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1 Introduction

In this short paper we present our solution for the Compiler Optimization case study [1] of the Trans-
formation Tool Contest (TTC) 2011 using the QVTR-XSLT tool [2]. The tool supports editing and
execution of the graphical notation of QVT Relations language [6].

The case study addresses the problem of optimizing theintermediate representationof compiled
program code. This problem consists of two tasks: local optimization and instruction selection. The
first task mainly concernsconstant foldingwhich evaluates operations with only constant operands, cor-
responding control flows are also optimized. The instruction selection task transforms the intermediate
representation into a target representation of similar structure. The SHARE demo related to the paper
can be found at [3].

We begin by giving a brief introduction of the QVTR-XSLT toolin Section 2. Section 3 explains the
design of transformations for the case study. We discuss theexperimental result and evaluation of the
solution against the criteria given in the case specification in Section 4.

2 The QVTR-XSLT tool

Model transformation is the core technology for model-driven development, and is used in software
model refinement, evolution, refactoring and code generation. To address the need for a common trans-
formation language, the Object Management Group (OMG) proposed the Query/View/Transformation
language (QVT) [6] standard. QVT has a hybrid declarative/imperative nature. In its declarative lan-
guage, called QVT Relations (QVTR), a transformation is defined as a set ofrelations (rules) between
source and target models, each conforming to their respective metamodels. Transformations are driven
by a single, designated top-level relation.

QVTR combines a textual and a graphical notation. In graphical syntax, a relation specifies how
two object diagrams, calleddomain patterns, relate to each other. That is, thestructural matching of
elements in the source- and target model is done diagrammatically. Moreover, QVTR employs a textual
language based on essential OCL [5] to define additional (non-structural) constrains in relations. The
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graphical notation of QVTR provides a concise, intuitive and yet powerful way to specify transforma-
tions. However, currently there are very few tools supporting QVTR, and even fewer for its graphical
notation.

QVTR-XSLT supports the graphical notation of QVT Relations, and an execution engine for a subset
of QVTR by means of XSLT programs. It consists of two parts:

• Graphical Editor : Building on top ofMagicDraw UML[4], the editor has a graphical interface for
defining metamodels as simple class diagrams, specifying QVTR relations and queries in graphical
notation, validating the design, and saving the transformations as an XML file.

• Code generator: It reads in the XML file, and generates an XSLT stylesheet fora transformation.

The outputs of the code generator are pure XSLT programs which can be directly executed under any
XSLT processor on any platform. Additionally, we have also developed a transformation runner, in the
form of a Java program invoking the Saxon 9 XSLT processor, tofacilitate the execution of generated
XSLT stylesheets.

The QVTR-XSLT tool supports transformation parameters, transformation inheritance through rule
overriding, and multiple input and output models. Furthermore, in-placetransformations are defined as
modifications (insert, remove, replace) of the existing model elements. QVTR-XSLT-based transforma-
tions are used in the rCOS Modeler for use case-driven development of component- and object systems.

3 Transformation Design

The metamodel. As the first step of the transformation design, we define a simple metamodel for the
intermediate representation (IR) of the FIRM model, as shown in Fig. 1. In the metamodel, a FIRM model
consists ofGraphs, and the transformations only deal with graphs of typeDefault Graph. Within a graph,
a Noderepresents an operation, and the type of the operation is decided by thexlink:href property of its
Typeelement. The property may be#Jmp, #Add, #Mul, or #And, etc. It also could be#StartBlock,
#Block, or #End for a control flow node. A node may also own someAttributes, each of which has a
name, and some values of different types.Edgesspecify the dependencies between nodes. An edge also
has a type, such as#Dataflowor #ControlFlow, and aposition.

We define a set of well-formedness rules as OCL class invariants for the metamodel:
• An instance of classAttributehas only two properties (one of them is thename).

context Attribute inv twoProperties:self.getAllProperties()→ size()=2

where thegetAllProperties() returns all properties of an instance.
• A FirmModehas at least one default graph.

context Graphinv hasDefault: Graph.allInstances()→select(id=’DefaultGraph’)→size()>=1

• Within a default graph, theid attribute is the unique identifier.

context Graphinv uniqueId:
Graph.allInstances()→select(id=’DefaultGraph’)→ forAll(g |g.node.id→asBag()

→union(g.edge.id→asBag())→isUnique(id))

Local optimizations. This task is a typicalin-placetransformation, in which both the input and output
models are the same, and the execution of one rule could affect its subsequent rules. Since the execution
unit of QVTR is a transformation, the optimization task is actually accomplished by a chain of executions
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+name : String
+#int : String [0..1]
+#bool : String [0..1]
+#string : String [0..1]
+#enum : String [0..1]

Attribute

+edgeids : String
+edgemode : String

Graph

Edge
Node

+id : String

FirmElement
FirmModel

xlink:href

Type

+from

1
+to

1

0..*

+attr

+type

1

+type

1

+node 0..*

1

+attr

0..*

+edge 0..*+type 1

Figure 1: The metamodel for IR

of the transformation; each execution makes some changes tothe model, and its output serves as the input
of the following execution. Execution will stop if no more changes happen. This process is automated if
running in the transformation runner.

The complete transformation consists of 13 relations, 9 queries and 2 functions (see Appendix B).
Some of the relations are used for auxiliary purposes, such as removingblocks, nodesandedgesfrom the
model, or changing thepositionof an edge (Fig. 11–14). As in the model there is no direct navigation
between nodes, or from a node to its connected edges, queriesare defined to retrieve information such
as the incoming and outgoing edges of a node, or a node’s original and destination nodes. (Fig. 15–23).
Some queries are functionally overlapping, as we want to useappropriate query names in different situa-
tions. All mathematical and logical calculations are performed by two functions. (Fig 24–25) . Because
of the limited mathematical abilities of OCL expressions, we only deal with mathematical operations of
Add, Sub, Mul andDiv, andLESS, EQUALandGREATERfor logic operations.

The main part of the transformation definition has 9 relations that will be discussed in the following:

• FirmModelTrans : The transformation starts from this initialtop levelrelation, which matches
a graph with type ofDefaultGraph, then the relationFoldOperand relation groupFoldNodeare
invoked from thewhereclause.

• FoldOper: The relation first checks whether the node is a binary operation of the four mathemati-
cal kinds or aCmp, then the queryGetToDatais called to get its two operands. If two of them are
Const, the relation groupDoFoldOperis invoked.

• DoFoldOper: This group includes two relations:DoFoldCmpandDoFoldMath. Inside theDo-
FoldCmprelation, values of the two const operands of theCmp node are compared with theCal-
cuLogicfunction, and also compared with the incoming edges of the correspondingCond node to
decide which const operand should be removed. Then theCond node and its connected edges are
removed, and theCmp node becomes aJmp node. TheDoFoldMathrelation first calculates the
mathematical result of the two consts, and then changes the operation node into aConst node and
puts the result as the value of the node; finally the two outgoing edges of the operation node are
removed.

• FoldNode: This group includes the following relations:

– FoldPhi andDoFoldPhi: If there is only one outgoing dataflow edge for aBlock where a
Phi is located in, theFoldPhi relation invokes theDoFoldPhirelation, and the latter removes
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the Phi node, relinks its users directly to the correctConst, and resets theposition of the
linking edge.

– FoldJmpBlock: The relation removes blocks which only contain aJmp node.

– FoldNoOutBlock: Removes blocks without any outgoing control flow edges.

– FoldIsolateConst: RemovesConst nodes which have no users.

Two XSLT stylesheet are generated for the transformation, with a total of 480 lines.

Instruction selection. The transformation for instruction selection is designed as a source to target
model transformation, while both source and target models share the same metamodel. The complete
transformation consists of 13 relations, 5 queries and 2 functions (see Appendix C). Many of the relations
are used for trivial one-to-one copying from the source model to the target model (CopyAtt, CopyNode,
EdgeToEdge, OtherGraph). The transformation starts from relationFirmMode, and then the relation
groupsGraphToGraphandNodeToNodeare sequentially invoked, the latter includes relationBinaryOp
andUniqueOp.

The major work of the transformation is accomplished by the following relations:

• BinaryOp : All binary operations are selected by the relation. For each operationop, we change
its typeoptp to “Target”+optp, and invoke relationMakeBinaryI.

• MakeBinaryI : An additional new operationtop is created with type of “Target”+
optp+“ I ”, along with a newvalueattribute, and all connected edges ofop are duplicated totop
using relationMakeEdge. Moreover, if the commutative property ofop is false, relationMake-
NewConstis invoked.

• MakeNewConst: The relation creates a newConst node in the start block, and an outgoing edge
with position1 is also created to linktop to the const node.

• UniqueOp: All other operations marked with “*” in the case specification are selected by the
relation. The operation typeoptp is changed to “Target”+optp. If the operation isLoad or Store,
we invoke relationMakeLoadStoreI.

• MakeLoadStoreI: A new StoreI or LoadI operation node is created, which has an additional
symbolattribute with a string value of “global”.

Similar to the task of local optimizations, queries are usedto retrieve information from the model.
FunctionGetTargetNamecomputes the target type from the type of an operation, andGetNewIdgenerates
a new identifier for a model element. An XSLT stylesheet of 330lines of code is generated for the
transformation.

In addition, we implement the model validating rules given in the case specification as an independent
transformation. The generated XSLT stylesheet for the transformation is about 280 lines of code. It
outputs a HTML page showing the results.

4 Experiments and Evaluation

Using our transformation runner, we execute the transformations on the examples provided by the case
in a laptop of Intel M330 2.13 GHz CPU, 3 GB memory, and runningWindows 7 home version. The
DTD definition (second line) has to be removed from the .gxl file of each example to prevent the produce
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Table 1: Result of the transformations for compiler optimization

Transformation Example (.gxl) Size (kb) Time (ms)

Local Optimizations min 36 155
const 59 410

Instruction Selection const 59 15
mem 198 850
testcase 186 820

of additional namespace information. The results are shownin Table 1. The execution time includes
loading and saving model files from/to disk.

Our solution has covered all examples of the two tasks of the case study, exceptzero.gxl, which
needs more math functions than our tool can provide, such as shifting and bit operations. As a high-level
general purpose transformation languages, neither QVTR nor XSLT offer explicit parallelism, and leave
this to a particular implementation. We are not aware that any XSLT processor makes use of parallelism
except for an Intel research prototype.

The performance and the memory needed are much dependent on the XSLT processor used, and we
can see from the results our tool works well, as it completes in under one second for every example. Our
solution ispure, since no other code (e.g. hand-crafted XSLT) is required for the transformation of the
examples, except for the iterative runner which applies thetransformation until the result stabilises.

Conclusion Based on the QVTR-XSLT tool, we define a transformation usingthe graphical notation
of QVT Relations, and generate an XSLT program to execute thetransformation. Our contribution is
two-fold: we have provided a solution for the two tasks of thecompiler optimization case study of TTC
2011, and shown that our QVT-XSLT engine translates those examples, so that they can be executed in a
standard XSLT engine.
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A A Brief Introduction to QVT Relations

QVT Relations (QVTR) is a declarative model transformationlanguage proposed by the OMG as part
of the MOF Query/View/Transformations (QVT) standard [6].QVTR specifies atransformationas a set
of relationsbetween source and target metamodels. A metamodel is definedin our tool as a simple class
diagram. In addition, a transformation may own somefunctions, which are side-effect-free operations,
andqueriesused to retrieve information from the models.

In the graphical notation, arelation defines how two object diagrams, calleddomain patterns, relate
to each other. The object with tag≪domain≫ is theroot of a domain pattern, and it also serves as a
parameter of the relation. In general, we assume the left domain pattern is the source domain, and the
right the target domain. Anobjector a property of an object could be given a name that is taken asa
variable. If the object is in the source domain pattern, then the object or the value of the property is
bound to the variable. Otherwise the object in target domainpattern means assigning the value of the
variable to the object or property. Note that a property variable in the diagrams may contain additional
quote-characters that are an artefact of the visualization, and not string delimiters.

When a relation is executed, the source domain pattern is searched in the source model by way
of pattern matchingwhich starts from the domain root. When a match is found, all variables defined
in source domain pattern are bound to values. The target domain pattern acts as a template to create
corresponding objects and links in the target model using the values of the variables in the pattern.

A relation may define a pair of optionalwhen- andwhere-clauses which consist of a set of OCL ex-
pressions. Thewhen-clause indicates additional matching conditions for the relation. And new variables
can be defined in thewhere-clause. Other relations could be invoked in thewhere-clause and variables
can be passed as arguments. A relation may also haveprimitive domainsin order to pass additional
parameters between the relations. Furthermore, a relationis either designed as atop-levelrelation, or a
non-top-levelrelation. Atop-levelrelation is invoked from the transformation framework, andnon-top-
levelrelations are invoked by other relations.
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B Transformation for Local Optimizations

• Transformation configuration: name :TTC LocalOptimizations, isInPlace :true, rInPlace : true,
source :Intermediate, sourceKey :id, sourceName :original, target:Intermediate, targetKey:id, target-
Name :optim.

B.1 QVTR relations

<<Relation>>

FirmModelTrans

{where=FoldOper(src,trg);
FoldNode(src,trg);}

{isTopLevel}

id = "’DefaultGraph’"

<<Domain>>

trg : Graph

id = "’DefaultGraph’"

<<Domain>>

src : Graph

<<Relation>>

FoldOper

{when=(optp=’#Cmp’ or  optp=’#Add’ or optp=’#Sub’ 
or optp=’#Mul’ or optp=’#Div’ );,

where=tdata=GetToData(op); 
if tdata.at(2).#type.xlink:href=’#Const’ and  

   tdata.at(4).#type.xlink:href=’#Const’ 
       then DoFoldOper(op,trg,tdata) endif;}

name = "’associative’"

 : Attribute

xlink:href = "optp"

 : Type

<<Domain>>

 : Graph

<<Domain>>

trg : Graph

op : Node

attrtype

node

Figure 2: Starting top level relation
Figure 3: Select binary operation with two const
operands

<<Relation>>

DoFoldCmp

{when=(optp=’#Cmp’ );,
where=v0=tdata->at(2).#attr.#int; v1=tdata->at(4).#attr.#int;   

rel=relatt->select(name=’relation’).#enum;
res=CalcuLogic(v0,v1,rel);

cond=GetFromNode(cmp); tocondeds= GetInEdge(cond);         
trueed=tocondeds->select(#type.xlink:href=’#True’ ); 

falseed=tocondeds->select(#type.xlink:href=’#False’ );  
chglged =if res= ’true’ then trueed else falseed endif;
dellged =if res= ’true’  then falseed else trueed endif; 

RemoveNode(cmp,trg); RemoveEdge(dellged,trg);}

xlink:href = "’#Controlflow’"

 : Type

<<PrimitiveDomain>>

tdata : Set

id = "chglged.id"

 : Edge

{targetId = "chglged.id" , 

xmiDiffOp = replace }

xlink:href = "’#Jmp’"

 : Type

id = "chglged.from"

 : Node
#int = "’0’"

name = "’position’"

 : Attribute

name = "’relation’"

relatt : Attribute

id = "cond.id"

 : Node

{targetId = "cond.id" , 

xmiDiffOp = replace }

xlink:href = "optp"

 : Type

<<Domain>>

 : Graph

<<Domain>>

trg : Graph

cmp : Node

fromattr type
attr

node

to

edge
node

type

type

Figure 4: Cope withCmp operation (relName:DoFoldOper, rInPlace :true)
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{when=(optp=’#Add’ or optp=’#Sub’  or optp=’#Mul’ or optp=’#Div’);,
where=v0=tdata->at(2).#attr.#int; v1=tdata->at(4).#attr.#int;  

mop=op.#type.xlink:href;
rv=CalcuMath(v0,v1,mop);

blk=GetOwnerBlock(op); blked=blk->at(2);
stblk=GetTypedNode(src,’#StartBlock’);

RemoveEdge(tdata,trg);}

<<Relation>>

DoFoldMath

 : Edge

{resetAttName = "’to’" , 

resetAttValue = "stblk.id" , 

targetId = "blked.id" , 

xmiDiffOp = resetAtt }

xlink:href = "’#Const’"

 : Type

<<PrimitiveDomain>>

tdata : Set

id = "oid"

 : Node

{targetId = "oid" , 

xmiDiffOp = replace }

xlink:href = "optp"

 : Type

#int = "rv"

name = "’value’"

 : Attribute

<<Domain>>

src : Graph

<<Domain>>

trg : Graph

id = "oid"

op : Node

edge

attrtype

node
node

type

Figure 5: Cope with math operations (relName:DoFoldOper, rInPlace :true)

<<Relation>>

FoldNoOutBlock

{when=outeds=GetOutEdge(blk);
outeds->isEmpty();,

where=RemoveBlock(blk,trg);}

xlink:href = "’#Block’"

 : Type

<<Domain>>

 : Graph

<<Domain>>

trg : Graph

blk : Node

node

type

<<Relation>>

FoldPhi

{where=blk=GetOwnerBlock(phi);  blknd=blk->at(1);
bouted=GetOutEdge(blknd);

if bouted->size()=1 then DoFoldPhi(phi,trg,blk, bouted) endif;     
   }

xlink:href = "’#Phi’"

 : Type

<<Domain>>

trg : Graph

<<Domain>>

 : Graph

phi : Node

type

node

Figure 6: Fold block without outgoing
edge (relName: FoldNode, rInPlace :
true)

Figure 7: Select aPhi owned by a block with only
out control edge (relName:FoldNode)
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<<Relation>>

DoFoldPhi

{where=ptdata=GetToData(phi); 
const=if bouted.#attr.#int = ’0’ then ptdata.at(2) else ptdata.at(4) endif;

ped=GetInEdge(phi); pouted=blk->at(2);        
if bouted.#attr.#int = ’1’ then ChgEdgePos(bouted,trg) endif;

RemoveEdge(ptdata,trg); RemoveEdge(pouted,trg);}

 : Edge

{resetAttName = "’to’" , 

resetAttValue = "const.id" , 

targetId = "ped.id" , 

xmiDiffOp = resetAtt }

<<PrimitiveDomain>>

bouted : Edge

<<PrimitiveDomain>>

blk : Node

 : Node

{targetId = "phi.id" , 

xmiDiffOp = remove }

<<Domain>>

trg : Graph

<<Domain>>

 : Graph

id = "pid"

phi : Node

node

node

edge

Figure 8: Fold aPhi node (rInPlace :true)

<<Relation>>

FoldIsolateConst

{when=ineds=GetInEdge(sn);
ineds->isEmpty();,

where=RemoveNode(sn,trg);}

xlink:href = "’#Const’"

 : Type

<<Domain>>

trg : Graph

<<Domain>>

 : Graph

id = "sid"

sn : Node

type

node

<<Relation>>

FoldJmpBlock

{when=jmp->size()=1 and jmp->at(1).#type.xlink:href=’#Jmp’ 
and tnd.#type.xlink:href!=’#Cond’;,
where=jmp=GetOwnedNode(blk);

tnd=GetToNode(blk,’’); ied=GetInEdge(jmp); 
RemoveNode(blk,trg);}

 : Edge

{resetAttName = "’to’" , 

resetAttValue = "tnd.id" , 

targetId = "ied.id" , 

xmiDiffOp = resetAtt }
xlink:href = "’#Block’"

 : Type

 : Node

{targetId = "jmp.id" , 

xmiDiffOp = remove }

<<Domain>>

 : Graph

<<Domain>>

trg : Graph

id = "bid"

blk : Node

node

edge

type

node

Figure 9: Fold aConst without incom-
ing edges (relName:FoldNode, rInPlace :
true)

Figure 10: Fold blocks containing only uselessJmp
(relName:FoldNode, rInPlace :true)
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<<Relation>>

RemoveEdge

 : Edge

{targetId = "eid" , 

xmiDiffOp = remove }

<<Domain>>

 : Graph

<<Domain>>

trg : Graph

id = "eid"

 : Edge

edge edge

<<Relation>>

ChgEdgePos

<<Domain>>

trg : Graph

#int = "’0’"

name = "’position’"

 : Attribute

id = "eid"

ted : Edge

{targetId = "eid" , 

xmiDiffOp = replace }

<<Domain>>

 : Graph

xlink:href = "tp"

 : Type

xlink:href = "tp"

 : Type

 : Attribute

fnd : Node

tnd : Node

fnd : Node

tnd : Node

id = "eid"

ed : Edge

attr

type

from

to
to

type

attr

from

edgeedge

Figure 11: Remove anEdge Figure 12: Change position of anEdge

<<Relation>>

RemoveBlock

{where=nds=GetOwnedNode(blk);
feds=GetInEdge(blk); teds=GetOutEdge(blk);
RemoveNode(nds,trg); RemoveEdge(feds,trg); 

RemoveEdge(teds,trg);}

 : Node

{targetId = "bid" , 

xmiDiffOp = remove }

<<Domain>>

trg : Graph
<<Domain>>

 : Graph

id = "bid"

blk : Node

node
node

<<Relation>>

RemoveNode

{where=feds=GetInEdge(nd); 
teds=GetOutEdge(nd);

alleds=feds->union(teds);
RemoveEdge(alleds,trg);}

 : Node

{targetId = "nid" , 

xmiDiffOp = remove }

<<Domain>>

trg : Graph
<<Domain>>

 : Graph

id = "nid"

nd : Node

node node

Figure 13: Remove aBlock Figure 14: Remove aNode
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B.2 Queries

<<Query>>

GetEdgeInNode

{result=grp.edge->select(from=nd.id and to=tond.id);}

<<Domain>>

nd : Node

<<Parameter>>

nd : Node

<<Parameter>>

tond : Node
grp : Graph

 : Edge

edge

node

<<Query>>

GetFromNode

{result=grp.edge->select(to=nd.id).from;}

<<Domain>>

nd : Node

<<Parameter>>

nd : Node

grp : Graph

 : Node

 : Edge

node

edge

from

Figure 15: Get edges between nodes Figure 16: Get original nodes of a node

<<Query>>

GetInEdge

{result=grp.edge->select(to=nd.id);}

<<Parameter>>

nd : Node
<<Domain>>

nd : Node

grp : Graph

 : Edge

node

edge

<<Query>>

GetOutEdge

{result=grp.edge->select(from=nd.id);}

<<Domain>>

nd : Node

<<Parameter>>

nd : Node

grp : Graph

 : Edge

node

edge

Figure 17: Get incoming edges of a node Figure 18: Get outgoing edges of a node

<<Query>>

GetOwnedNode

{result=grp.edge->select(to=blk.id and attr.#int=’-1’).from;}

<<Domain>>

blk : Node

<<Parameter>>

blk : Node

grp : Graph

 : Attribute : Node

 : Edge

from

node

edge

attr

<<Query>>

GetOwnerBlock

{connd=grp.edge->select(from=nd.id and attr.#int=’-1’).to; 
coned=grp.edge->select(from=nd.id and attr.#int=’-1’);

result=Tuple{connd,coned};}

<<Domain>>

nd : Node
<<Parameter>>

nd : Node

grp : Graph

 : Attribute  : Node

 : Edge

toattr

node

edge

Figure 19: Get owned nodes of a block Figure 20: Get owner block of a node
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<<Query>>

GetTypedNode

{when=ref=tp;}

<<Parameter>>

tp : String

<<Parameter>>

grp : Graph

xlink:href = "ref"

 : Type

<<Domain>>

grp : Graph

result : Node

node

type

<<Query>>

GetToData

{nds=grp.edge->select(from=nd.id and attr.#int!=’-1’).to; 
eds=grp.edge->select(from=nd.id and attr.#int!=’-1’);                  

ed0=eds->select(#attr.#int=’0’); ed1=eds->select(#attr.#int=’1’);   
nd0=if ed0.to = nds.at(1).id then  nds.at(1) else  nds.at(2) endif;
nd1=if ed0.to = nds.at(1).id then  nds.at(2) else  nds.at(1) endif;

result= Tuple{ ed0, nd0, ed1, nd1};}

<<Domain>>

nd : Node

<<Parameter>>

nd : Node

grp : Graph  : Attribute

 : Node  : Type : Edge

attr

type

node

edge
to

Figure 21: Get nodes of specific type Figure 22: Get edges and nodes of data operands

<<Query>>

GetToNode

{result= if edtype=’’ then grp.edge->select(from=nd.id and attr.#int!=’-1’).to 
  else grp.edge->select(from=nd.id and type.xlink:href=edtype and attr.#int!=’-1’).to endif;}

<<Domain>>

nd : Node

<<Parameter>>

nd : Node

<<Parameter>>

edtype : Stringgrp : Graph

 : Attribute

 : Node

 : Type

 : Edge
to

type

attr

node

edge

Figure 23: Get destination nodes of a node
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B.3 Functions

less =if op=’LESS’and v0 < v1 then ’true’ else’’ endif;
noless =if op=’LESS’and v0 > v1 then ’false’ else’’ endif;
grt = if op=’GREATER’and v0 > v1 then ’true’ else’’ endif;
nogrt =if op=’GREATER’and v0< v1 then ’false’ else’’ endif;
eq=if op=’EQUAL’ and v0 = v1 then ’true’ else’’ endif;
noeq=if op=’EQUAL’ and v0 != v1 then ’false’ else’’ endif;

result = less + noless + grt + nogrt + eq + noeq;

Figure 24: FunctionCalcuLogic(v0: Integer, v1: Integer, op:String) : String

add =if op=’#Add’ then v0 + v1 + 0else0 endif;
sub =if op=’#Sub’then v0 − v1 else0 endif;
mul = if op=’#Mul’ then v0 ∗ v1 else0 endif;
div = if op=’#Div’ then v0 / v1else0 endif;

result = add + sub + mul + div + 0;

Figure 25: FunctionCalcuMatch(v0: Integer, v1: Integer, op:String):Integer
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C Transformation for instruction selection

• Transformation configuration: name :TTC InstructionSelection, source :Intermediate, sourceKey :
id, sourceName :srcgrp, target:Intermediate, targetKey:id, targetName :trggrp.

C.1 QVTR relations

<<Relation>>

FirmModel

{where=GraphToGraph(sfm,tfm);}

{isTopLevel}

<<Domain>>

sfm : FirmModel

<<Domain>>

tfm : FirmModel

<<Relation>>

DefaultGraph

{where=NodeToNode(srg,trg);
EdgeToEdge(srg,trg);}

edgeids = "edids"

edgemode = "edmd"

id = "’DefaultGraph’"

trg : Graph

edgeids = "edids"

edgemode = "edmd"

id = "’DefaultGraph’"

srg : Graph

<<Domain>>

 : FirmModel

<<Domain>>

 : FirmModel

tp : Typetp : Type

typetype

Figure 26: Starting top level relation
Figure 27: Cope with default graph (relName :
GraphToGraph)

<<Relation>>

BinaryOp

{when=(optp=’#Cmp’ or  optp=’#Add’ or optp=’#Sub’ or optp=’#Mul’ 
or optp=’#Div’ or optp=’#Mod’ or  optp=’#Shl’ or optp=’#Shr’ 

or optp=’#Shrs’ or optp=’#And’ or optp=’#Or’ or  optp=’#Ror’);,
where=newoptp=GetTargetName(optp);  

CopyAtt(op,top);
MakeBinaryOpI(op,trg);}

xlink:href = "newoptp"

 : Type

xlink:href = "optp"

 : Type

<<Domain>>

 : Graph

<<Domain>>

trg : Graph

id = "opid"

op : Node

id = "opid"

top : Node

type type

node node

<<Relation>>

MakeBinaryOpI

{where=newoptp=GetTargetName(optp)+’I’;         
newopid=GetNewId(opid,2,’n--’);   

ineds=GetInEdge(op); outeds=GetOutEdge(op);  val=’1’;
alleds=ineds->union(outeds);   

CopyAtt(op,top);
MakeEdge(alleds,trg,opid,newopid);          

if cov=’false’ then MakeNewConst(op,trg,val) endif;}

#bool = "cov"

name = "’commutative’"

 : Attribute

xlink:href = "newoptp"

 : Type

xlink:href = "optp"

 : Type

#int = "val"

name = "’value’"

 : Attribute

<<Domain>>

 : Graph

<<Domain>>

trg : Graph

id = "newopid"

top : Node
id = "opid"

op : Node

attr

attr

type

node

type

node

Figure 28: Select and cope with binary
operations (relName:NodeToNode)

Figure 29: Create theTargetOpI node
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<<Relation>>

OtherGraph

<<Domain>>

 : FirmModel

<<Domain>>

 : FirmModel

srg : Graph srg : Graph

<<Relation>>

MakeEdge

{where=neweid=GetNewId(eid,3,’e--’);
fnd=if ed.from=ndid then newndid else ed.from endif;        

tnd=if ed.to=ndid then newndid else ed.to endif;}

<<PrimitiveDomain>>

newndid : String

<<Domain>>

trg : Graph
<<Domain>>

 : Graph

xlink:href = "tp"

 : Type
xlink:href = "tp"

 : Type
#int = "pos"

name = "anm"

 : Attribute

#int = "pos"

name = "anm"

 : Attribute

id = "neweid"

ted : Edge

id = "eid"

ed : Edge

id = "fnd"

 : Node

id = "tnd"

 : Node

<<PrimitiveDomain>>

ndid : String

type
attr type

attr

edge

tofrom

edge

Figure 30: Copy graphs other than the de-
fault one (relName:GraphToGraph)

Figure 31: Create edges for theTargetOpI node

<<Relation>>

CopyNode

<<Domain>>

 : Graph

<<Domain>>

 : Graph

op : Node op : Node

nodenode

<<Relation>>

MakeNewConst

{where=newopid=GetNewId(opid,2,’n--’);  newcid=GetNewId(opid,4,’n--’);
edid1=GetNewId(opid,2,’e--’);  edid2=GetNewId(opid,4,’e--’);

stblk=GetTypedNode(src,’#StartBlock’);
MakeNewEdge(src,trg,edid1,opid,newcid,stblk.id,’-1’,’#Dataflow’);

MakeNewEdge(src,trg,edid2,opid,newopid,newcid,’1’,’#Dataflow’);}

xlink:href = "’#TragetConst’"

 : Type

<<PrimitiveDomain>>

val : Integer

#int = "val"

name = "’value’"

 : Attribute

<<Domain>>

trg : Graph

<<Domain>>

src : Graph

id = "newcid"

 : Node

id = "opid"

op : Node

attr

node

type

node

Figure 32: Copy node of other type (rel-
Name:NodeToNode)

Figure 33: Create a new const node for theTarget-
OpI node

<<Relation>>

EdgeToEdge

<<Domain>>

 : Graph

<<Domain>>

 : Graph

ed : Edgeed : Edge

edge edge

MakeNewEdge

<<Relation>>

<<PrimitiveDomain>>

from : String

<<PrimitiveDomain>>

to : String

<<PrimitiveDomain>>

pos : String

<<PrimitiveDomain>>

tp : String

<<PrimitiveDomain>>

tid : String

<<PrimitiveDomain>>

edid : String

#int = "pos"

name = "’position’"

 : Attribute

<<Domain>>

 : Graph

<<Domain>>

trg : Graph

xlink:href = "tp"

 : Type

id = "from"

 : Node

id = "edid"

ted : Edge

id = "to"

 : Node

type

attr

to

from

edge

Figure 34: Copy an edge Figure 35: Create a new edge
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<<Relation>>

CopyAtt

<<Domain>>

 : Node

<<Domain>>

 : Node

at : Attributeat : Attribute

attr attr

<<Relation>>

UniqueOp

{when=(optp=’#Jmp’ or  optp=’#Cond’ or optp=’#Const’ or optp=’#SymConstl’ 
or optp=’#Load’ or optp=’#Store’  or  optp=’#Not’);,

where=newoptp=GetTargetName(optp); 
CopyAtt(op,top);

if optp=’#Load’ or optp=’#Store’ then MakeLoadStoreI(op,trg) endif;}

xlink:href = "newoptp"

 : Type

xlink:href = "optp"

 : Type

<<Domain>>

 : Graph

<<Domain>>

trg : Graph

id = "opid"

top : Node

id = "opid"

op : Node

typetype

nodenode

Figure 36: Copy attribute of node
Figure 37: Select and cope with other operations
(relName:NodeToNode)

<<Relation>>

MakeLoadStoreI

{where=newoptp=optp+’I’;
newopid=GetNewId(opid,2,’n--’);}

xlink:href = "newoptp"

 : Type

#string = "’global’"

name = "’symbol’"

 : Attribute

name = "’volatile’"

vatt : Attribute

xlink:href = "optp"

 : Type

<<Domain>>

src : Graph

<<Domain>>

trg : Graph

id = "newopid"

 : Node

vatt : Attribute

id = "opid"

op : Node

attr

attr
attr

type type

node node

Figure 38: CreateLoadI or StoreI node

C.2 Queries and Functions

All queries have same definitions as in transformation localoptimizations:
• GetInEdge (Fig. 17),GetOutEdge(Fig. 18),GetOwnerBlock (Fig. 20)
• GetToData (Fig. 22),GetTypedNode(Fig. 21)

pos1=pos+1;
p1=substring(in,1,pos);
p2=substring(in,pos1);
result=sufix+p2+p1;

Figure 39: Function GetNewId(in:
String, pos: Integer, sufix:String)

nm=substring−after(op,’#’);
result=’#’+’Target’+nm;

Figure 40: FunctionGetTargetName(op
: String)
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