc) ∈ γ(Sa). Hence q ∈ UPRE(γ(Sa)) and γ(qa) ⊆ UPRE(γ(Sa)). Therefore
γ(UPREa(S

a))⊆ UPRE(γ(Sa)).
Let q ∈ UPRE(γ(Sa)), then there is σu such that for all σc, δ (q,σu,σc) ∈ γ(Sa). By definition of

∆a, for all σc (α(q),σu,σc,α(δ (q,σu,σc))) ∈ ∆a. Since α(δ (q,σu,σc)) ∈ Sa for all σc, we have α(q) ∈
UPREa(Sa) and q ∈ γ(UPREa(Sa)). Hence UPRE(γ(Sa))⊆ γ(UPREa(Sa)).

Lemma 3 implies, by induction, the following.

Lemma 4. γ(UPRE∗a(U a))⊆ UPRE∗(U))⊆ γ(UPRE
∗
a(U

a)).

This yields the following Theorem.

Theorem 1. Let C be a circuit specification, GC be its associated safety game and Ga
C a conservative

abstraction of it. If controller wins Ga
C then she also wins GC.

4.4 Optimizations

Because we consider conservative abstractions, if environment wins in the abstract game, one cannot
conclude unrealizability right away. However, we can still use the information gathered during the com-
putation of the abstract uncontrollable predecessors UPREa. In fact, we will show that the states and
actions that witness the uncontrollable predecessors in each iteration of UPREa define a set of strate-
gies which contains any concrete winning strategy for environment (Prop. 2 below). We then use this
information to restrict future UPRE operations to these strategies.

Quasi-strategies of environment Formally, a quasi-strategy of environment in the conservative ab-
straction Ga of a game G is a function Λenv : Qa →P(Σu) which maps any abstract state to a set of
uncontrollable actions. Thus, a quasi-strategy can be seen as a non-deterministic strategy defined on a
subset of states (in fact, Λenv can map some states to the empty set). We denote by γ(Λenv) the concrete
quasi-strategy in G given by γ(Λenv)(q) 7→ Λenv(α(q)) for any q ∈ Q.

Let Sa ⊆ Qa, and W = UPRE
∗
a(S

a). The set W describes a quasi-strategy Λenv
W , defined by Λenv

W (q) 7→
{σu ∈ Σu | ∀σc. ∃s ∈W : (q,σu,σc,s) ∈ ∆a}, for any q ∈ Qa. This quasi-strategy corresponds to the

R. Brenguier et al. 107

set of uncontrollable actions environment can play from states in W to stay within W . Note that not all
strategies respecting Λenv

W are winning for environment; although all winning strategies for environment
choose actions prescribed by Λenv

W .

Proposition 2. Let Ga be a conservative abstraction of a game G, Λenv be the quasi-strategy for envi-
ronment defined by UPRE

∗
a(U

a) and λ env a strategy for environment in G. If λ env is a winning strategy
for environment in G, then ∀π ∈ Plays(G,λ env). ∀i < iπ : λ env(π[i]) ∈ γ(Λenv)(π[i]).

Proof. Let Sa ⊆Qa and Sti
env(S

a) = {(q,σu) ∈Qa×Σu | ∀Σc. ∃r : (q,σu,σc) ∈ ∆a and r ∈ UPRE
i
a(S

a)}.
Clearly Sti−1

env (S
a)v Λenv.

Let ι = max{iπ | π ∈ Plays(G,λ env)}, which is finite since λ env is memoryless and winning for
environment.

Consider any play π ∈ Plays(G,λ env). We show that λ env(π[ι− j]) ∈ γ(St j
env(U

a)).
By definition of ι , for all σc ∈Σc, δ (ψ[ι−1],λ env(ψ[ι−1]),σc)∈U . By construction of ∆a, we have

that for all σc ∈ Σc there exists ra such that (α(ψ[ι−1]),λ env(ψ[ι−1]),σc,ra) ∈ ∆a where ra ∈ α(U).
This implies that (α(ψ[ι−1]),λ env(ψ[ι−1])) ∈ Stenv(α(U)). Note that from the definition of U a we
get that α(U)⊆U a and that since Stenv is monotone (α(ψ[ι−1]),λ env(ψ[ι−1])) ∈ Stenv(U a). Thus
λ env(ψ[ι−1]) ∈ γ(Λenv)(ψ[ι−1]).

Consider now 2 ≤ j ≤ ι . For all σc ∈ Σc, δ (ψ[ι − j],λ env(ψ[ι − j]),σc) ∈ UPRE j−1(U). It fol-
lows that for any σc ∈ Σc, there exists ra ∈ α(UPRE j−1(U)) with (α(ψ[ι− j]),λ env(ψ[ι− j]),σc,ra) ∈
∆a. We have ra ∈ α(UPRE j−1(γ(U a))) by monotonicity of UPRE, and by Lemma 4, we get ra ∈
UPRE

j−1
a (U a). Hence, (α(ψ[ι− j]),λ env(ψ[ι− j])) ∈ Stenv(UPRE

j−1
a (U a))⊆ St j

env(U
a).

Guiding UPRE using Λenv
W For convenience, let Λenv = Λenv

W . We define the concrete UPRE operator
restricted to the quasi-strategy γ(Λenv) as follows.

UPREγ(Λenv)(S) = {q ∈ Q | ∃σu ∈ γ(Λenv)(q). ∀σc ∈ Σc : δ (qa,σu,σc) ∈ S}.

UPREγ(Λenv)(S) yields the set states from which environment can force to reach states in S by using
actions compatible with the given quasi-strategy. Proposition 2 implies that because the quasi-strategy
was extracted from the abstract uncontrollable predecessors fixpoint, this restriction is no loss of gener-
ality. Indeed, if environment has a winning strategy it is included in the quasi-strategy. It follows that if
the abstract game is winning for controller, then this will be detected by UPRE restricted to γ(Λenv).

Theorem 2. Let Ga be a conservative abstraction of a game G, and Λenv be the quasi-strategy for
environment defined by UPRE

∗
a(U

a). qI 6∈ UPRE∗
γ(Λenv)(U) if and only if qI 6∈ UPRE∗(U).

Proof. Observe that since UPREγ(Λenv) is a restricted version of UPRE, we have that UPREi
γ(Λenv)(S) ⊆

UPREi(S) for any S⊆ Q and all i≥ 0. Thus, if qI 6∈ UPRE∗(U) then qI 6∈ UPRE∗
γ(Λenv)(U).

For the other direction recall that from Proposition 1 we have that qI ∈ UPRE∗(U) if and only if
environment has a winning strategy in G. Assume qI ∈ UPRE∗(U) and that λ env is a winning strategy
for environment in G. By Proposition 2 we get that⋃

π∈Plays(G,λ env)
0≤ j≤iπ

π[j]⊆ UPRE∗
γ(Λenv)(U).

In particular, this implies that qI ∈ UPRE∗
γ(Λenv)(U), which concludes the proof.

108 AbsSynthe – an abstract synthesis tool.

Reachable states under Λenv
W As a second optimization, we restrict the exploration of both the concrete

and abstract state spaces to the set of states which are reachable from the initial state when environment
plays according to a winning strategy. This will allow us to prune the search space. As we will show,
the set of states that are winning for environment but not reachable from the initial state, or those states
reached by strategies losing for environment can be safely ignored.

Let post(S,λ env) be the set of states reachable from s ∈ Q if environment plays according to λ env.
We now formally define

R(G) =
⋃

λ env winning for env
π∈Plays(G,λ env)

i≥0

π[i].

Note that R(G) is empty if the circuit is controllable. We will omit G from R(G) when it is clear from
the context. Ideally, we would like to restrict our computations to R(G). However, computing R(G)
is clearly as difficult as solving realizability of the safety game G, so we will rather consider over-
approximations of this set computed on conservative abstractions of Ga. For any Sa ⊆ Qa, and Λenv a
quasi-strategy for environment in Ga, the possible successors under Λenv are defined as follows.

post(Sa,Λenv) = {ra ∈ Qa | ∃qa ∈ Sa. ∃σu. ∈ Λ
env(qa). ∃σc ∈ Σc : (qa,σu,σc,ra) ∈ ∆

a}.

Note that the post operator can be computed symbolically as follows.

post(Sa,Λenv) = ∃P. ∃Xu. ∃Xc : T a(P,Xu,Xc,P′)∧Sa(P)∧Λ
env(P,Xu).

Let Ga be a conservative abstraction of a game G and Λenv
W the quasi-strategy defined by UPRE

∗
a(U

a).
Now, Prop. 2 implies the following result.

Proposition 3. Let Ga be a conservative abstraction of a game G and Λenv
W the quasi-strategy defined by

UPRE
∗
a(U

a). Then R(G)⊆ γ(post∗(qa
I ,Λ

env
W)).

Now, the first purpose of defining over-approximations of R(G) is to restrict the fixpoint compu-
tations on the abstract game to these states, so that the considered sets of states are smaller. This
will, hopefully, lead to smaller BDDs. We define the UPREa fixpoint computation restricted to over-
approximations of R.

Theorem 3. Let Ga be a conservative abstraction of a safety game G, and let Ra ⊆ Qa with R ⊆ γ(Ra).
Then γ(µX . U a∪UPREa(X))∩R = γ(µX . (U a∪UPREa(X))∩Ra)∩R.

The same idea can be applied to the post operator.

Theorem 4. Let Ga be a conservative abstraction of a safety game G, and let Ra ⊆ Qa with R ⊆ γ(Ra).
Then γ(µX . {qa

I }∪post(X))∩R = γ((µX . {qa
I }∪post(X ,Λenv))∩Ra)∩R.

Using Abstract Partitioned Transition Relation As mentioned earlier, in some circuits, one can im-
prove performance by using only a partitioned transition relation and avoiding the computation of the
monolithic transition relation. In this paragraph, we explain how this can be achieved and combined with
the reachability analysis in abstract games.

Note that partitioning the transition relation works well in instances in which the transition relation
is large (i.e. the size of the BDD needed to represent T a is large) but the fixpoint is reached in a small
number of steps. On the contrary, if too many iterations are needed to obtain the fixpoint, then it is often
more efficient to construct T a once and use it to compute the operators UPREa and UPREa, as the cost
will be amortized in the long run. These observations are illustrated in the section on experiments.

R. Brenguier et al. 109

Let ψp(L,Xu,Xc) = fp(L′)[l′ ← fl(Xu,Xc,L)]l∈L. Then the UPREa,UPREa operators can be com-
puted as shown below.

Lemma 5. For any Ga,

UPREa(Sa) = ∃Xu. ∀Xc : α(Sa(P′)[p′← ψp(Xu,Xc,L)]p∈P)

UPREa(S
a) = ¬(∀Xu. ∃Xc : α(¬Sa(P′)[p′← ψp(Xu,Xc,L)]p∈P)).

We also present an operator yielding an over-approximation of the set of reachable states which
can be computed with partitioned transition relations. Let Sa ∈ Qa and Λenv be a quasi-strategy for
environment in Ga.

post(Sa,Λenv) = ∃L,Xu : (Sa(P)∧Λ
env(P,Xu))[p← fp(L)]p∈P∧

∧
p∈P

∃Xc : p′⇔ ψp(Xu,Xc,L).

Note that post is defined, from post, simply pushing the quantification over Xc inside. In fact, the exact
definition of post contains the transition relation T a, which we want to avoid computing.

The following lemma shows that this yields over-approximations.

Lemma 6. The set of abstract states reachable from Sa in one step if environment plays according to
Λenv is contained in post(Sa,Λenv). That is, post(Sa,Λenv)⊆ post(Sa,Λenv).

Note that one could also push the quantification over Xu inside the conjunction in order to obtain
coarser over-approximations. However, this alternative definition was not faster to compute, nor did it
improve overall performance in our experiments.

5 Yet another CEGAR algorithm

We present a CEGAR-based synthesis algorithm, given in Algorithm 1, based on a combination of ideas
introduced in [1] and [16]. The algorithm constructs abstractions using – initially – three predicates,
namely, pI describing the initial state, pU an under-approximation of the losing states, and pR an over-
approximation of the states reachable from the initial state under winning strategies of environment. The
algorithm further refines the abstraction by localization reduction. In fact, the initial abstraction consists
of the conservative abstraction defined by these three predicates, and at each refinement loop, some latch
is made “visible”, that is, added as a predicate.

We give an informal description of the algorithm. Given a conservative abstraction, the algorithm
first computes Wu at line 1, the fixpoint of UPREa, restricted to Ra which overapproximates R(G). If
the initial state belongs to Wu, then by Lemma 4, controller has no winning strategy (line 3). Otherwise,
in the while loop of line 7, we compute Wo, the fixpoint for UPREa restricted to Ra – which is an over-
approximation on reachable states under winning strategies of environment. In this case, if the initial
state does not belong to Wo, then nor does it belong to the fixpoint of UPRE and we conclude that the
circuit is controllable. Otherwise, we recompute the fixpoint for UPREa by decreasing Ra: we first
compute, at line 13, the quasi-strategy for environment allowing her to stay inside Wo, then restrict Ra,
at line 14, to states that are reachable under this quasi-strategy. These restrictions are justified since any
winning strategy for environment is compatible with these (see Proposition 2). If we were not able to
conclude, then the abstraction is too coarse and needs to be refined. At line 17, we compute the concrete
UPRE of Wu restricted to the quasi-strategy and to Ra. If it turns out that Wu was already a fixpoint
for UPRE, then we know that the circuit is controllable (line 19) since Wu does not contain the initial

110 AbsSynthe – an abstract synthesis tool.

state. Otherwise, we refine the abstraction by making a latch visible, but also increasing U a using the
information computed with UPREa. The refinement step is given by the refine function described in
Algorithm 2.

The algorithm is initially called with the abstraction given by the three predicates {pI, pU , pR} defined
by pI ≡ {qI}, pU ≡U , and pR ≡ Q.

Algorithm 1: abs_synth(G,Ga,Ra)

Data: Safety game G = 〈Q,qI ,Σu,Σc,δ ,U 〉, abstraction Ga = 〈Qa,qa
I ,Σu,Σc,∆

a,U a〉 and Ra ⊇R.
1 Wu := µX . (U a∪UPREa(X))∩Ra;
2 if qa

I ∈Wu then
3 return not controllable;
4 end
5 prev := /0;
6 while Ra 6= prev do
7 prev := Ra;
8 Wo := µX . (Wu∪UPREa(X))∩Ra;
9 if qa

I 6∈Wo then
10 return controllable;
11 end
12 Λenv := quasi-strategy defined by (Wo);
13 Ra := µX . (qa

I ∪post(X ,Λenv))∩Ra;
14 end
15 W ′u := (UPREγ(Λenv)(γ(Wu)))∩ γ(Ra);
16 if W ′u ⊆ γ(Wu) then
17 return controllable;
18 end
19 Qa

2 := refine(Qa,W ′u∪ γ(Wu),γ(Ra)); // α2,α2 are the associated abstraction operators
20 U a

2 := α2(W
′
u∪ γ(Wu));

21 return abs_synth(G,Ga
2,α2(γ(Ra)));

Refinement is achieved symbollicaly by adding a new predicate to our predicate set P. Besides having
W ′u∪ γ(Wu) and γ(Ra) replace the previous pU and pR, respectively, we also make a new latch “visible”.
Latches that depend on the value of other visible latches are given priority by Algorithm 2.

Algorithm 2: refine(P,U(L),R(L))
Data: Predicate set P = {pI , pU , pR, lα1 , . . . , lαm}, and sets U ′(L) and R′(L)

1 P′ := P\{pU , pR, pI};
2 interesting := {m ∈ L\P′ | m 6⇒U and ¬m 6⇒U};
3 use f ul := {m ∈ interesting | supp(fm)∩P′ 6= /0};
4 if use f ul 6= /0 then
5 e := an element from use f ul;
6 else
7 e := an element from interesting;
8 end
9 return P′∪{e,U ′(L),R′(L), pI};

Theorem 5. Let G be a safety game, Ga a conservative abstraction of it and Ra ⊇ post∗(qa
I ,Λ

env) where
Λenv is the quasi-strategy defined by UPRE

∗
a(U

a). If Algorithm 1 returns controllable for (G,Ga,Ra)

R. Brenguier et al. 111

then controller has a winning strategy in G; if it returns not controllable then environment has a winning
strategy in G. Moreover, the algorithms always terminates.

To prove the correctness of the algorithm, we first show the following invariants.

Lemma 7. The following invariants hold:

R ⊆ γ(Ra), (1)

U ∩R ⊆ γ(U a)⊆ UPRE∗(U), (2)

U ∩R ⊆ γ(Wu)⊆ UPRE∗(U), (3)

R ⊆ γ(Wo). (4)

Proof. We prove these invariants by induction on the number of recursive calls. Initially, Ra ≡Qa which
satisfies (1) by Proposition 2, and (2) is satisfied since γ(U a) = U . Consider any recursive call of the
algorithm, and assume that (1) and (2) hold at line 1.

Wu is defined at line 1. Let us show that U ∩R ⊆ γ(Wu). This holds at any iteration of the fixpoint
defining Wu. In fact, we have U ∩R ⊆ γ(U a), and R ⊆ γ(Ra), so any iterate contains U a ∩Ra. The
result follows since U ∩R ⊆ γ(U a)∩γ(Ra)⊆ γ(U a∩Ra). To show the right hand side inequality, it suf-
fices to observe that γ(µX .(U a∪UPREa(X)))⊆ UPRE∗(U), which holds since γ(U a)⊆ UPRE∗(U).
The inequality then follows by monotonicity.

Now we analyze the while loop of line 7 to prove (4) and (1) hold. Let us define W ′o = µX .(Wu ∪
UPREa(X)). Note that we just showed U ∩R ⊆ γ(Wu) so UPRE∗(U ∩R) ⊆ γ(UPRE

∗
a(U ∩R)) ⊆

γ(W ′o). But R ⊆ UPRE∗(U ∩R) by the definition of R. Moreover, by Theorem 3, γ(Wo)∩R =
γ(W ′o)∩R. It follows that R ⊆ γ(Wo). We proved the invariant for arbitrary Ra satisfying R ⊆ γ(Ra).

We now prove invariant (1) on this while loop. In fact, because R ⊆ γ(Wo), the strategy Λenv defined
on line 13 contains all winning strategies for environment, in the sense of Prop. 2. Now, if we denote
R′ = µX .(qa

I ∪post(X ,Λenv)), then R ⊆ γ(R′) by Prop. 2. By Theorem 4, it follows that R ⊆ γ(Ra).
It remains to show that the invariants hold on the recursive call at line 23. Variable Ra is not modified,

so we need to show (2), that is, U ∩R ⊆ γ(U a
2) ⊆ UPRE∗(U). By the definition of W ′u at line 17, we

have that W ′u⊆UPREγ(Λenv)(γ(Wu)), and since γ(Wu)⊆UPRE∗(U), we get that W ′u⊆UPRE∗(U). Thus,
W ′u ∪ γ(Wu) ⊆ UPRE∗(U), and γ2(U a

2) = γ2(α2(W
′
i ∪ γ2(Wu))) ⊆ γ2(α2(UPRE∗(U))) ⊆ UPRE∗(U).

To show that other inclusion, it suffices to note that U ∩R ⊆ γ2(Wu)⊆ γ2(α2(γ2(Wu))⊆ γ2(U a
2).

Proof of Theorem 5. Assume that the algorithm answers not controllable, on line 3. By (3), we have
γ(Wu)⊆UPRE∗(U) so qa

I ∈Wu implies {qI}= γ(qa
I)⊆UPRE∗(U), which means that environment has

a winning strategy.
Assume that the algorithm answers controllable on line 10. By (4), we have R ⊆ γ(Wo), so qa

I 6∈Wo

means that qI 6∈R, so controller has a winning strategy.
Last, assume that the algorithm returns controllable on line 18. We have that qI ∈ UPRE∗(U) iff

qI ∈ UPRE∗(γ(Wu)) iff qI ∈ UPRE∗
γ(Λenv)(γ(Wu)) iff qI ∈ UPRE∗

γ(Λenv)(γ(Wu))∩R. The test of line 17
means that γ(Wu) is already a fixpoint of the latter equation. Moreover, we know that qa

I 6∈Wu by line 2.
It follows that qI 6∈ UPRE∗(U), and the returned result is correct.

Now, termination follows from the fact that at each recursive call, a new latch is made visible, so at
most after |L| iterations, we obtain the concrete game. In this case, UPREa = UPREa = UPRE, thus Wu

and Wo are complementary inside Ra. So the algorithm will either output not controllable on line 3, or
controllable on line 10.

112 AbsSynthe – an abstract synthesis tool.

6 Strategy Synthesis

The first step of the strategy synthesis is to obtain the winning region for controller, that is, the set W
of all winning states for controller. With the basic fixpoint algorithm – without abstractions, the al-
gorithm computes UPRE∗(U) to decide that the circuit is controllable, so the complement of this set
is the winning region. When Algorithm 1 determines the controllability of a given game, we com-
pute a winning region as follows. We have, by Invariant (3), that γ(Wu) ⊆ UPRE∗(U), so γ(Wu)

c is
an over-approximation of the winning region. Then CPRE∗(γ(Wu)

c) gives the winning region, where
CPRE∗(X) = νY.(X ∩CPRE(Y)), and CPRE(X) = {q | ∀σu ∈ Σu,∃σc ∈ Σc,δ (q,σu,σc) ∈ X}.

Let S denote such a winning region. As a first step, it is easy to derive a quasi-strategy for controller
from S : We define λ as λ (q,σu) = {σc ∈ Σc | δ (q,σu,σc) ∈ S } for all q ∈ S , and σu ∈ Σu, and
arbitrarily on other states. We denote by R(λ) the set of states reachable from qI when controller plays
any strategy compatible with the quasi-strategy λ . It is clear that R(λ)∩U = /0. In other terms, any
strategy compatible with λ is winning for controller from states S .

We are interested in synthesizing a circuit implementing a winning strategy. However, the quasi-
strategy we just constructed is non-deterministic, so it cannot be directly mapped as a circuit. We are
going to extract a deterministic strategy from λ , and show how the implementing circuit can be produced.

Algorithm 3: det_strat(λ (L,Xu,Xc),R(L))
Data: Winning quasi-strategy λ (L,Xu,Xc), and set R(λ)
Result: A circuit for each σc ∈ Σc, implementing a strategy compatible with λ

1 for x ∈ Xc do
2 f (L,Xu,x) := ∃Xc \{x} : λ (L,Xu,Xc);
3 fx(L,Xu) := f (L,Xu,x)[x← 1];
4 fx(L,Xu) := f (L,Xu,x)[x← 0];
5 care(L,Xu) := R(L)∧ (¬ fx(L,Xu)∨¬ fx(L,Xu));

/* could also be (¬ fx(L,Xu)) ⇓ care(L,Xu) */
6 gx := fx(L,Xu) ⇓ care(L,Xu);
7 λ := λ ∧ (x⇔ gx(L,Xu));
8 end
9 return (gx)x∈Xc ;

The idea of Algorithm 3 is to extract functions for each x ∈ Xc incrementally, so that at the i-th iter-
ation, the quasi-strategy yields a unique value for the first i controllable inputs. To extract deterministic
strategies, we use the restrict operation implemented in most BDD packages (see [23]). Given two for-
mulas f (X) and D(X), the restriction of f (X) to D(X) is defined by (f ⇓ D)(X), and has the following
property.

Lemma 8 (from [9]). For any two formulas f (X), D(X), (f ⇓ D)(X) is a set that agrees with f (X) on
the domain D(X). In other terms, ∀X .D(X)⇒

(
(f ⇓ D)(X)⇔ f (X)

)
.

This operation is useful when one needs an arbitrary set which complies with D(X) since the size of
the BDD representing (f ⇓ D)(X) is guaranteed to be not larger than f (X), and is often smaller.

We will use this operation to extract functions as follows. In Algorithm 3, given x ∈ Xc, we identify
the set care(L,Xu) on which the strategy being constructed yields a unique value for x given L,Xu, while
we know that outside this set x could get any value. We then define the strategy for x on this set, and
(arbitrarily) extend to the whole domain by the restrict operation. Note that the restrict operation is an
optimization; we could instead simply set gx := fx(L,Xu) on line 6.

R. Brenguier et al. 113

Theorem 6. Let G be a safety game, R a winning region for controller, and λ quasi-strategy of controller
winning from R. Then the strategy λ ′ returned by Algorithm 3 is winning for controller.

Proof. Let x1,x2, . . . be the ordered sequence of controllable inputs taken by the loop. Note that the
function gxi is defined on iteration i. Let us denote by λ0 the quasi-strategy given in input.

We show that the following invariant holds at the beginning of iteration i≥ 1:

∀L,Xu,Xc.R(L)∧λ (L,Xu,Xc)⇒ λ0(L,Xu,Xc). (5)

∀L,Xu∃Xc.λ (L,Xu,Xc). (6)

∀ j = 1 . . . i−1,∀L,Xu : ¬
(
(∃Xc \{x j}.λ (L,Xu,Xc)∧ x j)∧ (∃Xc \{x j}.λ (L,Xu,Xc)∧¬x j)

)
. (7)

In words, the first invariant says that at all states in R(L), the partial strategy computed so far is compatible
with λ0; and the second invariant says that λ is satisfiable given any L,Xu. This will ensure that λ

is always a winning quasi-strategy. The third invariant states the functionality of λ for the first i− 1
variables. In fact, it states that, given L,Xu, there is only one possible value of x j that satisfies λ . Thus,
at the end of the algorithm, these invariants will yield that λ is a function compatible with λ0 which is
what we want.

The claim holds trivially for i = 1. Consider i ≥ 2. On lines 3 and 4, we define fx(L,Xu) (resp.
fx̄(L,Xu)), the subset of L,Xu on which xi can be set to true (resp. false) by λ . On line 5, the set care is
defined as the set L,Xu where R(L) holds, and x j can only be set to either true or false. Intuitively, λ must
be defined uniquely on this set, whereas it can be defined arbitrarily outside. In fact, outside R(L) we do
not care about λ since it does not matter for winning; and outside (¬ fx(L,Xu)∨¬ fx(L,Xu)), we know
that x j can take both values. On line 6, we define the function gx(L,Xu) by the restrict operator ⇓, which
gives an arbitrary function compatible with fx(L,Xu) on the set care(L,Xu). This means that xi is set to 1
when R(L)∧ fx(L,Xu) holds, and to 0 when R(L)∧ fx̄(L,Xu) holds. It follows that, by construction, the
updated λ is still compatible with λ0. Moreover, since gx(L,Xu) is a function, λ is also functional on
variables x1, . . . ,xi.

Finally, we present a possible further optimization. One could execute the algorithm once, recover
the new strategy λ ′ and re-run the algorithm with R ≡ R(λ ′), which is clearly a winning region of
controller. This would still guarantee the invariants hold and is thus sound.

7 Experimental results

Figure 3: Size of the synthesized strategy.

We evaluated four different algorithms: (C) the
classical fixpoint computation with a precom-
puted transition relation; (C-TL) the classi-
cal fixpoint computation using the partitioned
transition relation; (A) the algorithm 1 with
a precomputed abstract transition relation; (A-
TL) the algorithm 1 using abstract opera-
tors implemented to avoid using a transition
relation (this implies post was used instead
of the exact post operator). The bench-
marks that we used for the evaluation are pro-
vided for the SyntComp (Synthesis Competition)

114 AbsSynthe – an abstract synthesis tool.

Figure 1: Time (in seconds) to check realizability. Figure 2: Time (in seconds) for cnt benchmarks.

https://syntcompdb.iaik.tugraz.at/. At the time of submission of this work, there were 432
benchmarks provided by the organizers of the competition. We have submitted 102 additional bench-
marks.

Figure 1 summarizes performances of the algorithms on all our benchmarks. The horizontal axis is
the number of instances that can be solved within the time limit given by the vertical axis. In general
C-TL performs better, however the algorithms that use abstraction perform better on some examples.
This is in particular the case for the “cnt” benchmark, as can be seen in Figure 2. In these benchmarks,
there is a counter (its size depends on the benchmark), the adversary can increment it and the controller
should reset it at the right moment. The set of reachable states is enormous but the winning strategy is
quite simple which may explain why abstraction works better. The abstract algorithms were able to solve
more of these examples within the time limit of 500s that we fixed.

In Figure 3 we compared the size of the synthesized circuits with the size of the input circuits for the
different sets of benchmarks. Most of the time, our method allows to find solutions that are not too big
when compared to the input circuit.

It is worth mentioning that from the 534 benchmarks considered, we were able to determine realiz-
ability in under 500s for all but less than 30 of them. Amongst these, 369 are known to be realizable. We
were able to synthesize a circuit, again in under 500s, for all but less than 35.

8 Acknowledgements

We thank Robert Könighofer for providing us their implementation of the classic fixpoint computation
algorithm as well as a benchmarking framework for it. This implementation [2] was the starting point
for our tool.

References

[1] Luca de Alfaro & Pritam Roy (2010): Solving games via three-valued abstraction refinement. Information
and Computation 208(6), pp. 666–676, doi:10.1016/j.ic.2009.05.007.

[2] Roderick Bloem, Robert Könighofer & Martina Seidl (2014): SAT-Based Synthesis Methods for Safety Specs.
In: VMCAI, LNCS 8318, Springer, pp. 1–20, doi:10.1007/978-3-642-54013-4_1.

http://dx.doi.org/10.1016/j.ic.2009.05.007
http://dx.doi.org/10.1007/978-3-642-54013-4_1

R. Brenguier et al. 115

[3] Randal E. Bryant (1986): Graph-based algorithms for boolean function manipulation. Computers, IEEE
Transactions on 100(8), pp. 677–691, doi:10.1109/TC.1986.1676819.

[4] Jerry R. Burch, Edmund M. Clarke & David E. Long (1991): Symbolic Model Checking with Partitioned
Transistion Relations. In: VLSI, pp. 49–58.

[5] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu & Helmut Veith (2000): Counterexample-guided
abstraction refinement. In: CAV, LNCS 1855, Springer, pp. 154–169, doi:10.1007/10722167_15.

[6] Edmund Clarke, Orna Grumberg, Muralidhar Talupur & Dong Wang (2003): High level verifica-
tion of control intensive systems using predicate abstraction. In: MEMOCODE, IEEE, pp. 55–64,
doi:10.1109/MEMCOD.2003.1210089.

[7] Olivier Coudert, Christian Berthet & Jean Christophe Madre (1990): Verification of synchronous sequential
machines based on symbolic execution. In: Automatic verification methods for finite state systems, LNCS
407, Springer, pp. 365–373, doi:10.1007/3-540-52148-8_30.

[8] Olivier Coudert & Jean Christophe Madre (1990): A Unified Framework for the Formal Verification of Se-
quential Circuits. In: ICCAD, pp. 126–129.

[9] Olivier Coudert, Jean Christophe Madre & Christian Berthet (1991): Verifying temporal properties of se-
quential machines without building their state diagrams. In: CAV, LNCS 531, Springer, pp. 23–32,
doi:10.1007/BFb0023716.

[10] Patrick Cousot & Radhia Cousot (1977): Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, ACM, pp. 238–252,
doi:10.1145/512950.512973.

[11] Rüdiger Ehlers (2010): Symbolic Bounded Synthesis. In: CAV, LNCS 6174, Springer, pp. 365–379,
doi:10.1007/s10703-011-0137-x.

[12] E. Allen Emerson & Charanjit S. Jutla (1991): Tree automata, mu-calculus and determinacy. In: FOCS,
IEEE, pp. 368–377, doi:10.1109/SFCS.1991.185392.

[13] Emmanuel Filiot, Naiyong Jin & Jean-François Raskin (2009): An Antichain Algorithm for LTL Realizability.
In: CAV, LNCS 5643, Springer, pp. 263–277, doi:10.1007/978-3-642-02658-4_22.

[14] Erich Grädel (2004): Positional Determinacy of Infinite Games. In: STACS, LNCS 2996, Springer, pp. 4–18,
doi:10.1007/978-3-540-24749-4_2.

[15] Susanne Graf & Hassen Saïdi (1997): Construction of abstract state graphs with PVS. In: CAV, LNCS 1254,
Springer, pp. 72–83, doi:10.1007/3-540-63166-6_10.

[16] Thomas A. Henzinger, Ranjit Jhala & Rupak Majumdar (2003): Counterexample-guided control. In: ICALP,
LNCS 2719, Springer, pp. 886–902, doi:10.1007/3-540-45061-0_69.

[17] Thomas A. Henzinger, Rupak Majumdar, Freddy Y. C. Mang & Jean-François Raskin (2000): Abstract
Interpretation of Game Properties. In: SAS, pp. 220–239, doi:10.1007/978-3-540-45099-3_12.

[18] Youpyo Hong, Peter A Beerel, Jerry R Burch & Kenneth L McMillan (1997): Safe BDD minimization us-
ing don’t cares. In: Proceedings of the 34th annual Design Automation Conference, ACM, pp. 208–213,
doi:10.1145/266021.266068.

[19] Robert P. Kurshan (1994): Automata-theoretic verification of coordinating processes. In: 11th Interna-
tional Conference on Analysis and Optimization of Systems Discrete Event Systems, Springer, pp. 16–28,
doi:10.1007/BFb0033528.

[20] Edward J. McCluskey (1956): Minimization of Boolean Functions*. Bell system technical Journal 35(6), pp.
1417–1444, doi:10.1002/j.1538-7305.1956.tb03835.x.

[21] Nina Narodytska, Alexander Legg, Fahiem Bacchus, Leonid Ryzhyk & Adam Walker (2014): Solving Games
without Controllable Predecessor. In: CAV, Springer.

[22] Christos H. Papadimitriou & Mihalis Yannakakis (1986): A note on succinct representations of graphs.
Information and Control 71(3), pp. 181 – 185, doi:10.1016/S0019-9958(86)80009-2.

http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1007/10722167_15
http://dx.doi.org/10.1109/MEMCOD.2003.1210089
http://dx.doi.org/10.1007/3-540-52148-8_30
http://dx.doi.org/10.1007/BFb0023716
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1007/s10703-011-0137-x
http://dx.doi.org/10.1109/SFCS.1991.185392
http://dx.doi.org/10.1007/978-3-642-02658-4_22
http://dx.doi.org/10.1007/978-3-540-24749-4_2
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/3-540-45061-0_69
http://dx.doi.org/10.1007/978-3-540-45099-3_12
http://dx.doi.org/10.1145/266021.266068
http://dx.doi.org/10.1007/BFb0033528
http://dx.doi.org/10.1002/j.1538-7305.1956.tb03835.x
http://dx.doi.org/10.1016/S0019-9958(86)80009-2

116 AbsSynthe – an abstract synthesis tool.

[23] Martin Sauerhoff & Ingo Wegener (1996): On the complexity of minimizing the OBDD size for incom-
pletely specified functions. IEEE Trans. on CAD of Integrated Circuits and Systems 15(11), pp. 1435–1437,
doi:10.1109/43.543775.

[24] Saqib Sohail & Fabio Somenzi (2009): Safety first: A two-stage algorithm for LTL games. FMCAD, pp.
77–84, doi:10.1007/s10009-012-0224-3.

[25] Fabio Somenzi (1999): Binary Decision Diagrams. In: Calculational system design, 173, IOS Press, p. 303.
[26] Alfred Tarski et al. (1955): A lattice-theoretical fixpoint theorem and its applications. Pacific journal of

Mathematics 5(2), pp. 285–309, doi:10.2140/pjm.1955.5.285.
[27] Wolfgang Thomas (1995): On the synthesis of strategies in infinite games. In: STACS, Springer, pp. 1–13,

doi:10.1007/3-540-59042-0_57.

http://dx.doi.org/10.1109/43.543775
http://dx.doi.org/10.1007/s10009-012-0224-3
http://dx.doi.org/10.2140/pjm.1955.5.285
http://dx.doi.org/10.1007/3-540-59042-0_57

	1 Introduction
	2 Preliminaries
	3 Realizability
	4 Abstractions of Safety Games
	4.1 Conservative Abstractions
	4.2 Predicate Abstraction and Localization Reduction
	4.3 Abstract uncontrollable predecessors
	4.4 Optimizations

	5 Yet another CEGAR algorithm
	6 Strategy Synthesis
	7 Experimental results
	8 Acknowledgements

