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Recent ideas about epistemic modals and indicative conditionals in formal semantics have significant

overlap with ideas in modal logic and dynamic epistemic logic. The purpose of this paper is to show

how greater interaction between formal semantics and dynamic epistemic logic in this area can be

of mutual benefit. In one direction, we show how concepts and tools from modal logic and dynamic

epistemic logic can be used to give a simple, complete axiomatization of Yalcin’s [16] semantic

consequence relation for a language with epistemic modals and indicative conditionals. In the other

direction, the formal semantics for indicative conditionals due to Kolodny and MacFarlane [9] gives

rise to a new dynamic operator that is very natural from the point of view of dynamic epistemic logic,

allowing succinct expression of dependence (as in dependence logic) or supervenience statements.

We prove decidability for the logic with epistemic modals and Kolodny and MacFarlane’s indicative

conditional via a full and faithful computable translation from their logic to the modal logic K45.

Logic and the formal semantics of natural language are related by blood and yet somewhat estranged.

Today it is rare that formal semanticists consider questions of axiomatizability or decidability of the

consequence relations defined by model-theoretic accounts of natural language fragments. Meanwhile

logicians focus more on logics motivated by mathematical or philosophical concerns than on logics

arising from semantic theories in linguistics.

The cost of estrangement is that insights from one field that would be useful for the other may go

unnoticed or efforts may be unnecessarily duplicated. The aim of this paper is to help encourage a family

reunion between logic and formal semantics of natural language, by way of concrete examples. The topic

of modals and conditionals is a prime example of overlap between formal semantics and logic. In this

paper, we consider the case of epistemic modals and indicative conditionals.

In §1, we show how concepts and tools from modal logic and dynamic epistemic logic can be used

to give a simple, complete axiomatization of Yalcin’s [16] semantic consequence relation for a language

with epistemic modals and indicative conditionals. Then in §2, we show that the formal semantics

for indicative conditionals due to Kolodny and MacFarlane [9] gives rise to a new dynamic operator

that is very natural from the point of view of dynamic epistemic logic, allowing succinct expression

of dependence (as in dependence logic) or supervenience statements. We prove decidability for the

logic with epistemic modals and Kolodny and MacFarlane’s indicative conditional via a full and faithful

computable translation from their logic to the modal logic K45.

There are other examples of clear overlap between formal semantics and dynamic epistemic logic,

such as the connection between the dynamic logical consequence of [14] and the dynamic consequence

of [1], between the notions of epistemic contradictions in [15] and of Moorean sentences in [6], and

more. Thus, the examples to follow by no means exhaust the connections to be made between formal

semantics and dynamic epistemic logic.
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1 Applying DEL to Formal Semantics

Throughout we work with the language L (⇒) defined by:

ϕ ::= p | ¬ϕ | (ϕ ∧ϕ) |�ϕ | (ϕ ⇒ ϕ),

where p comes from a fixed set of propositional variables. The connectives ∨, →, ↔, ⊥, and ♦ are

defined as usual, so ♦ϕ := ¬�¬ϕ . In the intended interpretation, � and ♦ stand for “must” and “might”,

and ⇒ stands for the indicative conditional “if. . . then”. L is the set of formulas that do not contain ⇒.

Nonmodal formulas are formulas of L that do not contain � (and hence ♦).

We begin by reviewing Yalcin’s [16] semantics for L (⇒). Models are tuples M = 〈W,V 〉 where W

is a nonempty set and V is a function assigning to each propositional variable p a proposition V (p)⊆W .

Formulas are evaluated in a model M at a world w∈W relative to an information state X ⊆W as follows:

• M ,w,X � p iff w ∈V (p);

• M ,w,X � ¬ϕ iff M ,w,X 2 ϕ ;

• M ,w,X � ϕ ∧ψ iff M ,w,X � ϕ and M ,w,X � ψ ;

• M ,w,X � �ϕ iff for all v ∈ X , M ,v,X � ϕ ;

• M ,w,X � ♦ϕ iff for some v ∈ X , M ,v,X � ϕ ;

• M ,w,X � ϕ ⇒ ψ iff M ,w,JϕKM ,X � �ψ ,

where JϕKM ,X = {v ∈ X | M ,v,X � ϕ}.1

A formula ϕ is valid iff it is true at every world relative to every information state in every model.

To define consequence, first let M ,X � ϕ (X “accepts” ϕ) iff for all w ∈ X , we have M ,w,X � ϕ . Then

for a set Σ of formulas, Yalcin defines ϕ to be an informational consequence of Σ iff for every model

M = 〈W,V 〉 and information state X ⊆W , if M ,X � σ for all σ ∈ Σ, then M ,X � ϕ . (If ϕ is valid, then

ϕ is an informational consequence of ∅, but the converse fails for, e.g., p∨♦¬p.)

The above “domain semantics” for � and ♦ is presented by Yalcin [15] as an alternative to standard

Hintikka-style relational semantics for epistemic logic. Conceptually, the two semantics are different.

Mathematically, the domain semantics is equivalent to a special case of the relational semantics, using

what we might call uniform relational models 〈W,R,V 〉 in which every two worlds have the same set of

R-successors. In fact, since the definition of “informational consequence” only involves pairs w,X such

that w ∈ X , it is as if we were working with relational models in which R is the universal relation. In

this setting, informational consequence is equivalent to the notion of global consequence from modal

logic (see [3, §1.5]). Thus, from the point of view of modal logic, the above semantics for � and ♦

can be summarized as follows: the proposed consequence relation for epistemic modals is the global

consequence relation over universal relational models according to the standard semantics (cf. [12]).2

As for the indicative conditional ⇒, this is where dynamic epistemic logic [5, 2] enters the story.

Consider a system of dynamic epistemic logic that extends the language of propositional modal logic

with formulas of the form [ϕ ]ψ , intuitively interpreted as “after information update with ϕ , ψ is the

case.” Starting with relational models 〈W,R,V 〉, the semantics for [ϕ ]ψ as in [5, §4.9] is:

1Equivalently, we could define JϕKM ,X = {v ∈ W | M ,v,X � ϕ} and M ,w,X � ϕ ⇒ ψ iff M ,w,X ∩ JϕKM ,X � �ψ , but

we prefer less notation. Also note that if one wants to require that information states be nonempty, then the clause for ⇒ must

be changed, e.g., to M ,w,X � ϕ ⇒ ψ iff M ,w,X 2 ♦ϕ or M ,w,JϕKM ,X � �ψ .
2Yalcin [15] also proposes domain semantics for a language with both epistemic modals and attitude verbs such as ‘believe’

and ‘suppose’, in which case the comparison of domain semantics and relational semantics is not as straightforward.
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• 〈W,R,V 〉,w � [ϕ ]ψ iff 〈W,Rϕ
,V 〉,w � ψ ,

where Rϕ is defined by: wRϕv iff wRv and 〈W,R,V 〉,v � ϕ . A superficial difference between this se-

mantics and that of ⇒ above is that here we are “changing the model,” whereas above we “shifted the

information state.”3 The semantics for ϕ ⇒ ψ is in fact equivalent to the semantics for [ϕ ]�ψ . The form

[ϕ ]�ψ has been studied extensively in dynamic epistemic logic, where the main interest is in reasoning

about what is known or believed after information update, so ⇒ turns out to be a familiar modality.

Elsewhere [7, 8] we have argued that it is valuable not only in logic but also in natural language

semantics to accompany a formal semantic proposal with a complete axiomatization (when possible),

capturing basic entailment predictions of the semantics from which all of its other entailment predictions

may be derived. In this spirit, and taking advantage of the connections with modal and dynamic epistemic

logic above, we establish as our first main result a complete axiomatization of the logic of Yalcin’s [16]

semantics for epistemic modals and indicative conditionals.4

Theorem 1.1. The set of L (⇒) formulas that are valid according to Yalcin’s semantics is the Yalcin

logic: the smallest set of formulas that is closed under replacement of equivalents,5 modus ponens for the

material conditional →, and necessitation for �, and contains all substitution instances of propositional

tautologies and all instances of the axioms in Figure 1. Moreover, ϕ is an informational consequence of

{σ1, . . . ,σn} iff (�σ1 ∧ ·· ·∧�σn)→�ϕ is a theorem of the Yalcin logic.

K �(ϕ → ψ)→ (�ϕ →�ψ)

4 ♦♦ϕ → ♦ϕ 5 ♦�ϕ →�ϕ

I1 (ϕ ⇒ π)↔�(ϕ → π) for π nonmodal

I2 (ϕ ⇒ (α ∧β ))↔ ((ϕ ⇒ α)∧ (ϕ ⇒ β ))

I3 (ϕ ⇒ α)→ (ϕ ⇒ (α ∨β ))

I4 (ϕ ⇒ α)→ (ϕ ⇒�α)

I5 ((ϕ ⇒ (α ∨�β ))∧¬(ϕ ⇒ β ))→ (ϕ ⇒ α)

I6 ((ϕ ⇒ (α ∨♦β ))∧ (ϕ ⇒¬β ))→ (ϕ ⇒ α)

I7 ¬(ϕ ⇒ β )→ (ϕ ⇒ ♦¬β )

Figure 1: Axioms of the Yalcin logic.

Before proving Theorem 1.1, let us observe how the axioms in Figure 1 can be seen as corresponding

to natural language inferences. The following examples are taken verbatim from [8].

3The semantics of dynamic epistemic logic can be equivalently repackaged by pulling the relation R out of the model, so

we would define ‘〈W,V 〉,w,R � ϕ’, and then in the case where R is uniform, by replacing R with the image X = R[W ] = {v ∈
W | ∃w ∈W : wRv}, so we would define ‘〈W,V 〉,w,X � ϕ’ as in domain semantics.

4Bledin [4] also proposes a logic for Yalcin’s modal-indicative semantics, but with a Fitch-style natural deduction system

for an extension of the language that includes symbols for information states and information acceptance relations.
5Closure under replacement of equivalents means that if α ↔ β ∈ L, and ϕ ′ is obtained from ϕ by replacing some occurrence

of α in ϕ by β , then ϕ ↔ ϕ ′ ∈ L.
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Example 1.2. Axiom I4 corresponds to a key prediction of the semantics that a sentence like

(1) If Miss Scarlet didn’t do it, then Colonel Mustard did it.

entails

(2) If Miss Scarlet didn’t do it, then it must be that Colonel Mustard did it.

Axiom I5 suggests the prediction that the sentence

(3) If Miss Scarlet did it, then either Colonel Mustard was her accomplice or it must be that Professor

Plum was involved.

together with

(4) It’s not the case that if Miss Scarlet did it, then Professor Plum was involved.

entails

(5) If Miss Scarlet did it, then Colonel Mustard was her accomplice.

And axiom I6 suggests the prediction that

(6) If Miss Scarlet did it, then either she used the pipe or she might have used the candlestick.

together with

(7) If Miss Scarlet did it, she didn’t use the candlestick.

entails

(8) If Miss Scarlet did it, then she used the pipe.

Finally, axiom I7 suggests the prediction that one who rejects

(9) If Miss Scarlet was in the ballroom, then Colonel Mustard is guilty.

should accept

(10) If Miss Scarlet was in the ballroom, it might be that Colonel Mustard is not guilty.

We will prove Theorem 1.1 using several lemmas. The first lemma follows from the well-known

fact that K45 is the logic of the “uniform” relational models mentioned above, plus the equivalence of

domain semantics and uniform relational semantics for L .

Lemma 1.3. The set of L formulas that are valid according to Yalcin’s semantics is the logic K45.

The next two lemmas show that the conditional axioms of the Yalcin logic, which we have presented

in their form in Figure 1 to bring out connections with natural language inference as in Example 1.2, can

be equivalently repackaged as valid reduction axioms in the sense of dynamic epistemic logic [5].

Lemma 1.4. The following axioms are valid according to Yalcin’s semantics:

A1 (ϕ ⇒ π)↔�(ϕ → π) for π a nonmodal formula;

A2 (ϕ ⇒ (α ∧β ))↔ ((ϕ ⇒ α)∧ (ϕ ⇒ β ));

A3 (ϕ ⇒ (α ∨�β ))↔ ((ϕ ⇒ α)∨ (ϕ ⇒ β ));

A4 (ϕ ⇒ (α ∨♦β ))↔ ((ϕ ⇒ α)∨¬(ϕ ⇒¬β )).
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Proof. For A1, suppose π is nonmodal. By definition, we have

M ,w,X � ϕ ⇒ π iff M ,w,JϕKM ,X � �π

iff JϕKM ,X ⊆ JπKM ,JϕKM ,X

. (1)

Since π is nonmodal, we have

JπKM ,JϕKM ,X

= JϕKM ,X ∩ JπKM ,X
,

so the right side of (1) is equivalent to

JϕKM ,X ⊆ JπKM ,X
,

which by definition is equivalent to M ,w,X � �(ϕ → π).
For A2, by definition we have

M ,w,X � ϕ ⇒ (α1 ∧α2) iff M ,w,JϕKM ,X � �(α1 ∧α2)

iff M ,w,JϕKM ,X � �α1 ∧�α2

iff M ,w,JϕKM ,X � �αi, i = 1,2

iff M ,w,X � ϕ ⇒ αi, i = 1,2.

For A3, by definition we have

M ,w,X � ϕ ⇒ (α ∨�β ) iff M ,w,JϕKM ,X � �(α ∨�β )

iff JϕKM ,X ⊆ Jα ∨�β KM ,JϕKM ,X

iff JϕKM ,X ⊆ JαKM ,JϕKM ,X

∪ J�β KM ,JϕKM ,X

. (2)

Using (2), we first show that if M ,w,X � ϕ ⇒ (α ∨�β ), then M ,w,X � ϕ ⇒ α or M ,w,X � ϕ ⇒ β .

Case 1: J�β KM ,JϕKM ,X

=∅. Then (2) implies

JϕKM ,X ⊆ JαKM ,JϕKM ,X

⇛ M ,w,X � ϕ ⇒ α . (3)

Case 2: J�β KM ,JϕKM ,X

6=∅. Then

∃v ∈W : M ,v,JϕKM ,X � �β ,

and we have

M ,v,JϕKM ,X � �β iff JϕKM ,X ⊆ Jβ KM ,JϕKM ,X

iff M ,w,X � ϕ ⇒ β .

Next, we show that if M ,w,X � ϕ ⇒ α or M ,w,X � ϕ ⇒ β , then M ,w,X � ϕ ⇒ (α ∨�β ),

using (2). If M ,w,X � ϕ ⇒ α , then JϕKM ,X ⊆ JαKM ,JϕKM ,X

, which implies (2). On the other hand, if

M ,w,X � ϕ ⇒ β , then we have

JϕKM ,X ⊆ Jβ KM ,JϕKM ,X

⇛ ∀v ∈ X : M ,v,JϕKM ,X � �β

⇛ ∀v ∈ JϕKM ,X : M ,v,JϕKM ,X � �β

⇛ JϕKM ,X ⊆ J�β KM ,JϕKM ,X

,
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which implies (2).

For A4, by similar reasoning to that for (2), we have

M ,w,X � ϕ ⇒ (α ∨♦β ) iff JϕKM ,X ⊆ JαKM ,JϕKM ,X

∪ J♦β KM ,JϕKM ,X

. (4)

Using (4), we show that if M ,w,X � ϕ ⇒ (α ∨♦β ), then M ,w,X � ϕ ⇒ α or M ,w,X � ¬(ϕ ⇒¬β ).

Case 1: J♦β KM ,JϕKM ,X

=∅. Then as in Case 1 for A3, (4) implies M ,w,X � ϕ ⇒ α .

Case 2: J♦β KM ,JϕKM ,X

6=∅. Then we observe that

J♦β KM ,JϕKM ,X

6=∅ iff ∃v ∈ JϕKM ,X : M ,v,JϕKM ,X � ♦β

iff JϕKM ,X ∩ Jβ KM ,JϕKM ,X

6=∅

iff JϕKM ,X 6⊆W \ Jβ KM ,JϕKM ,X

iff JϕKM ,X 6⊆ J¬β KM ,JϕKM ,X

iff M ,w,JϕKM ,X 2�¬β

iff M ,w,X 2 ϕ ⇒¬β

iff M ,w,X � ¬(ϕ ⇒¬β ). (5)

Finally, we show that if M ,w,X � ϕ ⇒ α or M ,w,X � ¬(ϕ ⇒¬β ), then M ,w,X � ϕ ⇒ (α ∨�β ),
using (4). The argument starting from M ,w,X � ϕ ⇒ α is the same as for A3. The argument from

M ,w,X � ¬(ϕ ⇒¬β ) uses (5) and the observation that

JϕKM ,X ∩ Jβ KM ,JϕKM ,X

6=∅ ⇛ ∀v ∈ X : M ,v,JϕKM ,X � ♦β

⇛ ∀v ∈ JϕKM ,X : M ,v,JϕKM ,X � ♦β

⇛ JϕKM ,X ⊆ J♦β KM ,JϕKM ,X

,

which implies (4).

Next we verify that the axioms of Lemma 1.4 are indeed an equivalent repackaging of the axioms of

the Yalcin logic.

Lemma 1.5. A formula ϕ is a theorem of the Yalcin logic iff ϕ is a theorem of the logic defined in the

same way as the Yalcin logic (in Theorem 1.1) but with axioms A1-A4 in place of I1-I7.

Proof. Axioms I1 and I2 are just axioms A1 and A2, so we begin with I3. As an instance of A2,

(ϕ ⇒ (δ ∧ γ))↔ ((ϕ ⇒ δ )∧ (ϕ ⇒ γ)), we have

(ϕ ⇒ ((α ∨β )∧ (α ∨¬β )))↔ ((ϕ ⇒ (α ∨β ))∧ (ϕ ⇒ (α ∨¬β ))).

Since (α ∨β )∧ (α ∨¬β ) is equivalent to α , by replacement of equivalents the left-to-right direction of

the biconditional gives us (ϕ ⇒ α)→ (ϕ ⇒ (α ∨β )), which is I3.

For I4, as an instance of A3, (ϕ ⇒ (α ∨�β ))↔ ((ϕ ⇒ α)∨ (ϕ ⇒ β )), we have

(ϕ ⇒ (⊥∨�β ))↔ ((ϕ ⇒⊥)∨ (ϕ ⇒ β )).

Since ⊥∨�β is equivalent to �β , by replacement of equivalents the right-to-left direction of the bicon-

ditional gives us (ϕ ⇒ β )→ (ϕ ⇒�β ), which is I4.
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I5 is a Boolean rewriting of the left-to-right direction of A3, and I6 is a Boolean rewriting of the

left-to-right direction of A4.

Finally, for I7, as an instance of A4, (ϕ ⇒ (δ ∨♦γ))↔ ((ϕ ⇒ δ )∨¬(ϕ ⇒¬γ)), we have

(ϕ ⇒ (⊥∨♦¬β ))↔ ((ϕ ⇒⊥)∨¬(ϕ ⇒¬¬β )),

which by replacement of equivalents is equivalent to

(ϕ ⇒ ♦¬β )↔ ((ϕ ⇒⊥)∨¬(ϕ ⇒ β )),

the right-to-left direction of which gives us ¬(ϕ ⇒ β )→ (ϕ ⇒ ♦¬β ), which is I7.

In the other direction, given the observations above, it only remains to show that the right-to-left

directions of A3 and A4 are theorems of the Yalcin logic, which by Boolean reasoning reduces to showing

that the following four formulas are theorems of the Yalcin logic:

(ϕ ⇒ α)→ (ϕ ⇒ (α ∨�β )) (6)

(ϕ ⇒ β )→ (ϕ ⇒ (α ∨�β )) (7)

(ϕ ⇒ α)→ (ϕ ⇒ (α ∨♦β )) (8)

¬(ϕ ⇒¬β )→ (ϕ ⇒ (α ∨♦β )). (9)

Formula (6) is an instance of I3. For (7), as instances of I4 and I3, we have:

(ϕ ⇒ β )→ (ϕ ⇒�β )

(ϕ ⇒�β )→ (ϕ ⇒ (�β ∨α)),

and we can use replacement of equivalents to replace �β ∨α by α ∨�β . Next, (8) is an instance of I3.

Finally, for (9), as an instance of I7, we have

¬(ϕ ⇒¬β )→ (ϕ ⇒ ♦¬¬β )

and hence

¬(ϕ ⇒¬β )→ (ϕ ⇒ ♦β )

by replacement of equivalents; and as an instance of I3, we have

(ϕ ⇒ ♦β )→ (ϕ ⇒ (♦β ∨α))

and hence

(ϕ ⇒ ♦β )→ (ϕ ⇒ (α ∨♦β ))

by replacement of equivalents. Putting the above implications together, we can derive (9).

For the next step in our argument, we use the following well-known fact about the modal logic K45,

which is exactly the set of theorems of the Yalcin logic restricted to the language L .

Lemma 1.6. Every formula ϕ ∈ L is provably equivalent in K45 to a formula of the form
∧

1≤i≤n

(π i ∨♦β i ∨�β i
1 ∨ ·· ·∨�β i

mi
),

where π i, β i, and β i
1, . . . ,β

i
mi

are nonmodal formulas, and to a formula of the form

∨

1≤i≤n

(π i ∧�β i ∧♦β i
1 ∧ ·· ·∧♦β i

mi
),

where π i, β i, and β i
1, . . . ,β

i
mi

are nonmodal formulas.
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Now we take advantage of Lemmas 1.5 and 1.6 to show that using the Yalcin logic, every formula

containing conditionals can be reduced to an equivalent formula without conditionals.

Lemma 1.7. Every formula of L (⇒) is provably equivalent in the Yalcin logic to a formula of L .

Proof. It suffices to show that any conditional formula containing no embedded conditionals is equiv-

alent to a formula of L . For in any formula containing conditionals, there must be “innermost” oc-

currences of conditional formulas containing no embedded conditionals, and then we can replace those

occurrences of conditional formulas—using replacement of equivalents—with equivalent formulas of L ,

repeating this process until we eventually obtain a formula containing no conditionals. For a rigorous

treatment of such a reduction argument, see [5, §7.4].

In what follows, we use the fact from Lemma 1.5 that A1–A4 are derivable in the Yalcin logic.

Given a conditional formula ϕ ⇒ ψ with no conditionals in ϕ or ψ , we use the fact from Lemma 1.6

that ψ is equivalent to a formula ψ ′ in K45 conjunctive normal form:

ψ ′ :=
∧

1≤i≤n

(π i ∨♦β i ∨�β i
1 ∨ ·· ·∨�β i

mi
).

By replacement of equivalents, ϕ ⇒ ψ is equivalent to ϕ ⇒ ψ ′. By repeated application of A2, ϕ ⇒ ψ ′

is equivalent to
∧

1≤i≤n

(ϕ ⇒ (π i ∨♦β i ∨�β i
1 ∨ ·· ·∨�β i

mi
)).

So it suffices to show that each formula of the form

ϕ ⇒ (π ∨♦β ∨�β1 ∨ ·· ·∨�βm)

is equivalent to a formula of L . Let

α := π ∨�β1 ∨ ·· ·∨�βm.

By replacement of equivalents, we can equivalently write the above conditional as

ϕ ⇒ (α ∨♦β ),

which is equivalent, by A4, to

(ϕ ⇒ α)∨¬(ϕ ⇒¬β ),

which is in turn equivalent, by A1, to

(ϕ ⇒ α)∧¬�(ϕ →¬β ),

since β is nonmodal. Now it suffices to show that each formula of the form

ϕ ⇒ (π ∨�β1 ∨ ·· ·∨�βm)

is equivalent to a formula of L . We do so by induction on m. Now let

α := π ∨�β1 ∨ ·· ·∨�βm−1,

so we can write the above conditional as

ϕ ⇒ (α ∨�βm),
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which is equivalent, by A3, to

(ϕ ⇒ α)∧ (ϕ ⇒ βm),

which is in turn equivalent, by A1, to

(ϕ ⇒ α)∧�(ϕ → βm),

because βm is nonmodal. By the inductive hypothesis, the first disjunct is equivalent to a formula of L .

This completes the proof that our original formula ϕ ⇒ ψ is equivalent to a formula of L .

We can now put everything together to prove Theorem 1.1.

Proof. For soundness, if ϕ is derivable in the Yalcin logic, then by Lemma 1.5, ϕ is derivable in the logic

defined with the axioms of Lemma 1.4, which we have shown to be valid. Since the rules also preserve

validity, ϕ is valid. For completeness, if ϕ is valid, then so is its equivalent ϕ ′ in the modal language L

provided by Lemma 1.7, given soundness. By the completeness of K45 in Lemma 1.3, ϕ ′ is provable

in K45 and hence in the Yalcin logic, and by Lemma 1.7, the Yalcin logic proves ϕ ↔ ϕ ′. Thus, the

Yalcin logic proves ϕ . Finally, it is easy to see that ϕ is an informational consequence of {σ1, . . . ,σn} iff

(�σ1∧·· ·∧�σn)→�ϕ is valid according to Yalcin’s semantics and hence iff (�σ1∧·· ·∧�σn)→�ϕ

is a theorem of the Yalcin logic by our previous reasoning.

2 From Formal Semantics to DEL

In this section, we consider an alternative semantics for the indicative conditional, suggested in the formal

semantics literature. This semantics is also of interest purely from the perspective of dynamic epistemic

logic, but it has not been previously considered in the DEL literature.

The semantics for the indicative ⇒ in §1 was intended for the case where the antecedent is nonmodal.

If the antecedent is modal, things become trickier, for the well-known reason in dynamic epistemic logic

[5, 6] that updating with the antecedent ϕ may fail to bring about an information state that accepts ϕ . The

desire is to update the information state in such a way that the antecedent ϕ is accepted and then check

whether the consequent ψ is accepted. However, we cannot say that the information state X should be

updated to the largest X ′ ⊆ X that accepts the antecedent ϕ , because even if there is such a subset, there

might fail to be a unique largest one. A solution from Kolodny and MacFarlane [9] is the following:

• M ,w,X � ϕ ⇒ ψ iff M ,w,X ′ � �ψ for all X ′ such that

(i) X ′ ⊆ X , (ii) X ′ ⊆ JϕKM ,X ′
, and (iii) there is no X ′′ satisfying (i) and (ii) such that X ′ ( X ′′.

Although this semantics is equivalent to that of §1 for nonmodal ϕ , they are not equivalent in general.

Example 2.1. Consider a two-world model M with w and v such that p is true only at w and q is true only

at v. According to the semantics of §1, the formula (�p∨�¬p) ⇒ q is trivially true at M ,w,{w,v},

because J�p∨�¬pKM ,{w,v} = ∅. By contrast, according to the Kolodny-MacFarlane semantics, the

formula (�p∨�¬p) ⇒ q is false at M ,w,{w,v}, because {w} is an X ′ ⊆ {w,v} satisfying conditions

(i), (ii), and (iii), and yet M ,w,{w} 2�q.

Example 2.2. According to the Kolodny-MacFarlane semantics, (p∧♦¬p)⇒⊥ is valid, because there

can be no nonempty X ′ such that X ′ ⊆ Jp∧♦¬pKM ,X ′
. By contrast, according to the semantics of §1,

(p∧♦¬p)⇒⊥ is invalid, because on that semantics (p∧♦¬p)⇒ ϕ is equivalent to p ⇒ ϕ for any ϕ .
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From the point of view of dynamic epistemic logic, the above semantics can be seen as interpreting

ϕ ⇒ψ as a very natural statement: “every minimal epistemic change yielding knowledge of ϕ also yields

knowledge of ψ .” As Example 2.1 shows, there may be more than one minimal epistemic change yielding

knowledge of ϕ , and as Example 2.2 shows, there may be no epistemic change yielding knowledge of ϕ .

The standard interpretation of [ϕ ]�ψ in dynamic epistemic logic, as “information update with ϕ yields

knowledge of ψ ,” is quite different, due to the phenomenon of unsuccessful update alluded to above,

wherein updating with ϕ fails to produce an epistemic state in which ϕ is known. The difference between

[ϕ ]�ψ under the standard semantics and ϕ ⇒ ψ under the Kolodny-MacFarlane semantics is that in the

first case, ϕ specifies the mechanism of epistemic change—remove from the information state all worlds

that satisfied ¬ϕ—whereas in the second case, ϕ specifies the desired result of epistemic change—an

epistemic state in which ϕ is known. We think that both ways of reasoning are important for dynamic

epistemic logicians interested in information update and learning. There are also natural generalizations

of the Kolodny-MacFarlane semantics to the multi-agent setting in which dynamic epistemic logicians

typically work (e.g., every minimal epistemic change yielding common knowledge of ϕ also yields

common knowledge of ψ), but in this preliminary analysis we restrict attention to the single-agent case.

Among the interesting application of the Kolodny-MacFarlane conditional is to succinctly express

dependence as in modal dependence logic [13] or supervenience as in philosophy [11].

Definition 2.3. In an information state X , the (truth value of the) propositional variable q depends on

or supervenes on the (truth values of the) propositional variables p1, . . . , pn iff any two worlds in X that

agree on the truth values of p1, . . . , pn also agree on the truth value of q.

The dependence of q on p1, . . . , pn can be expressed in the language L by the formula

∧

s∈state(p1,...,pn)

(�(s → q)∨�(s →¬q)), (10)

where state(p1, . . . , pn) is the set of all conjunctions of the form ±1 p1 ∧ ·· ·∧±n pn with ±i being either

¬ or empty. But whereas the formula (10) grows exponentially in the size of n, the Kolodny-MacFarlane

conditional allows us to express dependence with a formula that grows only linearly in the size of n.

Proposition 2.4. In an information state X , the propositional variable q depends on p1, . . . , pn iff the

following formula is true relative to X according to the Kolodny-MacFarlane semantics for ⇒:

(
∧

1≤i≤n

(�pi ∨�¬pi))⇒ (�q∨�¬q). (11)

Proof. It is easy to see that if q depends on p1, . . . , pn in X , then (11) is true relative to X . Conversely,

suppose (11) is true relative to X , and x and y are worlds in X that agree on the truth values of p1, . . . , pn.

Then we claim that the set X ′ of all worlds in X that agree with x on the truth values of p1, . . . , pn meets

conditions (i), (ii), and (iii) above. For (ii), by the definition of X ′, we have M ,w,X ′ � �pi ∨�¬pi for

each i. For (iii), note that if X ′ ( X ′′ ⊆ X , then there is a z ∈ X ′′ \X ′ that disagrees with x on the truth

value of some pi, which with x,z ∈ X ′′ implies that M ,w,X ′′ 2 �pi ∨�¬pi, so X ′′ does not satisfy (ii).

Now since X ′ satisfies (i), (ii), and (iii), and (11) is true relative to X , it follows that M ,w,X ′ ��q∨�¬q,

which implies that all worlds in X ′, and in particular x and y, agree on the truth value of q.

Below we will provide a computable translation (·)† from the language L (⇒) into the basic modal

language L . As shown in Lemma 2.6, this translation preserves (in)validity according to Kolodny and

MacFarlane’s semantics. By Lemma 1.3 and the fact that we have not changed the semantics from §1 for

formulas without conditionals, this provides a full and faithful translation from the logic with epistemic
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modals and Kolodny and MacFarlane’s indicative conditional to the logic K45. As is well-known, K45

is decidable, so it follows that Kolodny and MacFarlane’s logic is also decidable.

The strategy for our translation is as follows. We first define the translation λ ∗ for a conditional

formula λ with no embedded conditionals, using K45 normal forms (Lemma 1.6). We then extend this

to a translation from the full language by induction.

Suppose we are given a conditional formula

λ := Θ ⇒ Ω

where Θ and Ω are in K45 disjunctive normal form, so that

Θ :=
∨

i∈I

θi and Ω :=
∨

j∈J

ω j,

where for nonmodal formulas ϕi, ψi, χn, α j, β j, and γm,

θi := ϕi ∧�ψi ∧
∧

n∈Di

♦χn and ω j := α j ∧�β j ∧
∧

m∈D j

♦γm.

We would like our translation λ ∗ to express in the basic modal language that every maximal set of worlds

making some of the θi formulas true also makes at least one of the ω j formulas true. Where K indexes

some subset of the θi formulas, infoK below gives the nonmodal information that each world in an

information state must satisfy in order for the information state to accept
∨

i∈K θi, while goodK asserts

that
∨

i∈K θi will indeed be accepted when we restrict the current information state to the set of worlds

satisfying infoK , thanks to sufficient witnesses for the ♦χn formulas. Meanwhile, maxK adds that K is

maximal, with respect to the set of worlds satisfying infoK , among such subsets. For K ⊆ I, let

infoK := (
∨

k∈K

ϕk)∧
∧

k∈K

ψk,

let

goodK :=
∧

k∈K

∧

n∈Dk

♦(infoK ∧ χn),

and let

maxK := goodK ∧
∧

L⊆I

(

(

�(infoK → infoL)∧♦(¬infoK ∧infoL)
)

→¬goodL

)

.

Concerning the consequent formula Ω: for S ⊆ J, let

stateS :=
∧

s∈S

αs ∧
∧

s∈J\S

¬αs.

Finally, given our λ above, we define

λ ∗ :=
∧

K⊆I

(

maxK →�

(

infoK →
∧

S⊆J

(

stateS →
∨

s∈S

(

�(infoK → βs)∧
∧

m∈Ds

♦(infoK ∧ γm)
)

)

)

)

.

As we show in Lemma 2.6.3 below, if maxK is true, then (the truth set of) infoK picks out a maximal

Θ-accepting subset of the current information state. The translation thus guarantees that if we restrict
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the current information state to such a subset, then at least one of the disjuncts of Ω will be true at each

world in the restricted information state. In particular, for at least one such formula ωs we have that βs

is true throughout the subset, so �βs is true, and each of the ♦γm conjuncts of ωs is witnessed by some

world making γm true. We also need to know that these formulas infoK for which maxK holds pick out

all of the maximal Θ-accepting subsets, which is the content of Lemma 2.6.2.

We regard (·)∗ as a partial function from L (⇒) to L such that ϕ∗ is defined iff ϕ is of the form

Θ ⇒ Ω as above. We then define a partial function (·)† from L (⇒) to L as follows:

• p† = p; (¬ϕ)† = ¬ϕ†; (ϕ ∧ψ)† = ϕ† ∧ψ†; (�ϕ)† =�ϕ†;

• (ϕ ⇒ ψ)† =

{

(

(ϕ†)NF ⇒ (ψ†)NF
)∗

if this is defined

undefined otherwise
,

where (χ)NF is the K45 disjunctive normal form of χ . An easy induction shows that (·)† is in fact a total

function, so

• (ϕ ⇒ ψ)† =
(

(ϕ†)NF ⇒ (ψ†)NF
)∗

,

and ϕ† ∈ L for every ϕ ∈ L (⇒).

Theorem 2.5 (Reduction of L (⇒) to L ). For every δ ∈ L (⇒):

1. δ † ∈ L ;

2. for every pointed model M ,w,X : M ,w,X � δ iff M ,w,X � δ †.

Proof. The proof is by induction on δ . The only nontrivial case is where δ is of the form ϕ ⇒ ψ ,

so we must show M ,w,X � ϕ ⇒ ψ iff M ,w,X �
(

(ϕ†)NF ⇒ (ψ†)NF
)∗

. By the inductive hypothesis,

JϕKM ,X = Jϕ†KM ,X , and by Lemma 1.6, since ϕ† ∈ L , Jϕ†KM ,X = J(ϕ†)NFKM ,X . Thus, JϕKM ,X =
J(ϕ†)NFKM ,X , and similarly JψKM ,X = J(ψ†)NFKM ,X . It follows that M ,w,X � ϕ ⇒ ψ iff M ,w,X �

(ϕ†)NF ⇒ (ψ†)NF . To complete the proof, it only remains to show that for any Θ ⇒ Ω where Θ,Ω ∈ L

are in normal form, we have M ,w,X � Θ ⇒ Ω iff M ,w,X � (Θ ⇒ Ω)∗, as in Proposition 2.7 below.

As the proof of Theorem 2.5 shows, the key task is now to prove Proposition 2.7, for which we need

a preliminary lemma. From now on, we say that Y ⊆ X is a Θ-subset of X if Y ⊆ JΘKM ,Y .

Lemma 2.6. For any pointed model M ,w,X :

1. if M ,w,X � goodL, then JinfoLKM ,X is a Θ-subset of X ;

2. if Y is a maximal Θ-subset of X , there is a K ⊆ I such that Y = JinfoKKM ,X and M ,w,X � maxK ;

3. if M ,w,X � maxL, then JinfoLKM ,X is a maximal Θ-subset of X .

Proof. For part 1, suppose M ,w,X � goodL. We must show that JinfoLKM ,X ⊆ JΘKM ,JinfoLKM ,X

.

So suppose v ∈ JinfoLKM ,X . Then there is some p ∈ L such that v ∈ JϕpKM ,X . We claim that v ∈

JθpKM ,JinfoLKM ,X

. By definition of infoL, we have JinfoLKM ,X ⊆ J∧
l∈L

ψlKM ,X and hence JinfoLKM ,X ⊆

J∧
l∈L

ψlKM ,JinfoLKM ,X

since the ψl’s are nonmodal, so

JinfoLKM ,X ⊆ J
∧

l∈L

�ψlKM ,JinfoLKM ,X

. (12)
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Then since M ,w,X � goodL, we also have

M ,w,X �
∧

n∈Dp

♦(infoL ∧ χn),

which with the fact that the χn’s are nonmodal implies

JinfoLKM ,X ⊆ J
∧

n∈Dp

♦χnKM ,JinfoLKM ,X

. (13)

By v ∈ JϕpKM ,X , (12), and (13), we have v ∈ JθpKM ,JinfoLKM ,X

. Hence JinfoLKM ,X ⊆ JΘKM ,JinfoLKM ,X

.

For part 2, suppose Y is a maximal Θ-subset of X , so Y ⊆ JΘKM ,Y and there is no Z such that

Y ( Z ⊆ X and Z ⊆ JΘKM ,Z . Let

K = {k ∈ I | JθkKM ,Y 6=∅}. (14)

We will show that Y ⊆ JinfoKKM ,X . First, observe that for each k ∈ K, since JθkKM ,Y 6= ∅, we have

Y ⊆ JψkKM ,X , so Y ⊆ J ∧
k∈K

ψkKM ,X . Moreover, since Y ⊆ JΘKM ,Y , for every y ∈ Y , there is a ky ∈ K with

y ∈ Jθky
KM ,Y , so y ∈ Jϕky

KM ,X . Thus, for every y ∈ Y , y ∈ Jϕky
∧
∧

k∈K

ψkKM ,X . Hence Y ⊆ JinfoKKM ,X .

Next we show that Y ⊇ JinfoKKM ,X . Suppose not, so there is a w ∈ JinfoKKM ,X such that w 6∈ Y .

Since w ∈ JinfoKKM ,X , we have w ∈ J ∧
k∈K

ψkKM ,X . Now we claim that Y ∪{w} ⊆ JΘKM ,Y∪{w}. Consider

a y ∈ Y and a disjunct θr of Θ such that y ∈ JθrKM ,Y , which exists since Y ⊆ JΘKM ,Y . We claim that

y ∈ JθrKM ,Y∪{w}. First, clearly y ∈ Jϕr ∧
∧

n∈Dr

♦χnKM ,Y implies y ∈ Jϕr ∧
∧

n∈Dr

♦χnKM ,Y∪{w}. Then since

w ∈ J ∧
k∈K

ψkKM ,X , y ∈ J�ψrKM ,Y implies y ∈ J�ψrKM ,Y∪{w}. Thus, y ∈ JθrKM ,Y∪{w} and hence y ∈

JΘKM ,Y∪{w}, so we have shown that Y ⊆ JΘKM ,Y∪{w}. It only remains to observe that w ∈ JΘKM ,Y∪{w}.

Since w∈ JinfoKKM ,X , there is a t ∈K such that w∈ JϕtKM ,X . It is then easy to see that w∈ JθtKM ,Y∪{w}.

Hence Y ∪{w} ⊆ JΘKM ,Y∪{w}, contradicting the assumption that Y is a maximal Θ-subset of X .

Thus, we have shown that Y = JinfoKKM ,X . Finally, we must show that M ,w,X � maxK . To show

that M ,w,X � goodK , it follows from (14) that for every k ∈ K and n ∈ Dk, Y ∩ JγnKM ,X 6= ∅, which

with Y = JinfoKKM ,X gives us JinfoKKM ,X ∩ JγnKM ,X 6= ∅, so M ,w,X � goodK . Finally, suppose

M ,w,X � �(infoK → infoL)∧♦(¬infoK ∧infoL), so JinfoLKM ,X ) JinfoKKM ,X . Then since Y =
JinfoKKM ,X is a maximal Θ-subset of X , JinfoLKM ,X is not a Θ-subset of X . Hence by part 1, we have

M ,w,X � ¬goodL. This completes the proof that M ,w,X � maxK .

For part 3, if M ,w,X � maxL, then M ,w,X � goodL, so by part 1, JinfoLKM ,X is a Θ-subset of X .

Now suppose JinfoLKM ,X is not a maximal Θ-subset, so there is a Θ-subset Y ) JinfoLKM ,X . Then

by part 2, there is a K ⊆ I such that Y = JinfoKKM ,X and M ,w,X � maxK , so M ,w,X � goodK . Since

Y ) JinfoLKM ,X and Y = JinfoKKM ,X , we have JinfoKKM ,X ) JinfoLKM ,X , so M ,w,X ��(infoL →
infoK)∧♦(¬infoL ∧ infoK)). Then since M ,w,X � maxL, it follows that M ,w,X � ¬goodK . From

this contradiction we conclude that JinfoLKM ,X is a maximal Θ-subset of X .

We are now ready to establish the key proposition used in the proof of Theorem 2.5, namely the

semantic equivalence of a conditional λ (without embedded conditionals) and its translation λ ∗.

Proposition 2.7. For any pointed model M ,w,X :

M ,w,X � λ iff M ,w,X � λ ∗
.
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Proof. Since λ := Θ ⇒ Ω, we have M ,w,X � λ iff for all maximal Θ-subsets Y of X , Y ⊆ JΩKM ,Y .

By Lemma 2.6, Y is a maximal Θ-subset of X iff there is a K ⊆ I such that Y = JinfoKKM ,X and

M ,w,X � maxK . Thus, the condition that M ,w,X � λ ∗, i.e.,

M ,w,X �
∧

K⊆I

(

maxK →�

(

infoK →
∧

S⊆J

(

stateS →
∨

s∈S

(

�(infoK → βs)∧
∧

m∈Ds

♦(infoK ∧ γm)
)

)

)

)

is equivalent to:

for all maximal Θ-subsets Y of X , there is a K ⊆ I such that Y = JinfoKKM ,X and

M ,w,X � �

(

infoK →
∧

S⊆J

(

stateS →
∨

s∈S

(

�(infoK → βs)∧
∧

m∈Ds

♦(infoK ∧ γm)
)

)

)

. (15)

Below we will show that if Y = JinfoKKM ,X , then

M ,w,X � �

(

infoK →
∧

S⊆J

(

stateS →
∨

s∈S

(

�(infoK → βs)∧
∧

m∈Ds

♦(infoK ∧ γm)
)

)

)

(16)

iff Y ⊆ JΩKM ,Y . Thus, (15) is equivalent to: for all maximal Θ-subsets Y of X , Y ⊆ JΩKM ,Y . Given the

other equivalences above, this establishes M ,w,X � λ ∗ iff M ,w,X � λ .

Now suppose Y = JinfoKKM ,X . Then (16) is equivalent

Y ⊆

t
∧

S⊆J

(

stateS →
∨

s∈S

(

�(infoK → βs)∧
∧

m∈Ds

♦(infoK ∧ γm)
)

)

|M ,X

.

Thus, to show Y ⊆ JΩKM ,Y , it suffices to show

t
∧

S⊆J

(

stateS →
∨

s∈S

(

�(infoK → βs)∧
∧

m∈Ds

♦(infoK ∧ γm)
)

)

|M ,X

⊆ JΩKM ,Y
. (17)

So suppose v is in the left-hand side of (17). By definition of stateS, there is exactly one S ⊆ J such

that v ∈ JstateSKM ,X . Moreover, S 6= ∅, for if S = ∅, then the empty disjunction in (17) is ⊥, so we

would have v ∈ JstateSKM ,X and v ∈ JstateS → ⊥KM ,X = J¬stateSKM ,X , i.e., v 6∈ JstateSKM ,X , a

contradiction. Since S 6=∅, there is an s ∈ S such that

v ∈ Jαs ∧�(infoK → βs)∧
∧

m∈Ds

♦(infoK ∧ γm)KM ,X (18)

which with Y = JinfoKKM ,X implies

v ∈ Jαs ∧�βs∧
∧

m∈Ds

♦γmKM ,Y
, (19)

so v ∈ JωsKM ,Y ⊆ JΩKM ,Y . This establishes (17), which completes the proof.

Although we have now shown that any formula of L (⇒) can be effectively translated into a modal

formula that is semantically equivalent according to Kolodny and MacFarlane’s semantics, there is

clearly a huge blowup in formula size. It is reasonable to conjecture that according to this semantics,

L (⇒) is exponentially more succinct than the basic modal language L in the sense of [10].
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3 Conclusion

In §1, we presented an example of how techniques from dynamic epistemic logic can be fruitfully applied

to the formal semantics of modals and conditionals, by providing a complete axiomatization of the infer-

ences validated by a formal semantics. For arguments that knowing such a complete axiomatization is of

value for formal semantics, see [8]. In the other direction, in §2, we presented an example of how ideas

from the formal semantics of modals and conditionals can be profitably imported into dynamic epistemic

logic, by enabling a natural kind of reasoning about epistemic change—focusing not on the mechanism

of epistemic change but rather on the desired result of epistemic change. We hope that these examples

might provide some stimulus for further cross-pollination between these two overlapping fields.
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