
Maribel Fernandez (Ed.): 24th International Workshop on
Unification (UNIF2010).
EPTCS 42, 2010, pp. 12–23, doi:10.4204/EPTCS.42.2

c© D. Kapur, A. Marshall & P. Narendran

Unification modulo a partial theory of exponentiation

Deepak Kapur∗

University of New Mexico
Department of Computer Science

kapur@cs.unm.edu

Andrew Marshall†

University at Albany–SUNY
Computer Science Department
marshall@cs.albany.edu

Paliath Narendran‡

University at Albany–SUNY
Computer Science Department

dran@cs.albany.edu

Modular exponentiation is a common mathematical operation in modern cryptography. This, along
with modular multiplication at the base and exponent levels (to different moduli) plays an important
role in a large number of key agreement protocols. In our earlier work [5, 6] we gave many decidabil-
ity as well as undecidability results for multiple equational theories, involving various properties of
modular exponentiation. Here, we consider a partial subtheory focussing only on exponentiation and
multiplication operators. Two main results are proved. The first result is positive, namely, that the
unification problem for the above theory (in which no additional property is assumed of the multipli-
cation operators) is decidable. The second result is negative: if we assume that the two multiplication
operators belong to two different abelian groups, then the unification problem becomes undecidable.
This result is established using a construction patterned after those employed in [5, 9] by reducing
Hilbert’s 10th problem to the unification problem.

1 Introduction

With network use and online transactions becoming all pervasive in many applications, especially online
shopping, social networking, video-conferencing, group conferencing, and e-voting etc, multi-party and
group protocols need to be employed. These protocols are often complex, rich and sophisticated, built
as a collection of protocols, whose interaction is often quite complex. Their reliability and security
thus become a critical issue, especially in case the protocols use arithmetic operators, such as modular
multiplication and exponentiation and boolean operators such as exclusive-or [11]. In collaboration
with the Maude-NPA team [3], we have developed an approach for analyzing whether a given protocol
is vulnerable to specific attacks by modeling the protocol as a state machine and an execution of the
protocol as a sequence of state transitions. The search space is explored using unification and narrowing
techniques to handle equational properties of the operators used in a protocol.

Modular exponentiation is a common mathematical operation in modern cryptography. This, along
with modular multiplication at the base and exponent levels (to different moduli) plays an important role
in the El Gamal signature scheme, the Nyberg-Rueppel key agreement protocol (Protocol 5.3 in [2]), and
the MTI and Yacobi-Shmuely protocols for public key distribution (Protocols 5.7 and 5.33 in [2]). In our
earlier work [5, 6] we gave many decidability as well as undecidability results for multiple equational
theories, involving various properties of modular exponentiation. Here, consider a partial subtheory
focussing only on exponentiation and multiplication operators.

The axioms of the theory are

exp(g(X),Y) = g(X ~Y)

exp(X ∗Y,Z) = exp(X ,Z)∗ exp(Y,Z)

∗Partially supported by the NSF grants CNS-0831462 and CNS-0905222
†Partially supported by the NSF grants CNS-0831209 and CNS-0905286
‡Partially supported by the NSF grants CNS-0831209 and CNS-0905286

http://dx.doi.org/10.4204/EPTCS.42.2

D. Kapur, A. Marshall & P. Narendran 13

Here exp is the exponentiation operator and g is exponentiation over a fixed base, such as 2n. The
multiplication operators ∗ and ~ are often modulo a prime p and p− 1, respectively. The reason for
modeling two different exponentiation operators is that in a large majority of protocols, many operations
are done using a fixed base. In addition, when specifying such protocols in Maude, as in Maude-NPA,
the use of the subsort mechanism can make unification more efficient if the first argument in exp is fixed.

Two main results are proved. The first result is positive, namely, that the unification problem for the
above theory (in which no additional property is assumed of the multiplication operators) is decidable.
The second result is negative: if we assume that the multiplication operators ∗ and ~ belong to two
different abelian groups, then the unification problem becomes undecidable. This result is established
using a construction patterned after those employed in [5, 9] by reducing Hilbert’s 10th problem to the
theory.

The decidability result uses a novel construction and is discussed in the next three sections. The
next section models the equational properties of the above two axioms as an inference system. Section 3
analyzes possible reasons when the unification fails, corresponding to the function clashes, occur-check,
and an infinite application of one of the inference rules. Section 4 gives the unification algorithm along
with a termination proof. The final section sketches the undecidability proof for the equational theory in
which, along with the above two axioms, the multiplication operators come from abelian groups.

2 Inference Rules

Below we present a set of inference rules for unification. Termination of these rules is proved later.

(a)
{U =? V}] E Q

{U =? V}∪ [V/U](E Q)
if U occurs in E Q

(b)
E Q] {U =? V ∗W, U =? X ∗Y}

E Q] {U =? V ∗W, V =? X , W =? Y}

(c)
E Q] {U =? V ~W, U =? X ~Y}

E Q] {U =? V ~W, V =? X , W =? Y}

(d)
E Q] {U =? exp(V,W), U =? exp(X ,Y)}
E Q] {U =? exp(V,W), V =? X , W =? Y}

(e)
E Q] {U =? g(V), U =? g(W)}

E Q ∪ {U =? g(V), V =? W}

(f)
E Q] {U =? exp(V,W), U =? g(X)}

E Q ∪ {U =? g(X), V =? g(V ′), X =? V ′~W}

(g)
E Q] {U =? exp(V,W), U =? X ∗Y}

E Q ∪ {U =? X ∗Y, V =? V1 ∗V2, X =? exp(V1,W), Y =? exp(V2,W)}

14 Unification modulo a partial theory of exponentiation

The variable V ′ in rule (f) is a fresh variable. Similarly V1,V2 in rule (g) are fresh variables. The
symbol] stands for disjoint union. Furthermore, rules (f) and (g) are applied only when the other rules
cannot be applied. The variable U in rule (f) (resp. rule (g)) is called an (f)-peak ((g)-peak.

A set of equations is said to be reduced if none of the inference rules (a) thru (e) are applicable.
Thus only rules (f) and (g) are applicable to a reduced system. We define relations −→ f and −→g be-
tween reduced sets of equations as follows: for reduced sets of equations S1 and S2, S1 −→ f S2 (resp.,
S1 −→g S2) if and only if S2 can be obtained from S1 by applying rule (f) (resp., rule (g)) once and then
eagerly applying rules (a) thru (e). Clearly, rule (f) decreases the number of exp symbols. But (g) intro-
duces new exp symbols. Thus termination of the algorithm is not obvious. For simplicity, we assume
that the equations deleted while applying the inference are actually put into “cold storage” by a marking
strategy.

Before proceeding we will need to define several relations over the variables in terms of equations
both marked and unmarked. These will be needed later in this paper:

• U �b V iff there is an equation U =? exp(V,W).

• U �e W iff there is an equation U =? exp(V,W).

• U �l∗ V iff there is an equation U =? V ∗W . Likewise, U �l~ V iff U =? V ~W .

• U �r∗ W iff there is an equation U =? V ∗W . Likewise, U �r~ W iff U =? V ~W .

• U �m V iff U �l∗ V or U �r∗ V .

• U �g V iff there is an equation U =? g(V).

• U � V iff there is an equation U =? t such that t is a non-variable term that contains V .

Clearly all other relations are sub-relations of�. For a relation p, let p+ denote its transitive closure.
Let ∼ be the reflexive, symmetric, transitive closure of �b.

We can also view these relations in terms of graphs, where the nodes are the variables and the edges
correspond to the various relations between them1. These graphs will be useful in checking for failure
conditions during unification. Figure 1 and Figure 2 are example graphs and the resulting transformation
after applying an inference rule.

3 Failure Conditions

Detection of failure involves several cases. Some cases are caused by function clashes and can be de-
tected using the following rules:

1This method is developed by Tiden and Arnborg in [10].

D. Kapur, A. Marshall & P. Narendran 15

�b

�e

U V

X W

U V

X

�g

�g

�g

V
′

�r~�l~

W

Figure 1: Rule (f)

(F1) E Q] {U =? exp(V,W), U =? X ~Y}
FAIL

(F2) E Q] {U =? g(V), U =? X ~Y}
FAIL

(F3) E Q] {U =? g(V), U =? X ∗Y}
FAIL

(F4) E Q] {U =? V ~W, U =? X ∗Y}
FAIL

Two other failure cases must be addressed. The first is similar to the “occur check” condition in
standard unification. The second is a special case when infinite applications of a rule can happen. Here
we use congruence classes over the ground terms, i.e. if t1 and t2 are ground terms and t1 = t2 then they
are in the same class.

Lemma 3.1. Every congruence class over the ground terms is finite. Hence, a term cannot be equivalent
to a proper-subterm of it.

16 Unification modulo a partial theory of exponentiation

�b

�b �b

�l∗

V

U

X

X V2Y V1

U

Y

V

�r∗

Figure 2: Rule (g): relevant parts

Proof. The fact that the congruence classes are finite is due to the initial system of equations. If a term
was equivalent to a proper-subterm this would create infinite congruence classes by allowing continual
replacement of the subterm.

Lemma 3.2. If there is a variable X such that X �+ X then there is no solution.

Proof. Follows from Lemma 3.1, this indicates the attempt to unify terms in which one is a proper-
subterm of the other, resulting in an occur check failure.

Next we need to identify cycles between the equivelant classes.

Lemma 3.3. If there are two variables X and Y such that X �m Y and Y (∼ ∪�m)
+ X, then there is no

solution.

Proof. We consider the reduction that follows when the exp and ~ functions are interpreted as a projec-
tions onto the first argument. The reduction will enable a simpler proof of the result.

Definition 3.4. Let exp and ~ be interpreted as a projection onto the first argument. We define the term
t̂i for any term ti such that if ti = exp(ti1, ti2) then t̂i = t̂i1. Also, if ti = ti1 ~ ti2 then t̂i = t̂i1.

Consider the Lemma under the interpretation of Definition 3.4. Then any variables related along a ∼
edge will become equivalent. Now consider paths along �m edges from equivalent classes formed from
∼. By definition there is at least one �m edge from X to Y . We then proceed by induction on the length
of the �m path. If no additional �m edges exist we have failure due to X �m Y and Y ∼ X (X = Y).
Now we can see that adding ∼ edges will not effect the unification of the system. we then can assume
that we have a cycle of k (0≤ k) �m edges that do not form a unifiable system. That is, a cycle of the
form E1 �m E2 �m · · · �m Ek+1, where each Ei is an equivalence class, Y ∈ E1, X ∈ Ek+1 and X �m Y .
Then because adding another �m edge would only move X into a lower class we can see the cycle is not
unifiable.

D. Kapur, A. Marshall & P. Narendran 17

Lemma 3.5. If {U =? X ∗Y, V =? g(Z)} ⊂ E Q and U ∼V then there is no solution.

Proof. Because of the bi-directional nature of ∼ we prove both directions.
First: let u = x∗y, v = g(z) and u�+

b v. If u�b v we must unify the equations x∗y and exp(v,w) but
this immediately leads to a function clash due to the need to unify v = g(z) and v = v1 ∗ v2. We can see
that for any path along �+

b we can continue to move the ∗ along the path until eventually we will need to
unify v = g(z) and v = v1 ∗ v2.

Second: Let u = x ∗ y, v = g(z), and v �+
b u. Just as in the first direction then we can move the g

function along the �b path eventually we will be required to unify u = x ∗ y and u = g(v
′
), a function

clash.

4 Unification Algorithm

First we need a method for detecting “occur check” failure conditions. To accomplish this, we use
the methods developed in Tiden and Arnborg [10], building two special graphs to check for failure
conditions.
Definition 4.1. Let D be a graph defined on a reduced system of equations. The nodes in the graph
correspond to variables in the system. The edges correspond to the parameters of each equation type.
See Figure 1.
Lemma 4.2. If there exists a cycle in D, the set of equations represented by D is not unifiable.

Proof. Directly from Lemma 3.2.

We will also need to detect cases requiring an infinite unifier. An example of this is the set of equations
comprising U =? exp(X ,W), and U =? X ∗Y . This example (g)-peak would cause a new (g)-peak
creation after each application of Rule (g) (See Figure 3). We will use a propagation graph P to check
for these conditions.
Definition 4.3. Let P be a directed simple graph defined on a set of equations as follows: Each vertex in
P is a ∼-equivalence class. There is an edge between the vertex containing v to the vertex containing w
in P, if there is a �m labeled edge from v to w in D.
Lemma 4.4. If there exists a cycle in P, the set of equations represented by P is not unifiable.

Proof. Follows from Lemma 3.3.

We now give a general unification algorithm for unification modulo the partial theory of exponentia-
tion.

Algorithm 1 Unification modulo partial exponentiation
Require: EQ, the set of equations

while An inference rule can be applied do
Build graphs D and P; if a cycle is found exit with failure.
If any of rules (F1) through (F4) apply exit with failure.
Eagerly apply rule (a).
Eagerly apply rules (b) through (e).
Apply rules (f) and (g) if possible.

end while

18 Unification modulo a partial theory of exponentiation

�e

�r∗

U

X

X�b

�b

�l∗

�l∗

�e

W

X1 X2

Y

W

�r∗

Figure 3: U = exp(X ,W), U = X ∗Y

Lemma 4.5. Rule (f) commutes with rule (g). (See Figure 4)

Proof. No variable can be an (f)-peak and a (g)-peak at the same time because this would cause failure.
Thus, application of rule (g) first does not affect the applicability of rule (f).

(g)

(f)

(f)

(g)

Figure 4: Rule (f) commutes with Rule (g)

Theorem 4.6. Algorithm 1 always terminates.

Proof. If a failure condition or cycle in one of the graphs is found, Algorithm 1 will clearly halt. Assume
none of these conditions occur. Then some observations can be made: Every ∼-congruence class has to
have a unique sink (wrt �b). Also, applying rule (g) does not increase the number of congruence classes
— the new variables V1 and V2 are ∼-equivalent to X and Y respectively. Now � can be used to define a

D. Kapur, A. Marshall & P. Narendran 19

well-founded partial order on the ∼-congruence classes. Thus the new exp equations created in rule (g)
are on congruence classes lower than the earlier one. Applications of rule (g) will thus always terminate
under the above assumptions. Since rule (f) can potentially increase the number of congruence classes,
we need Lemma 4.5. Since one cannot get an infinite sequence of (g)-steps or (f)-steps, the algorithm
terminates.

5 Undecidability of unification of partial exponentiation with two Abelian
group operators

Let us now consider the expanded theory where both ∗ and ~ are Abelian group operations. That is, we
let ∗ represent multiplication modulo a prime p and ~ represent multiplication modulo p−1. We denote
this equational theory as E1 and the resulting AC-convergent system as R1:

X ∗X−1→ 1

X ∗1→ X

(X ∗Y)−1→ X−1 ∗Y−1(
(Z)−1

)−1
→ Z

1−1→ 1

X ~1→ X

X ~ i(X)→ 1

i(i(X))→ X

i(X ~Y)→ i(X)~ i(Y)

exp(X ,1)→ x

exp(1,Z)→ 1

exp
(
Z−1,X

)
→ (exp(Z,X))−1

exp(g(X) ,Y)→ g(X ~Y)

exp((X ∗Y) ,Z)→ exp(X ,Z)∗ exp(Y,Z)

where <∗,−1,1> forms the first Abelian group and <~, i(),1> the second. The unification problem
for this system is undecidable. The proof is by reduction from Hilbert’s 10th problem (solvability of
polynomial equations over the integers). It will be shown that multiplication and addition of a number
can be simulated in the above system. We make the assumption for the first part of the proof that we are
allowed the distinct free constants b and c. The following proof is a modification of the proof given
in [9].

Definition 5.1. Let©i(u) denote

• u~u~ . . .~u︸ ︷︷ ︸
i

, if i > 0.

• ©i(u) = 1 if i = 0 and

• i(u)~ i(u)~ . . .~ i(u)︸ ︷︷ ︸
i

, if i < 0.

Lemma 5.2. g(s) =E1
g(t)⇒ s =E1

t.

Lemma 5.3. For every m, n ∈ Z, the equation:

x∗g(©n(b)) =E1
exp(x,b)∗g(©m(b))

is solvable.

20 Unification modulo a partial theory of exponentiation

Proof.

(a) If n > m, then x = g(©n−1(b))∗ . . .∗g(©m(b)) is a solution.

(b) If n < m, then x = (g(©n(b))∗ . . .∗g(©m−1(b)))−1 is a solution.

(c) If n = m, then x = 1 is a solution.

Lemma 5.4. Let b be a free constant and m be an integer. Then, every solution to

x∗g(y) =E1
exp(x,b)∗g(©m(b))

is of one of the following forms:

(a) n > m, y =©n(b), x = g(©n−1(b))∗ . . .∗g(©m(b))

(b) n < m, y =©n(b), x = (g(©n(b))∗ . . .∗g(©m−1(b)))−1

Proof. The proof is by contradiction. Suppose that there exist an integer m and terms tx and ty, in normal
form modulo R1 , such that

tx ∗g(ty) =E1
exp(tx,b)∗g(©m(b))

where ty 6= ©n(b) for any n. Without loss of generality assume also that tx is a minimal (by size)
counterexample, i.e., a minimal term such that ∃m∃ty : tx ∗g(ty) =E1

exp(tx,b)∗g(©m(b)).
First of all note that since R1 is AC-convergent, it must be that

tx ∗ exp(t−1
x ,b)∗g(ty) →!

R1
g(©m(b)).

Then tx can have two possible forms:

Case 1: tx = g(©m(b))∗ t
′
x. Then,

g(©m(b))∗ t
′
x ∗g(ty) =E1

exp(g(©m(b)),b)∗ exp(t
′
x,b)∗g(©m(b)) and thus

t
′
x ∗g(ty) =E1

g(©m+1(b))∗ exp(t
′
x,b)

Thus t
′
x is a smaller counterexample.

Case 2: tx = g(©m−1(b))−1 ∗ t
′
x. Then,

g(©m−1(b))−1 ∗ t
′
x ∗g(ty) =E1

exp(g(©m−1(b)),b)−1 ∗ exp(t
′
x,b)∗g(©m(b)) and thus

t
′
x ∗g(ty) =E1

g(©m−1(b))∗ exp(t
′
x,b)

Thus t
′
x is a smaller counterexample.

D. Kapur, A. Marshall & P. Narendran 21

Lemma 5.5. Let b and c be free constants. Then, the equations

exp(x,c)∗g(© j(b)) =E1
exp(x,b)∗g(u)

z∗g(u) =E1
exp(z,c)∗g(1)

force u to be equal to© j(c).

Proof. By Lemma 5.4 the second equation, z∗g(u) =E1
exp(z,c)∗g(1), forces u =©n(c). Now replac-

ing b with c everywhere in the first equation we get

exp(x,c)∗g(© j(c)) = exp(x,c)∗g(©n(c)).

By Lemma 5.2© j(c) =©n(c) and j = n.

Lemma 5.6. Let b and c be free constants. Then the equations:

exp(x,©k(c))∗g(© j(b)) =E1
exp(x,b)∗g(u)

z∗g(u) =E1
exp(z,c)∗g(1)

force u to be equal to© jk(c)

Proof. By Lemma 5.4 u =©n(c) as before. Now replacing b by©k(c) we get

exp(x,©k(c))∗g(© jk(c)) = exp(x,©k(c))∗g(©n(c)).

By Lemma 5.2© jk(c) =©n(c) and n = jk.

With Lemma 5.6 we can now simulate multiplication with the natural numbers. To see how this can
be done consider z = x∗ y and let x =©i(b) and y =© j(b). We force z =©i j(b) as follows:

exp(w1,c)∗g(©i(b)) =E1
exp(w1,b)∗g(x2) and

w2 ∗g(x2) =E1
exp(w2,c)∗g(1)

force x2 =©i(c) by Lemma 5.5.

exp(w3,x2)∗g(© j(b)) =E1
exp(w3,b)∗g(z2) and

w4 ∗g(z2) =E1
exp(w4,c)∗g(1)

force z2 =©i j(c) by Lemma 5.6. Finally we copy z2 to z with the equation

exp(w5,c)∗g(z) =E1
exp(w5,b)∗g(z2) .

Lemma 5.7. Addition of natural numbers can be simulated in E1.

Proof. Let x =©i(b) and y =© j(b), where b is a free constant. Then x~ y =E1
©i+ j(b)

Theorem 5.8. Unification over E1 with free constants is undecidable.

Proof. Following the above outline a unification problem can be constructed that simulates a system of
diophantine equations.

22 Unification modulo a partial theory of exponentiation

6 Extension and Limitations

In this paper we examined a partial theory of exponentiation, a critical component in several crypto-
graphic protocols. Many of the protocols based on modular exponentiation also contain additional al-
gebraic properties and axioms that could correspond to extensions of this partial exponentiation theory.
Therefore, an important question that naturally arises is, how far we can extend the theory and maintain
decidability. Unfortunately, additional extensions can quickly result in undecidable unification problems.
This was demonstrated when the operations of ~ and ∗ were allowed to form abelian groups. Therefore,
ideally, extensions should maintain decidability while adding additional axioms useful in modeling ad-
ditional cryptographic protocols. We are currently examining two different possible extensions. The first
is allowing just one of either the ~ or ∗ operations to be abelian. The second is extending the axiom
set to include additional algebraic operators such as modular addition. Several other papers, includ-
ing [8, 6, 5, 7], have also considered the unification problem for equational systems that contain some
type of exponentiation. For convenience, we give a condensed overview of a selection of these results in
Table 1.

Ref Equational Theory Unification Problem: Results
[8] Abelian group with the axioms exp(x,1) = 1 and

exp(exp(x,y)z) = exp(x,y∗ z)
NP-complete

[6] Two theories, denoted E1 and E2. E1 consists of an abelian group
with operator, ·, and a monoid with operator ◦ with the addition
of the axioms: x1 = x, 1x = 1, (x ·y)z = (xz) ·(yz), and (xy)z = xy◦z.
E2 adds the axiom x◦ i(x) = 1, i(x) being the inverse, to the theory
E1.

Undecidable for both E1 and E2

[5] Two main results: Theory E3 consists of an abelian group for
operator · along with the axioms, x1 = x, 1x = 1, and (x · y)z =
(xz) · (yz). Theory E4 consists of E3 with the addition of a monoid
operator ◦ and the axiom (xy)z = xy◦z.

E3 is decidable and E4 is unde-
cidable.

[7] Two theories, denoted E and E0. E consists of an abelian group
with operator, ·, and the axioms x1 = x, 1x = 1, (x ·y)z = (xz) ·(yz),
and (xy)z = xy·z. E0 is the same as E but the axiom (xy)z = xy·z is
replaced with the axiom xyz

= xzy

E is undecidable and E0 is decid-
able.

Table 1: Results for E-unification with exponentiation.

Most of these results are of high complexity. Therefore, we are also exploring heuristic methods of
implementation to enable their integration into the automated protocol analysis system Maude-NPA [4].

References

[1] Franz Baader & Wayne Snyder (2001): Unification Theory. In: John Alan Robinson & Andrei Voronkov,
editors: Handbook of Automated Reasoning, Elsevier and MIT Press, pp. 445–532.

[2] Colin Boyd & Anish Mathuria (2002): Protocols For Key Establishment And Authentication. Springer.

D. Kapur, A. Marshall & P. Narendran 23

[3] S. Escobar, C. Meadows & J. Meseguer (2007): Equational Cryptographic Reasoning in the Maude-NRL
Protocol Analyzer. In: Proc. 1st International Workshop on Security and Rewriting Techniques (SecReT
2006), ENTCS 171(4), Elsevier, pp. 23–36.

[4] Santiago Escobar, Catherine Meadows & José Meseguer (2009): Maude-NPA: Cryptographic Protocol
Analysis Modulo Equational Properties. In: Foundations of Security Analysis and Design V, FOSAD
2007/2008/2009 Tutorial Lectures, Lecture Notes in Computer Science 5705, Springer, pp. 1–50.

[5] Deepak Kapur, Paliath Narendran & Lida Wang (2003): An E-unification Algorithm for Analyzing Protocols
That Use Modular Exponentiation. In: Robert Nieuwenhuis, editor: RTA, Lecture Notes in Computer Science
2706, Springer, pp. 165–179. Available at http://link.springer.de/link/service/series/0558/
bibs/2706/27060165.htm.

[6] Deepak Kapur, Paliath Narendran & Lida Wang (2003): Undecidability of unification over two theories of
modular exponentiation. In: Seventeenth International Workshop on Unification (UNIF-2003), Valencia,
Spain.

[7] Deepak Kapur, Paliath Narendran & Lida Wang (2005): A Unification Algorithm for Analysis of Protocols
with Blinded Signatures. In: Mechanizing Mathematical Reasoning, Lecture Notes in Computer Science
2605, Springer Berlin / Heidelberg, pp. 433–451.

[8] Catherine Meadows & Paliath Narendran (2002): A Unification Algorithm for the Group Diffie-Hellman
Protocol. In: IN PROC. OF WITS 2002, pp. 14–15.

[9] P. Narendran, F. Pfenning & R. Statman (1993): On the Unification Problem for Cartesian Closed Categories.
In: In Proceedings, Eighth Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society
Press, pp. 57–63.

[10] Erik Tidén & Stefan Arnborg (1987): Unification Problems with One-Sided Distributivity. J. Symb. Comput.
3(1/2), pp. 183–202.

[11] Max Tuengerthal, Ralf Küsters & Mathieu Turuani (2006): Implementing a Unification Algorithm for Proto-
col Analysis with XOR. CoRR abs/cs/0610014. Available at http://arxiv.org/abs/cs/0610014.

http://link.springer.de/link/service/series/0558/bibs/2706/27060165.htm
http://link.springer.de/link/service/series/0558/bibs/2706/27060165.htm
http://arxiv.org/abs/cs/0610014

	1 Introduction
	2 Inference Rules
	3 Failure Conditions
	4 Unification Algorithm
	5 Undecidability of unification of partial exponentiation with two Abelian group operators
	6 Extension and Limitations

