
Van Gorp, Mazanek and Rose (Eds.):
Fifth Transformation Tool Contest (TTC 2011)
EPTCS 74, 2011, pp. 136–148, doi:10.4204/EPTCS.74.13

c© Á. Hegedüs, Z. Ujhelyi & G. Bergmann

Solving the TTC 2011 Reengineering Case with VIATRA2∗

Ábel Hegedüs Zoltán Ujhelyi Gábor Bergmann
Fault Tolerant Systems Research Group

Department of Measurement and Information Systems
Budapest University of Technology and Economics, Hungary

hegedusa@mit.bme.hu ujhelyiz@mit.bme.hu bergmann@mit.bme.hu

The current paper presents a solution of the Program Understanding: A Reengineering Case for the
Transformation Tool Contest using the VIATRA2 model transformation tool.

1 Introduction

Automated model transformations play an important role in modern model-driven system engineering in
order to query, derive and manipulate large, industrial models. Since such transformations are frequently
integrated to design environments, they need to provide short reaction time to support software engineers.

The objective of the VIATRA2 (VIsual Automated model TRAnsformations [9]) framework is to
support the entire life-cycle of model transformations consisting of specification, design, execution, val-
idation and maintenance.

Model representation. VIATRA2 uses the VPM metamodeling approach [8] for describing modeling
languages and models. The main reason for selecting VPM instead of a MOF-based metamodeling
approach is that VPM supports arbitrary metalevels in the model space. As a direct consequence, models
taken from conceptually different domains (and/or technological spaces) can be easily integrated into
the VPM model space. The flexibility of VPM is demonstrated by a large number of already existing
model importers accepting the models of different BPM formalisms, UML models of various tools, XSD
descriptions, and EMF models.

Graph transformation (GT) [3] based tools have been frequently used for specifying and executing
complex model transformations. In GT tools, graph patterns capture structural conditions and type
constraints in a compact visual way. At execution time, these conditions need to be evaluated by graph
pattern matching, which aims to retrieve one or all matches of a given pattern to execute a transformation
rule. A graph transformation rule declaratively specifies a model manipulation operation, that replaces
a match of the LHS graph pattern with an image of the RHS pattern.

Transformation description. Specification of model transformations in VIATRA2 combines the vi-
sual, declarative rule and pattern based paradigm of graph transformation and the very general, high-level
formal paradigm of abstract state machines (ASM) [2] into a single framework for capturing transfor-
mations within and between modeling languages [7]. A transformation is defined by an ASM machine
that may contain ASM rules (executable command sequences), graph patterns, GT rules, as well as ASM
functions for temporary storage. An optional main rule can serve as entry point. For model manipulation
and pattern matching, the transformation may rely on the metamodels available in the VPM model space;
such references are made easier by namespace imports.

Transformation Execution. Transformations are executed within the framework by using the VI-
ATRA2 interpreter. For pattern matching both (i) local search based pattern matching (LS) and (ii)

∗This work was partially supported by ICT FP7 SecureChange (ICT-FET-231101) European Project.

http://dx.doi.org/10.4204/EPTCS.74.13

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 137

Figure 1: Solution Architecture

incremental pattern matching (INC) are available. This feature provides the transformation designer ad-
ditional opportunities to fine tune the transformation either for faster execution (INC) or lower memory
consumption (LS) [6].

The rest of the paper is structured as follows. Sec. 2 gives an architectural overview of the transfor-
mation, while Sec. 3 highlights the interesting parts of our implementation and finally Sec. 4 concludes
the paper.

2 Solution Architecture

We implemented our solution for the Program Understanding case study [5] using the VIATRA2 model
transformation framework. Fig. 1 shows the complete architecture with both preexisting (depicted with
darker rectangles) and newly created components (lighter rectangles). The optional Transformation Con-
troller is an extension to the Eclipse framework that provides an easy-to-use graphical interface for ex-
ecuting the underlying transformation (i.e. it appears as a command in the pop-up menu of XMI files);
it is, however, possible to execute the same steps manually on the user interface of VIATRA2. From the
user perspective, the controller is invoked on an input XMI file and the result is an output Statemachine
file.

Note that the transformation is performed on models inside the VPM modelspace of VIATRA2 rather
than on in-memory EMF models. Although VIATRA2 does not manipulate EMF models directly, it
includes a generic support for handling EMF metamodels and instance models.

In order to understand the transformation we briefly outline the metamodeling approach of our so-
lution. The Ecore metametamodel is the base of this support, which was defined in accordance with the
actual EMF metamodel of Ecore.

Both the Java syntax graph and Statemachine metamodels are defined as instances of this metameta-
model, and are imported into VIATRA2 with the generic Ecore metamodel importer. Then the input file
is used to import the Java syntax graph into VIATRA2 and create the Java syntax model which is the

138 Solving the TTC 2011 Reengineering Case with VIATRA2

instance of the Java syntax metamodel.
By executing our implemented transformation, we can transform the Java syntax model to a Statema-

chine model which is an instance of the Statemachine metamodel. This Statemachine model is then
exported to create the output Statemachine file.

3 Transforming Java syntax to statemachines (J2SM)

The J2SM transformation generates the Statemachine model from the Java syntax graph in the VIATRA2
framework and is implemented in the VIATRA2 Textual Command Language (VTCL) [1]. J2SM can be
separated into four parts, (1) the construction of the Statemachine states and their outgoing transitions,
(2) the processing of triggers and (3) actions for outgoing transitions, and finally (4) connecting the
transitions to the target states.

The complete transformation is around 450 lines of VTCL code including whitespaces and com-
ments (see Appendix B). It includes 21 complex patterns, e.g. the Java class called through an In-
stance.activate() method call can be looked up with the pattern in line 172. Finally, the actual manipula-
tion is executed by 5 declarative rules (e.g. create trigger for a given transition, see line 227). There are 2
additional rules for starting and stopping time measurement for different parts of the transformation (see
lines 440 and 448).

The transformation starts with a short initialization phase, where the output buffer for the transfor-
mation log is cleared, the time measurement starts and a new statemachine model is created.

Construction of states and transitions. The elements representing the states and transitions of the
statemachine are created in the following way:

1. First, states are created for each Java class that is not an abstract subclass of the State class (see
top-level pattern at line 97, called in line 45 from a forall construct). A recursive pattern finds these
classes by traversing supertype edges.

2. Once the state is created, we store the correspondence between the class and the state in an ASM
function (essentially a hashmap), the transition handling rule is called (line 63).

3. Since at this point the target states of a transition is probably not available, we only create the src
and out relations.

4. The transitions in a class are identified by another complex pattern that matches the Class.Instance.activate()
method calls and finds the called class (see line 172). The below keyword is used in a subpattern
to express transitive containment of the target class reference within the definition of the source
class.

5. Once the transition is created, we also store the called class for the transition in the same ASM
function to be able to create the dst and in relations later.

Processing triggers. Next, the rule handling triggers (see line 227) is called from line 163. The triggers
are created based on the class method, where the activate() call is found (see pattern in line 293), the
switch case constant (line 300) or the catch block exception (line 332) that is the closest in the statement
hierarchy to the method call. Note that when a catch block is inside another catch block (and similarly
for switch cases), the reference solution may choose the outer one for the trigger, while our solution
chooses the correct one.

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 139

Processing actions. In the following phase, the action part of the transition is created (line 368). The
action is created based on the existence of a send() method call in the same statement container (found
using the pattern in line 403) as the activate() call. The name of the action is the same as the enumeration
value from the send() method call parameter (line 416).

Connecting transitions to targets. Finally, the target of all transitions are handled in the same step
using a forall construct (see line 206). The interesting part of this rule is the usage of ASM functions to
retrieve the correct target state (line 215). Remember, that the called class is stored for transitions and
states are stored for created classes. Therefore, since we iterate through all transitions, the target state
can be selected by retrieving the called class for the current transition and the state for that class.

Performance. We used the provided models to test the performance of our implementation. We ob-
served that our framework was unable to handle the biggest model, if we tried to import the complete
model, due to VIATRA2’s VPM representation consuming more memory than EMF. For the other input
models, the total runtime of the plug-in loading, import, transformation and export is around 10 seconds,
while the transformation itself is around 2 seconds.

However, if we allow a preprocessing phase, which removes unnecessary parts of the model (with the
help of EMF IncQuery1), the big model could be transformed. However, this reduced model is almost
equal to the medium model, thus it does not demonstrate the scalability of the approach.

Evaluation. The transformation handles the core task and both extensions, therefore it is complete.
The generated state machines are equal to the provided reference solutions, the source and target of tran-
sitions are set, while triggers and actions are also created, which means the transformation is correct. The
transformation code itself is well-structured and is annotated with comments to increase understandabil-
ity. However, it may be challenging for those unfamiliar with the language. Since the language and the
framework are not tailored to EMF, the conciseness of the transformation is lower and the performance
of the framework is limited (as discussed above). As a main development direction, we are working on
new tools for more powerful EMF support.

4 Conclusion

In the current paper we have presented our VIATRA2 based implementation for the Program Understand-
ing case study [5].

The high points of our transformation are (i) the reusable patterns, (ii) the easily readable transfor-
mation language, (iii) the use of ASM functions for easily retrieving corresponding elements, and (iv)
that triggers are created for the correct switch case and catch block (as opposed to reference solution).

On the other hand, import-export of models is required and we cannot handle the largest sample input
model due to memory constraints.

1http://viatra.inf.mit.bme.hu/incquery/

http://viatra.inf.mit.bme.hu/incquery/

140 Solving the TTC 2011 Reengineering Case with VIATRA2

References
[1] András Balogh & Dániel Varró (2006): Advanced Model Transformation Language Constructs in the VIATRA2

Framework. In: ACM Symposium on Applied Computing — Model Transformation Track (SAC 2006), ACM
Press, Dijon, France, pp. 1280–1287, doi:10.1145/1141277.1141575.

[2] E. Börger & R. Stärk (2003): Abstract State Machines. A method for High-Level System Design and Analysis.
Springer-Verlag.

[3] Hartmut Ehrig, Gregor Engels, Hans-Jörg Kreowski & Grzegorz Rozenberg, editors (1999): Handbook on
Graph Grammars and Computing by Graph Transformation. 2: Applications, Languages and Tools, World
Scientific.

[4] Ábel Hegedüs, Zoltán Ujhelyi & Gábor Bergmann (2011): SHARE demo related to the paper Solving the
TTC 2011 Program Understanding Case with VIATRA2. Available at http://is.ieis.tue.nl/staff/
pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu-11_TTC11_VIATRA.vdi.

[5] Tassilo Horn (2011): Program Understanding: A Reengineering Case for the Transformation Tool Contest.
In Pieter Van Gorp, Steffen Mazanek & Louis Rose, editors: TTC 2011: Fifth Transformation Tool Contest,
Zürich, Switzerland, June 29-30 2011, EPTCS.

[6] Ákos Horváth, Gábor Bergmann, István Ráth & Dániel Varró (2010): Experimental assessment of combining
pattern matching strategies with VIATRA2. International Journal on Software Tools for Technology Transfer
(STTT) 12, pp. 211–230, doi:10.1007/s10009-010-0149-7.

[7] Dániel Varró & András Balogh (2007): The Model Transformation Language of the VIATRA2 Framework.
Science of Computer Programming 68(3), pp. 214–234, doi:10.1016/j.scico.2007.05.004.

[8] Dániel Varró & András Pataricza (2003): VPM: A visual, precise and multilevel metamodeling framework for
describing mathematical domains and UML. Journal of Software and Systems Modeling 2(3), pp. 187–210,
doi:10.1007/s10270-003-0028-8.

[9] VIATRA2 Framework: An Eclipse GMT Subproject: Available at http://www.eclipse.org/gmt/.

http://dx.doi.org/10.1145/1141277.1141575
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu-11_TTC11_VIATRA.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu-11_TTC11_VIATRA.vdi
http://dx.doi.org/10.1007/s10009-010-0149-7
http://dx.doi.org/10.1016/j.scico.2007.05.004
http://dx.doi.org/10.1007/s10270-003-0028-8
http://www.eclipse.org/gmt/

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 141

A Solution demo and implementation

Our implementation for the case study together with the current version of VIATRA2 can be installed
from the following Eclipse update site: http://mit.bme.hu/~ujhelyiz/viatra/ttc11/. Addition-
ally, the solution is also available an archive file: http://mit.bme.hu/~ujhelyiz/viatra/ttc11.
zip. Similarly, our solution for the Hello World! case is downloadable from http://mit.bme.hu/

~ujhelyiz/viatra/ttc11-helloworld.zip.
The SHARE image [4] usable for demonstration purposes contains our solution for both the Hello

World! and Program Understanding cases.

B Appendix - Program Understanding transformation

// metamodel imports

import nemf.packages.classifiers;

import nemf.packages.commons;

import nemf.packages.types;

import nemf.packages.modifiers;

import nemf.packages.references;

import nemf.packages.members;

import nemf.packages.statements;

import nemf.packages.parameters;

10 import nemf.packages.expressions;

import nemf.packages.statemachine;

import nemf.ecore;

import nemf.ecore.datatypes;

@incremental

machine reengineeringJava{

asmfunction buf /0; // output buffer

asmfunction time /1; // runtime measurement data

20 asmfunction models /1; // storing models

asmfunction sm/1; // store for statemachine related elements

// entry point of transformation

rule main() = seq{

// initialize output buffer

let Buf = clearBuffer("core :// reEngineer") in seq{

update buf() = getBuffer("core :// reEngineer");

}

30
call startTimer("main");

println(buf(), "ReEngineering Transformation started.");

// create new statemachine

let StateMachine = undef in seq{

new(StateMachine(StateMachine) in nemf.resources);

rename(StateMachine ,"A_StateMachine");

update models("sm") = StateMachine;

}

40
// finds all State subtypes

/* 1. A State is a non -abstract Java class (classifiers .Class) that

extends the abstract class named ‘‘State ’’ directly or indirectly .

All concrete state classes are implemented as singletons [GHJV95]. */

forall StateClass with find NotAbstractStateClass(StateClass) do

let State = undef , StatesRel = undef , NameRel = undef in seq{

http://mit.bme.hu/~ujhelyiz/viatra/ttc11/
http://mit.bme.hu/~ujhelyiz/viatra/ttc11.zip
http://mit.bme.hu/~ujhelyiz/viatra/ttc11.zip
http://mit.bme.hu/~ujhelyiz/viatra/ttc11-helloworld.zip
http://mit.bme.hu/~ujhelyiz/viatra/ttc11-helloworld.zip

142 Solving the TTC 2011 Reengineering Case with VIATRA2

println(buf(), " --> Found State class " + name(StateClass));

// create states in StateMachine

50 new(State(State) in models("sm"));

new(StateMachine.states(StatesRel ,models("sm"),State));

// store Class -> State correspondence

update sm(StateClass) = State;

// add name to State

try choose Name with find NameOfElement(Name ,StateClass) do

let StateName = undef in seq{

new(EString(StateName) in State);

setValue(StateName ,value(Name));

rename(State ,value(Name));

60 new(State.name(NameRel ,State ,StateName));

}

// create transitions from state

call createTransitions(StateClass);

}

// for each Transition , finds target (use sm map)

call createTransitionTargets();

call endTimer("main");

70 println(buf(), "ReEngineering Transformation ended " + time("main"));

println(buf(), " RULE: createTransitions ran (in total) for "

+ time("createTransitions"));

println(buf(), " RULE: createTransitionTargets ran (in total) for "

+ time("createTransitionTargets"));

println(buf(), " RULE: addTrigger ran (in total) for "

+ time("addTrigger"));

println(buf(), " RULE: addAction ran (in total) for "

+ time("addAction"));

}

80
// finds classes which are subtypes of State

pattern ClassSubTypeOfState(Class) = {

Class(Class);

find SuperTypeOfClass(SuperType ,Class);

find NameOfElement(Name ,SuperType);

check(value(Name) == "State");

} or { // transitive matching

90 Class(Class);

find SuperTypeOfClass(SuperType ,Class);

find ClassSubTypeOfState(SuperType);

}

// restrict subtypes of State to non -abstract ones

pattern NotAbstractStateClass(Class) = {

find ClassSubTypeOfState(Class);

neg find AbstractClass(Class);

100 }

// finds name attribute for element

pattern NameOfElement(Name ,Element) = {

NamedElement(Element);

NamedElement.name(NameRel ,Element ,Name);

EString(Name);

}

// finds supertype of class

110 pattern SuperTypeOfClass(SuperType ,Class) = {

Class(Class);

Class.extends(Extends ,Class ,NSClassRef);

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 143

find TargetOfNamespaceClassifierReference(NSClassRef , SuperType);

Class(SuperType);

}

// navigate on the classifierReference and target relations to Target

pattern TargetOfNamespaceClassifierReference(NSClassRef , Target) = {

NamespaceClassifierReference(NSClassRef);

120 NamespaceClassifierReference.classifierReferences(ClassRefRel ,

NSClassRef ,ClassRef);

ClassifierReference(ClassRef);

ClassifierReference.target(TargetRel ,ClassRef ,Target);

}

// matches abstract classes

pattern AbstractClass(Class) = {

Class(Class);

AnnotableAndModifiable.annotationsAndModifiers(ModifierRel ,

130 Class ,Abstract);

Abstract(Abstract);

}

// create transitions leading out from StateClass

rule createTransitions(in StateClass) = seq{

call startTimer("createTransitions");

// finds all transition in class

/* 2. A Transition is encoded by a methodcall (references . MethodCall),

which invokes the next state ’s Instance () method (members.Method)

140 returning the singleton instance of that state on which the activate ()

method is called in turn. This activation may be contained in any of the

classes ’ methods with an arbitrary deep nesting. */

forall ActivateCallClass ,ActivateClassRef with

find ClassCalledWithActivate(ActivateCallClass ,

ActivateClassRef ,StateClass) do let Transition = undef ,

TransRel = undef , SrcRel = undef , OutRel = undef in seq{

println(buf(), " --> Found activate () methodcall to "

+ name(ActivateCallClass));

150 // create Transitions

new(Transition(Transition) in models("sm"));

new(StateMachine.transitions(TransRel ,models("sm"),Transition));

rename(Transition , name(StateClass) + "-"

+ name(ActivateCallClass));

// add source , use correspondence for finding state

new(Transition.src(SrcRel ,Transition ,sm(StateClass)));

new(State.out(OutRel ,sm(StateClass),Transition));

160 // store reference to the class on the other end of transition

update sm(Transition) = ActivateCallClass;

// add trigger

call addTrigger(ActivateClassRef , Transition);

// add action

call addAction(ActivateClassRef , Transition);

}

call endTimer("createTransitions");

}

170 // finds the class which is called using an activate () method

pattern ClassCalledWithActivate(ActivateCallClass ,

ActivatedClassRef ,StateClass) = {

find ClassSubTypeOfState(StateClass); // check that the class is a state

// reference to Class

find ReferenceTarget(ActivatedClassRef ,

StateClass ,ActivateCallClass);

144 Solving the TTC 2011 Reengineering Case with VIATRA2

Reference.next(ACRNextRef ,ActivatedClassRef ,InstanceCall);

// reference to Instance method

180 find MethodCall(InstanceCall ,ActivateCallClassInstance);

Reference.next(ERNextRef ,InstanceCall ,ActivateCall);

find NameOfElement(Name ,ActivateCallClassInstance); // name of Instance

check(value(Name) == "Instance");

// reference to activate () method

find MethodCall(ActivateCall ,ActivateMethod);

find NameOfElement(ActName ,ActivateMethod);

check(value(ActName) == "activate");

}

190 // finds reference to target

pattern ReferenceTarget(TargetRef ,SourceElement ,ReferencedTarget) = {

Commentable(SourceElement);

ReferenceableElement(ReferencedTarget);

IdentifierReference(TargetRef) below SourceElement;

ElementReference.target(TargetRefRel ,TargetRef ,ReferencedTarget);

}

// finds method called by Caller

pattern MethodCall(Caller ,CalledMethod) = {

200 MethodCall(Caller);

ElementReference.target(TargetRef ,Caller ,CalledMethod);

ClassMethod(CalledMethod);

}

// create references between transitions and target states

rule createTransitionTargets() = seq{

call startTimer("createTransitionTargets");

println(buf(), " RULE: Creating transition targets");

210 forall Transition with find Transition(Transition) do

let DstRel = undef , InRel = undef in seq{

println(buf(), " --> Creating target for " + name(Transition));

// sm(Transition) returns the target class TargetClass

// sm(TargetClass) returns the corresponding state

new(Transition.dst(DstRel ,Transition ,sm(sm(Transition))));

new(State.in(InRel ,sm(sm(Transition)), Transition));

}

call endTimer("createTransitionTargets");

}

220
// simple type wrapper for Transition

pattern Transition(Transition) = {

Transition(Transition);

}

// add triggers to transition

rule addTrigger(in ActivateClassRef ,in Transition) = seq{

call startTimer("addTrigger");

println(buf(), " RULE: Creating trigger for " + name(Transition));

230 // finds the method where the activate () methodcall happens

try choose CallingClassMethod with

find ParentClassMethod(CallingClassMethod , ActivateClassRef) do

let Trigger = undef , TriggerRel = undef ,

TriggeringElement = undef in seq{

println(buf(), " --> Found class method "

+ name(CallingClassMethod));

try choose MethodName with

find NameOfElement(MethodName ,CallingClassMethod) do seq{

/* 1. If activation of the next state occurs in any method except run(),

240 then that method ’s name (members.Method.name) shall be

used as the trigger. */

if(value(MethodName) != "run") seq{

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 145

update TriggeringElement = CallingClassMethod;

}

/* 2. If the activation of the next state occurs inside a non -default

case block (statements . NormalSwitchCase) of a switch statement

(statements .Switch) in the run () method , then the enumeration con -

stant (members. EnumConstant) used as condition of the corresponding

case is the trigger. */

250 else seq{

try choose SwitchCaseConstant with

find ParentSwitchCaseConstant(SwitchCaseConstant ,

CallingClassMethod , ActivateClassRef) do

seq{

println(buf(), " --> Found case " + name(SwitchCaseConstant));

update TriggeringElement = SwitchCaseConstant;

}

/* 3. If the activation of the new state occurs inside a catch block

(statements . CatchBlock) inside the run () method ,

260 then the trigger is the name of the caught exception ’s class.*/

else try choose CatchBlockClass with

find ParentCatchBlockClass(CatchBlockClass ,

CallingClassMethod , ActivateClassRef) do

seq{

println(buf(), " --> Found catch " + name(CatchBlockClass));

update TriggeringElement = CatchBlockClass;

}

/* 4. If none of the three cases above can be matched for the activation

of the next state , i.e., the activationcall is inside the run () method

270 but without a surrounding switch or catch , the corresponding transition

is triggered unconditionally . In that case , the trigger attribute shall

be set to --. */

else seq{

println(buf(), " --> Unconditional trigger");

}

}

new(EString(Trigger) in Transition); // creating trigger

new(Transition.trigger(TriggerRel ,Transition ,Trigger));

if(TriggeringElement != undef)

280 try choose Name with

find NameOfElement(Name ,TriggeringElement) do seq{

// use name of chosen element

setValue(Trigger ,value(Name));

}

else setValue(Trigger ,"--");

}

}

call endTimer("addTrigger");

290 }

// finds the class method for a given reference

pattern ParentClassMethod(CallingClassMethod , IdentifierRef) = {

ClassMethod(CallingClassMethod);

IdentifierReference(IdentifierRef) below CallingClassMethod;

}

// finds the immediate parent switchcase constant for a reference

pattern ParentSwitchCaseConstant(SwitchCaseConstant ,

300 ClassMethod , IdentifierRef) = {

NormalSwitchCase(NormalSwitchCase);

// parent switchcase

find ParentSwitchCase(NormalSwitchCase ,

ClassMethod , IdentifierRef);

// condition of switch

Conditional.condition(ConditionRel ,NormalSwitchCase ,Condition);

IdentifierReference(Condition);

146 Solving the TTC 2011 Reengineering Case with VIATRA2

EnumConstant(SwitchCaseConstant);

// referenced constant

310 find ReferenceTarget(Condition ,NormalSwitchCase ,SwitchCaseConstant);

}

// finds immediate parent switchcase , check for lowest parent

pattern ParentSwitchCase(NormalSwitchCase , ClassMethod , IdentifierRef) = {

ClassMethod(ClassMethod);

Switch(Switch) below ClassMethod;

NormalSwitchCase(NormalSwitchCase);

Switch.cases(CaseRel ,Switch ,NormalSwitchCase);

IdentifierReference(IdentifierRef) below NormalSwitchCase;

320 // if there is a lower switch , that must be used

neg find LowerSwitch(Switch , IdentifierRef);

}

// checks whether a lower switch exists between Switch and the reference

pattern LowerSwitch(Switch , IdentifierRef) = {

Switch(Switch);

Switch(LowerSwitch) below Switch;

IdentifierReference(IdentifierRef) below LowerSwitch;

}

330
// finds the class of the exception used in the parent catch block

pattern ParentCatchBlockClass(CatchBlockClass , ClassMethod , IdentifierRef) = {

CatchBlock(CatchBlock);

// parent catch block

find ParentCatchBlock(CatchBlock , ClassMethod , IdentifierRef);

CatchBlock.parameter(ParRel ,CatchBlock ,Parameter);

// targeted parameter

find ReferenceTargetOfParameter(Parameter ,CatchBlockClass);

340 }

// finds target for parameter through type reference

pattern ReferenceTargetOfParameter(Parameter ,Target) = {

OrdinaryParameter(Parameter);

TypedElement.typeReference(TypeRef ,Parameter ,NSClassRef);

find TargetOfNamespaceClassifierReference(NSClassRef , Target);

}

// finds immediate parent catch block for reference

350 pattern ParentCatchBlock(CatchBlock , ClassMethod , IdentifierRef) = {

ClassMethod(ClassMethod);

TryBlock(TryBlock) below ClassMethod; // the try block where the catch is

CatchBlock(CatchBlock);

TryBlock.catcheBlocks(BlockRef ,TryBlock ,CatchBlock);

IdentifierReference(IdentifierRef) below CatchBlock;

// if there is a lower catch , that must be used

neg find LowerCatchBlock(CatchBlock , IdentifierRef);

}

360 // checks whether a lower catch exists between CatchBlock and the reference

pattern LowerCatchBlock(CatchBlock , IdentifierRef) = {

CatchBlock(CatchBlock);

CatchBlock(LowerCatchBlock) below CatchBlock;

IdentifierReference(IdentifierRef) below LowerCatchBlock;

}

// add action to transition

rule addAction(in ActivateClassRef ,in Transition) = seq{

370 call startTimer("addAction");

println(buf(), " RULE: Creating action for " + name(Transition));

// finds the statement container containing the methodcall

Á. Hegedüs, Z. Ujhelyi & G. Bergmann 147

try choose StatementContainer with

find ParentStatementContainer(StatementContainer , ActivateClassRef) do

let Action = undef , ActionRel = undef in seq{

println(buf(), " --> Found container " + name(StatementContainer));

new(EString(Action) in Transition);

new(Transition.action(ActionRel ,Transition ,Action));

/* 1. If the block (statements . StatementListContainer) containing the ac -

380 tivation Call of the next state additionally contains a method Call to the

send () method , then that call ’s enumeration constant parameter ’s name is

the action. */

try choose SendMethodParameter with

find SendMethodParameterInContainer(SendMethodParameter ,

StatementContainer) do

try choose Name with

find NameOfElement(Name ,SendMethodParameter) do seq{

println(buf(), " --> Found send () parameter "

+ name(SendMethodParameter));

390 setValue(Action ,value(Name));

}

/* 2. If there is no Call to send () in the activation call ’s block ,

the action of the corresponding transition shall be set to --. */

else seq{

println(buf(), " --> No send() in block.");

setValue(Action ,"--");

}

}

call endTimer("addAction");

400 }

// finds parent statement container

pattern ParentStatementContainer(StatementContainer , Expression) = {

StatementListContainer(StatementContainer);

ExpressionStatement(Statement);

StatementListContainer.statements(StatementsRel ,

StatementContainer ,Statement);

ExpressionStatement.expression(ExprRel ,Statement ,Expression);

Expression(Expression);

410
}

/* finds the EnumConstant used as the Parameter of a send ()

method in a statement container */

pattern SendMethodParameterInContainer(SendMethodParameter ,

StatementContainer) = {

StatementListContainer(StatementContainer);

// parent container

find ParentStatementContainer(StatementContainer , SendMethodCall);

420
find MethodCall(SendMethodCall ,SendMethod); // methodcall

find NameOfElement(SendName ,SendMethod);

check(value(SendName) == "send"); // ensure that it is a send ()

find ArgumentOfMethodCall(Argument ,SendMethodCall); // argument of send ()

Reference.next(NextRef ,Argument ,EnumRef);

// target of the argument

find ReferenceTarget(EnumRef ,Argument ,SendMethodParameter);

430 }

/* finds corresponding arguments for a methodcall */

pattern ArgumentOfMethodCall(Argument ,MethodCall) = {

MethodCall(MethodCall);

Argumentable.arguments(ArgRel ,MethodCall ,Argument);

Expression(Argument);

}

148 Solving the TTC 2011 Reengineering Case with VIATRA2

/* starts the timer corresponding to the RuleName */

440 rule startTimer(in RuleName) = seq{

if(time(RuleName) == undef)

update time(RuleName) = - systime ();

else

update time(RuleName) = time(RuleName) - systime ();

}

/* stops the timer corresponding to the RuleName */

rule endTimer(in RuleName) = seq{

if(time(RuleName) == undef)

450 update time(RuleName) = 0;

else

update time(RuleName) = time(RuleName) + systime ();

}

}

Listing 1: Transformation code

	1 Introduction
	2 Solution Architecture
	3 Transforming Java syntax to statemachines (J2SM)
	4 Conclusion
	A Solution demo and implementation
	B Appendix - Program Understanding transformation

