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The Church-Rosser theorem in the type-free λ -calculus is well investigated both for β -equality and
β -reduction. We provide a new proof of the theorem for β -equality with no use of parallel reductions,
but simply with Takahashi’s translation (Gross-Knuth strategy). Based on this, upper bounds for
reduction sequences on the theorem are obtained as the fourth level of the Grzegorczyk hierarchy.

1 Introduction

1.1 Background

The Church-Rosser theorem [3] is one of the most fundamental properties on rewriting systems, which
guarantees uniqueness of computation and consistency of a formal system. For instance, for proof trees
and formulae of logic the unique normal forms of the corresponding terms and types in a Pure Type
System (PTS) can be chosen as their denotations [21] via the Curry-Howard isomorphism.

The Church-Rosser theorem for β -reduction states that if M�N1 and M�N2 then we have N1� P
and N2� P for some P. Here, we write� for the reflexive and transitive closure of one-step reduction
→. Two proof techniques of the theorem are well known; tracing the residuals of redexes along a
sequence of reductions [3, 1, 8], and working with parallel reduction [4, 1, 8, 19] known as the method
of Tait and Martin-Löf. Moreover, a simpler proof of the theorem is established only with Takahashi’s
translation [19] (the Gross-Knuth reduction strategy [1]), but with no use of parallel reduction [12, 5].

On the other hand, the Church-Rosser theorem for β -equality states that if M =β N then there exists
P such that M� P and N � P. Here, we write M =β N iff M is obtained from N by a finite series of
reductions (�) and reversed reductions (�). As the Church-Rosser theorem for β -reduction has been
well studied, to the best of our knowledge the Church-Rosser theorem for β -equality is always secondary
proved as a corollary from the theorem for β -reduction [3, 4, 1, 8].

One of our motivations is to analyze quantitative properties in general of reduction systems. For
instance, measures for developments are investigated by Hindley [7] and de Vrijer [18]. Statman [16]
proved that deciding the βη-equality of typable λ -terms is not elementary recursive. Schwichtenberg
[14] analysed the complexity of normalization in the simply typed lambda-calculus, and showed that the
number of reduction steps necessary to reach the normal form is bounded by a function at the fourth
level of the Grzegorczyk hierarchy ε4 [6], i.e., a non-elementary recursive function. Later Beckmann
[2] determined the exact bounds for the reduction length of a term in the simply typed λ -calculus. Xi
[22] showed bounds for the number of reduction steps on the standardization theorem, and its application
to normalization. In addition, Ketema and Simonsen [9] extensively studied valley sizes of confluence
and the Church-Rosser property in term rewriting and λ -calculus as a function of given term sizes and
reduction lengths. However, there are no known bounds for the Church-Rosser theorem for β -equality.

In this study, we are also interested in quantitative analysis of the witness of the Church-Rosser
theorem: how to find common contractums with the least size and with the least number of reduction
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steps. For the theorem for β -equality (M =β N implies M �l3 P and N �l4 P for some P), we study
functions that set bounds on the least size of a common contractum P, and the least number of reduction
steps l3 and l4 required to arrive at a common contractum, involving the term sizes of M and N, and the
length of =β . For the theorem for β -reduction (M�l1 N1 and M�l2 N2 implies N1�l3 P and N2�l4 P
for some P), we study functions that set bounds on the least size of a common contractum P, and the
least number of reduction steps l3 and l4 required to arrive at a common contractum, involving the term
size of M and the lengths of l1 and l2.

1.2 New results of this paper

In this paper, first we investigate directly the Church-Rosser theorem for β -equality constructively from
the viewpoint of Takahashi translation [19]. Although the two statements are equivalent to each other,
the theorem for β -reduction is a special case of that for β -equality. Our investigation shows that a
common contractum of M and N such that M =β N is determined by (i) M and the number of occurrences
of reduction (→) appeared in =β , and also by (ii) N and that of reversed reduction (←). The main
lemma plays a key role and reveals a new invariant involved in the equality =β , independently of an
exponential combination of reduction and reversed reduction. Next, in terms of iteration of translations,
this characterization of the Church-Rosser theorem makes it possible to analyse how large common
contractums are and how many reduction-steps are required to obtain them. From this, we obtain an
upper bound function for the theorem in the fourth level of the Grzegorczyk hierarchy. In addition, the
theorem for β -reduction is handled as a special case of the theorem for β -equality, where the key notion
is contracting new redexes under development.

1.3 Outline of paper

This paper is organized as follows. Section 1 is devoted to background, related work, and new results
of this paper. Section 2 gives preliminaries including basic definitions and notions. Following the main
lemma, Section 3 provides a new proof of the Church-Rosser theorem for β -equality. Based on this,
reduction length and term size for the theorem are analyzed in Section 4, and then we compare with
related results. Section 5 concludes with remarks, related work, and further work.

2 Preliminaries

The set of λ -terms denoted by Λ is defined with a countable set of variables as follows.

Definition 1 (λ -terms)
M,N,P,Q ∈ Λ ::= x | (λx.M) | (MN)

We write M ≡ N for the syntactical identity under renaming of bound variables. We suppose that every
bound variable is distinct from free variables. The set of free variables in M is denoted by FV(M).

If M is a subterm of N then we write M v N for this. In particular, we write M @ N if M is a proper
subterm of N. If P vM and Q vM, and moreover there exist no terms N such that N v P and N v Q,
then we write P ‖ Q for this, i.e., P and Q have non-overlapping parts of M.

Definition 2 (β -reduction) One step β -reduction→ is defined as follows, where M[x := N] denotes a
result of substituting N for every free occurrence of x in M.

1. (λx.M)N→M[x := N]
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2. If M→ N then PM→ PN, MP→MP, and λx.M→ λx.N.

A term of the form of (λx.P)Q v M is called a redex of M. A redex is denoted by R or S, and we
write R : M→ N if N is obtained from M by contracting the redex RvM. We write� for the reflexive
and transitive closure of →. If R1 : M0 → M1, . . . ,Rn : Mn−1 → Mn (n ≥ 0), then for this we write
R0 . . .Rn : M0�n Mn, and the reduction sequence is denoted by the list [M0,M1, . . . ,Mn]. For operating
on a list, we suppose fundamental list functions, append, reverse, and tail (cdr).

Definition 3 (β -equality) A term M is β -equal to N with reduction sequence ls, denoted by M =β N
with ls is defined as follows:

1. If M� N with reduction sequence ls, then M =β N with ls.

2. If M =β N with ls, then N =β M with reverse(ls).

3. If M =β P with ls1 and P =β N with ls2, then M =β N with append(ls1,tail(ls2)).

Note that M =β N with reduction sequence ls iff there exist terms M0, . . . ,Mn(n ≥ 0) in this order such
that ls = [M0, . . . ,Mn], M0 ≡M,Mn ≡ N, and either Mi→Mi+1 or Mi+1→Mi for each 0≤ i≤ n−1. In
this case, we say that the length of =β is n, denoted by =n

β
. The arrow in Mi → Mi+1 is called a right

arrow, and the arrow in Mi+1→Mi is called a left arrow, denoted also by Mi←Mi+1.

Definition 4 (Term size) Define a function | | : Λ→ N as follows.

1. |x|= 1

2. |λx.M|= 1+ |M|

3. |MN|= 1+ |M|+ |N|

Definition 5 (Takahashi’s * and iteration) The notion of Takahashi translation M∗ [19], that is, the
Gross-Knuth reduction strategy [1] is defined as follows.

1. x∗ = x

2. ((λx.M)N)∗ = M∗[x := N∗]

3. (MN)∗ = M∗N∗

4. (λx.M)∗ = λx.M∗

The 3rd case above is available provided that M is not in the form of a λ -abstraction. We write an
iteration of the translation [20] as follows.

1. M0∗ = M

2. Mn∗ = (M(n−1)∗)∗

We write ](x ∈M) for the number of free occurrences of the variable x in M.

Lemma 1 |M[x := N]|= |M|+ ](x ∈M)× (|N|−1).

Proof. By straightforward induction on M. 2

Definition 6 (Redex(M)) The set of all redex occurrences in a term M is denoted by Redex(M). The
cardinality of the set Redex(M) is denoted by ]Redex(M).

Lemma 2 (]Redex(M)) We have ]Redex(M)≤ 1
2 |M|−1 for |M| ≥ 4.

Proof. Note that ]Redex(M) = 0 for |M|< 4. By straightforward induction on M for |M| ≥ 4. 2
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Lemma 3 (Substitution) If M1 �l1 N1 and M2 �l2 N2, then M1[x := M2]�l N1[x := N2] where l =
l1 + ](x ∈M1)× l2.

Proof. By induction on the derivation of M1�l1 N1. The case of l1 = 0 requires induction on M1 ≡ N1.
We also need induction on the derivation of M1→ N1, and we show here one of the interesting cases.

1. Case of (λy.M)N�1 M[y := N]:

(λy.M[x := M2])(N[x := M2]) �m1 (λy.M[x := N2])(N[x := M2]) by IH1

�m2 (λy.M[x := N2])(N[x := N2]) by IH2

�1 (M[x := N2])[y := (N[x := N2])]

Here, IH1 is λy.M[x := M2]�m1 λy.M[x := N2] with m1 = ](x ∈M)× l2. IH2 is N[x := M2]�m2

N[x := N2] with m2 = ](x ∈ N)× l2. Therefore,

l = m1 +m2 +1

= 1+ ](x ∈M)× l2 + ](x ∈ N)× l2
= 1+ ](x ∈ ((λy.M)N))× l2. 2

Proposition 1 (Term size after n-step reduction) If M�n N (n≥ 1) then

|N|< 8
(
|M|
8

)2n

.

Proof. By induction on n.

1. Case of n = 1, where M→M1:
The following inequality can be proved by induction on the derivation of M→M1:

|M1| ≤
|M|2

23 −1

2. Case of n = k+1, where M→M1�k Mk+1:

|Mk+1| < 8
(
|M1|

8

)2k

from the induction hypothesis

< 8

((
|M|
8

)2
)2k

from |M1|< 1
8 |M|

2

= 8
(
|M|
8

)2(k+1)

2

Lemma 4 (Size of M∗) We have |M∗| ≤ 2|M|−1.

Proof. By straightforward induction on M. 2

Definition 7 (Residuals [3, 8]) Let R ⊆Redex(M). Let R∈R, and R : M→N. Then the set of residuals
of R in N with respect to R, denoted by Res(R/R : M→ N) is defined by the smallest set satisfying the
following conditions:
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1. Case of S ∈R and S ‖ R:

Then we have S ∈ Res(R/R : M→ N).

2. Case of S ∈R and S≡ R:

Then we have S 6∈ Res(R/R : M→ N).

3. Case of S ∈R and S≡ (λx.M1)N1 and R@M1 for some M1,N1 @M:

Then we have S′ ∈ Res(R/R : M→ N) such that R : S→ S′ for S′ @ N.

4. Case of S ∈R and S≡ (λx.M1)N1 and R@ N1 for some M1,N1 @M:

Then we have S′ ∈ Res(R/R : M→ N) such that R : S→ S′ for S′ @ N.

5. Case of S ∈R and R≡ (λx.M1)N1 and S@M1 for some M1,N1 @M:

Then we have S[x := N1] ∈ Res(R/R : M → N) such that S[x := N1] @ M1[x := N1] where R :
(λx.M1)N1→M1[x := N1].

6. Case of S ∈R and R≡ (λx.M1)N1 and S@ N1 for some M1,N1 @M:

Then we have S ∈ Res(R/R : M→ N) for every occurrence S such that S @ M1[x := N1] where
R : (λx.M1)N1→M1[x := N1].

Definition 8 (Complete development [1]) Let R ⊆ Redex(M). A reduction path R0R1 . . . : M ≡M0→
M1→ ··· is a development of 〈M,R〉 if and only if each redex Ri vMi is in the set Ri (i≥ 0) such that
R0 = R and Ri = Res(Ri−1/Ri−1 : Mi−1→Mi). If Rk = /0 for some k, then the development is called
complete.

Definition 9 (Minimal complete development [8]) Let R ⊆ Redex(M). A redex occurrence R ∈R is
called minimal if there is no S ∈R such that S@ R (i.e., R properly contains no other S ∈R).

Let R = {R0, . . . ,Rn−1}. Let R0 =R and Ri =Res(Ri−1/Ri−1). A reduction path M�n N is a min-
imal complete development of R if and only if we contract any minimal Ri ∈Ri at each reduction step.
This development is also called an inside-out development that yields shortest complete developments
[10, 15].

We write M⇒N if N is obtained from M by a minimal complete development of a subset {R1, . . . ,Rn}
of Redex(M). In this case, we write R1 . . .Rn : M⇒n N.

Note that we can repeat this development at most n-times with respect to R = {R0, · · · ,Rn−1} until no
residuals of R are left, since we never have the fifth or sixth case in Definition 7, and then we have
R 6∈ Res(R/R).

Definition 10 (Reduction of new redexes) Let R:M→N. If there exists a redex occurrence S∈Redex(N)
but S 6∈Res(Redex(M)/R : M→N), then we say that the reduction R : M→N creates a new redex SvN,
and N contains a created redex after contracting R.

Let σ be a reduction path R0R1 . . . : M ≡M0→M1→ ·· ·. We define the set of new redex occurrences
denoted by NewRed(Mi+1) (i≥ 0) as follows:

NewRed(Mi+1) = {R ∈ Redex(Mi+1) | R 6∈ Res(Redex(Mi)/Ri)}.

A redex occurrence R j vM j (1≤ j) in σ is called new if R j ∈NewRed(Mi) for some i≤ j. The reduction
path σ contains k reductions of new redexes if σ contracts k of the new redexes.
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3 New proof of the Church-Rosser theorem for β -equality

Proposition 2 (Complete development) We have M�l M∗ where l ≤ 1
2 |M|−1 for |M| ≥ 4.

Proof. By induction on the structure of M. Otherwise by the minimal complete development [8] with
respect to Redex(M), where l ≤ ]Redex(M)≤ 1

2 |M|−1 for |M| ≤ 4 by Lemma 2. 2

Definition 11 (Iteration of exponentials 2m
n , F(m,n)) Let m and n be natural numbers.

1. (1) 2m
0 = m; (2) 2m

n+1 = 22m
n .

2. (1) F(m,0) = m; (2) F(m,n+1) = 2F(m,n)−1.

Proposition 3 (Length to Mn∗) If M�M∗� · · ·�Mn∗, then the reduction length l with M�l Mn∗ is
bounded by Len(|M|,n), such that

Len(|M|,n) =


0, for n = 0

1
2

n−1

∑
k=0

F(|M|,k)−n, for n≥ 1

and then we have Len(|M|,n)< 2|M|n−1 for n≥ 1.

Proof. From Lemma 4, we have |M∗| ≤ 2|M|−1, and hence |Mk∗| ≤ F(|M|,k) < 2|M|k for k ≥ 1. Let
M�l1 M∗�l2 · · ·�ln Mn∗. Then from Proposition 2, each lk is bounded by F(|M|,k−1):

lk ≤
1
2
|M(k−1)∗|−1 ≤ 1

2
F(|M|,k−1)−1

Therefore, l is bounded by Len(|M|,n) that is smaller than 2|M|n−1 for n≥ 1.

l ≤
n

∑
k=1

lk ≤
1
2

n−1

∑
k=0

F(|M|,k)−n = Len(|M|,n) <
1
2

n−1

∑
k=0

2|M|k −n < 2|M|n−1−n 2

Lemma 5 ((Weak) Cofinal property) If M→ N then N�l M∗ where l ≤ 1
2 |N|−1 for |N| ≥ 4.

Proof. By induction on the derivation of M→ N. 2

Lemma 6 M∗[x := N∗]�l (M[x := N])∗ with l ≤ |M∗|−1.
Proof. By induction on the structure of M. We show one case M of M1M2.

1. Case M1 ≡ λy.M3 for some M3:

((λy.M3)M2)
∗[x := N∗] = M∗3 [x := N∗][y := M∗2 [x := N∗]]

�m1 M∗3 [x := N∗][y := (M2[x := N])∗] by IH1

�m2 (M3[x := N])∗[y := (M2[x := N])∗] by IH2

Here, IH1 is M∗2 [x := N∗] �n1 (M2[x := N])∗ with n1 ≤ |M∗2 | − 1, and then we have m1 =
](y ∈ (M∗3 [x := N∗]))×n1 from Lemma 3.
IH2 is M∗3 [x := N∗]�m2 (M3[x := N])∗ with m2 ≤ |M∗3 |−1. Hence,

l = m1 +m2

≤ ](y ∈ (M∗3 [x := N∗]))× (|M∗2 |−1)+ |M∗3 |−1

= ](y ∈M∗3)× (|M∗2 |−1)+ |M∗3 |−1 since y 6∈ FV(N∗)

= |M∗3 [y := M∗2 ]|−1.
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2. Case M1 6≡ λy.M3:

(a) Case (M1[x := N])≡ (λ z.P) for some P:

(M∗1 [x := N∗])(M∗2 [x := N∗]) �m (M1[x := N])∗(M2[x := N])∗ by IH

= (λ z.P∗)(M2[x := N])∗

�1 P∗[z := (M2[x := N])∗]

= ((M1M2)[x := N])∗

Now, IH are M∗1 [x := N∗] �n1 (M1[x := N])∗ with n1 ≤ |M∗1 | − 1, and M∗2 [x := N∗] �n2

(M2[x := N])∗ with n2 ≤ |M∗2 |−1. Hence,

l = m+1

≤ |M∗1 |−1+ |M∗2 |−1+1

< |M∗1 M∗2 |−1.

(b) Case (M1[x := N]) 6≡ (λ z.P):
This case is handled similarly to the above case, and then

l ≤ m

= |M∗1 |−1+ |M∗2 |−1

< |M∗1 M∗2 |−1. 2

Proposition 4 (Monotonicity) If M→ N then M∗�l N∗ with l ≤ |M∗|−1.

Proof. By induction on the derivation of M→ N. We show some of the interesting cases.

1. Case of (λx.M)N→M[x := N]:

((λx.M)N)∗ = M∗[x := N∗]

�m (M[x := N])∗

From Lemma 6, we have m≤ |M∗[x := N∗]|−1 = |((λx.M)N)∗|−1.

2. Case of PM→ PN from M→ N:

(a) Case of P≡ λx.P1 for some P1:

((λx.P1)M)∗ = P∗1 [x := M∗]

�m P∗1 [x := N∗] by IH

= ((λx.P1)N)∗

Here, IH is M∗�n N∗ with n≤ |M∗|−1, and m = ](x ∈ P∗1 )×n from Lemma 3. Hence,

l = m

≤ ](x ∈ P∗1 )× (|M∗|−1)

≤ |P∗1 |+ ](x ∈ P∗1 )× (|M∗|−1)−1

= |P∗1 [x := M∗]|−1.
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(b) Case of P 6≡ λx.P1: Similarly handled. 2

Lemma 7 (Main lemma) Let M =k
β

N with length k = l + r, where r is the number of occurrences of
right arrow→ in =k

β
, and l is that of left arrow← in =k

β
. Then we have both Mr∗� N and M� Nl∗.

Proof. By induction on the length of =k
β

.

(1) Case of k = 1 is handled by Lemma 5.

(2-1) Case of (k+1), where M =k
β

Mk→Mk+1:

From the induction hypothesis, we have Mk�Mr∗ and M�Ml∗
k where l + r = k.

From Mk → Mk+1, Lemma 5 gives Mk+1 � M∗k , and then M∗k � M(r+1)∗ from the induction hy-
pothesis Mk � Mr∗ and Proposition 4. Hence, we have Mk+1 � M(r+1)∗. On the other hand,
we have Ml∗

k � Ml∗
k+1 from Mk → Mk+1 and the repeated application of Proposition 4. Then the

induction hypothesis M�Ml∗
k derives M�Ml∗

k+1, where l +(r+1) = k+1.

(2-2) Case of (k+1), where M =k
β

Mk←Mk+1:

From the induction hypothesis, we have Mk � Mr∗ and M � Ml∗
k where l + r = k, and hence

Mk+1 � Mr∗. From Mk+1 → Mk and Lemma 5, we have Mk � M∗k+1, and then Ml∗
k � M(l+1)∗

k+1 .

Hence, M�M(l+1)∗
k+1 from the induction hypothesis M�Ml∗

k , where (l +1)+ r = k+1. 2

Given M0 =
k
β

Mk with reduction sequence [M0, . . . ,Mk], then for natural numbers i and j with 0 ≤ i ≤
j ≤ k, we write ]r[i, j] for the number of occurrences of right arrow→ which appears in Mi =

( j−i)
β

M j,

and ]l[i, j] for that of left arrow← in Mi =
( j−i)
β

M j. In particular, we have ]l[0,k]+ ]r[0,k] = k.

Corollary 1 (Main lemma refined) Let M0 =k
β

Mk with reduction sequence [M0,M1, . . . ,Mk]. Let r =
]r[0,k] and l = ]l[0,k]. Then we have M0�Mml∗

r and Mml∗
r �Mk, where ml = ]l[0,r]≤min{l,r}.

Proof. From the main lemma, we have two reduction paths such that M0�Ml∗
k and Mr∗

0 �Mk, where
the paths have a crossed point that is the term Mn∗

r for some n≤ k as follows:

M0 =β · · · =β Mr =β · · · =β Mk
. . .

...
↘ ↙

·· · Mml∗
r · · ·

↙ ↘
M(ml+(r−ml))∗

0 M(ml+(l−ml))∗
k

Let ml be ]l[0,r], then ]l[r,k] = (l−ml) and ]r[r,k] = ml . Hence, from the main lemma, we have M0�

Mml∗
r � Mk where ml ≤ min{l,r}. Moreover, we have Mr � M(l−ml)∗

k by the main lemma again, and
then Mml∗

r � M((l−ml)+ml)∗
k from the repeated application of Proposition 4. Therefore, we indeed have

M0�Mml∗
r �Ml∗

k . Similarly, we have Mr∗
0 �Mml∗

r �Mk as well. 2

Example 1 We demonstrate a simple example of M0 =4
β

M4 with length 4, and list 24 patterns of the
reduction graph consisting of the sequence [M0,M1,M2,M3,M4]. The sixteen patterns can be classified
into 5 groups, in which M0 and M4 have a pair of the same common reducts 〈Mr∗

0 ,Ml∗
4 〉 where r+ l = 4:

1. Common reducts 〈M4∗
0 ,M0∗

4 〉 and a crossed point Mml∗
4 ≡M0∗

4 :
(1) M0→M1→M2→M3→M4.
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2. Common reducts 〈M3∗
0 ,M∗4〉 and crossed points Mml∗

3 of two kinds:
(1) M0←M1→M2→M3→M4; (2) M0→M1←M2→M3→M4 with Mml∗

3 ≡M∗3 ;
(3) M0→M1→M2←M3→M4; (4) M0→M1→M2→M3←M4 with Mml∗

3 ≡M0∗
3 .

3. 〈M2∗
0 ,M2∗

4 〉 and crossed points Mml∗
2 of three kinds:

(1) M0←M1→M2←M3→M4; (2) M0←M1←M2→M3→M4 with Mml∗
2 ≡M2∗

2 ;
(3) M0←M1→M2→M3←M4; (4) M0→M1←M2→M3←M4 with Mml∗

2 ≡M∗2 ;
(5) M0→M1←M2←M3→M4; (6) M0→M1→M2←M3←M4 with Mml∗

2 ≡M0∗
2 .

4. 〈M∗0 ,M3∗
4 〉 and crossed points Mml∗

1 of two kinds:
(1) M0←M1→M2←M3←M4; (2) M0←M1←M2←M3→M4 with Mml∗

1 ≡M∗1 ;
(3) M0←M1←M2→M3←M4; (4) M0→M1←M2←M3←M4 with Mml∗

1 ≡M0∗
1 .

5. 〈M0∗
0 ,M4∗

4 〉 and a crossed point Mml∗
0 ≡M0∗

0 :
(1) M0←M1←M2←M3←M4.

Observe that a crossed point Mml∗
r in Corollary 1 gives a “good” common contractum such that the

number ml , i.e., iteration of the translation ∗ is minimum, see also the trivial cases above; Case 1, Case
2 (4), Case 3 (6), Case 4 (4), and Case 5. Consider two reduction paths: (i) a reduction path from Mml∗

r
to Mr∗

0 , and (ii) a reduction path from Mml∗
r to Ml∗

k , see the picture in the proof of Corollary 1. In general,
the reduction paths (i) and (ii) form the boundary line between common contractums and non-common
ones. Let B be a term in the boundary (i) or (ii). Then any term M such that B� M is a common
contractum of M0 and Mk. In this sense, the term Mml∗

r where 0 ≤ ml ≤ min{l,r} can be considered
as an optimum common reduct of M0 and Mk in terms of Takahashi translation. Moreover, the refined
lemma gives a divide and conquer method such that M0 =

k
β

Mk is divided into M0 =
r
β

Mr and Mr =
l
β

Mk,
where the base case is a valley such that M0�Mr�Mk with minimal Mr and ml = 0, as shown by the
trivial cases above.

The results of Lemma 7 and Corollary 1 can be unified as follows. The main theorem shows that every
term in the reduction sequence ls of M0 =

k
β

Mk generates a common contractum: For every term M in
ls, there exists a natural number n ≤ max{l,r} such that Mn∗ is a common contractum of M0 and Mk.
Moreover, there exist a term N in ls and a natural number m ≤ min{l,r} such that Nm∗ is a common
contractum of all the terms in ls.

Theorem 1 (Main theorem for β -equality) Let M0 =k
β

Mk with reduction sequence [M0, . . . ,Mk]. Let
l = ]l[0,k] and r = ]r[0,k]. Then there exist the following common reducts:

1. We have M0�M]r[r−i,k]∗
r−i and M]r[r−i,k]∗

r−i �Mk for each i = 0, . . . ,r. We also have M0�M]l[0,r+ j]∗
r+ j

and M]l[0,r+ j]∗
r+ j �Mk for each j = 0, . . . , l.

2. For every term M in the reduction sequence, we have M�Mml∗
r where ml = ]l[0,r].

Proof. Both 1 and 2 are proved similarly from Lemma 7, Corollary 1, and monotonicity. We show the
case 2 here. Let Mi be a term in the reduction sequence of M0 =

k
β

Mk where 0≤ i≤ r. Take a = ]r[0, i],

then M]l[0,a]
a is a crossed point of M0�M]l[0,i]∗

i and Mi�M]r[0,i]∗
0 . From Mi�M]l[i,r]∗

r and monotonicity,
we have M]l[0,i]∗

i �Mml∗
r where ml = ]l[0, i]+ ]l[i,r]. Hence, we have Mi�M]l[0,a]∗

a �M]l[0,i]∗
i �Mml∗

r .
The case of r ≤ i≤ k is also verified similarly. 2

Note that the case of i= r and j = l implies the main lemma, since ]r[0,k] = r and ]l[0,r+ l] = ]l[0,k] = l.
Note also that the case of i = 0 = j implies the refinement, since ]l[0,r] = ml = ]r[r,k].
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Corollary 2 (Church-Rosser theorem for β -reduction) Let Pn ← ··· ← P1 ← M → Q1 → ··· → Qm

(1≤ n≤ m). Then we have Pn� Qn∗
m and Qm� Qn∗

m . We also have Pn� Qn∗
(m−n) and Qm� Qn∗

(m−n).

Proof. From the main lemma and the refinement where Q0 ≡M. 2

Theorem 2 (Improved Church-Rosser theorem for β -reduction) Let Pn ← ··· ← P1 ← M → Q1 →
·· ·→Qm (1≤ n≤m). If Pn←·· ·← P1←M contains a-times reductions of new redexes (0≤ a≤ n−1),
and M → Q1 → ··· → Qm contains b-times reductions of new redexes (0 ≤ b ≤ m− 1), then we have
both Pn� Q(a+1)∗

m and Qm� P(b+1)∗
n .

Proof. We show the claim that if a reduction path σ of R0R1 . . .Rn : M ≡ M0 → M1 → ··· → Mn+1
contains a-times reductions of new redexes (1 ≤ a ≤ n− 1) then Mn+1 � M(a+1)∗, from which the
theorem is derived by repeated application of Proposition 4.

We prove the claim by induction on a.

1. Case of a = 0:

We have R0R1 . . .Rn : M ≡M0→M1→ ·· · →Mn+1, where none of Ri (0≤ i≤ n) is a new redex.
The reduction path is a development of M with respect to a subset of Redex(M). Then we have
M j�M∗ (0≤ j≤ n+1), since all developments of Redex(M) are finite [7, 1] and end with some
N such that N�M∗.

2. Case of a = k+1:

We have R0R1 . . .Rn−1RnRn+1 . . .Rm : M≡M0→M1→·· ·→Mn→Mn+1→···→Mm+1 (m≥ 0),
where R0R1 . . .Rn−1 : M ≡M0→M1→ ··· →Mn contains k reductions of new redexes (0 ≤ k ≤
n−1). Moreover, the redex Rn is a new redex, and Rn+1 . . .Rm : Mn+1→ ··· →Mm+1 contains no
new redexes. Then the reduction path RnRn+1 . . .Rm : Mn→Mn+1→ ·· ·→Mm+1 is a development
of Mn with respect to a subset of Redex(Mn), and hence Mm+1 � M∗n . On the other hand, from
the induction hypothesis applied to the reduction path R0R1 . . .Rn−1 : M ≡M0→M1→ ··· →Mn

with k reductions of new redexes, we have Mn�M(k+1)∗. Therefore, we have Mm+1�M(k+2)∗

by repeated application of Proposition 4. 2

4 Quantitative analysis and comparison with related results

4.1 Measure functions

For quantitative analysis, we list important measure functions, TermSize, Mon, and Rev.

Definition 12 (TermSize) We define TermSize(M =β N) by induction on the derivation.

1. If M�r N then TermSize(M =β N) = 8( |M|8 )2r
.

2. If M =β N is derived from N =β M, then define TermSize(M =β N) by TermSize(N =β M).

3. If M =β N is derived from M =β P and P =β N, then define TermSize(M =β N) as follows:
max{TermSize(M =β P),TermSize(P =β N)}.

Proposition 5 (TermSize) Let M0 =
k
β

Mk with reduction sequence ls. Then |M| ≤TermSize(M0 =
k
β

Mk)

for each term M in ls, and TermSize(M0 =
k
β

Mk)≤ |N|2
k

for some term N in ls.

Proof. By induction on the derivation of =β together with Definition 12 and Proposition 1. 2
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Definition 13 (Monotonicity)

Mon(|M|,m,n) =

 2|M|
2m

, for n = 1

22
[2Mon(|M|,m,n−1)×2|M|

(n−2)]

, for n > 1

Proposition 6 (Monotonicity) If M�m N, then Mn∗�l Nn∗ with l ≤Mon(|M|,m,n).

Proof. By induction on n.

1. Case of n = 1:
If M�m Mm, then M∗�l M∗m with l ≤ 2|M|

2m

. Indeed, from Proposition 1, we have |Mm|< |M|2
m
.

If M0 → M1 then we have M∗0 �
l1 M∗1 with l1 < 2|M0| from Proposition 4 and Lemma 4. Hence,

from M0→M1→ ··· →Mm, we have M∗0 �
l1 M∗1 �

l2 · · ·�lm M∗m where

l =
m

∑
i=1

li <
m−1

∑
i=0

2|Mi| <
m−1

∑
i=0

2|M0|2
i

< 2|M0|2
m

.

2. Case of n≥ 1:
From the induction hypothesis, we have Mn∗�l Nn∗ with l <Mon(|M|,m,n). Therefore, we have
M(n+1)∗�l′ N(n+1)∗ with

l′ < 2|M
n∗|2l

< 2|M
n∗|2Mon(|M|,m,n)

, where |Mn∗|< 2|M|n . 2

Lemma 8 (Cofinal property) If M�n N (n≥ 1), then N�l Mn∗ with l < Rev(|M|,n) as follows:

Rev(|M|,n) =

{
1
2 |M|

2, for n = 1
1
2 |M|

2n
+2|M|

2[n−1+Rev(|M|,n−1)]

, for n > 1

Proof. The case Rev(|M|,1) is by Lemma 5. For n > 1, Rev(|M|,n) follows Mon(|M|,n,1) from Propo-
sition 6 and |N|< |M|2n

from Proposition 1. 2

4.2 Quantitative analysis of Church-Rosser for β -reduction

We show two bound functions f (l, |M|,r) = 〈m,n〉 such that for the peak N1 �l M �r N2, the valley
size of N1�a P�b N2 for some P is bounded by a≤ m and b≤ n. The first function CR-red(l,M,r) =
〈m,Nr∗

1 ,n〉 provides a common reduct Nr∗
1 , following the proof of the main lemma with Mon. The second

one V-size(l,M,r) = 〈m,Mr∗,n〉 gives a common reduct Mr∗ simply using Rev provided that l ≤ r.

Definition 14 (CR-red) 1. CR-red(l,M,1) = 〈1
2 |M|

2l
,N∗1 ,

1
2 |M|

2 +2|M|
2l

〉

2. CR-red(l,M,r) =

let 〈m,N(r−1)∗
1 ,n〉 be CR-red(l,M,r−1) in 〈2|M|

2l

(r−1),N
r∗
1 , 1

2 |M|
2r
+2|M|

2[r−1+n]

〉 for r > 1

Proposition 7 (CR-red) If N1�l M�r N2, then we have CR-red(l,M,r) = 〈m,Nr∗
1 ,n〉 such that

N1�a Nr∗
1 �

b N2 with a≤ m and b≤ n.

Proof. By induction on r.
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1. Case r = 1:
We have M∗�a N2 with a≤ 1

2 |N2| ≤ 1
2 |M|

2. Then N∗1 �
b M∗ with b≤Mon(|M|, l,1) = 2|M|

2l

. On
the other hand, we have a common contractum N∗1 such that N1�c N∗1 with c≤ 1

2 |N1| ≤ 1
2 |M|

2l
.

2. Case of r > 1:
From the induction hypothesis, we have 〈m,N(r−1)

1 ,n〉= CR-red(l,M,r−1) such that
M �(r−1) N3 → N2 and N(r−1)∗

1 �b N3 with b ≤ n for some N3. Then we have N∗3 �
c N2 with

c≤ 1
2 |N2| ≤ 1

2 |M|
2r

, and hence Nr∗
1 �

d N∗3 where

d ≤ Mon(|N3|,n,1) ≤ Mon(|M|2(r−1)
,n,1) = 2(|M|

2(r−1)
)2n

= 2|M|
2[r+n−1]

.

Therefore, we have a common reduct Nr∗
1 such that N1�e Nr∗

1 with e≤ Len(|N1|,r)≤ 2|M|
2l

(r−1). 2

Definition 15 (V-size) V-size(l,M,r) = 〈Rev(|M|, l)+2|M|r−1,M
r∗,Rev(M,r)〉 for 1≤ l ≤ r.

Proposition 8 (V-size) If N1 �l M �r N2 with l ≤ r, then we have V-size(l,M,r) = 〈m,Mr∗,n〉 such
that N1�a Mr∗�b N2 with a≤ m and b≤ n.

Proof. Suppose that l≤ r. We have N1�a Ml∗ with a≤Rev(|M|, l) and Mr∗�b N2 with b≤Rev(|M|,r),
respectively. From l ≤ r, we have Ml∗�c Mr∗ where

c ≤ Len(|Ml∗|,r− l) ≤ 2|M
l∗|

r−l−1 ≤ 22|M|l
r−l−1 = 2|M|r−1. 2

On the other hand, Ketema and Simonsen [9] showed that an upper bound on the size of confluence
diagrams in λ -calculus is bl(l, |M|,r) for P�l M�r Q. The valley size a and b of P�a N �b Q for
some N is bounded by bl(l, |M|,r) as follows:

bl(l, |M|,r) =

{
|M|2[2

l+l+2]
, for r = 1

|M|2[2
bl(l,|M|,r−1)+bl(l,|M|,r−1)+r+1]

, for r > 1

Their proof method is based on the use of the so-called Strip Lemma, and in this sense our first method
CR-red is rather similar to theirs. However, for a large term M, bl can give a shorter reduction length
than that by CR-red from the shape of the functions. The reason can be expounded as follows: From
given terms, we explicitly constructed a common reduct via ∗-translation, so that more redexes than a set
of residuals can be reduced, compared with those of bl. To overcome this point, an improved version of
Theorem 2 is introduced such that ∗-translation is applied only when new redexes are indeed reduced.

The basic idea of the second method V-size is essentially the same as the proof given in [11]. In
summary, the functions bl and CR-red including a common reduct are respectively defined by induction
on the length of one side of the peak, and V-size is by induction on that of both sides of the peak. All the
functions belong to the fourth level of the Grzegorczyk hierarchy.

4.3 Quantitative analysis of Church-Rosser for β -equality

Let M0 =
k
β

Mk with length k = l + r where l = ]l[0,k] and r = ]r[0,k], and M be TermSize(M0 =
k
β

Mk).
Then we show a bound function CR-eq(M0 =

k
β

Mk) = 〈m,Mr∗
0 ,n〉 such that M0�a Mr∗

0 and Mr∗
0 �

b Mk
with a≤ m and b≤ n. This analysis reveals the size of the valley described in Lemma 7.
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Definition 16 Given M0 =k
β

Mk with length k = l + r where l = ]l[0,k] and r = ]r[0,k]. Let M be
TermSize(M0 =k

β
Mk). A measure function CR-eq is defined by induction on the length of =k

β
, where

· denotes an arbitrary term.

1. CR-eq(M0← ·) = 〈0,M0∗
0 ,1〉; CR-eq(M0→ ·) = 〈1

2 |M0|,M∗0 , 1
2 |M0|2〉

2. CR-eq(M0 =
k
β
· ← ·) = let 〈a,Mr∗

0 ,b〉 be CR-eq(M0 =
k
β
·) in 〈a,Mr∗

0 ,b+1〉

3. CR-eq(M0 =
k
β
· → ·) = let 〈a,Mr∗

0 ,b〉 be CR-eq(M0 =
k
β
·) in 〈a+ 1

2
2|M0|

r ,M(r+1)∗
0 ,

1
2
M+2M

2b

〉

Note that in the definition of CR-eq, as shown by the use of ·, we use no information on N such that
M0 =β N, but only by the use of the length of =β and case analysis of → or ←. From Definition 12
and Proposition 1, TermSize(M0 =β Mk) is well-defined by induction on =β . From the definition above,
CR-eq is also a function in the fourth level of the Grzegorczyk hierarchy (non-elementary).

Proposition 9 (Church-Rosser for β -equality) If M0 =
k
β

Mk with length k = l+r where l = ]l[0,k] and
r = ]r[0,k], then we have CR-eq(M0 =

k
β

Mk) = 〈m,Mr∗
0 ,n〉 such that M0�a Mr∗

0 and Mr∗
0 �

b Mk with
a≤ m and b≤ n.

Proof. By induction on the length of =(l+r)
β

. The outline of the proof is the same as that of Lemma 7.

1. Base cases of k = 1:

• CR-eq(M0← ·) = 〈0,M0∗
0 ,1〉:

We have M0 ≡M0∗
0 ←M1 for some M1.

• CR-eq(M0→ ·) = 〈1
2 |M0|,M∗0 , 1

2 |M0|2〉:
We have M0→M1 for some M1, and then M0�a M∗0 with a ≤ 1

2 |M0| and M∗0 �
b M1 with

b≤ Rev(|M0|,1) = 1
2 |M0|2.

2. Step cases:

• CR-eq(M0 =
k
β
· ← ·) = let 〈a,Mr∗

0 ,b〉 be CR-eq(M0 =
k
β
·) in 〈a,Mr∗

0 ,b+1〉:
From the induction hypothesis, we have M0�m Mr∗

0 with m ≤ a and Mr∗
0 �

n M2←M3 for
some M2,M3 with n≤ b. Then we have the same common reduct Mr∗

0 and n+1≤ b+1 from
Mr∗

0 �
n+1 M3.

• CR-eq(M0 =
k
β
·→·) = let 〈a,Mr∗

0 ,b〉 be CR-eq(M0=
k
β
·) in 〈a+ 1

2 2|M0|
r ,M(r+1)∗

0 , 1
2M+2M

2b

〉:
From the induction hypothesis, we have M0 �m Mr∗

0 with m ≤ a and Mr∗
0 �

n M2 → M3
for some M2,M3 with n ≤ b. We also have M∗2 �

c M3 with c ≤ 1
2 |M2| ≤ 1

2M, and then

M(r+1)∗
0 �d M∗2 where

d ≤ Mon(|M2|,b,1) ≤ Mon(M,b,1) = 2M
2b

.

Hence, we have a common reduct M(r+1)∗
0 such that M0�m Mr∗

0 �
e M(r+1)∗

0 where

m+e ≤ a+
1
2
|Mr∗

0 | ≤ a+
1
2

2|M0|
r . 2

Example 2 The Church numerals cn = λ f x. f n(x) are defined as usual due to Rosser [1], where we write
F0(M) = M, and Fn+1(M) = F(Fn(M)). We define Ni such that N1 = c2, and Nn+1 = Nnc2. We also
define M1 = c1 p(Nn pq) and M2 = Nn p(c1 pq) with fresh variables p and q for n ≥ 4. We might have
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M1 =β M2, but the length of =β is not trivial. From the fact that Nn�a λ f λx. f 21
n(x) with a≤ 21

n, indeed
we prove M1 =β M2 as follows:

M1� c1 p((λ f λx. f 21
n(x))pq)�2 c1 p(p21

n(q))�2 p(p21
n(q)), and similarly p21

n(p(q))�M2.
Hence, the length of =β is at most 2× (4+21

n), and the size of the common reduct is 1+2× (21
n+1 +1),

although |M1|= |M2|= 8n+1. The example suggests that there is plenty of room for improvement of the
upper bound. Note that M1� p21

n+1(q)�M2 is regarded as a base case in the sense of Example 1.

5 Concluding remarks and further work

The main lemma revealed that a common contractum P from M0 and Mk with M0 =
k
β

Mk can be deter-
mined by (i) M0 and the number of occurrences of→ in =β , and also by (ii) Mk and that of←. In general,
we have 2k patterns of reduction graph for =k

β
as a combination of→ and← with length k. This lemma

means that 2k patterns of graph can be grouped into (k+1) classes with kCi patterns (i = 0, . . . ,k), like
Pascal’s triangle. As demonstrated by Example 1, we have common contractums 〈M(k−i)∗

0 ,Mi∗
k 〉 for each

class (i = 0, . . . ,k), contrary to an exponential size of the patterns of reduction graph. Moreover, Corol-
lary 1 provides an optimum common contractum Mml∗

r for M0 =
k
β

Mk in terms of Takahashi translation,
which is one of important consequences of the main lemma.

The main lemma depends only on Proposition 4 and Lemma 5, which can be expounded geometri-
cally as parallel and flipped properties respectively. Hence, if there exists an arbitrary reduction strategy
∗ that satisfies both properties, then the main lemma can be established. In fact, the main lemma holds
even for βη-equality, because for βη-reduction, under an inside-out development we still have Lemma
5, Proposition 4, and Proposition 2 without bounds as observed already in [11]. This implies that under
a general framework with such a strategy, it is possible to analyze quantitative properties of rewrit-
ing systems in the exactly same way, and indeed λ -calculus with βη-reduction and weakly orthogonal
higher-order rewriting systems [17, 5] are instances of these systems. Moreover, this general approach is
available as well for compositional Z [13] that is an extension of the so-called Z property [5] (property of
a reduction strategy that is cofinal and monotonic), which makes it possible to apply a divide and conquer
method for proving confluence.

In order to analyze reduction length of the Church-Rosser theorem, we provided measure functions
Len, TermSize, Mon, and Rev. In terms of the measure functions, bound functions are obtained for the
theorem for β -reduction and β -equality, explicitly together with common contractums. A bound on the
valley size for the theorem for β -equality is obtained by induction on the length of =β . Compared with
[9], the use of TermSize is important to set bounds to the size of terms, in particular, for the theorem for
β -equality. Given M =β N, then there exists some constant TermSize(M =β N), and under the constant
bound functions can be provided by induction only on the length of =β with neither information on M
nor N, including the size of a common contractum.

In addition, based on Corollary 1, it is also possible to analyze the valley size of M0 =
(l+r)
β

Ml+r in
terms of Mml∗

r : In the base case of ml = 0, the valley size is bounded simply by l and r, for instance,
see Example 2; in the maximum case of ml = min{l,r}, the valley size is at most that of the theorem for
β -reduction as observed in Example 1; and this analysis will be discussed elsewhere.

Towards a tight bound, our bound depends essentially on Proposition 2 and Lemma 4. Proposition 2
provides an optimal reduction, since we adopted the so-called minimal complete development [8, 10, 15].
For the bound on the size of M∗, Lemma 4 can be proved, in general, under some function f (x) such that
f (x)× f (y)≤ f (x+ y), which may lead to a non-elementary recursive function, as described by Len.
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