
Pieter Van Gorp, Louis M. Rose, Christian Krause (Eds.):
Sixth Transformation Tool Contest (TTC 2013)
EPTCS 135, 2013, pp. 43–56, doi:10.4204/EPTCS.135.6

c© Jesús Sánchez Cuadrado
This work is licensed under the
Creative Commons Attribution License.

Solving the Flowgraphs Case with Eclectic

Jesús Sánchez Cuadrado
Universidad Autónoma de Madrid (Spain)

jesus.sanchez.cuadrado@uam.es

This paper presents a solution for the Flow Graphs case of the Transformation Tool Contest 2013,
using the Eclectic model transformation tool. The solution makes use of several languages of Eclec-
tic, showing how it is possible to combine them to address a non-trivial transformation problem in a
concise and modulary way.

1 Introduction

The TTC 2013 Flow Graphs case [3] proposes the analysis of Java programs, conforming to the JaMoPP
meta-model [2], by transforming them into a language-independent meta-model which represents the
structure of the program and includes information about control and data flows. This solution makes
use of the Eclectic transformation tool [1] to solve the four proposed tasks. The fourth task has been
addressed using METADEPTH [4] to create a small DSL. 1

Eclectic is a transformation tool designed as a family of model transformation languages, that is, a set
of transformation languages each one specifically designed to address a specific transformation concern,
as well as some composition mechanisms for their combination. The objective of this solution is thus
to show how it is possible to address a non-trivial transformation task, such as this case, using several
languages and how this approach has the potential of improving modularity and readability.

Eclectic currently provides the following languages: i) a mapping language for establishing one-to-
one and one-to-many correspondences, ii) a target-oriented language with object notation and explicit
rule calls, iii) a traversal language based on in the idea of attributed grammars, iv) a pattern matching
language which used object-notation, and v) a lower-level scripting language, which also plays the role
of scheduling language. Languages i, ii and iv do not allow complex expressions, but these need to be
encoded in navigation libraries, written in the scripting language.

In principle, the combination of these languages permits covering many model transformation sce-
narios, in a more intentional way than using a general purpose transformation language. Addressing
case studies could allow this intuition to be evaluated in practice. The solution of this case has used the
mapping language, the attribution language, the pattern matching language, the scripting language and a
navigation module. The target-oriented language is not needed because it is typically useful for synthesis
tasks, but the case only involves mappings and analysis tasks.

In Eclectic every language is compiled to an intermediate representation, called IDC. It provides
primitive instructions for model manipulation. Then, IDC is compiled to the Java Virtual Machine (JVM)
bytecode format. In this way, all Eclectic languages share the same execution infrastructure. The com-
position mechanisms are implemented at the IDC level. There is also a runtime library, which provides
datatypes (e.g., immutable lists), a model manager (i.e., EMF and METADEPTH are supported), etc.

1This solution is available as a SHARE image: http://is.ieis.tue.nl/staff/pvgorp/share/?page=

ConfigureNewSession&vdi=Ubuntu12LTS_TTC2013_Eclectic_FlowGraphs.vdi

http://dx.doi.org/10.4204/EPTCS.135.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu12LTS_TTC2013_Eclectic_FlowGraphs.vdi
http://is.ieis.tue.nl/staff/pvgorp/share/?page=ConfigureNewSession&vdi=Ubuntu12LTS_TTC2013_Eclectic_FlowGraphs.vdi

44 Solving the Flowgraphs Case with Eclectic

1 eclectic task1 (in) −> (out)
2

3 mappings task1 map(in) −> (out)
4 uses task1 attribution
5 uses task1 patterns
6

7 from src : in!ClassMethod
8 to tgt : out!Method, exit : out!Exit
9 linking tgt.exit = exit

10 tgt.stmts <− src.statements
11 tgt.txt = task1 attribution!text[src]
12 end
13

14 from src : in!WhileLoop
15 to tgt : out!Loop
16 tgt.expr <− src.condition
17 tgt.body <− src.statement
18 tgt.txt = task1 attribution!text[src]
19 end
20

21 from src : task patterns!LoopExpression
22 to tgt : out!Expr
23 tgt.txt = task1 attribution!text[src]
24 end
25 end

26

27 attribution task1 attribution(in) −> (out)
28 syn text : !String
29

30 rule in!WhileLoop
31 text[self] <− ”while”
32 end
33

34 rule in!AssignmentExpression
35 left = text[self.child]
36 right = text[self.value]
37

38 text[self] <− left.concat(’ = ’).concat(right)
39 end
40 end
41

42 patterns task1 patterns(in)
43 def LoopExpression −> (e)
44 l : in!WhileLoop {
45 condition = e : in!Expression { }
46 }
47 end
48 // ... Likewise for ConditionalExpression ...
49 end

Figure 1: Excerpt of the mapping from JaMoPP to FlowGraph

2 Solution

2.1 Task 1

The first task is a model-to-model transformation, which comprises three different concerns that should
be implemented in three different modules: i) A simple mapping between JaMoPP and FlowGraph ele-
ments must be performed. The mapping is mostly one-to-one, therefore the Eclectic mapping language
would suffice. ii) A bottom-up text serialization of the JaMoPP abstract syntax tree. This could be imple-
mented with a series of helper methods or using the attribution language, which allows us to propagate
text from the leaves of a statement to the root, creating the serialization during the process. iii) An Expres-

sion element must not be translated, unless it is the condition of a loop or an if. To tackle this, the pattern
language would be in charge of recognizing the cases and it is combined with the mapping language.

In this way, the proposed solution makes use of three modules (task1 map, task1 attribution, and
task1 patterns). The mapping module has a dependency on the attribution module, to retrieve the textual
representation of each source element, and on the pattern matching module, which feeds it with non-
trivial matches. The listing in Figure 1 shows an excerpt of the transformation. It declares an Eclectic
transformation called task1, which encloses the three modules.

The mapping transformation is more or less straightforward. Its semantics is basically similar to
ATL. Rules are executed at top level (i.e., non-lazy execution), and the← operation (a binding) resolves
a target element from a source element. Interestingly, only simple expressions are allowed in the right
part of a binding. The most subtle detail is how to “communicate” with the other modules.

To interoperate with the attribution transformation the syntax transformation!attribute[expr] is used (see
lines 11, 18 and 23), which means: retrieve the element associated to expr through the attribute. As a
concrete example, the text for the WhileLoop (retrieved in line 18) is actually produced by the assignment
of the text attribute in line 31.

Jesús Sánchez Cuadrado 45

To interoperate with the pattern language, the mapping language treats a pattern as a regular type. It
can be seen as an extended layer put on top of the original meta-model. In this way, the rule in lines 7–10
will be executed for each ocurrence of the LoopExpression pattern, defined in lines 43–46. This pattern is
matched if there is a WhileLoop containing an Expression in this condition, and in such case the expression
(variable e) is “returned”.

The attribution transformation is also very simple, but the mechanics of attributes has to be taken into
account. The language supports synthesized and inherited attributes (i.e., attributes propagated bottom-
up and top-down, respectively).2

An attribute is assigned with the syntax attribute[expr1] ← expr2, and it has the effect of creating a trace
link between the value obtained with expr1 and expr2. Conversely, retrieving the attribute associated to
an element is done with the syntax attribute[expr]. For instance, in lines 35 and 36 the value of the text
attribute is retrieved for the left and right parts of the assignment expression, and then these two values
are used to give the text value to the assignment expression, that is, the self of the rule (line 38).

With respect to the integration at run-time of the different modules, all modules are executed con-
currently, exchanging data among them as the execution proceeds. When all modules have finished its
execution, the transformation is finished.

2.2 Task 2

This task is intended to complete the program structure computed in the previous task with the links
defining the control flow graph of the program.

It is an in-place transformation, as the source model has to be augmented with the flow information.
However, the main challenge is the computation of the implicit flow relationships. This task is particu-
larly well suited for attribute-based traversal, because control flow attributes have to be propagated along
the program structure (bottom-up and top-down). The presented solution makes use of two attributes.
i) successors which is an inherited attribute specifying the list of “flow” siblings of each statement. In
addition, it relieves statements from knowning its position within its container statement. ii) cf next,
which is a synthesized attribute representing the flow instruction that corresponds to an element. This is
useful to make the transformation more homogenous since every element will have a corresponding flow
instruction (e.g., a Block)3.

In this section only the rules for blocks and simple statements are shown (see Figure 2), just to give
an impression of the style of the solution. The complete explanation is given in Appendix A.2.

The rule for Block4 first retrieves the block’s successors (line 7) and propagates them to the following
sibling (line 8). Then, it initializes the attribute successors for its enclosed statements (lines 11-13), adding
its first successor, so that the enclosed statements have an “exit point” (i.e., this has the advantage that
there is no need to check if an element is the last one of a block). Finally, the control flow instruction of
a block is the control flow instruction of the first enclosed statement (line 16), that is, the flow reaches
the block and goes on through the first statement. Please note that for a series of nested blocks this
approach will seamlessly work. The cf next attribute is thus used in the transformation with the purpose
of attaching a control flow instruction (a FlowInstr element) to every element of the program tree, so that
all elements can be homogenously treated as flow instructions even when some of them are not FlowInstr

elements, as it happens in the rule for Block

2In practice, Eclectic treats both types of attributes equally, but it is useful to differentiate to improve readability.
3A better name would be cf instr, since it does not represent the next control flow instruction (as cfNext does in the meta-

model). The text, however, sticks to the name originally given in the solution uploaded to SHARE.
4The type ends with “!” meaning that only instances of this type, but no subtypes, should be matched.

46 Solving the Flowgraphs Case with Eclectic

The rule for SimpleStmt first propagates the successors to the immediate sibling (this operation has to
be done in every rule). Then, it establishes that the flow instruction for the statement is itself (line 23).
Finally, the cfNext link is the control flow instruction of its first successor.

1 attribution task2 attribution(flow) −> ()
2 inh successors : !List
3 syn cf next : flow!FlowInstr
4

5 rule flow!Block!
6 // Propagate the successors to immediate sibling
7 successors = successors[self]
8 successors[successors.first] <− successors.tail
9

10 // Initialize successors for the enclosed statements
11 successor = successors.first
12 successors[self.stmts.first] <−
13 self.stmts.tail.add(successor)
14

15 // Compute the control flow
16 cf next[self] <− cf next[self.stmts.first]
17 end
18

19 rule flow!SimpleStmt
20 successors = successors[self]
21 successors[successors.first] <− successors.tail
22

23 cf next[self] <− self
24

25 next flow = cf next[successors.first]
26 self.cfNext = next flow
27 end

Figure 2: Computing the flow graph: blocks and simple statements

2.3 Task 3.1

This task complements Task 1 by adding variable declarations to the FlowGraph models, and computing
the information about definitions and uses of the variables.

Thus, this transformation module (an attribution transformation) depends on the mapping trans-
formation, so that its rules retrieve objects created by the latter. To this end, the syntax transforma-

tion!tlink.tfeature[expr] is used, which means: “retrieve a trace link called tlink from transformation, corre-
sponding to the source element obtained with expr”. A more detailed explanation about this feature and
the transformation itself is given in Appendix A.1.

2.4 Task 3.2

This task has been implemented using the straightforward algorithm commented in the case description,
using the scripting language. It was not possible to use attribute grammars because Eclectic does not
support circular dependencies yet. Basically, for each variable use in a flow instruction, each path to
reach the instruction is looked up (using the cfPrev link). Then, for each path, every flow predecessor
is computed in a helper method (all previous). This works because all previous returns the list of pre-
cedessors in order, so that if a variable is defined twice, the closest predecessor is the first in the list. The
complete transformation is given in Appendix A.3.

2.5 Task 4

This task requires building a small DSL to allow validation specifications to be written. To this end the
template language of METADEPTH [4] has been used. It allows concrete syntaxes to be created “on
the fly” (with intermediate code generation, but it is handled internally). METADEPTH is a powerful
multi-level modeling framework, but its use here is very simple, so it is not fully introduced.

The meta-model for the abstract syntax of the DSL is shown to the left of Figure 3. The model
ValidationDSL acts as root element, which encloses RequiredLink elements. This meta-class simply speci-
fies that an instruction identified in left must have the instruction identified in right as a successor. The
ControlFlowLink and DataFlowLink meta-classes specialize RequiredLink for the control and data flow.

Jesús Sánchez Cuadrado 47

1 Model ValidationDSL@1 {
2 abstract Node RequiredLink {
3 left : String;
4 right : String;
5 }
6

7 Node ControlFlowLink : RequiredLink
8 { }
9

10 Node DataFlowLink : RequiredLink
11 { }
12 }

1 load ”validation dsl”
2 Syntax ValidationDSLSyntax for ValidationDSL [”.validate”] {
3 model template ValidationDSL@1 for ”ValidationDSL”
4 ”validate” ˆId
5 (:ControlFlowLinkTemplate)∗ (:DataFlowLinkTemplate)∗ ;
6

7 node template ControlFlowLinkTemplate@1 for ControlFlowLink
8 ”cfNext” ”:” #left ”−−>” #right ;
9

10 node template DataFlowLinkTemplate@1 for DataFlowLink
11 ”dfNext” ”:” #left ”−−>” #right ;
12 }

Figure 3: Meta-model of the DSL (left). Template specification (right)

The right of Figure 3 shows the specification of the concrete syntax. It is a template language, based
on associating a type with a specification of its serialization, which is later interpreted to generate a
parser. For instance, :ControlFlowLinkTemplate invokes a template (line 7) and #left (line 11) indicates the
serialization of the left property.

The algorithm to check this specification against the generated models basically consists of two
nested loops, for traversing the specification and the check model (see Appendix A.4).

3 Evaluation Task Style LOC
1 Mapping 87

Attribute propagation 160
Simple pattern matching 12

2 Attribute propagation 140
3.1 Attribute propagation 123
3.2 Scripting 40
4 Scripting 102

MetaDepth (meta-model) 10
MetaDepth (c. syntax) 10

Total 694

All tasks have been solved, and the results for the smaller input
models has been checked manually. The only issue detected, in
Task 3.2, has been missing data flow links for unary expressions.

With respect to comprehensibility and conciseness, the table
summarizes the use of the different languages of Eclectic and the
amount of code written (LOC, including whitespace). As has been
shown in the previous section, it was natural to combine different
languages in order to favour modularity, and ultimately readability
through expressive and concise specifications.

Finally, performance was not as good as expected. In particular, the control flow transformation did
not scale well when large models were tried (notably tests 8 and 9). Therefore, a line of future work is to
profile and optimize the transformation engine.
Acknowledgements. Work partially funded by the Spanish Ministry of Economy and Competitivity (TIN2011-24139), and the

R&D programme of Madrid Region (S2009/TIC-1650).

References
[1] Jesús Sánchez Cuadrado (2012): Towards a Family of Model Transformation Languages. LNCS 7307,

Springer, pp. 176–191, doi:10.1007/978-3-642-30476-7 12.
[2] Florian Heidenreich, Jendrik Johannes, Mirko Seifert & Christian Wende (2009): JaMoPP: The Java Model

Parser and Printer. Technical Report TUD-FI09-10, Technische Universitt Dresden, Fakultät Informatik.
ftp://ftp.inf.tu-dresden.de/pub/berichte/tud09-10.pdf.

[3] Tassilo Horn (2013): The TTC 2013 Flowgraphs Case. In: Sixth Transformation Tool Contest (TTC 2013),
EPTCS this volume.

[4] Juan de Lara & Esther Guerra (2010): Deep Meta-Modelling with METADEPTH. LNCS 6141, Springer, pp.
1–20, doi:10.1007/978-3-642-13953-6 1.

http://dx.doi.org/10.1007/978-3-642-30476-7_12
ftp://ftp.inf.tu-dresden.de/pub/berichte/tud09-10.pdf
http://dx.doi.org/10.1007/978-3-642-13953-6_1

48 Solving the Flowgraphs Case with Eclectic

A Complete code

A.1 Mapping to JaMoPP

The following listing shows the code that solves Task 1 and Task 3.1. It is split into four modules.

• A mapping module (task1 map, lines 3–87).

• An attribute computation module (task1 attribution, lines 89–249).

• An pattern matching module (task patterns, lines 258–263)

• An attribute computation module (task3 1 varuses, lines 269–391)

As an implementation note, the expression language of Eclectic is currently very simple, for instance,
it does not have binary expressions or if statements. The reasons is that it has not been decided yet which
style to use: a conventional one or a Smalltalk-like (i.e., based on keyword methods). In any case, by
using method calls and closures it is possible to express complex structures in practice (although not in a
very readable manner, see for example lines 34–41 in Figure 6).

1 eclectic task1 (in) −> (out)
2

3 mappings task1 map(in) −> (out)
4 uses task1 attribution as task1 attribution
5 uses task patterns as task patterns
6

7 from src : in!ClassMethod
8 to tgt : out!Method, exit : out!Exit
9 linking tgt.exit = exit

10 tgt.stmts <− src.statements
11

12 tgt.txt = task1 attribution!text[src]
13 exit.txt = ”Exit”
14 end
15

16 // −−−−−−−−−−−−−
17 // Statements
18 // −−−−−−−−−−−−−
19

20 from src : in!LocalVariableStatement
21 to tgt : out!SimpleStmt
22 tgt.txt = task1 attribution!text[src]
23 end
24

25 from src : in!ExpressionStatement
26 to tgt : out!SimpleStmt
27 tgt.txt = task1 attribution!text[src]
28 end
29

30 from src : in!WhileLoop
31 to tgt : out!Loop
32 tgt.expr <− src.condition
33 tgt.body <− src.statement
34

35 tgt.txt = task1 attribution!text[src]
36 end
37

38 from src : in!Condition
39 to tgt : out!If
40 tgt.txt = task1 attribution!text[src]
41

42 tgt.expr <− src.condition

43 tgt.then <− src.statement
44 tgt.ˆelse <− src.elseStatement
45 end
46

47 from src : in!Return
48 to tgt : out!Return
49 tgt.txt = task1 attribution!text[src]
50 end
51

52 from src : in!Break
53 to tgt : out!Break
54 tgt.txt = task1 attribution!text[src]
55 end
56

57 from src : in!Continue
58 to tgt : out!Continue
59 tgt.txt = task1 attribution!text[src]
60 end
61

62 from src : in!JumpLabel
63 to tgt : out!Label
64 tgt.stmt <− src.statement
65 tgt.txt = task1 attribution!text[src]
66 end
67

68 from src : in!Block
69 to tgt : out!Block
70 tgt.stmts <− src.statements
71 tgt.txt = task1 attribution!text[src]
72 end
73

74 // −−−−−−−−−−−−−
75 // Expressions
76 // −−−−−−−−−−−−−
77 from src : task patterns!ConditionalExpression
78 to tgt : out!Expr
79 tgt.txt = task1 attribution!text[src]
80 end
81

82 from src : task patterns!LoopExpression
83 to tgt : out!Expr
84 tgt.txt = task1 attribution!text[src]

Jesús Sánchez Cuadrado 49

85 end
86

87 end
88

89 attribution task1 attribution(in) −> (out)
90 // optimizations : enabled
91 syn text : !String
92

93 rule in!Method
94 text[self] <− self.name.concat(’()’)
95 end
96

97 rule in!LocalVariableStatement
98 init text = text[self.variable.initialValue]
99 type ref = text[self.variable.typeReference]

100

101 text[self] <− type ref.concat(’ ’).concat(
102 self.variable.name.concat(’ = ’).
103 concat(init text)).concat(’;’)
104 end
105

106 rule in!ExpressionStatement
107 init text = text[self.expression]
108

109 text[self] <− init text.concat(”;”)
110 end
111

112 rule in!AssignmentExpression
113 left = text[self.child]
114 right = text[self.value]
115 operator = text[self.assignmentOperator]
116

117 text[self] <− left.concat(’ = ’).concat(right)
118 end
119

120 rule in!SuffixUnaryModificationExpression
121 expr text = text[self.child]
122 operator = text[self.operator]
123 text[self] <− expr text.concat(operator)
124 end
125

126 rule in!MultiplicativeExpression
127 first = text[self.children.first]
128 rest = self.children.tail.zip(self.multiplicativeOperators)
129

130 text[self] <− rest.inject(first) { |tmp, v|
131 tmp.concat(text[v.second]).concat(text[v.first])
132 }
133 end
134

135 rule in!AdditiveExpression
136 first = text[self.children.first]
137 rest = self.children.tail.zip(self.additiveOperators)
138

139 text[self] <− rest.inject(first) { |tmp, v|
140 tmp.concat(text[v.second]).concat(text[v.first])
141 }
142 end
143

144 rule in!RelationExpression
145 first = text[self.children.first]
146 rest = self.children.tail.zip(self.relationOperators)
147

148 text[self] <− rest.inject(first) { |tmp, v|
149 tmp.concat(text[v.second]).concat(text[v.first])

150 }
151 end
152

153 rule in!EqualityExpression
154 first = text[self.children.first]
155 rest = self.children.tail.zip(self.equalityOperators)
156

157 text[self] <− rest.inject(first) { |tmp, v|
158 tmp.concat(text[v.second]).concat(text[v.first])
159 }
160 end
161

162 rule in!IdentifierReference
163 text[self] <− self.target.name
164 end
165

166 rule in!DecimalIntegerLiteral
167 text[self] <− self.decimalValue.to s
168 end
169

170 rule in!WhileLoop
171 text[self] <− ”while”
172 end
173

174 rule in!Condition
175 text[self] <− ”if”
176 end
177

178 rule in!Block
179 text[self] <− ”{...}”
180 end
181

182 rule in!Continue
183 text[self] <− ”continue”
184 end
185

186 rule in!Break
187 text[self] <− ”break”
188 end
189

190 rule in!Return
191 rvalue = self.returnValue.is nil.if else({
192 ’;’
193 }, {
194 v = text[self.returnValue]
195 ’ ’.concat(v.concat(’;’))
196 })
197 text[self] <− ”return”.concat(rvalue)
198 end
199

200 rule in!JumpLabel
201 text[self] <− self.name.concat(”:”)
202 end
203

204 // Types
205 rule in!Int
206 text[self] <− ’int’
207 end
208

209 // Operators
210 rule in!Assignment
211 text[self] <− ’ = ’
212 end
213

214 rule in!Multiplication

50 Solving the Flowgraphs Case with Eclectic

215 text[self] <− ’ ∗ ’
216 end
217

218 rule in!Addition
219 text[self] <− ’ + ’
220 end
221

222 rule in!Division
223 text[self] <− ’ / ’
224 end
225

226 rule in!Subtraction
227 text[self] <− ’ − ’
228 end
229

230 rule in!Equal
231 text[self] <− ’ == ’
232 end
233 rule in!GreaterThan
234 text[self] <− ’ > ’
235 end
236

237 rule in!LessThan
238 text[self] <− ’ < ’
239 end
240

241 rule in!PlusPlus
242 text[self] <− ’++’
243 end
244

245 rule in!MinusMinus
246 text[self] <− ’−−’
247 end
248

249 end
250

251 patterns task patterns(in)
252 def LoopExpression −> (e)
253 l : in!WhileLoop {
254 condition = e : in!Expression { }
255 }
256 end
257

258 def ConditionalExpression −> (e)
259 l : in!Conditional {
260 condition = e : in!Expression { }
261 }
262 end
263 end
264

265 // −−−−−−−−−−−−−−−−−−−−−−
266 // Task 3.1
267 // −−−−−−−−−−−−−−−−−−−−−−
268

269 attribution task3 1 varuses(in) −> (out)
270 uses task1 map as task1 map
271 uses task patterns as task patterns
272

273 inh vardef : out!Var
274 syn writes : !List
275 syn reads : !List
276

277 // Create variables
278 rule in!Method
279 translation = task1 map!default.t[self]

280 vars = self.parameters.map { |p|
281 pvar = out!Param.new
282 pvar.txt = p.name
283

284 vardef[p] <− pvar
285

286 pvar
287 }
288 translation.vars = vars
289 translation.ˆdef = vars
290 end
291

292 rule in!LocalVariableStatement
293 avar = out!Var.new
294 avar.txt = self.variable.name
295

296 vardef[self.variable] <− avar
297

298 translation = task1 map!default.t[self.up to(in!Method)]
299 translation.vars = avar
300 end
301

302 // Compute reads/writes for statements
303 rule in!ExpressionStatement
304 reads = reads[self.expression]
305 writes = writes[self.expression]
306

307 translation = task1 map!default.t[self]
308 translation.use = reads
309 translation.ˆdef = writes
310 end
311

312 rule in!LocalVariableStatement
313 left = vardef[self.variable]
314 reads = reads[self.variable.initialValue]
315 writes = writes[self.variable.initialValue]
316

317 translation = task1 map!default.t[self]
318 translation.use = reads
319 translation.ˆdef = writes.add(left)
320 end
321

322 rule in!Return
323 self.returnValue.is nil.if false {
324 reads = reads[self.returnValue]
325 translation = task1 map!default.t[self]
326 translation.use = reads
327 }
328 end
329

330 rule in!UnaryModificationExpression
331 avar = vardef[self.child.target]
332 writes[self] <− avar.as list
333 reads[self] <− avar.as list
334 end
335

336 // Compute reads/writes for expressions
337 rule in!AssignmentExpression
338 writes[self] <− vardef[self.child.target]
339 reads[self] <− reads[self.value]
340 end
341

342 // covers ShiftExpression, AdditiveExpression,
MultiplicativeExpression

343 rule in!RelationExpression

Jesús Sánchez Cuadrado 51

344 writes[self] <− self.children.map { |c| r = writes[c] }.
flatten

345 reads[self] <− self.children.map { |c| r = reads[c] }.
flatten

346 end
347

348 rule in!AdditiveExpression
349 writes[self] <− self.children.map { |c| r = writes[c] }.

flatten
350 reads[self] <− self.children.map { |c| r = reads[c] }.

flatten
351 end
352

353 rule in!MultiplicativeExpression
354 writes[self] <− self.children.map { |c| r = writes[c] }.

flatten
355 reads[self] <− self.children.map { |c| r = reads[c] }.

flatten
356 end
357

358 rule in!EqualityExpression
359 writes[self] <− self.children.map { |c| r = writes[c] }.

flatten
360 reads[self] <− self.children.map { |c| r = reads[c] }.

flatten
361 end
362

363 rule in!DecimalIntegerLiteral

364 writes[self] <− !List.new
365 reads[self] <− !List.new
366 end
367

368 rule in!IdentifierReference
369 writes[self] <− !List.new
370 reads[self] <− vardef[self.target]
371 end
372

373 // Expressions
374 rule task patterns!LoopExpression
375 translation = task1 map!default.t[self]
376 reads = reads[self]
377 writes = writes[self]
378

379 translation.use = reads
380 translation.ˆdef = writes
381 end
382

383 rule task patterns!ConditionalExpression
384 translation = task1 map!default.t[self]
385 reads = reads[self]
386 writes = writes[self]
387

388 translation.use = reads
389 translation.ˆdef = writes
390 end
391 end

A.2 Computing the control flow

This transformation is perhaps the most complex one of the case, so to simplify the explanation, the
complete transformation has been split into several listings. First, listing in Figure 4 shows the header of
the transformation, including the attribute declarations (already explained in Section 2.2), and the rules
for Method and Block.

The rule for Method, initializes the successors attribute for the first statement (line 7). It adds the exit

element to the list of sucessors as a fallback, so that the sucessor of the last statement is the exit element
(i.e., this has the advantage that there is no need to check if an element is the last one of a block). Besides,
the control flow instruction of exit is itself. Lines 12–13 obtain the flow instruction for the first statement,
and set the cfNext link.

The rule for Block is similar to Method5, but first it retrieves the block’s successors (line 19) and propa-
gates them to the following sibling (line 20). Then, it initializes the successors attribute for its statements
(lines 23-25), adding its first successor, so that the enclosed statements have an “exit point”. Finally, the
control flow instruction of a block, is the control flow instruction of the first enclosed statement (line 28).
Please note that for a series of nested blocks this approach will seamlessly work.

Once the two basic enclosing structures have been presented, the easiest elements are simple state-
ments (SimpleStmt) and returns (Return), which are addressed in the listing shown in Figure 5.

The rule for SimpleStmt first propagates the successors to the immediate sibling (this operation has
to be done in every rule, so it will not be explained in the following). Then, it establishes that the flow
instruction for the statement is itself (line 5). Finally, the cfNext link is the control flow instruction of its
first successor.

In contrast, the rule for Return needs to look up the Method in which the instruction is enclosed, in

5The type ends with “!” meaning that only instances of this type, but no subtypes, should be matched.

52 Solving the Flowgraphs Case with Eclectic

1 attribution task2 attribution(flow) −> ()
2 inh successors : !List
3 syn cf next : flow!FlowInstr
4

5 rule flow!Method
6 // Initialize sucessors for enclosed stmts
7 successors[self.stmts.first] <−
8 self.stmts.tail.add(self.exit)
9

10 cf next[self.exit] <− self.exit
11

12 // Set flow link with the first flow instruction
13 next flow = cf next[self.stmts.first]
14 self.cfNext = next flow
15 end

16

17 rule flow!Block!
18 // Propagate the successors to immediate sibling
19 successors = successors[self]
20 successors[successors.first] <− successors.tail
21

22 // Initialize sucessors for the enclosed statements
23 successor = successors.first
24 successors[self.stmts.first] <−
25 self.stmts.tail.add(successor)
26

27 // Compute the control flow
28 cf next[self] <− cf next[self.stmts.first]
29 end

Figure 4: Computing the flow graph: methods and blocks

1 rule flow!SimpleStmt
2 successors = successors[self]
3 successors[successors.first] <− successors.tail
4

5 cf next[self] <− self
6

7 next flow = cf next[successors.first]
8 self.cfNext = next flow
9 end

10 rule flow!Return
11 successors = successors[self]
12 successors[successors.first] <− successors.tail
13

14 cf next[self] <− self
15

16 method = self.up to(flow!Method)
17 self.cfNext = method.exit
18 end

Figure 5: Computing the flow graph: simple statements and return

order to set the cfNext link to the method’s exit element (lines 16–17). The up to facility returns the first
ancestor with the given type.

The approach for loops and conditionals follows a similar schema, but taking into account that the
actual flow instruction is their condition, as well as the particularities of each instruction. The solution is
shown in the listing of Figure 6.

In the case of Loop, the successors attribute for its body has to be the condition expression, that is,
the control flow successor of the loop’s last statement will be the loop’s condition (lines 5–6). The
control flow instruction of the loop is its condition, and the control flow of the condition is itself (this is
needed because other instructions will refer to the control flow instruction of the condition as it has been
designated the successor of the loop). Finally, the cfNext link is set to the next successor as usual, but also
to the first enclosed flow instruction (lines 11–15).

The solution for conditionals (meta-class If, lines 22–42) is conceptually easier. The successors of the
then part are the if’s successors (line 26), the flow instruction is its condition (line 29) and the successor of
the condition is the instruction within the then (lines 31–32). Finally, it requires checking whether there
is an else part (line 34)6. If not, the next control flow instruction is just the following successor (lines
35–36). Otherwise, the successor attribute has to be initialized for the else part, and the next control flow
instruction is the one within the then part (lines 38–40).

Finally, rules to deal with Break and Continue statements (including Labels) are introduced. In both
cases, the key issue is to determine the jump location, which will be different depending on whether
there is a label or not. The listing in Figure 7 shows the solution.

In the case of a Break, the jump location is the enclosing loop or the label (lines 8-12). Then, the next

6This syntax for conditionals is only a syntatic limitation, as the current expression language is kept to a minimum.

Jesús Sánchez Cuadrado 53

1 rule flow!Loop
2 successors = successors[self]
3 successors[successors.first] <− successors.tail
4

5 condition = self.expr
6 successors[self.body] <− condition.as list
7

8 cf next[self] <− condition
9 cf next[condition] <− condition

10

11 next flow = cf next[successors.first]
12 condition.cfNext = next flow
13

14 first within = cf next[self.body]
15 condition.cfNext = first within
16 end
17

18

19

20

21

22 rule flow!If
23 successors = successors[self]
24 successors[successors.first] <− successors.tail
25

26 successors[self.then] <− successors
27

28 condition = self.expr
29 cf next[self] <− condition
30

31 first then = cf next[self.then]
32 condition.cfNext = first then
33

34 self.else.is nil.if else({
35 next flow = cf next[successors.first]
36 condition.cfNext = next flow
37 }, {
38 successors[self.else] <− successors
39 first within = cf next[self.else]
40 condition.cfNext = first within
41 })
42 end

Figure 6: Computing the flow graph: loops and conditionals

flow instruction is simply the successor of the jump location (lines 14–16).

In the case of a Continue, the jump location is assumed to be the condition expression of a loop, either
the enclosing loop or a loop with a label assigned (lines 25–30). Thus, the next flow instruction is just
this expression (line 32).

Finally, for a Label the control flow instruction is the control flow instruction of the statement that it
is labelling (line 41).

1

2 rule flow!Break
3 successors = successors[self]
4 successors[successors.first] <− successors.tail
5

6 cf next[self] <− self
7

8 jump location = self.label.is nil.if else({
9 self.up to(flow!Loop)

10 }, {
11 self.label
12 })
13

14 break successors = successors[jump location]
15 next flow = cf next[break successors.first]
16 self.cfNext = next flow
17 end
18

19 rule flow!Continue
20 successors = successors[self]
21 successors[successors.first] <− successors.tail

22

23 cf next[self] <− self
24

25 expr = self.label.is nil.if else({
26 loop = self.up to(flow!Loop)
27 loop.expr
28 }, {
29 self.label.stmt.expr
30 })
31

32 self.cfNext = expr
33 end
34

35 rule flow!Label
36 successors = successors[self]
37 successors[successors.first] <− successors.tail
38 successors[self.stmt] <− successors
39

40 cf next[self] <− cf next[self.stmt]
41 end

Figure 7: Computing the flow graph: break and continue

54 Solving the Flowgraphs Case with Eclectic

1 navigation task3 2 navigation(flow)
2

3 def flow!FlowInstr.all previous
4 visited map = !Map.new.ˆput(self, true)
5 self.all previous aux(visited map)
6 end
7

8 def flow!FlowInstr.all previous aux(visited)
9 not visited = self.cfPrev.

10 reject { |p| visited.include(p) }
11

12 previous = not visited.map { |p|
13 p.all previous aux(visited.ˆput(p, true))
14 }.flatten
15

16 self.as list.concat(previous.concat(not visited))
17 end
18

19 end
20

21

22 attribution task3 2 attribution(flow) −> ()
23 uses task3 2 navigation
24

25 rule flow!FlowInstr
26 self.use.each { |v|
27 // Look in each of the paths
28 self.cfPrev.each { |i|
29 def instruction = i.all previous.select { |prev|
30 prev.ˆdef.include(v)
31 }.first
32

33 def instruction.dfNext = self
34 }
35

36 self.ˆdef.include(v).if true {
37 self.dfNext = self
38 }
39 }
40 end
41 end

Figure 8: Computing the data flow

A.3 Computing the data flow

The listing in Figure 8 shows the implementation of this task. There is a navigation module task3 2 navigation

which adds the method all previous to FlowInstr elements, so that it can be used by task3 2 attribution to set
the data flow links.

It is worth mentioning that a solution based on attribute propagation, following the algorithm pro-
posed in the Dragon Book was tried, but it requires circular attributes, which are currently not supported
in Eclectic. Nevertheless, this solution shows that navigation modules are also possible, as well as
scripting-based transformations.

A.4 Checking control and data flow models

The comparison of the control of the data flow models against the validation specification expressed with
the DSL created in Section 2.5 has been implemented with the Eclectic low-level scripting language.
Interestingly, the Eclectic high-level languages are compiled to a representation similar to this one, so
this explanation may serve to give the reader an intuition of how Eclectic works under the hood.

The program shown in Listing 9 takes two input models, the specification written with the DSL and
the flow graph model. It outputs a report model (actually, the current implementation just prints the
reports, but it will be straightforward to create elements of the report model).

The scripting transformation allows temporary data structures to be defined, which serve as interme-
diate data for the transformation. In this way, lines 2–7 defines a model called inline, with the FlowLink

class. This class will hold a control flow or data flow relationship in the form of a string representing the
source element and another string representing the target element.

Afterwards, queues are defined. In the scripting language (and in IDC, the intermediate representa-
tion used by Eclectic) communication happens through queues. A model queue (lines 9–11) declares the
interest of a transformation in a certain type. A local queue (lines 13–17) is used internally by commu-
nicating values between two places of the transformation. The flow cfLinks and flow dfLinks will contain
links appearing in the flow model, and the dsl cfLinks and dsl dfLinks will contain links appearing in the

Jesús Sánchez Cuadrado 55

DSL specification.
The transformation code can be logically organised into segments. In this way, the find flow links seg-

ment (line 19) contains code to find flow links. The forall instruction is able to receive elements of a queue
(e.g., line 20). The emit instruction sends an object to a queue, in particular it is used to send FlowLink ele-
ments when a link is found (e.g., line 25). This is the basic communication mechanism between patterns
and rules (although in this language the distinction is implicit).

Then, segment validate (lines 52–98) receives the notifications of the found flow links (through the
four local queues) and check false links and missing links. As Eclectic has full support for closures, it is
possible to declare a closure as if it were a local variable, acting as kind of local function. This is done,
for example, in lines 53–60 to create a facility to check false links.

56 Solving the Flowgraphs Case with Eclectic

1 scripting task4 script(dsl, flow) −> (report)
2 model inline
3 class FlowLink
4 ref source : !String
5 ref target : !String
6 end
7 end
8

9 model queue mFlowInstr : flow!FlowInstr
10 model queue mControlFlowLink : dsl!ControlFlowLink
11 model queue mDataFlowLink : dsl!DataFlowLink
12

13 local queue flow cfLinks : inline!FlowLink
14 local queue flow dfLinks : inline!FlowLink
15

16 local queue dsl cfLinks : inline!FlowLink
17 local queue dsl dfLinks : inline!FlowLink
18

19 segment find flow links
20 forall flow instr from mFlowInstr
21 flow instr.cfNext.each { |target|
22 lnk = inline!FlowLink.new
23 lnk.source = flow instr.txt
24 lnk.target = target.txt
25 emit lnk to flow cfLinks
26 }
27

28 flow instr.dfNext.each { |target|
29 lnk = inline!FlowLink.new
30 lnk.source = flow instr.txt
31 lnk.target = target.txt
32 emit lnk to flow dfLinks
33 }
34 end
35

36 forall control flow from mControlFlowLink
37 lnk = inline!FlowLink.new
38 lnk.source = control flow.left
39 lnk.target = control flow.right
40 emit lnk to dsl cfLinks
41 end
42

43 forall data flow from mDataFlowLink
44 lnk = inline!FlowLink.new
45 lnk.source = data flow.left
46 lnk.target = data flow.right
47 emit lnk to dsl dfLinks
48 end
49

50 end

51

52 segment validate
53 check false link = { |type, lnk, dsl links|
54 dsl links.find { |cf|
55 cf.left.eq(lnk.source).and(
56 cf.right.eq(lnk.target))
57 }.if nil {
58 lnk.source.concat(’ ==> ’).concat(lnk.target).

println(type.concat(” false link: ”))
59 }
60 }
61

62 dsl expected cfs = dsl!ControlFlowLink.all instances
63 dsl expected dfs = dsl!DataFlowLink.all instances
64

65 // For any cfNext or dfNext link in the model,
66 // check if it is also defined in the spec.
67 forall cfLink from flow cfLinks
68 check false link.call(’Control’, cfLink, dsl expected cfs)
69 end
70

71 forall dfLink from flow dfLinks
72 check false link.call(’Data’, dfLink, dsl expected dfs)
73 end
74

75 // Check that every link in the specification
76 // occurs in the flow graph
77 flow instrs = flow!FlowInstr.all instances
78

79 check missing link = { |type, lnk, featureName|
80 flow instrs.find { |fi|
81 next txt = fi.get(featureName).map { |n| n.txt }
82

83 fi.txt.eq(lnk.source).
84 and(next txt.include(lnk.target))
85 }.if nil {
86 lnk.source.concat(’ ==> ’).concat(lnk.target).

println(type.concat(” missing link: ”))
87 }
88 }
89

90 forall dsl cfLink from dsl cfLinks
91 check missing link.call(’Control’, dsl cfLink, ’cfNext’)
92 end
93

94 forall dsl dfLink from dsl dfLinks
95 check missing link.call(’Data’, dsl dfLink, ’dfNext’)
96 end
97 end
98 end

Figure 9: Validating the flow graph using the scripting language

	1 Introduction
	2 Solution
	2.1 Task 1
	2.2 Task 2
	2.3 Task 3.1
	2.4 Task 3.2
	2.5 Task 4

	3 Evaluation
	A Complete code
	A.1 Mapping to JaMoPP
	A.2 Computing the control flow
	A.3 Computing the data flow
	A.4 Checking control and data flow models

