
J. Lang (Ed.): TARK 2017

EPTCS 251, 2017, pp. 285–305, doi:10.4204/EPTCS.251.20

c© Pf. Guarino

This work is licensed under the

Creative Commons Attribution License.

The Topology-Free Construction of the Universal Type

Structure for Conditional Probability Systems

Pierfrancesco Guarino

School of Business and Economics
Maastricht University (AE1)
Maastricht, The Netherlands

p.guarino@maastrichtuniversity.nl

We construct the universal type structure for conditional probability systems without any topological

assumption, namely a type structure that is terminal, belief-complete, and non-redundant. In particu-

lar, in order to obtain the belief-completeness in a constructive way, we extend the work of Meier [An

Infinitary Probability Logic for Type Spaces. Israel Journal of Mathematics, 192, 1–58] by proving

strong soundness and strong completeness of an infinitary conditional probability logic with truthful

and non-epistemic conditioning events.

1 Introduction

Games with incomplete information are defined as games where there is lack of “common knowledge”

concerning some aspects of the interaction under scrutiny. Historically the analysis of such games proved

to be problematic due to the infinite regress of beliefs that they induce. That is, starting from a parameter

space X , a player forms beliefs concerning X (1st-order beliefs), beliefs concerning X and what the other

players believe about X (2nd-order beliefs), beliefs concerning X and what the other players believe

about X and what she believes about X (3rd-order beliefs), and so on, where the final object comprised

of all these belief orders is called a belief hierarchy. The problem of obtaining, in line with the Bayesian

paradigm, a single probability measure that describes the players’ uncertainty about all those layers

simultaneously hampered the possibility of implementing equilibrium analysis on this class of games.

The problem was solved in [17] with the introduction of type structures. A type of a player is an

object that implicitly contains all the information needed in order to retrieve the belief hierarchy, that is,

formally a type of a player induces a probability measure over the parameter space and the types of the

opponents. Hence, Harsanyi’s intuition was that, as soon as the sets of types of all players are assumed

to be “common knowledge”, that is, they enter in the formal representation of the game, it becomes

possible for every player to have a single probability measure over the aspects of the game not “common

knowledge”, thus being in position to perform equilibrium analysis.

Still, this solution, even if particularly handy in dealing with specific applications, left open two

questions:

1. Is possible to actually construct a type with bare hands from the infinite regress that we face in

games with incomplete information?

2. Is possible to construct a type structure that, given a certain parameter space, contains all possible

beliefs that players can have about the parameter space and the beliefs of the other players?

The answer to both questions came in the affirmative with [27],1 that, starting from a compact Haus-

dorff parameter space, explicitly constructed a space that answers question (2). Moreover, their construc-

tion was based on the intuition that types are an implicit way to represent infinite hierarchies of beliefs

1Previous papers on the topic, which went unnoticed at the time, were [1] and [5].
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that have one fundamental property, namely of being coherent, that is, higher order beliefs agree with

lower order beliefs. This property allowed [27] to construct types explicitly, hence answering in the

affirmative to question (1).

A rich literature arose on the construction of such large type structures from parameter spaces with

different topological assumptions answering the previous two questions. However, the most general case,

namely the measure-theoretic case without any topological assumptions showed itself to be elusive. The

solution was provided by the path-breaking [19], that introduced two alternative constructions – both

different from the standard arguments relying on coherency – of a topology-free structure that answers

question (2). Indeed, with [21] it also became clear that in this case it is not possible to identify the set of

all types with the set of all coherent belief hierarchies thus explicitly answering question (1). Hence, the

main idea of [19] was to establish the existence, given a certain parameter space, of a type structure T ∗

– which is what we call in this paper the terminal type structure, while they called it universal2 – with

the property that any other type structure T can be uniquely embedded into it in a formally appropriate

sense. Thus, in following this path, the authors moved back to the the implicit approach á la Harsanyi.

Starting from a Polish parameter space, [3] obtained an explicit construction of what we call a uni-

versal type structure for the case of conditional probability systems.3 The authors also made a conjecture

concerning the possibility to perform a topology-free construction á la [19] for conditional probabil-

ity systems. The present paper answers in the affirmative to this longstanding conjecture, thus proving

the existence of the terminal and non-redundant type structure with conditioning events for the purely

measure-theoretic case. Moreover, we explicitly4 construct a topology-free type structure, which we

prove to be isomorphic to the terminal one, which is belief-complete, hence establishing its universal-

ity. To obtain this result we extend the work of [26] by introducing an infinitary probability logic with

truthful and non-epistemic conditioning events.

1.1 A Caveat on Terminology

We want to emphasize one point about the terminology we use, namely our – somewhat non-standard

– definition of universality. Starting from [27] and [19], the notion of universal type structure has been

associated with the idea that any other type structure can be uniquely embedded into the universal one.5

On the contrary, we consciously adopt an extension of the attempt of a standardization of the ter-

minology on large type structures made in [35], where such taxonomy can be used for large preference

structures as well without modifications.6 According to the small extension of the terminology of [35]

2See Section 1.1 for an explanation of why we choose to call such space “terminal”.
3Conditional probability systems have been introduced in the game-theoretic literature by [30] building on the notion of

conditional probability space of [32] (see [16] for an analysis of this and related notions).
4Observe that it is the fact that this construction is indeed explicit (i.e., performed via infinitary probability logic) that

makes it more informative than constructions performed via coalgebraic methods, since both constructions ensure that the type

structure obtained is both terminal and belief-complete ((see Section 3.3 for an explanation of these notions). Indeed, as noticed

by [22], proving the terminality of a type structure via coalgebraic methods ensures a fortiori also the belief-completeness of

this type structure thanks to a standard result of category theory from [24] known as Lambek’s Lemma.
5There is an alternative notion of “universality” that can be found in the literature, for example in [8], [13], and [12].

According to this notion, a type structure is universal if there is an ordinal number α such that, for every ordinal β > α , the

β -belief order is the same as the α-belief order, that is the α-belief order determines all subsequent belief-orders (all the explicit

constructions starting from a topological space satisfy this definition with α := ω , where ω is the ordinal counterpart of N).

In [20] this idea is used to prove that there is no universal (in the sense above) structure for knowledge spaces. See [2] for a

treatment of knowledge spaces.
6A preference structure is a structure that takes preferences and not beliefs as primitive objects, building on the idea of

[34] that beliefs can be derived from preferences. See [11], [10] for explicit constructions of large preference structures with
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we propose, a type structure is universal if it is terminal, belief-complete,7 and non-redundant,8 where

all these definitions are formally introduced in the course of the paper.

1.2 Synopsis

Section 2 is devoted to introduce the mathematical concepts and notation used in the rest of the paper.

In Section 3 we introduce type structures and the terminology we adopt. In Section 4 we present a

construction of the topology-free terminal type structure for conditional probability systems, which we

show to be non-redundant in Section 5. Finally, in Section 6 we construct a type structure, which we

show to be the same as the one in Section 4, that we prove to be belief-complete, hence establishing its

universality.

2 Preliminaries

Given an arbitrary set X , we let ℘(X) denote the power set of X and |X | its cardinality. Also, we let

Q[0,1] := Q∩ [0,1]. Recall that ℵγ denotes an infinite cardinal number, where |N| = ℵ0.9 We use the

symbols “:=” in expressions of the form X := { . . . | . . .} and “
∆

⇐⇒” in expressions of the form X
∆

⇐⇒Y

with the meaning that the right-hand side defines the left-hand side. Concerning logical symbols, we

use ¬, ∧, and ∨ to denote respectively “not”, “and”, and the inclusive reading of “or”. We also employ

the connective ⊻ to denote the exclusive reading of the disjunction;10 Finally, regarding the behavior of

brackets, we adopt the usual conventions of eliminations according to decreasing priority with respect to

¬,
∧

, ∧,
∨

, ∨, ⊻, →, ↔.

Let (X ,ΣX) be a measurable space, that is, a set X endowed with a σ -algebra ΣX . If X := ∏λ∈Λ Xλ

is an arbitrary product space, where every (Xλ ,Σλ ) is a measurable space, then X is endowed with the

product σ -algebra induced by the σ -algebras of its component spaces, i.e., ΣX is the σ -algebra generated

by sets of the form ∏λ∈Λ Aλ , where Aλ ∈Σλ for every λ ∈Λ and Aλ :=Xλ except for finitely many λ ∈Λ.

Let ∆(X) denote the set of all σ -additive probability measures over X considered as a measurable

space, endowed with the σ -algebra Σ∆(X) generated by all sets of the form

β q(A) = {µ ∈ ∆(X) | µ(A)≥ q} ,

where A ∈ ΣX and q ∈ [0,1] or q ∈Q[0,1].

Given ΣX , fix a countable11 subset B ⊆ ΣX \{∅}, and call the space (X ,ΣX ,B) a conditional mea-

surable space.12 The elements B ∈ B can be considered as conditioning events. This gives rise to the

following definition.

topological assumptions and [15] for a topology-free construction.
7Belief-completeness has been explicitly introduced in the literature as completeness by [6]. [35] adopts that term (which

should be the one used for preference structures), but we follow [26] in our terminology.
8See Section 5 for the definition of non-redundancy, which is the notion that does not appear in the original taxonomy [35].

However, recent contributions have stressed the importance of this notion (e.g., [13]).
9See [23, Chapter 3] for an introduction to the topic.

10That is, “p∨ q” denotes the statement “p or q (or both)” [inclusive disjunction] and “p⊻ q” denotes the statement: “either

p or q (but not both)” [exclusive disjunction].
11This requirement is not needed in Section 4, but we cannot dispense with it to establish the results in Section 6.
12To the best of our knowledge the term “conditional measurable space” has not been previously used in the literature. We

adopt it because it seems a rather natural name for such an object.
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Definition 2.1 (Conditional Probability System). A conditional probability system (henceforth, CPS)

on a conditional measurable space (X ,ΣX .B) is a mapping

µ ( · | · ) : ΣX ×B→ [0,1]

that satisfies the following axioms:

A1. For all B ∈ B, µ(B|B) = 1.

A2. For all B ∈ B, µ(·|B) is a σ -additive probability measure on (X ,ΣX).

A3. For all A ∈ ΣX , for all B,C ∈ B, if A ⊆ B ⊆C, then µ(A|B) µ(B|C) = µ(A|C).

Notation. For every B ∈ B, we let µB(·) := µ(·|B).

We constantly employ throughout the paper the functional-theoretical notation such that, given two

arbitrary sets X and Y , the set Y X denotes the family of all functions from X to Y .

Let [∆(X)]B denote the set of all mappings from B to ∆(X) and let ∆B(X)⊆ [∆(X)]B denote the set

of CPSs on (X ,ΣX ,B), with typical elements µ =
(
µB(·)

)
B∈B

∈ ∆B(X). That is, ∆B(X) is the set of all

mappings from B to ∆(X) that satisfy conditions A1-A3 as in Definition 2.1. The set ∆B(X) is endowed

with the σ -algebra generated by sets of the form

β
p
B (A) =

{
µ ∈ ∆B(X)

∣∣ µB(A)≥ p
}
,

where A ∈ ΣX , B ∈ B, and p ∈ [0,1] or p ∈Q[0,1].

Notation. We let ΣB(X) denote the σ -algebra on ∆B(X) defined above.

Remark 2.1. The space (∆B(X),ΣB(X)) is measurable.

Let (X ,ΣX) and (Y,ΣY ) be two measurable spaces and let f ∈ Y X be a (ΣX ,ΣY )-measurable func-

tion.13 It is possible to define a sense in which these two measurable space are equal from a measurable

perspective. This is captured by the following definition.

Definition 2.2 (Measurable Isomorphism). A measurable isomorphism between two measurable spaces

(X ,ΣX) and (Y,ΣY ) is a bijection f ∈ Y X such that both f and f−1 are measurable.

If (X ,ΣX) and (Y,ΣY ) are measurable spaces and f ∈ Y X is measurable, a σ -additive probability

measure in (∆(Y ),Σ∆(Y )) can induce a σ -additive probability measure in (∆(X),Σ∆(X)) via f .

Definition 2.3 (Image Measure (Pushforward)). The image measure (or the pushforward) of a (ΣX ,ΣY )-
measurable function f ∈ Y X is a (Σ∆(X),Σ∆(Y))-measurable map f̂ : ∆(X)→ ∆(Y ), such that

f̂ (µ)(E) := µ( f−1(E)),

for every µ ∈ ∆(X) and for every E ∈ ΣY .

13Recall that a function f ∈ Y X is (ΣX ,ΣY )-measurable if f−1(E) ∈ ΣX for every E ∈ ΣY . In the following, when it is clear

from the context, to lighten the text we omit the reference to the σ -algebras.
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In order to extend Definition 2.3 to the case of CPSs we introduce some additional notation. Let

(X ,ΣX ,B) be a conditional measurable space and define a product space Z := X ×Y , where Y is an

arbitrary measurable space endowed with a σ -algebra ΣY . Then, we define the family of conditioning

events of Z as

BZ := {C ⊆ Z | ∃B ∈ B : C := B×Y } . (2.1)

By exploiting the structure of BZ , we write ∆B(Z) instead of ∆BZ(Z) and we extend Definition 2.3.

Definition 2.4 (Image Measure with Conditioning Events). Let (X ,ΣX ,B) be a conditional measur-

able space. Let Z := X ×Y and Z′ := X ×Y ′ be two product measurable spaces with σ -algebras ΣZ and

ΣZ′ , and with Y and Y ′ arbitrary measurable spaces. Also, let B the set of conditioning events of both

Z and Z′. Then, given a (ΣZ ,ΣZ′)-measurable function f ∈ Z′Z , the image measure with conditioning

events f̂ := ( f̂B)B∈B : ∆B(Z)→ ∆B(Z′) is defined by

f̂ (µB)(E) := µB×Y ′

(
f−1(E)

)

for every CPS µ := (µB) ∈ ∆B(Z) and for every E ∈ ΣZ′ .

In the following, as it is customary, we let I denote the set of players and 0 stand for “nature”, with

0 /∈ I. Then, we define I0 := I∪{0}. We adopt the convention that we typically use i for a representative

element of I0 and j for a representative element of I. Also, given a family of sets (Xi)i∈I0
, we let X :=

∏i∈I0
Xi and X−i := ∏y∈I0\{i} Xy (the same convention applies to a family (X j) j∈I modulo representative

element).

Definition 2.5 (Induced Function). Given a family of functions ( fi)i∈I0
of the form fi : Xi → Yi, the

induced function f : X →Y is defined as

f ((xi)i∈I0
) := ( fi(xi))i∈I0

.

In the rest of the paper we will repeatedly use the following extension of [19, Lemma 4.5] to address

the case of conditional probabilities. As it is customary, given a set X and an arbitrary family of subsets

F ⊆ 2X , we let σ(F) denote the σ -algebra on X generated by F .

Lemma 1. Let (X ,ΣX ,B) be a conditional measurable space. Let AX be an algebra such that ΣX :=
σ(AX) and let AB(X) be the σ -algebra on ∆B(X) generated by sets of the form

{
β

p
B (E)

∣∣ E ∈ AX , p ∈ [0,1], B ∈ B
}
.

Then, AB(X) = ΣB(X). The same result holds if p ∈Q[0,1].

Given an arbitrary product space X := ∏λ∈Λ Xλ , we let projλ X denotes the projection on Xλ of

X , i.e., projλ : X → Xλ is such that projλ (x) := xλ , where x := (xλ )λ∈λ . As it is customary, given a

measurable space (X ,ΣX), for every x ∈ X we let δx denote the Dirac measure on (X ,ΣX): that is, for

every A ∈ ΣX , δx(A) is the measure defined as δx(A) := 1 if x ∈ A and δx(A) := 0 if x /∈ A.14 Finally,

given an arbitrary set X , we let IdX denote the identity function on X , viz., the function IdX : X → X is

such that IdX(x) := x.

14We indulge in the following abuse of notation, that is, for every x ∈ X , we write δx instead of δ{x}.
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3 Type Structures

For the rest of the paper we fix a measurable space (S,ΣS), where the set S is the set of states of na-

ture, and a set of countable conditioning events B ⊆ ΣS \{∅}. Hence, we fix a conditional measurable

space (S,ΣS,B). Observe that in referring to S we use interchangeably the words “parameter space” and

“domain of uncertainty”, even if there is a conceptual difference between the two.15

In the following two sections we use two different typographical conventions to refer to the same ob-

jects. In Section 3.1 we use standard italicized serif math symbols, while in Section 3.2 we use italicized

sans-serif math symbols.

3.1 Standard Formulation

First we provide a formal definition of what a type structure16 is on the conditional measurable space

(S,ΣS,B).

Definition 3.1 (Type Structure). A type structure on a conditional measurable space (S,ΣS,B) is a tuple

T := 〈I0,(S,ΣS,B),(Ti)i∈I0
,(m j) j∈I〉

of profiles of type spaces, and belief functions such that

i) T0 := S and Tj are measurable spaces, called type spaces, for every j ∈ I,

ii) m j := (m j,B)B∈B : Tj → ∆B(T ) is a measurable function, called belief function, for every j ∈ I,

iii) for every j ∈ I, for every t j ∈ Tj, and for every B ∈ B, margTj
m j,B(t j) = δt j

.17

An element t ∈ T is called a state of the world, with T called the set of states of the world or state

space, while a ti ∈ Ti is called an i-type, for every i ∈ I0. We have to distinguish the types that belong

to nature, namely the elements of T0, from the types of an arbitrary player j ∈ I, i.e., the elements of Tj.

The j-types, for every j ∈ I, represent the epistemic states of player j.

Remark 3.1. Observe that point (ii) in Definition 3.1 is well-defined since B ∈ ΣS, for every B ∈ B, and

BT is equal to B from Equation (2.1), since T := S×∏ j∈I Tj.

We modify for our context the adaptation of [4] of the p-belief operator of [28] to address the presence

of conditioning events. Hence, the event that individual j ∈ I ascribes probability at least p to an event

E ⊆ T given a conditioning event B ∈ B is described by

B
p
j,B(E) :=

{
t ∈ proj−1

j (t j)
∣∣∣ m j,B(t j)(E)≥ p

}
. (3.1)

Having formalized the notion of type structure, we provide a formal definition that captures when

two type structures on a conditional measurable space (S,ΣS,B) can be regarded as being ‘equivalent’.

15Indeed, “parameter space” is used in the incomplete information literature, while “domain of uncertainty” is more generic.
16Quite often authors use the word “space” to refer both to a tuple of objects such as T := 〈I0,(S,ΣS,B),(Ti)i∈I0

,(m j) j∈I〉
and the set of types Tj. We distinguish these objects by using “structure” for the tuple and “space” for the set of types.

17This property, even if conceptually appealing, is not necessary for the construction (see for example [15]). [18] and [26]

distinguish type structures which possess this property from those which do not: in their terminology a type structure that

satisifies this requirement is called an Harsanyi type space (viz., structure).
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Definition 3.2 (Type Morphism). Take two type structures

T := 〈I0,(S,ΣS,B),(Ti)i∈I0
,(m j) j∈I〉

and

T
′ := 〈I0,(S,ΣS,B),(T

′
i )i∈I0

,(m′
j) j∈I〉

on the same conditional measurable space (S,ΣS,B) and let ( fi)i∈I0
be an I0-tuple of measurable func-

tions fi : Ti → T ′
i . The induced function f : T → T ′ is called a type morphism if

1. f0 := IdS,

2. for every j ∈ I, m′
j ◦ f j = f̂ ◦m j, viz., the diagram

Tj T ′
j

∆B(T ) ∆B(T ′)

f j

m j m′
j

f̂

commutes.

If f is a measurable isomorphism, then the morphism is called a type isomorphism.

Remark 3.2. Observe that condition (2) is equivalent to saying that for every j ∈ I, t j ∈ Tj, B ∈ B, and

E ⊆ T ′,

m′
j,B( f j(t j))(E) = m j,B(t j)( f−1(E)). (3.2)

Moreover, f preserves belief operators, i.e.,

B
p
j,B( f−1(E)) = f−1(Bp

j,B(E)),

for every 0 ≤ p ≤ 1, j ∈ I, E ⊆ T ′, and B ∈ B.

3.2 Logical Reformulation

We can provide a more refined description of what S actually is. Let X be a set of primitive propositions

with typical element p. For every p ∈ X, we add the negation of p, that is, ¬p, thus obtaining X, with

typical element ϕ . We now define an exogenously imposed family of sets of conditioning propositions B

as follows:

B :=
{

Φ ∈℘(X)\{∅}
∣∣ ∀ϕ ∈ X (ϕ ∈ Φ ⇒¬ϕ /∈ Φ)

}

Again, we denote a typical element of a set of conditioning propositions Φ with ϕ . Observe that this

definition ensures that every Φ ∈ B is not empty and that B is comprised of set of propositions which are

consistent, that is, which do not contain both p and ¬p, for every p ∈ X.

From the tuple (X,B) we can always retrieve a conditional measurable space (S,ΣS,B) as follows.18

The set of states of nature S can be defined as

S :=
{

s
∣∣ ∀ϕ ∈ X (ϕ ∈ s⊻¬ϕ ∈ s

}
.19

18Observe that, even if B is defined in terms of X, we still consider X as our primitive object.
19As pointed out in [26], S could be simply defined as S :=℘(X). We are taking this somewhat longer route of enlarging X

to X, because we have to define an additional obejct, namely B.
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Hence, a state of nature s∈ S is list of primitive propositions that is complete and consistent: it is complete

since for every p ∈ X there is an occurence of either p or ¬p, and it is consistent since the previous “or”

has to be read in its exclusive meaning. We endow S it with the σ -algebra ΣS defined as

ΣS := σ
({

s ∈ S
∣∣ ∀ϕ ∈ X (ϕ ∈ s⊻¬ϕ ∈ s

})
,

where ϕ denotes either a primitive proposition p or its negation ¬p. Finally, B is defined as

B :=

{
B ∈ ΣS \{∅}

∣∣∣∣ ∃Φ ∈ B :
i) ∀ϕ ∈ Φ ∀s ∈ B (ϕ ∈ s),
ii) ∀p ∈ X (p /∈ Φ,¬p /∈ Φ =⇒∃s,s′ ∈ B : p ∈ s,¬p ∈ s′)

}
.

Hence, every state s ∈ B, for every B ∈ B, is again a complete and consistent list of propositions from

X. Before introducing the first definition of this section, we introduce a new bit of notation. We let ⊤
denote a tautology and we adopt the convention that X⊤ := X∪{⊤}. We are now in position to define

type structures for this setting, which provides us a more fine grained perception of the objects under

scrutiny.

Definition 3.3 (Type Structure with Valuation Function). Fix a tuple (X,B), which induces a condi-

tional measurable space (S,ΣS,B). A type structure on (X,B) is a tuple

T := 〈I0,(X⊤,B),(S,ΣS,B),(Ti)i∈I0
,(m j) j∈I ,v〉

of profiles of type spaces, and belief functions such that

i) T0 := S and T j are measurable spaces, called type spaces, where T j is defined for every j ∈ I, and

with T := ∏i∈I0
Ti;

ii) m j := (m j,B)B∈B : T j → ∆B(T ) is a measurable function, called belief function, for every j ∈ I;

iii) for every j ∈ I, for every t j ∈ T j, and for every B ∈ B, margT j
m j,B(t j) = δt j

;

iv) v : S×X⊤ →{0,1} is a measurable function, called valuation function such that

– for every p ∈ X⊤

v ( ·,p ) :=

{
1, if p ∈ s,

0, if p /∈ s,

– v(s,⊤) = 1 for every s ∈ S.

Much in the same spirit of the previous section, we want to be able to say if two type structures on

the same domain of uncertainty are the same in this framework as well. The following definition captures

this.

Definition 3.4 (Type Morphism with Valuation Function). Take two type structures

T := 〈I0,(X⊤,B),(S,ΣS,B),(Ti)i∈I0
,(m j) j∈I ,v〉

and

T′ := 〈I0,(X⊤,B),(S,ΣS,B),(T
′
i )i∈I0

,(m′
j) j∈I ,v〉

on the same conditional measurable space (S,ΣS,B) and let (fi)i∈I0
be an I0-tuple of measurable functions

fi : Ti → T ′
i . The induced function f : T → T ′ is called a type morphism if
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1. f0 := IdS,

2. for every j ∈ I, m′
j ◦ f j = f̂ ◦m j, viz., the diagram

T j T ′
j

∆B(T ) ∆B(T ′)

f j

m j m′
j

f̂

commutes,

3. for every s ∈ S and for every p ∈ X⊤

v(s,p) = v(f0(s),p).

If f is a measurable isomorphism, then the morphism is called a type isomorphism.

3.3 Large Type Structures

In this section we collect the definitions of large type structures that we employ in this paper. Observe

that, as pointed out in Section 1.1, they are all standard with one exception, namely the definition of

universality. First we introduce a notion that is going to be crucial in the remainder of the paper.

Definition 3.5 (Class of Type Structures). We let T denote the class of all type structures T on

(S,ΣS,B) with set of players I.

In the following definition, by employing the notation introduced in Section 3.1, we do not distin-

guish between type structures with and without valuation functions.

Definition 3.6 (Belief-Complete Type Structure). A type structure T := 〈I0, (S, ΣS, B), (T i)i∈I0
,

(m j) j∈I〉 in T is belief-complete if, for every j ∈ I, the function m j is surjective.

Definition 3.7 (Terminal Type Structure). A type structure T := 〈I0,(S,ΣS,B),(T i)i∈I0
,(m j) j∈I〉 in T

is terminal if for every other type structure T in T there is a unique type morphism from T to T .20

Since non-redundancy needs a specific apparatus that we develop in Section 4, we postpone the

formal definition of this notion until Section 5. As mentioned in Section 1.1, the definition of universality

we use that comes next is not standard, but it is in line with the terminology introduced in [35].

Definition 3.8 (Universal Type Structure). A type structure T := 〈I0,(S,ΣS,B),(T i)i∈I0
,(m j) j∈I〉 is

universal if it is belief-complete, terminal, and non-redundant (as in Definition 5.1).

20Observe that this definition can be translated in category-theoretical terms by saying that T is terminal in the category of

type structures on (S,ΣS,B). Not surprisingly, this is the origin behind the usage of this attribute for such large type structures,

which was advocated by [1] and [5]. Other papers that explicitly refer to a categorical reformulation of the problem at hand are

[36], [37], and [31]. Alternatively, T can be seen as a terminal coalgebra (see [33] for an introduction to coalgebras). Building

on previous work by [38] and [29], this is the path chosen by [22] to construct the topology-free terminal type structure with

unawareness. An alternative definition of terminality for topological settings can be found in [13], where a terminal type

structure T is defined as a type structure such that, for every player j ∈ I, for every type t j ∈ Tj in an arbitrary type structure

T , there is a type t j ∈ T j in T such that t j and t j induce the same coherent hierarchy of beliefs.
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The goal of this paper is to show that, for every conditional measurable space (S,ΣS,B), there is a

type structure that is universal as in Definition 3.8.

4 Terminality

In this section we provide a proof of the following theorem.

Theorem 1. For every conditional measurable space (S,ΣS,B) there exists a terminal type structure

T ∗ := 〈I0,(S,ΣS,B),(T
∗

i )i∈I0
,(m∗

j) j∈I〉 on (S,ΣS,B) that is unique up to measurable isomorphism.

Remark 4.1. [19, Proposition 3.5] prove that there is at most one terminal type structure on a mea-

surable space (S,ΣS) up to measurable isomorphism. Their proof applies to our case of a conditional

measurable space (S,ΣS,B) without modifications.

The next two sections, namely Section 4.1 and Section 4.2, are devoted to prove this theorem via

what are called infinite hierarchies of beliefs.

4.1 Infinite Hierarchies of Beliefs – Theoretical Framework

We let T := 〈I0,(S,ΣS,B),(Ti)i∈I0
,(m j)i∈I〉 be an arbitrary type structure on the conditional measurable

space (S,ΣS,B), where S denotes the set of states of nature.

The idea behind this construction is to build infinite hierarchies of beliefs, i.e., beliefs of increasing

order, and, for every belief order, a corresponding family of conditioning events.

Definition 4.1 (Infinite Hierarchies of Beliefs). For every k ≥ 0, let Hk
0 := S. For every j ∈ I, H0

j is a

singleton. Then, proceed with the following inductive construction:

H0
j :=

{
θ j

}
, B0 := B,

...
...

Hk+1
j = Hk

j ×∆B
k

(Hk), Bk+1 =
{

C ⊆ Hk+1
j

∣∣∣ ∃B ∈ Bk : C = B×∆B
k

(Hk)
}

,

...
...

The space of j-hierachies for player j is

HB
j := H0

j ×
∞

∏
l=0

∆B(H l), (4.1)

where Hk := ∏i∈I0
Hk

i for every k ≥ 0. By having for nature H0 := S, let HB := H0×∏ j∈I HB
j . The space

HB is called the hierarchies space.

Notation. Observe that in the previous definition and in what follows the symbol B in conjunction with

the hierarchies space, e.g., the expression “HB
i ” in Equation (4.1), acts just as a reminder that we are

dealing with conditioning events and should not be read in the functional analytic way.

Thus, for every k ≥ 1, Bk+1 = C(Bk) :=
{

C ⊆ Hk+1
j

∣∣∣ ∃B ∈ Bk : C = B×∆Bk

(Hk
j )
}

represents an

original conditioning event B ∈ B0 to the k-order belief (indeed, recall that B0 := B). For this reason, in
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Equation (4.1) we write B, without mentioning the hierarchy of conditioning events: that is, for every k

we have ∆Bk

(Hk
j ) = ∆B(Hk

j ).

We define πk
i : HB

i → Hk
i as a projection function on hierarchies, with the induced map defined as

πk : HB → Hk. This is a crucial tool in the following definition, which is needed to unpack information,

for every conditioning event B ∈ B, from the spaces Ti, for every i ∈ I0.

Definition 4.2 (i-Description Map). The function hi := (hi,B)i∈I0,B∈B : Ti →HB
i is called the i-description

map, for every i ∈ I0, and it is inductively defined as follows:

• for i = 0, and for every k ≥ 0, hk
0 := IdS;

• for j ∈ I, h0
j,B is uniquely defined since H0

j is a singleton, while hk+1
j,B , for every B ∈ B, is defined as

hk+1
j,B (t j)

(
hk

j,B(t j),m j,B(t j)◦ (h
k
B)

−1
)

:=
(

h0
j,B(t j),m j,B(t j)◦ (h

0
B)

−1, . . . ,m j,B(t j)◦ (h
k
B)

−1
)
,

where hk
B := (hk

i,B)i∈I0
.

Then, for every i ∈ I0, the i-description of ti at B ∈ B is the element hi,B(ti) defined as the unique function

from Ti to Hi such that hk
i,B = πk

i ◦hi,B, for every k ≥ 0, i.e.,

hi,B(ti) :=
(

h0
i,B(ti),mi,B(ti)◦ (h

0
B)

−1, . . . ,mi,B(ti)◦ (h
k
B)

−1, . . .
)
.

Finally, let h0 := IdS.

Definition 4.3 (Description Map). The description map is the unique induced function

h := (hi,B)i∈I0 ,B∈B : T → HB.

The element h(t) is called the description of t.

We want to be sure that hierarchies are well-behaved under type morphisms,something which we

establish next.

Proposition 1. Type morphisms preserve descriptions and i-descriptions.

4.2 The Terminal Type Structure via Infinite Hierarchies of Beliefs

The construction of the terminal type structure T ∗ comes in various steps. Ffirst of all we want to define

T ∗ and then we want to show that it is a type structure as in Definition 3.1. To do so, we want to

construct a profile of type spaces (T ∗
i )i∈I0

that are measurable and a profile of belief functions (m∗
j) j∈I

that are measurable.

We start from the type spaces. In doing so, we do not actually construct the types. Rather we

explicitly assume the existence of type structures on the conditional measurable space (S,ΣS,B) and we

construct the terminal type spaces as objects that contain all the possible types living in all the possible

type structures on (S,ΣS,B).

Definition 4.4 (The Terminal Type Spaces for Infinite Hierarchies). Let (S,ΣS,B) be a conditional

measurable space and for every i ∈ I0 define type spaces T ∗
i on (S,ΣS,B) as follows:
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• T ∗
0 := S,

• for every j ∈ I

T ∗
j :=

{
t∗j ∈ H j

∣∣ ∃t j ∈ Tj : t∗j = (h j,B(t j))B∈B

}
,

where Tj is a type space from a type structure T in the class of type structures T on (S,ΣS,B).

Finally, endow T ∗
i , with the σ -algebra inherited from Hi.

Definition 4.5. For every j ∈ I, let m∗
j := (m∗

j,B) j∈I,B∈B : T ∗
j → ∆B(T ∗) be a function defined by

m∗
j,B(t

∗
j ) = m j,B(t j)◦h−1

B , (4.2)

for every t j ∈ Tj and for every B ∈ B.

Remark 4.2. Observe that m∗
j is a σ -additive probability measure.

Observe now that, in proving the following theorem, not only we have to prove that the function

defined as in Definition 4.5 is measurable for every j ∈ I, but we also have to prove that it is actually a

belief function as in Definition 3.1.

Theorem 2. The tuple T ∗ := 〈I0,(S,ΣS,B),(T
∗

i )i∈I0
,(m∗

j) j∈I〉 is a type structure on (S,ΣS,B).

The next theorem establishes the result that the type structure T ∗ defined above is the terminal type

structure, hence proving Theorem 1.

Theorem 3 (Terminality of T ∗ via hierarchies). The type structure

T
∗ := 〈I0,(S,ΣS,B),(T

∗
i )i∈I0

,(m∗
j) j∈I〉

is the terminal type structure on (S,ΣS,B).

5 Non-redundancy

In this section we adapt the definition of non-redundancy in [25] to the construction performed in

Section 4.21 We let σ(hi) denote the smallest σ -algebra over Ti for which the i-description map hi

defined in Definition 4.2 is measurable, for every i ∈ I0.

Definition 5.1 (Non-redundancy). A type structure T := 〈I0,(S,ΣS,B),(Ti)i∈I0
,(m j) j∈I〉 in T non-

redundant if, for every j ∈ I, σ(h j) is a σ -algebra that separates points in Tj.
22

Non-redundancy coincides with the idea that the hierarchy maps are injective. [25, Proposition 2]

characterizes non-redundancy and states that the topology-free terminal type structure of [19] is non-

redundant. Here, by adapting it to the presence of conditioning events, we state the proposition dividing

it in two parts.

21See [25, Definition 6], [27, Definition 2.5], and [14].
22A σ -algebra ΣX on X separates point if for every x,x′ ∈ X there exists a E ∈ ΣX such that x ∈ E and x′ /∈ E.
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Proposition 2 (Characterization of non-redundancy [25, Proposition 2]).

1. A type structure T := 〈I0,(S,ΣS,B),(Ti)i∈I0
,(m j) j∈I〉 is non-redundant if and only if the hierarchy

map h j : Tj → HB
j is injective.

2. A non-redundant type structure separates point as in Definition 5.1.

The second part of the proposition, that corresponds to point (3) of Proposition 2 in [25], estab-

lishes the non-redundancy of our type structure T ∗ := 〈I0,(S,ΣS,B),(T
∗

i )i∈I0
,(m∗

j) j∈I〉 constructed in

Section 4.2.

Theorem 4 (Non-redundancy of T ∗ [25, Proposition 2]). The terminal type structure T ∗ := 〈I0, (S,
ΣS,B),(T

∗
i )i∈I0

,(m∗
j) j∈I〉 is non-redundant.

6 Belief-Completeness

In this section we prove that the type structure T ∗ := 〈I0,(S,ΣS,B),(T
∗

i )i∈I0
,(m∗

j) j∈I〉 previously con-

structed in Section 4.2, which we have shown to be terminal and non-redundant, is also belief-complete

as in Definition 3.6.

6.1 Infinitary Logic for Type Structures

In this section we introduce our language, which is an opportune modification of the infinitary proba-

bilistic logic for type structures introduced in [26] to deal with updating beliefs.

6.1.1 Syntax

Recall from Section 3.2 that a tuple (X,B) always induces a conditional measurable space (S,ΣS,B).
However, again from Section 3.2, the original domain of uncertainty is (X⊤,B), that is, the set of prim-

itive propositions X augmented with the symbol ⊤, which denotes the constant truth, and the family of

set of conditioning propositions B induced from X via X.

Definition 6.1 (Finitary Formulae). The set L of finitary formulae is the least set such that:

• p ∈ L, for every p ∈ X⊤;

• if ϕ ∈ L, then ¬ϕ ∈ L;

• if ϕ ,ψ ∈ L, then ϕ ∧ψ ∈ L;

• if ϕ ∈ L, then pα
j,Φ(ϕ) ∈ L, for every j ∈ I, Φ ∈ B, and α ∈Q[0,1].

Remark 6.1. The operator pα
j,Φ(ϕ) captures the statement “given information Φ individual j assigns

probability at least α to ϕ”

Definition 6.2 (Cardinality of L). The cardinality of L is defined as
∣∣L
∣∣ := max{ |I| , |X| , |ℵ0| } with∣∣L

∣∣= ℵγ for a cardinal number γ .

From Definition 6.1 we construct the infinitary language that we adopt in this paper.
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Definition 6.3 (Formulae). The set L of formulae is the least set such that:

• ϕ ∈ L, for every ϕ ∈ L;

• if ϕ ∈ L, then ¬ϕ ∈ L;

• if Γ ⊆ L such that |Γ| ≤ 2ℵγ , then
(∧

ϕ∈Γ ϕ
)
∈ L.

Observe that the set of formulae L can be seen as comprised of two different parts: one part deals with

the statements concerning nature, while the other with all those statements that pertain to an individual

j, for every j ∈ I. the following two definitions capture this intuition.

Definition 6.4 (0-Formulae). The set L0 of formulae is the set of (infinitary) propositional formulae in

L, where the infinitary part comes from the last condition in Definition 6.3.

Definition 6.5 ( j-Formulae). For every j ∈ I the set L j of j-formulae is the least set of formulae such

that:

• if ϕ ∈ L, then pα
j,Φ(ϕ) ∈ L j, for every Φ ∈ B and α ∈Q[0,1];

• if ϕ ∈ L j, then ¬ϕ ∈ L j;

• if Φ ⊆ L j such that |Φ| ≤ 2ℵγ , then
(∧

ϕ∈Φ ϕ
)
∈ L j.

Notation. We let Li := L∩Li, for every i ∈ I0.

6.1.2 Semantics

Our starting point for the semantics of our infinitary language is Definition 3.3, i.e., the definition of type

structure with valuation function.

Notation. Fix a type structure T := 〈I0,(X⊤,B),(S,ΣS,B),(Ti)i∈I0
,(m j) j∈I ,v〉. Then, for every B ∈ B,

we let

[m j,B(t j)] :=
{
(proj−1(t ′j)) ∈ T

∣∣m j,B(t j) = m j,B(t
′
j)
}

for every j ∈ I.

Remark 6.2 (Product Type Structure). Since all the definitions we have provided in Section 3 of a

type structure, irrespective of the presence or not of the valuation function, correspond to a product type

structure, it is understood that in the following t := (ti)i∈I0
= (s,(t j) j∈I).

Notation. For every ϕ ∈ L, we let JϕKT := { t ∈ T | (T, t) |= ϕ }.

Definition 6.6 (Model for Type Structure). Fix a type structure T on (X⊤,B). Then:

• (T, t) |=⊤ always;

• for every p ∈ X⊤,

(T, t) |= p
∆

⇐⇒ v(s,p) = 1;

• for every ϕ ,ψ ∈ L,

(T, t) |= ϕ ∧ψ
∆

⇐⇒ (T, t) |= ϕ ,(T, t) |= ψ ;
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• for every ϕ ∈ L,

(T, t) |= ¬ϕ
∆

⇐⇒ (T, t) 6|= ϕ ;

• for every j ∈ I, for every α ∈ Q[0,1], for every ϕ ∈ L such that JϕKT ∈ ΣS, and for every Φ ∈ B with

corresponding B ∈ B

(T, t) |= pα
j,Φ(ϕ)

∆
⇐⇒ m j,B(t j)

(
JϕKT

)
≥ α ,

where t j = proj j t .

Definition 6.7 (Valid Formula). A formula ϕ ∈ L is valid in the class of type structures T over (X,B) if

(T, t) |= ϕ

for every T on (X⊤,B).

Notation. Fix a Γ ⊆ L, let T be a type structure on (X⊤,B). Then we write (T, t) |= Γ if (T, t) |= ψ for

every ψ ∈ Γ.

Definition 6.8 (Model of Γ). Fix a Γ ⊆ L. The subset Γ has a model in T if there is a type structure T

on (X⊤,B) and a t ∈ T such that (T, t) |= Γ.

Notation. Fix a Γ ⊆ L and let ϕ ∈ L be arbitrary. Then we write Γ |= ϕ if

(T, t) |= Γ =⇒ (T, t) |= ϕ

for every type structure T on (X⊤,B) and for every t ∈ T .

6.2 Strong Soundness and Strong Completeness

6.2.1 Strong Soundness

Before introducing our system, we introduce the following piece of notation. Given a formula ϕ ∈L, we

let Prim(ϕ)denote the conjunction of all the propositions from X that appear in ϕ .23

The following is the list of axioms schemata and inference rules of our system HB. Observe that the

list is not minimal.

Definition 6.9 (System HB). The system HB is given by the constant ⊤ and by the following list of axioms

schemata and inference rules (where every α ,β ∈Q[0,1]).

• Axioms schemata:

– Primitive Propositions Schemata:

A1. ϕ → (ψ → ϕ), ∀ϕ ,ψ ∈ L;

A2. (ϕ → (ψ → ρ))→ ((ϕ → ψ)→ (ϕ → ρ)), ∀ϕ ,ψ ,ρ ∈ L;

A3. (¬ϕ →¬ψ)→ (ψ → ϕ), ∀ϕ ,ψ ∈ L;

A4.
∧

ϕ∈Φ

(ψ → ϕ)→ ψ →
∧

ϕ∈Φ

ϕ , ∀ψ ∈ L ∀Ψ ⊆ L (|Ψ| ≤ 2ℵγ );

23Observe that usually this set is defined according to the set of primitive propositions X alone. However, since our condi-

tioning propositions are defined on X, we need to modify the definition accordingly.
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A5.
∧

ϕ∈Φ

ϕ → ψ , ∀ψ ∈ L ∀Ψ ⊆ L (|Ψ| ≤ 2ℵγ );

A6.
∧

a∈A

∨

b∈A

ϕa,b →
∨

g∈AA

∧

a∈A

ϕa,g(a), ∀ϕ ∈ L0, |A| ≤ ℵγ;

– Conditional Probabilistic Schemata:

P1. p0
j,Φ(ϕ), ∀Φ ∈ B ∀ϕ ∈ L;

P2. p1
j,Φ(⊤), ∀Φ ∈ B;

P3. p1
j,Φ(Φ), ∀Φ ∈ B;

P4. p1
j,Φ(Prim(ϕ)), ∀Φ ∈ B ∀ϕ ∈ L(Prim(ϕ)⊆ Φ);

P5.
∧

α<β

pα
j,Φ(ϕ)→ p

β
j,Φ(ϕ), ∀Φ ∈ B ∀ϕ ∈ L;

P6.
(

pα
j,Φ(ϕ ∧ψ)∧p

β
j,Φ(ϕ ∧¬ψ)

)
→ p

α+β
j,Φ (ϕ), ∀ϕ ,ψ ∈ L, α +β ≤ 1;

P7.
(
¬pα

j,Φ(ϕ ∧ψ)∧¬p
β
j,Φ(ϕ ∧¬ψ)

)
→¬p

α+β
j,Φ (ϕ), ∀ϕ ,ψ ∈ L, α +β ≤ 1;

P8. pα
j,Φ(ϕ)→¬p

β
j,Φ(¬ϕ), ∀ϕ ∈ L, α +β > 1);

P9. p1
j,Φ(ϕ → ψ)→ (pα

j,Φ(ϕ)→ pα
j,Φ(ψ)), ∀ϕ ∈ L;

– Updating Schemata:

U1.
(

pα
j,Ψ(Ξ)∧p

β
j,Φ(Ψ)

)
→ p

αβ
j,Φ(Ξ), ∀Φ ⊆ Ψ ⊆ Ξ ∈ B;

U2.
(

pα
j,Ψ(ϕ)∧p

β
j,Φ(Ψ)

)
→ p

αβ
j,Φ(ϕ), ∀Φ ⊆ Ψ ∈ B ∀ϕ ∈ L;

U3.
(
¬pα

j,Ψ(Ξ)∧¬p
β
j,Φ(Ψ)

)
→¬p

αβ
j,Φ(Ξ), ∀Φ ⊆ Ψ ⊆ Ξ ∈ B;

U4.
(
¬pα

j,Ψ(ϕ)∧¬p
β
j,Φ(Ψ)

)
→¬p

αβ
j,Φ(ϕ), ∀Φ ⊆ Ψ ∈ B ∀ϕ ∈ L;

• Inference rules:

– (MP) Modus Ponens: From ϕ and ϕ → ψ infer ψ;

– (C) Conjunction: From Γ ⊆L such that |Φ| ≤ 2ℵγ infer
∧

ϕ∈Γ

ϕ;

– (N) Necessitation: From ϕ ∈ L infer p1
j,Φ(ϕ), for every Φ ∈ B;

– (C0) Continuity at ∅: From
∧

n∈N

ϕn →¬⊤ where, for every n ∈ N, ϕn ∈ L, infer, for every Φ ∈ B,

∧

n∈N\{0}

(
∨

l∈N

¬p
1
k

j,Φ

(
∧

n≤l

ϕn

))
.

If additionally ℵγ > ℵ0, then HB includes:

• Axiom schemata:

– Introspection Schema:

I1. pα
j,Φ(ϕ)→ p1

j,Φ(p
α
j,Φ(ϕ)), ∀Φ ∈ B ∀ϕ ∈ L;

• Inference Rule:
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– (UI) Uncountable Introspection: For every j ∈ I, from ϕ →

(
∨

n∈N

ϕn

)
, with ϕ ∈ L j and for every

n ∈N, ϕn ∈ L, infer, for every Φ ∈ B,

ϕ →
∧

k∈N\{0}

(
∨

l∈N

p
1− 1

k

j,Φ

(
∨

n≤l

ϕn

))
.

As it is customary the set of theorems of HB is the smallest set of formulae that contains the objects

in Definition 6.9. Also, a proof of ϕ from Γ in the system HB is a sequence such that:

• the length of the sequence is strictly smaller than 2ℵγ

• ϕ is the last formula of the sequence,

• every formula present in the sequence is either a theorem of HB or it is a formula inferred from the

previous formulae via Modus Ponens of Conjunction.

Finally, we say that a subset Γ ⊆ L implies syntactically ϕ ∈ L, written Γ ⊢ ϕ , if there is a proof of ϕ

from Γ.

Definition 6.10 (Consistent Family of Formulae). A set of formulae Γ is consistent, written C(Γ), if

there is no formula ϕ ∈ L such that there are proofs of ϕ and ¬ϕ from Γ in HB.

Definition 6.11 (Strong Soundness). The system HB is strongly sound if

Γ ⊢ ϕ =⇒ Γ |= ϕ

for every Γ ⊆ L and for every ϕ ∈ L.

Proposition 3 (Strong Soundess of HB). The system HB is strongly sound with respect to the class of

type structures T.

6.2.2 Strong Completeness

First we recall for self-containment the definition of strong completeness.

Definition 6.12 (Strong Completeness). The system HB is strongly complete if

Γ |= ϕ =⇒ Γ ⊢ ϕ

for every Γ ⊆ L and for every ϕ ∈ L.

The following is the definition of what we call the canonical (measurable) type spaces that comprise

the object we are after.

Definition 6.13 (The Canonical Type Spaces). Fix a tuple (X⊤,B) and let (S,ΣS,B) be the conditional

measurable space induced from (X⊤,B). Then:
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• for every i ∈ I0, define

T
∗
i :=





∧

ϕ∈Θ j

ϕ ∧
∧

ψ∈L j\Θ j

¬ψ

∣∣∣∣∣∣
Θ j ⊆L j : C

(
Θ j ∪

{
¬ψ

∣∣ ψ ∈ L j \Θ j

})


 ;

• define T ∗ := ∏i∈I0
T ∗

i .

For every i ∈ I0 and ψi ∈ Li define

[ψi]i := { ti ∈ T
∗
i | ⊢ ti → ψi }

Then,

• the σ -algebra on T ∗
i is defined as

Σ∗
i := σ

({
[ψi]i

∣∣ ψi ∈ L j

})

for every i ∈ I0;

• the σ -algebra on T ∗ denoted by Σ∗, is the product σ -algebra of the σ -algebras Σ∗
i , with i ∈ I0.

Notation. We let C∗
i :=C∗

i ×∏y∈I0\{i} Ω∗
y with Ci ∈ Σ∗

i , for every i ∈ I0. Also, we let [ϕi]
∗ := ([ϕi]i)

∗.

The definitions that follow introduce the belief functions and the valuation function. Much in the

same spirit of Section 4 we have to prove that the belief functions are actually measurable.

Definition 6.14 (The Belief Functions). The canonical belief function m∗
j , for every j ∈ I, is defined as

a profile m∗
j := (m∗

j,B)B∈B , where m∗
j,B, for every B ∈ B, is defined as

m
∗
j,B(t j)([ϕ ]∗) := sup

{
α ∈Q[0,1]

∣∣ ⊢ t j → pα
j,Φ(ϕ)

}

for every Φ ∈ B which corresponds to B ∈ B and ϕ ∈ L.

Definition 6.15 (The Valuation Function). The canonical valuation function v∗ is defined as

v
∗(s,p) :=

{
1, if s ∈ [p],

0, if s /∈ [p],

for every s ∈ S, and for every p ∈ X, and

v
∗(s,⊤) = 1

always.

We are finally in position to define the canonical type structure T∗ on (X⊤,B), which is comprised

of all the objects previously introduced in this section.

Definition 6.16 (The Canonical Type Structure T∗). The canonical type structure T∗ on (X⊤,B) is the

tuple

T∗ := 〈I0,(X⊤,B),(S,ΣS,B),(T
∗
i )i∈I0

,(m∗
j) j∈I ,v

∗〉

where the type spaces T ∗
i , for every i∈ I0 are defined as in Definition 6.13, the belief functions m∗

j , for ev-

ery j ∈ I, are defined as in Definition 6.14, and the valuation function v∗ is defined as in Definition 6.15.
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The following result is crucially established via the canonical type structure as defined in Definition 6.16.

Proposition 4 (Strong Completeness of HB). The system HB is strongly complete with respect to the

class of type structures T.

6.3 Belief-Completeness

The canonical type structure T∗ constructed in the previous section is nothing more than the terminal type

structure T ∗ := 〈I0,(S,ΣS,B),(T
∗

i )i∈I0
,(m∗

j) j∈I〉 previously constructed in Section 4.2. This is indeed

established next.

Proposition 5 (Terminality of T∗). The type structure T∗ := 〈I0,(X⊤,B),(S,ΣS,B),(T
∗
i )i∈I0

,(m∗
j) j∈I ,v

∗〉
is terminal.

Corollary 1. From Remark 4.1, the terminal type structure T ∗ constructed in Section 4.2 and the ter-

minal type structure T∗ constructed in Definition 6.16 are one and the same object.

Before stating the main result of this section, one last piece of notation, which let us express the

belief function in a version often encountered in the literature.24

Notation. For every j ∈ I, let β j := margT− j
◦ m j, that is,

β j := (β j,B)B∈B) : Tj → ∆B(T− j).

The function β ∗
j is defined accordingly with the obvious modifications.

Theorem 5 (Belief-Completeness of T∗). In the HB system, let j ∈ I be arbitrary with µ∗
j ∈ ∆B(T ∗

− j).
Thus, there is one and only one t j ∈ T ∗

j such that β ∗
j (t j) = µ∗

j . Also, for every j ∈ I, β ∗
j is a measurable

isomorphism.

Hence, we are now in position to state the final result of the paper as a theorem, even if it is simply

a corollary of Theorem 3, Theorem 4, and Theorem 5. In doing so, we are allowed from Corollary 1 to

move back to the notation employed in Section 4 and Section 5.

Theorem 6 (Universality of T ∗). The type structure T ∗ := 〈I0,(S,ΣS,B),(T
∗

i )i∈I0
,(m∗

j) j∈I〉 is the uni-

versal type structure up to measurable isomorphism.
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