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We prove that the Tiden and Arnborg algorithm for equational unification modulo one-sided distribu-
tivity is not polynomial time bounded as previously thought. A set of counterexamples is developed
that demonstrates that the algorithm goes through exponentially many steps.

1 Introduction

Equational unification is central to automated deduction and its applications in areas such as symbolic
protocol analysis. In particular, the unification problem for the theory AC (“Associativity-Commu-
tativity”) and its extensions ACI (“AC plus Idempotence”) and ACUI (“ACI with Unit element”) have
been studied in great detail in the past. Distributivity (of one binary operator over another) has received
less attention comparatively. Some significant results have been obtained such as Schmidt-Schauss’
breakthrough decidability result [7]] for unification modulo the theory of two-sided distributivity

xx(y+z) = (xxy)+(xxz)
(y+z)xx = (yxx)+(zx

S
~

Other works include [4, 3]].
One of the earliest papers that considered a subproblem of this is by Tiden and Arnborg [8]. They
present an algorithm for equational unification modulo a one-sided distributivity axiom:

xX(y+z)=xxy+xxz

This unification problem has recently been of interest in cryptographic protocol analysis since many
cryptographic operators satisfy this property: for instance, modular exponentiation (used in the RSA
and El Gamal public key algorithms) distributes over modular multiplication. Indeed, many electronic
election protocols rely on the property of “homomorphic encryption” where encryption distributes over
some other operator. (A new algorithm for this unification problem, using a novel approach, is given
in [6, [1].)

Our goal in this paper is to analyze the Tiden-Arnborg algorithm. We prove that the algorithm is not
polynomial time bounded as claimed in the Tiden-Arnborg paper. A set of counter examples is outlined
that demonstrates that the present algorithm goes through exponentially many steps.
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1.1 The Tiden-Arnborg Algorithm

We present a very brief description of the algorithm of Tiden and Arnborg using deduction (inference)
rules. First of all, it should be pointed out that what they consider is the elementary unification prob-
lem [2]], where the terms can only contain symbols in the signature of the theory and variables. (Thus free
constants and free function symbols are not allowed.) Hence we can assume without loss of generality
that the input is given as a set of equations where each equation is in one of the following forms:

X="Y,X="Y+Z andX="Y xZ
The key steps in the algorithm can be described by the following deduction rules:
="V} v &2

a if in &
(a) {U:?V}U[V/U](él@) if U occurs in &2
b) EQW{U="VxW,U="XxY}
EQU{U="VxW,V="XW="Y}
© EQwW{U="V+W,U="X+Y}
EQU{U="V+W,V="X,W="Y}
@ EQW{U="VxW,U="X+Y}

EQUU="VXW,W="W,+W,, X="VxW,Y="VxW,}

The Wy, W, in rule (d) are fresh variables and W is disjoint union. Furthermore, rule (d) (the “splitting
rule”) is applied only when the other rules cannot be applied. A set of equations is said to be simple if
and only if none of the rules (a), (b) and (c) can be applied to it. In other words, in a simple system, no
variable can occur as the left-hand side in more than two equations. A sum transformation is defined as a
binary relation between two simple systems §; and S,, where S, is obtained from S, by applying rule (d),
followed by repeated exhaustive applications of rules (a), (b) and (c). Clearly, a sum transformation is
applicable if and only if some variable occurs as the left-hand side in more than one equation.

Detection of failure is done using a kind of “extended occur-check” using two graph based data
structures. We repeat the definitions of the graph structures and give a sketch of the algorithm presented
in Tiden and Arnborg [8]] for the convenience of the reader.

Definition 1.1. The dependency graph of a simple system, X, is an edge colored, directed multi-graph.
It has as vertices the variables of X. For an equation x = y+z in X it has an /;-colored edge (x,y) and
an r-colored edge (x,z). An equation x = y X z similarly generates two edges with colors /. and r.

Definition 1.2. The sum propagation graph of a simple system X is a directed simple graph. It has as
vertices the equivalence classes of the symmetric, reflexive, and transitive closure of the relation defined
by the ry-edges in the dependency graph of X. It has an edge (V, W) iff there is an edge in the dependency
graph from a vertex in V, to a vertex in W with color [y or ry.

The dependency graph structure is sufficient for finding all the occur-check like errors that may
develop as the algorithm works with the system of equations. The propagation graph is needed to detect
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non-unifiable systems that cause infinitely many applications of the splitting rule (d). An example of this
type of system is the following two equations:

Z="Vo+V3,Z="V; x Vs.

These types of systems are shown not to have a unifier and as they will never produce a cycle in the
dependency graph, the propagation graph is needed.

Tiden and Arnborg give a polynomial time procedure for producing a simple system of equations
form an initial set of equations. We sketch their unification algorithm from the starting point of an initial
simple system.

Algorithm 1 UNIFY [8]]
Require: Simple system X;.
k:=1
while The sum transformation can be applied do
If either the dependency or propagation graph contains a cycle, then stop with failure.
Using the sum transformation compute Xy
k:=k+1
end while
Compute the most general unifier (mgu) by back substitution.

It is shown that if a system is not unifiable it will, after finitely many applications of the sum trans-
formation, produce a cycle in one of the graphs. It is also shown that if a system is unifiable then the
algorithm will produce the mgu.

In the next section we present a family of unifiable systems that produce no cycles in either graph,
but require exponentially many applications of the sum transformation.

2 Counterexamples

We present a family of unifiable simple systems on which the Tiden-Arnborg algorithm runs in exponen-
tial time. For ease of exposition, we only use the letters 7, x and y for variables, along with subscripts
for x and y which are strings over the alphabet {1,2}.

Definition 2.1. Let EQ be a subset of the simple system defined as follows: all multiplications are of
the form x; =" T x yj (ory; =" T x x;) where T is a unique variable and all additions are of the form
X =" xj1 +Xp Or yi =" yi1 +Yi2.

As the left variable of the multiplication operation will not effect the complexity result we use the
unique variable T in this position. This makes the proof simpler. Thus the splitting rule (d) above can be
viewed as

EL2 W {U="TxW,;,U;="U, +U,}
EQUAU="TxW;, W; ="W; + Wy, Uy ="T xW,, Uy ="T x W, }
where U, W € {x,y}.
Specifically, we examine the complexity of unifying a set of equations from EQ. It will be shown that to
achieve a unifier, the Tiden-Arnborg algorithm requires exponentially many steps.
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Definition 2.2. For n > 0, let 6(n) be the set of equations

Xqi =? X1i+1 + Xjig,
Yai =" Yo Yo,
yar = T xxyn,
x =" Tx Y,
Xqi+1 =’ Xpi+2 + Xpitig

forall 0 <i<n.

Thus 6(0) is {x =" x; +x2,y =" y1 +y2, X1 = x11 +x12,x="T xy,y1 = T xx2}.

. . ? ? ? ? ? ?
Similarly 6(2) is {x ="x1+X2, y =" y1+¥y2, X1 = X11+X12, Y2 =" Y21 +Y22, X11 =" X111 + X112, Yo =
? ? 2 9 9
Y21 +y22, X111 =" X1 X2, X =T Xy, y1 =" T Xx2,y21 =" T Xx12,y201 =" T X X112}.

Note that o(k+ 1) = o(k) U {ysr =’ Vokt1] + Yort2, Yok+1] =T x Xqkt1g, X1kt2 =’ Xpkss + Xki2y } for
all k > 0.

Definition 2.3. We denote a variable x; (or y;) as a peak iff there are equations x; =" xi1 +x; and x; ="

T xyj(ory;="yiy+ypandy; =" T X x;)

We claim that a system of equations, as defined in Definition [2.2] will result in exponentially many
applications of the sum transformation rule.

3 Proof

For a set of equations S, let m(S) denote the number of x symbols in it and p(S) denote the number of +
symbols in it. Consider the sets of equations defined in Definition[2.2] By the analysis in [§] the number
of sum transformations should be bounded by m(S) x p(S). We can see that according to Definition [2.2]
m(o(n)) =n+2 and p(c(n)) = 2n+ 3. Thus the upper bound should be 2n* 4 7n + 6. However, the
actual bound for systems of equations & (n) will be shown to be 2" — (n+4).

We can view the sets of equations defined in Definition [2.2] as tree-like graphs. Nodes correspond
to variables. We first add a dummy root node with outdegree 2 whose children are the initial nodes x
and y. The summation equations are represented by downward edges, from every parent node to its two
children. We represent the multiplication equations as lateral edges, i.e., edges between nodes at the
same level, i.e., distance from the root node. (Thus the graph is not really a tree if lateral edges are
considered.). Because all left multiplication edges goto 7" and have no effect on the complexity of the
algorithm in these systems of equations, we leave these edges out of the diagrams for clarity. Let G(n)
be the graph of o(n) See Figure [1] for G(0). Note that the height of the tree is 3, i.e, there are 3 levels.
In general, the graph of ¢ (n) has n+ 3 levels. We view the algorithm as proceeding down the tree, with
sum transformations at a level completed before starting at the next level. We analyze the complexity of
the Tiden-Arnborg algorithm in terms of transformations done on the graph as the algorithm proceeds.
We show that if / is the height of the tree, then the number of sum transformations applied is 2/ — (14 1).

Observe that a variable is a peak if and only if its node has both downward and lateral edges. Figure 2]
shows the effect of a sum transformation at a peak on the graph. Note that lateral edges are never deleted.
Each application of the sum transformation increases the number of lateral edges by at most 2.
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X1 X12

Figure 1: Example graph with a peak at node x

Figure 2: Sum transformation

Note also that other than at the lowest level (depth n 4 3) the graph will have initially one multiplica-
tion or exactly one edge between nodes at the same height in the graph. We can also see that the graph is
partitioned between the left and right side or x and y side and that at level one, there is an edge from x to
y. However, at all other lower levels, the initial edge between nodes of the same level goes from y to x.

We can also see that given the graph as described above, each time the sum transformation is applied,
the peak moves from either the x side of the graph to the y side or from the y side to the x side, and
the new peak was not previously a peak. To see this, take any system as defined by Definition
and examine the graph of that system. Initially all edges from nodes at the same height only go from
one side to the other. In this limited formulation of Definition [2.2] these same level edges are the only
multiplication functions. This ensures that any time a sum transformation is performed on some equation,
xi="Txy jory; ="T xx ;» by definition the new edges created by the sum transformation must go from
either x to y or y to x because there are no multiplication equations of the form x; =’ T x x ;. The fact
that a new peak was not previosly a peak follows from Definition [2.2] and the definition of the sum
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transformation. Since we assume a simple system of equations, there are no two distinct equations of the
form x =’ x; +x iy X =" xx + x; (i.e., with the same variable on the left-hand side): likewise for y. Once
when the sum transformation is applied to equations x; ="Tx y; and x; =" x;1 +xp, the downward edges
from x; to both x;; and x;, are removed (see Figure[3)). Thus x; can never become a peak again.

Figure 3: Graph after one application of the sum transformation at node x, creating a new peak at node
x1 and new edges from x; to y; and x; to y;

Lemma 3.1. Sum transformations at level k create a peak at x ;. at level k+ 1 provided k+ 1 is not the
lowest level.

Proof. This follows inductively from the form of the graph in Definition First from the definition of
the set of equations, the first peak is located at x. After the first sum transformation a peak is created at xj.
Assume this propagates to level n. Then there is a peak at x, to which the sum transformation is applied,
adding an equation of the form x;.+1 =’ T X y;.+1, which creates a peak at the next level, provided there
is already an equation x;i+1 =~ Xji+2 + Xji+1. 0

Lemma 3.2. There are no lateral edges from nodes corresponding to variables of the form y,; for j > 0.
In other words, no equations of the form y,; =T x X, are generated.

Proof. This follows inductively from Definition [2.2] In any initial system there is no edge from any yx
node at level k. By the definition of sum transformation an outgoing lateral edge from y,« can be created
only if the parent node, y,—1 has an outgoing lateral edge. O

We can also notice a fact about the order in which the nodes become peaks via the sum transforma-
tion. The order is a right-to-left lexicographical order of the digits of the nodes’ indices (i.e., subscripts).
For example, for level 4 the sequence is x11; — Y111 — X211 — Y211 — X121 — Y121 — X221 — Y221 —
X112 = Y112 — X212 — Y212 — X122 — Y122 — X200 — Y222. Note, yopo is not necessarily a peak but is
added to illustrate the path. Based on this observation we have the following lemma:

Lemma 3.3. At any level of the tree, if x; =" T Xy j is an equation (i.e., if there is a lateral edge from
Xj to yj) then i = j. Similarly, if y; ="T x x;j is an equation, then j = revlex(i) where revlex is the
lexicographic successor of the index of the node, y;, but starting with the 1% bit (i.e., from right to left).
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Proof. This follows inductively from Definition and the sum transformation. The base cases are
x="T xy(level 1) and y; =" T x x, (level 2). Assume this property for level k. Now we will show that
all the equations introduced at level k+ 1 by sum transformation at level k will satisfy the property. If
yi='T x Xreviex(i) 18 an equation at level k and y; =" yi1 + yp is an equation (i.e., y; is a peak at level k),
then applying the sum transformation results in y;; =’ T X Xreviex(i)1 and yi2 ="T x Xreviex(i)2- INOW note
that reviex(il) = revlex(i)1 and revlex(i2) = revlex(i)2 since i is not a string of 2’s. Note also that if k
is not the lowest level, then there will already be an equation yy; =’ T X Xy, at level k+ 1 but this does
not violate the property in the lemma since reviex(2¥1) = 1%2.
Ifx;, =" T x y; and x; =" x;j1 + X2, then by application of the sum transformation x;; ="Tx v;1 and x; =?

T X y;» and the result follows. O

Lemma 3.4. If there is a path of lateral edges from node u; to node v; in the graph at some point where
node u; is a peak, then every node on the path, except possibly v;, will become a peak at some point.

Proof. Straightforward, by induction on the length of the path. O

Lemma 3.5. At every level k < n+ 3 a path of lateral edges between x i-1 to y -1 is created.

Proof. For brevity, we refer to such paths as RL paths. Clearly there (already) is an RL path at level 1.
We show that if a RL path exists at level k and k+ 1 < n+ 3, then a RL path will be created at level £+ 1.
By Lemma [3.1] there will be a peak at x;x-1 and by Lemma [3.4] every node other than y,i will become
a peak. This creates, at level k + 1, edges of the form xj; =" T X yi1, Xpp =" T X yio, yi1 = T X Xreviex(i)1
and yp =’ T X Xreviex(i)2 fOT every i # 2%=1. Since the edge y,i-1; =’ T X X1, is already there to begin
with, we get the RL path at level k+ 1. O

Lemma 3.6. At each level k < n+3 of the graph, the sum transformation can be applied 2* — 1 times.

Proof. Follows from Lemma At each level k, 2¥ nodes will be created eventually. An RL path can
be created and thus the sum transformation must be applied to all nodes except yy—1 resulting in 28 — 1
applications at each level k. O

Theorem 3.7. For a graph of height n, 2"t —n — 2 sum transformations are used.

Proof. This easily follows from Lemmas and the fact that )" (2i — l) =2l _p—2, t

We see that the current algorithm fails to achive polynomial complexity for at least a subset of
possible unification problems. Further counter examples may be found that also cause this exponential
growth with the sum transformation. This naturally results in the question of whether a polynomial time
algorithm can be found, either by a modification of the current algorithm or by a new approach.



P. Narendran, A. Marshall & B. Mahapatra 61

4 An Illustrated Example

In this section we give an example of the process on a system of equations defined as in Definition
We begin with ¢(0), i.e., the following set of initial equations:

x =" Txy,

x = x+x,

y =" yi+y,

yi =" Txx,

xi =" Xy 4xn

This can be represented by a graph as shown in Figure[d] Note that the first peak is located at node x. The

X1 X2 1 Y2

O

X11 X12

Figure 4: Graph for 6(0)

first peak, x, is selected and the sum transformation can be applied, resulting in the removal of equation
x="x] +x, from the set of equations and the addition of the two equations x; ="T x y1 and xp =T x ¥2.
The direction of the new edges are from x to y due to the fact that the multiplication equation from the
peak, to which the sum transformation was applied was also from x to y. After the sum transformation is
applied x is no longer a peak because of the removal of x =" x| + xo, but now the node x; is a peak due
to the addition of x; = T x y; (see Lemma . This new graph is shown in Figure
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Figure 5: After one application of the sum transformation

We see that only one application of the sum transformation can be applied at level 1. At the next level
we continue the process begining with the new peak x;. The result of applying the sum transformation
on x is the removal of x; =’ x1; + x1» from the set of equations and the addition of two new edges,
xi1 =T % y11 and xi; ="T x Y12, to the set of equations. The two new y nodes are also created adding
Y1 =’ y11 + y12 to the set of equations. The result is that x; is no longer a peak but now y; is (see
Lemma [3.3). The resulting graph can be seen in Figure [f] Also, now that y; is the peak the direction of
the multiplication path has switched to the direction of y; to x, (see Lemma3.1).

Figure 6: After two applications of the sum transformation

We can now continue the process, applying the sum transformation to the peak at y;. This will
remove yj =? y11 +Yy12 fom the set of equations and add x» =" xp1 + x27 to the set of equations, creating a
peak at node x; and removing the peak at node y;. Lastly, a third sum transformation is applied to node
Xp, removing x» =" xp1 + x5 from the set of equations and adding y, =" y51 + y2 to the set of equations.
Note that because there is no multiplication path from y, to some x node y, is not a peak and no more
sum transformations can be applied at the current level. Because there are also no additional nodes at the
next level we stop with a total of 4 applications of the sum transformation. The final graph is shown in

Figure
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5

Figure 7: After 4 applications of the sum transformation

Conclusions

We have shown that the Tiden-Arnborg algorithm does not run in polynomial time as claimed in [8]]. It
is also not hard to see that the algorithm produces exponentially large mgus for the set of systems o(n).
However, it may still be that the unifiability problem, i.e., whether a unifier exists modulo this theory, is
in P. We are currently working on this and related problems.
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