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In this paper, we show that the SR transformation, a computationally equivalent transformation pro-
posed by Şerbănuţă and Roşu, is a sound structure-preserving transformation for weakly-left-linear
deterministic conditional term rewriting systems. More precisely, we show that every weakly-left-
linear deterministic conditional term rewriting system can be converted to an equivalent weakly-left-
linear and ultra-weakly-left-linear deterministic conditional term rewriting system and prove that the
SR transformation is sound for weakly-left-linear and ultra-weakly-left-linear deterministic condi-
tional term rewriting systems. Here, soundness for a conditional term rewriting system means that
reduction of the transformed unconditional term rewriting system creates no undesired reduction
sequence for the conditional system.

1 Introduction

Conditional term rewriting is known to be much more complicated than unconditional term rewriting in
the sense of analyzing properties, e.g., operational termination [8], confluence [17], and reachability [3].
A popular approach to the analysis of conditional term rewriting systems (CTRS) is to transform a CTRS
into an unconditional term rewriting system (TRS) that is in general an overapproximation of the CTRS
in terms of reduction. Such an approach enables us to use techniques for the analysis of TRSs, which
have been well investigated in the literature. For example, if the transformed TRS is terminating, then
the CTRS is operationally terminating [2]—to prove termination of the transformed TRS, we can use
many termination proving techniques that have been well investigated for TRSs (cf. [14]).

There are two approaches to transformations of CTRSs into TRSs: unravelings [9, 10] proposed by
Marchiori (see, e.g., [4, 11]), and a transformation [18] proposed by Viry (see, e.g., [15, 4]).

Unravelings are transformations from a CTRS into a TRS over an extension of the original signature
for the CTRS, which are complete for (reduction of) the CTRS [9]. Here, completeness for a CTRS
means that for every reduction sequence of the CTRS, there exists a corresponding reduction sequence
of the unraveled TRS. In this respect, the unraveled TRS is an overapproximation of the CTRS w.r.t. re-
duction, and is useful for analyzing the properties of the CTRS, such as syntactic properties, modularity,
and operational termination, since TRSs are in general much easier to handle than CTRSs.

The latest transformation based on Viry’s approach is a computationally equivalent transformation
proposed by Şerbănuţă and Roşu [15, 16] (the SR transformation, for short), which is one of structure-
preserving transformations [7]. This transformation has been proposed for normal CTRSs in [15]—
started with this class to simplify the discussion—and then been extended to strongly or syntactically
deterministic CTRSs (SDCTRSs) that are ultra-left-linear (semilinear [16]). Here, for a syntactic prop-
erty P, a CTRS is said to be ultra-P if its unraveled TRS via Ohlebusch’s unraveling [13] has the property
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P. The SR transformation converts a confluent, operationally terminating, and ultra-left-linear SDCTRS
into a TRS that is computationally equivalent to the CTRS. This means that such a converted TRS can
be used to exactly simulate any reduction sequence of the original CTRS to a normal form.

As for unravelings, soundness of the SR transformation plays a very important role for, e.g., com-
putational equivalence. Here, soundness for a CTRS means that reduction of the converted TRS creates
no undesired reduction sequences for the CTRS. Neither any unraveling nor the SR transformation is
sound for all CTRSs. Since soundness is one of the most important properties for transformations of
CTRSs, sufficient conditions for soundness have been well investigated, especially for unravelings (see,
e.g., [5, 11, 6]). For example, the simultaneous unraveling that has been proposed by Marchiori [9]
(and then has been improved by Ohlebusch [13]) is sound for weakly-left-linear (WLL, for short), con-
fluent, non-erasing, or ground conditional normal CTRSs [5], and for DCTRSs that are confluent and
right-stable, WLL, or ultra-right-linear [6]. Normal CTRSs admit a rewrite rule to have conditions to
test terms received via variables in the left-hand side, e.g., whether a term with such variables can reach
a ground normal form specified by the rule. This means that we can add so-called guard conditions
to rewrite rules. In addition to such a function, DCTRSs admit a rewrite rule to have so-called let-
structures in functional languages. On the other hand, the WLL property allows CTRSs to have rules,
e.g., eq(x,x)→ true, to test equivalence between terms via non-linear variables. For these reasons, the
class of WLL DCTRSs is one of the most interesting and practical classes of CTRSs, as well as that of
WLL normal CTRSs.

The main purpose of transformations along the Viry’s approach is to use the soundly transformed
TRS in order to simulate the reduction of the original CTRS. The experimental results in [15] indicate
that the rewriting engine using the soundly transformed TRS is much more efficient than the one using the
original left-linear normal CTRS. To get an efficient rewriting engine for CTRSs, soundness conditions
for the SR transformation are worth investigating.

In the case of DCTRSs that are not normal CTRSs, the SR transformation is defined for ultra-left-
linear SDCTRSs, and has been shown to be sound for such SDCTRSs [16]. On the other hand, unlike
unravelings, soundness conditions for the SR transformation have been investigated only for normal
CTRSs [15, 16, 12]. For example, it has been shown in [12] that the SR transformation is sound for
WLL normal CTRSs, but the result has not been adapted to WLL SDCTRSs yet.

In this paper, we show that the SR transformation is a sound structure-preserving transformation for
WLL DCTRSs that do not have to be SDCTRSs. To this end, we first show that every WLL DCTRSs can
be converted to a WLL and ultra-WLL DCTRS such that the reductions of these DCTRSs are the same.
Then, we show that the SR transformation is applicable to ultra-WLL DCTRSs without any change.
Finally, we prove that the SR transformation is sound for WLL and ultra-WLL DCTRSs. These results
imply that the composition of the conversion to ultra-WLL DCTRSs and the SR transformation is a
sound structure-preserving transformation for WLL DCTRSs.

The contribution of this paper is summarized as follows. We adapt the result on soundness of the SR
transformation for WLL normal CTRSs to WLL deterministic CTRSs. The result in this paper covers
the result in [12] for WLL normal CTRSs showing a simpler proof that would be helpful for further
development of the SR transformation and its soundness.

This paper is organized as follows. In Section 2, we briefly recall basic notions and notations of
term rewriting. In Section 3, we recall the notion of soundness, the simultaneous unraveling, and the SR
transformation for DCTRSs, and show that every WLL DCTRS can be converted to an equivalent WLL
and ultra-WLL DCTRS. In Section 4, we show that the SR transformation is sound for WLL and ultra-
WLL DCTRSs. In Section 5, we conclude this paper and describe future work on this research. Some
missing proofs are available at http://www.trs.cm.is.nagoya-u.ac.jp/~nishida/wpte16/.
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2 Preliminaries

In this section, we recall basic notions and notations of term rewriting [1, 14].
Throughout the paper, we use V as a countably infinite set of variables. Let F be a signature, a

finite set of function symbols each of which has its own fixed arity, and arityF (f) be the arity of function
symbol f. We often write f/n ∈F instead of “f ∈F and arityF (f) = n”, “f ∈F such that arityF (f) = n”,
and so on. The set of terms over F and V (⊆V) is denoted by T (F ,V ), and the set of variables appearing
in any of the terms t1, . . . , tn is denoted by Var(t1, . . . , tn). The number of occurrences of a variable x in
a term sequence t1, . . . , tn is denoted by |t1, . . . , tn|x. A term t is called ground if Var(t) = /0. A term is
called linear if any variable occurs in the term at most once, and called linear w.r.t. a variable if the
variable appears at most once in t. For a term t and a position p of t, the subterm of t at p is denoted
by t|p. The function symbol at the root position ε of term t is denoted by root(t). Given an n-hole
context C[ ] with parallel positions p1, . . . , pn, the notation C[t1, . . . , tn]p1,...,pn represents the term obtained
by replacing hole 2 at position pi with term ti for all 1≤ i≤ n. We may omit the subscript “p1, . . . , pn”
from C[. . .]p1,...,pn . For positions p and p′ of a term, we write p′ ≥ p if p is a prefix of p′ (i.e., there exists
a sequence q such that pq = p′). Moreover, we write p′ > p if p is a proper prefix of p′.

A substitution σ is a mapping from variables to terms such that the number of variables x with σ(x) 6=
x is finite, and is naturally extended over terms. The domain and range of σ are denoted by Dom(σ)
and Ran(σ), respectively. We may denote σ by {x1 7→ t1, . . . , xn 7→ tn} if Dom(σ) = {x1, . . . ,xn} and
σ(xi) = ti for all 1≤ i≤ n. ForF and V (⊆V), the set of substitutions that range overF and V is denoted
by Sub(F ,V ): Sub(F ,V ) = {σ | Ran(σ)⊆ T (F ,V )}. For a substitution σ and a term t, the application
σ(t) of σ to t is abbreviated to tσ , and tσ is called an instance of t. Given a set X of variables, σ |X
denotes the restricted substitution of σ w.r.t. X : σ |X = {x 7→ xσ | x ∈ Dom(σ)∩X}.

An (oriented) conditional rewrite rule over a signature F is a triple (l,r,c), denoted by l → r ⇐
c, such that the left-hand side l is a non-variable term in T (F ,V), the right-hand side r is a term in
T (F ,V), and the conditional part c is a sequence s1 � t1, . . . ,sk � tk of term pairs (k ≥ 0) where all of
s1, t1, . . . ,sk, tk are terms in T (F ,V). In particular, a conditional rewrite rule is called unconditional if the
conditional part is the empty sequence (i.e., k = 0), and we may abbreviate it to l → r. We sometimes
attach a unique label ρ to the conditional rewrite rule l→ r⇐ c by denoting ρ : l→ r⇐ c, and we use
the label to refer to the rewrite rule.

An (oriented) conditional term rewriting system (CTRS) over a signature F is a set of conditional
rewrite rules over F . A CTRS is called an (unconditional) term rewriting system (TRS) if every rule
l→ r⇐ c in the CTRS is unconditional and satisfies Var(l)⊇ Var(r). The reduction relation→R of a
CTRSR is defined as→R=

⋃
n≥0→(n),R, where→(0),R= /0, and→(i+1),R= {(C[lσ ]p,C[rσ ]p) | ρ : l→

r⇐ s1 � t1, . . . ,sk � tk ∈R, s1σ →∗(i),R t1σ , . . . , skσ →∗(i),R tkσ} for i≥ 0. To specify the applied rule
ρ and the position p where ρ is applied, we may write→p,ρ or→p,R instead of→R. Moreover, we may
write→>ε,R instead of→p,R if p > ε . The underlying unconditional system {l→ r | l→ r⇐ c ∈ R}
of R is denoted by Ru. A term t is called a normal form (of R) if t is irreducible w.r.t. R. For a CTRS
R, a substitution σ is called normalized (w.r.t. R) if xσ is a normal form w.r.t. R for every variable
x ∈ Dom(σ). A term t is called strongly irreducible (w.r.t. R) if tσ is a normal form w.r.t. R for every
normalized substitution σ . The sets of defined symbols and constructors of R are denoted by DR and
CR, respectively: DR = {root(l) | l → r⇐ c ∈ R} and CR = F \DR. Terms in T (CR,V) are called
constructor terms of R. R is called a constructor system if for every rule l → r⇐ c in R, all proper
subterms of the l are constructor terms of R. A CTRS is called operationally terminating if there is no
infinite well-formed trees in a certain logical inference system [8].

A conditional rewrite rule l→ r⇐ c is called left-linear (LL) if l is linear, right-linear (RL) if r is lin-
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ear, non-erasing (NE) if Var(l)⊆Var(r), and ground conditional if c contains no variable. A conditional
rewrite rule ρ : l → r⇐ s1 � t1, . . . ,sk � tk is called weakly-left-linear (WLL) [6] if |l, t1, . . . , tk|x = 1
for any variable x ∈ Var(r,s1, . . . ,sk). For a syntactic property P of conditional rewrite rules, we say that
a CTRS has the property P if all of its rules have the property P, e.g., a CTRS is called LL if all of its
rules are LL. Note that not all LL CTRSs are WLL, e.g., f(x)→ x⇐ g(x)� x is LL but not WLL.

A conditional rewrite rule ρ : l → r ⇐ s1 � t1, . . . ,sk � tk is called deterministic if Var(si) ⊆
Var(l, t1, . . . , ti−1) for all 1 ≤ i ≤ k, called strongly deterministic if every term ti is strongly irreducible
w.r.t. R, and called syntactically deterministic if every ti is a constructor term or a ground normal form
of Ru. We simply call a deterministic CTRS a DCTRS, and call a strongly or syntactically determin-
istic CTRS an SDCTRS. In addition, ρ is classified according to the distribution of variables in ρ as
follows: Type 1 if Var(r,s1, t1, . . . ,sk, tk) ⊆ Var(l); Type 2 if Var(r) ⊆ Var(l); Type 3 if Var(r) ⊆
Var(l,s1, t1, . . . ,sk, tk); Type 4 otherwise. A (D)CTRS is called an i-(D)CTRS if all of its rules are of Type
i. A DCTRSR is called normal (or a normal CTRS) if, for every rule l→ r⇐ s1 � t1, . . . ,sk � tk ∈R,
all of t1, . . . , tk are ground normal forms w.r.t.Ru. In this paper, we only consider 3-DCTRSs.

We often denote a term sequence ti, ti+1, . . . , t j by−→ti.. j. Moreover, for the application of a mapping τ to
−→ti.. j, we denote the sequence τ(ti), . . . ,τ(t j) by

−−−→
τ(ti.. j), e.g., for a substitution θ , we denote tiθ , . . . , t jθ by

−−−→
θ(ti.. j). For a finite set X = {o1,o2, . . . ,on} of objects, a sequence o1,o2, . . . ,on under some arbitrary but
fixed order on the objects is denoted by

−→
X , and given a mapping τ , the sequence τ(o1),τ(o2), . . . ,τ(on)

is denoted by τ(
−→
X ). Given an object o, we denote the sequence

n︷ ︸︸ ︷
o, . . . ,o by on.

3 Transformations from DCTRSs into TRSs

In this section, we first recall soundness and completeness of transformations, the simultaneous unrav-
eling [14], and the SR transformation [15] for DCTRSs. Then, we show that every WLL DCTRS can
be converted to an equivalent WLL and ultra-WLL DCTRS. In the following, we use the terminology
“conditional” for a rewrite rule that has at least one condition, and distinguish “conditional rules” and
“unconditional rules”.

3.1 Soundness and Completeness between Two Rewriting Systems

We first show a general notion of soundness and completeness between two (C)TRSs (see [4, 11]).
We usually consider that one is obtained by transforming the other. Let R1 and R2 be (C)TRSs over
signature F1 and F2, respectively, φ be an initialization (total) mapping from T (F1,V) to T (F2,V), and
ψ be a partial inverse of φ , a so-called backtranslation mapping from T (F2,V) to T (F1,V) such that
ψ(φ(t1)) = t1 for any term t1 ∈ T (F1,V). We say that

• R2 is sound for (reduction of ) R1 w.r.t. (φ ,ψ) if, for any term t1 ∈ T (F1,V) and for any term
t2 ∈ T (F2,V), φ(t1)→∗R2

t2 implies t1→∗R1
ψ(t2) whenever ψ(t2) is defined, and

• R2 is complete for (reduction of )R1 w.r.t. φ if for all terms t1 and t ′1 in T (F1,V), t1→∗R1
t ′1 implies

φ(t1)→∗R2
φ(t ′1).

We now suppose that R1 is a CTRS and R2 is a TRS. R2 is called computationally equivalent to R1 if
for every R1-operationally-terminating term t in T (F1,V) with a unique normal form u (i.e., t →∗R1

u),
the term φ(t) is terminating w.r.t. R2 and all the normal forms of φ(t) w.r.t. R2 are translated by ψ to
u. Note that if R1 is operationally terminating, R2 is confluent, terminating, and sound for R1 w.r.t.
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(φ ,ψ), and ψ is defined for all normal forms t such that φ(s)→∗R2
t for some s ∈ T (F1,V), then R2 is

computationally equivalent toR1.

3.2 Simultaneous Unraveling

A transformation U of CTRSs into TRSs is called an unraveling if for every CTRS R, we have that
→R ⊆→∗U(R) and U(R∪R′) =U(R)∪R′ wheneverR′ is a TRS [9, 11]. The simultaneous unraveling
for DCTRSs has been defined in [10], and then has been refined by Ohlebusch [13] as follows.

Definition 3.1 (U [14]) Let R be a DCTRS over a signature F . For each conditional rule ρ : l→ r⇐
s1 � t1, . . . ,sk � tk inR, we introduce k new function symbols Uρ

1 , . . . ,U
ρ

k , and transform ρ into a set of
k+1 unconditional rules as follows:

U(ρ) = { l→Uρ

1 (s1,
−→
X1), Uρ

1 (t1,
−→
X1)→Uρ

2 (s2,
−→
X2), . . . , Uρ

k (tk,
−→
Xk)→ r }

where Xi = Var(l,−−−→t1..i−1) for 1≤ i≤ k. We define U for an unconditional rule l→ r ∈R as U(l→ r) =
{l → r}. U is straightforwardly extended to DCTRSs: U(R) =

⋃
ρ∈RU(ρ). We abuse U to represent

the extended signature of F: UR(F) = F ∪{Uρ

i | ρ : l→ r⇐ s1 � t1, . . . ,sk � tk ∈R, 1≤ i≤ k}. We
say that U (and also U(R)) is sound for R if U(R) is sound for R w.r.t. (idF ,idUR(F)), where idF
is the identity mapping for T (F ,V), and idUR(F) is the partial identity mapping for T (UR(F),V), i.e.,
idF (t) = idUR(F)(t) = t for t ∈ T (F ,V) and idUR(F)(t) is undefined for t ∈ T (UR(F),V)\T (F ,V).
We also say that U (and also U(R)) is complete forR if U(R) is complete forR w.r.t. idF .

Note that U(R) is a TRS over UR(F), i.e., U transforms a DCTRS into a TRS. In examples below, we
use u1,u2, . . . for fresh U symbols introduced during the application of U.

Example 3.2 Consider the following DCTRS from [14, Section 7.2.5]:

R1 =


split(x,nil)→pair(nil,nil),

split(x,cons(y,ys))→pair(xs,cons(y,zs))⇐ split(x,ys)� pair(xs,zs), x≤ y � true,
split(x,cons(y,ys))→pair(cons(y,xs),zs)⇐ split(x,ys)� pair(xs,zs), x≤ y � false,

qsort(nil)→nil,
qsort(cons(x,xs))→qsort(ys)++cons(x,qsort(zs))⇐ split(x,xs)� pair(ys,zs)

∪R2

where

R2 =

{
0≤ y→ true, s(x)≤ 0→ false, s(x)≤ s(y)→ x≤ y,

nil++ys→ ys, cons(x,xs)++ys→ cons(x,xs++ys)

}
Introducing U symbols u1, u2, u3, u4, and u5 for conditional rules inR1,R1 is unraveled by U as follows:

U(R1) =



split(x,nil)→pair(nil,nil),
split(x,cons(y,ys))→u1(split(x,ys),x,y,ys),

u1(pair(xs,zs),x,y,ys)→u2(x≤ y,x,y,ys,xs,zs),
u2(true,x,y,ys,xs,zs)→pair(xs,cons(y,zs)),

split(x,cons(y,ys))→u3(split(x,ys),x,y,ys),
u3(pair(xs,zs),x,y,ys)→u4(x≤ y,x,y,ys,xs,zs),
u4(false,x,y,ys,xs,zs)→pair(cons(y,xs),zs),

qsort(nil)→nil,
qsort(cons(x,xs))→u5(split(x,xs),x,xs),

u5(pair(ys,zs),x,xs)→qsort(ys)++cons(x,qsort(zs))



∪R2
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As shown in [9, 6], U is not sound for all DCTRSs, while U is sound for some classes of DCTRSs,
e.g., “confluent and right-stable”, “WLL”, and “RL” (cf. [6]).

Theorem 3.3 ([6]) U is sound for WLL DCTRSs.

Let P be a property on rewrite rules, and U be an unraveling. A conditional rewrite rule ρ is said
to be ultra-P w.r.t. U (U-P, for short) if all the rules in U(ρ) have the property P. Note that U-P is a
syntactic property on rewrite rules, and thus a DCTRS is called U-P if all rules in the DCTRS are U-
P. For example, R is U-LL if U(R) is LL. Some ultra-properties are reformulated without referring to
unraveled systems (cf. [11]). In addition, by definition, the U-WLL property is characterized without U
as follows.

Theorem 3.4 R is U-WLL if and only if all unconditional rules in R are WLL and every conditional
rule l→ r⇐ s1 � t1, . . . ,sk � tk (k > 0) inR satisfies that

(a) the sequence l, t1, . . . , tk−1 is linear, and

(b) |l, t1, . . . , tk|x ≤ 1 for any variable x ∈ Var(r).

Note that every U-LL DCTRS is U-WLL, while the converse of this implication does not hold in general.
On the other hand, the class of U-WLL DCTRSs is incomparable with the class of WLL DCTRSs, e.g.,
f(x)→ x⇐ a � y, b � y, x � c is WLL but not U-WLL, and f(x)→ x⇐ a � y, y � b, c � y is
U-WLL but not WLL. Though, every WLL DCTRS can be converted to a WLL and U-WLL DCTRS
such that the reductions of these DCTRSs are the same.

In the following, we show that every WLL DCTRS R can be converted to an equivalent WLL and
U-WLL DCTRS. We first convert a WLL conditional rule ρ : l→ r⇐ s1 � t1, . . . ,sk � tk to a WLL and
U-WLL one as follows: for every variable x in ρ such that |l, t1, . . . , tk|x > 1, we linearize the occurrences
of x by replacing each of them by a fresh variable, obtaining ρ ′ : l′ → r⇐ s1 � t ′1, . . . ,sk � t ′k;1 Let
x1, . . . ,x j be the introduced variables, and σ be the variable renaming that maps xi to the original one,
i.e.,Dom(σ) = {x1, . . . ,x j}, l′σ = l, and t ′i σ = ti for 1≤ i≤ k; We add the condition tuple j(x1, . . . ,x j)�
tuple j(x1σ , . . . ,x jσ) into ρ ′ as the last condition, where tuple j is a fresh j-ary constructor. We denote this
transformation by T, i.e., T(ρ)= l′→ r⇐ s1 � t ′1, . . . ,sk � t ′k, tuple j(x1, . . . ,x j)� tuple j(x1σ , . . . ,x jσ).
In addition, we abuse T for unconditional rules and R: T(l→ r) = l→ r and T(R) = {T(ρ) | ρ ∈ R}.
By definition, T(ρ) is WLL and U-WLL, i.e., T transforms a WLL DCTRS into a WLL and U-WLL
DCTRS. It is clear that if s ∈ T (F ,V) and s→∗T(R) t, then t ∈ T (F ,V).

Theorem 3.5 LetR be a WLL DCTRS over a signature F . Then,→∗R =→∗T(R) over T (F ,V)

Proof (Sketch). The following two claims can be proved by induction on the lexicographic product
(m,n): (i) if s→n

(m),R t then s→∗T(R) t, and (ii) if s→n
(m),T(R) t then s→∗R t. 2

3.3 The SR Transformation

Next, we introduce the SR transformation and its properties. Before transforming a CTRS R, we first
extend the signature ofR as follows:

• we keep the constructors ofR, while replacing c/n by c/n,

1 Such x does not appear in any of r,s1, . . . ,sk because ρ is WLL.
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• the arity n of defined symbol f is extended to n+m where f has m conditional rules inR, replacing
f by f, the arity of which is n+m,

• a fresh constant ⊥ and a fresh unary symbol 〈·〉 are introduced, and

• for every conditional rule ρ : l → r⇐ s1 � t1, . . . ,sk � tk in R, we introduce k fresh symbols
[ ]

ρ

1 , [ ]
ρ

2 , . . . , [ ]
ρ

k with the arities 1,1+ |Var(t1)|,1+ |Var(t1, t2)|, . . . ,1+ |Var(t1, . . . , tk−1)|.

We assume that for every defined symbol f, the conditional rules for f are ranked by some arbitrary but
fixed order. We denote the extended signature by F : F = {c | c ∈ CR}∪{f | f ∈ DR}∪{⊥,〈·〉}∪{[ ]ρj |
ρ : l→ r⇐ s1 � t1, . . . ,sk � tk ∈R, 1≤ j ≤ k}. We introduce a mapping ext to extend the arguments
of defined symbols in a term as follows: ext(x) = x for x∈ V; ext(c(−→t1..n)) = c(

−−−−−−→
ext(t1..n)) for c/n∈ CR;

ext(f(
−→t1..n)) = f(

−−−−−−→
ext(t1..n),−−→z1..m) for f/n ∈DR, where f has m conditional rules inR, arityF (f) = n+m,

and z1, . . . ,zm are fresh variables. The extended arguments of f are used for evaluating the corresponding
conditions, and the fresh constant ⊥ is introduced to the extended arguments of defined symbols, which
does not store any evaluation. To put ⊥ into the extended arguments, we define a mapping (·)⊥ that
puts ⊥ to all the extended arguments of defined symbols, as follows: (x)⊥ = x for x ∈ V; (c(−→t1..n))⊥ =
c((
−→t1..n)⊥) for c/n ∈ CR; (f(−→t1..n,−−→u1..m))

⊥ = f((
−→t1..n)⊥,⊥, . . . ,⊥) for f/n ∈ DR; (〈t〉)⊥ = 〈(t)⊥〉; (⊥)⊥ =

⊥; ([. . .]ρj )
⊥ =⊥. Now we define a mapping · from T (F ,V) to T (F ,V) as t = (ext(t))⊥. On the other

hand, the partial inverse mapping ·̂ for · is defined as follows: x̂ = x for x ∈ V; ĉ(−→t1..n) = c(t̂1, . . . , t̂n) for

c/n ∈ CR; ̂f(
−→t1..n, . . .) = f(t̂1, . . . , t̂n) for f/n ∈ DR; 〈̂t〉 = t̂ . Note that in applying (·)⊥ or ·̂ to reachable

terms defined later, the case of applying (·)⊥ to ⊥ or [. . .]ρj never happens.
The SR transformation [16] for SDCTRSs has been defined for only U-LL SDCTRSs—more pre-

cisely, any other case has not been discussed in [16]. Originally, to generate a computationally equivalent
TRS, a given CTRSR is assumed to be a U-LL SDCTRS, while such an assumption is a sufficient con-
dition for computational equivalence. To define the transformation itself, R does not have to be an
SDCTRS, but the U-LL property is used to ensure that for ρ : l→ r⇐ s1 � t1, . . . ,sk � tk, the sequence
l, t1, . . . , tk−1 is linear. To ensure it, the U-WLL property is enough because of Theorem 3.4 (a). For this
reason, the SR transformation is applicable not only to U-LL SDCTRSs but also to U-WLL DCTRSs
without any change.

Definition 3.6 (SR [16]) Let R be a U-WLL DCTRS over a signature F and F be the extended signa-
ture of F mentioned above. Then, the i-th conditional f-rule ρ : f(−−→w1..n)→ r⇐ s1 � t1, . . . ,sk � tk is
transformed into a set of k+1 unconditional rules as follows:

SR(ρ) =


f(
−−→
w′1..n,

−−−→z1..i−1, ⊥, −−−→zi+1..m)→ f(
−−→
w′1..n,

−−−→z1..i−1, [〈s1〉,
−→
V1 ]

ρ

1 ,
−−−→zi+1..m),

f(
−−→
w′1..n,

−−−→z1..i−1, [〈ext(t1)〉,
−→
V1 ]

ρ

1 ,
−−−→zi+1..m)→ f(

−−→
w′1..n,

−−−→z1..i−1, [〈s2〉,
−→
V2 ]

ρ

2 ,
−−−→zi+1..m),

...

f(
−−→
w′1..n,

−−−→z1..i−1, [〈ext(tk)〉,
−→
Vk ]

ρ

k ,
−−−→zi+1..m)→〈r〉


where

−−→
w′1..n =

−−−−−−→
ext(w1..n), Vj = Var(−−−→t1.. j−1) for all 1 ≤ j ≤ k,2 and z1, . . . ,zi−1,zi+1, . . . ,zm are fresh

variables. An unconditional rule in R is converted as follows: SR(l → r) = { ext(l)→ 〈r〉 }, that
is, SR(f(−−→w1..n)→ r) = { f(

−−−−−−→
ext(w1..n),

−−→z1..m)→ 〈r〉 }, where z1, . . . ,zm are fresh variables. The set of

2 For arbitrary DCTRSs, we may define V j as V j = Var(−−−→t1.. j−1)\Var(−−→w1..n).
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auxiliary rules is defined as follows:

Raux ={ 〈〈x〉〉 → 〈x〉 }∪{ c(−−−→x1..i−1,〈xi〉,−−−→xi+1..n)→ 〈c(−−→x1..n)〉 | c/n ∈ CR, 1≤ i≤ n }
∪{ f(−−−→x1..i−1,〈xi〉,−−−→xi+1..n,

−−→z1..m)→ 〈f(−−→x1..n,⊥, . . . ,⊥)〉 | f/n ∈ DR, 1≤ i≤ n }

where x1, . . . ,xn,z1, . . . ,zm are distinct variables. The transformation SR is defined as follows: SR(R) =⋃
ρ∈RSR(ρ)∪Raux. We say that SR (and also SR(R)) is sound for R if SR(R) is sound for R w.r.t.

(〈 · 〉, ·̂). We also say that SR (and also SR(R)) is complete forR if SR(R) is complete forR w.r.t. 〈 · 〉.

Note that SR(R) is a TRS over F , i.e., SR transforms a U-WLL DCTRS into a TRS. In examples below,
we use [ ]1, [ ]2, . . . for fresh tuple symbols introduced during the application of SR, and we may abuse f
instead of f if all the rules for f in R are unconditional, and as in [15, 16], the original constructor c is
abused instead of c. It has been shown in [15] that SR is complete for all U-LL SDCTRSs. By definition,
it is clear that SR is also complete for all U-WLL DCTRSs.

Theorem 3.7 SR is complete for U-WLL DCTRSs.

To evaluate conditions of the i-th conditional rule f(−−→w1..n)→ ri⇐ s1 � t1, . . . ,sk � tk, the i-th condi-
tional rule is transformed into the k+1 unconditional rules: a term of the form [〈t〉,−−→u1..n j ]

ρ

j represents an
intermediate state t of the evaluation of the j-th condition s j � t j carrying −−→u1..n j for Var(−−−→t1.. j−1), the first
unconditional rule starts to evaluate the condition (an instance of s1), and the remaining k rules examine
whether the corresponding conditions hold. On the other hand, the first rule 〈〈x〉〉→ 〈x〉 inRaux removes
the nesting of 〈·〉, the second rule c(−−−→x1..i−1,〈xi〉,−−−→xi+1..n)→ 〈c(−−→x1..n)〉 is used for shifting 〈·〉 upward, and
the third rule f(−−−→x1..i−1,〈xi〉,−−−→xi+1..n,

−−→z1..m)→ 〈f(−−→x1..n,⊥, . . . ,⊥)〉 is used for both shifting 〈·〉 upward and
resetting the evaluation of conditions at the extended arguments of f. The unary symbol 〈·〉 and its rules
in Raux are introduced to preserve confluence of the original CTRS R on reachable terms (see [15] for
the detail of the role of 〈·〉 and its rules).

Example 3.8 ConsiderR1 in Example 3.2 again. Introducing tuple symbols [ ]1, [ ]2,[ ]3, [ ]4, and [ ]5,R1
is transformed by SR as follows:

SR(R1) =



split(x,nil,z1,z2)→〈pair(nil,nil)〉
split(x,cons(y,ys),⊥,z2)→ split(x,cons(y,ys), [〈split(x,ys,⊥,⊥)〉]1,z2)

split(x,cons(y,ys), [〈pair(xs,zs)〉]1,z2)→ split(x,cons(y,ys), [〈x≤ y〉,xs,zs]2,z2)

split(x,cons(y,ys), [〈true〉,xs,zs]2,z2)→〈pair(xs,cons(y,zs))〉
split(x,cons(y,ys),z1,⊥)→ split(x,cons(y,ys),z1, [〈split(x,ys,⊥,⊥)〉]3)

split(x,cons(y,ys),z1, [〈pair(xs,zs)〉]3)→ split(x,cons(y,ys),z1, [〈x≤ y〉,xs,zs]4)
split(x,cons(y,ys),z1, [〈false〉,xs,zs]4)→〈pair(cons(y,xs),zs)〉

qsort(nil,z1)→〈nil〉
qsort(cons(x,xs),⊥)→qsort(cons(x,xs), [〈split(x,xs,⊥,⊥)〉]5)

qsort(cons(x,xs), [〈pair(ys,zs)〉]5)→〈qsort(ys,⊥)++cons(x,qsort(zs,⊥))〉


∪R3
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where

R3 =



0≤ y→〈true〉, s(x)≤ 0→〈false〉, s(x)≤ s(y)→〈x≤ y〉,
nil++ys→〈ys〉, cons(x,xs)++ys→〈cons(x,xs++ys)〉,

〈〈x〉〉→〈x〉, s(〈x〉)→〈s(x)〉,
cons(〈x〉,xs)→〈cons(x,xs)〉, cons(x,〈xs〉)→〈cons(x,xs)〉,
pair(〈x〉,y)→〈pair(x,y)〉, pair(x,〈y〉)→〈pair(x,y)〉,

split(〈x〉,ys,z1,z2)→〈split(x,ys,⊥,⊥)〉, split(x,〈ys〉,z1,z2)→〈split(x,ys,⊥,⊥)〉,
qsort(〈xs〉,z1)→〈qsort(xs,⊥)〉,

〈x〉 ≤ y→〈x≤ y〉, x≤ 〈y〉→〈x≤ y〉,
〈xs〉++ys→〈xs++ys〉, xs++〈ys〉→〈xs++ys〉


R3 is not a constructor system because of e.g., 〈〈x〉〉→ 〈x〉, and thus, SR(R1) is not a constructor system,
either, whileR1 is so.

Rules in U(R) and SR(R) \Raux have some correspondence each other. An unconditional rule
l→ r ∈R∩U(R) is said to correspond to ext(l)→〈r〉 ∈ SR(R), and vice versa; For the i-th conditional
f-rule ρ : f(−−→w1..n)→ r⇐ s1 � t1, . . . ,sk � tk, the j-th rule of U(ρ) in Definition 3.1 is said to correspond
to the j-th rule of SR(ρ) in Definition 3.6, and vice versa.

One of the important properties of SR is that U(R) is WLL if and only if so is SR(R). By definition,
this claim holds trivially.

Theorem 3.9 R is U-WLL if and only if SR(R) is WLL.

A term t in T (F ,V) is called reachable if there exists a term s in T (F ,V) such that 〈s〉 →∗SR(R) t.
It is clear that for any reachable term t ∈ T (F ,V), any term t ′ ∈ T (F ,V) with t →∗SR(R) t ′ is reachable.
In the following, for the extended signature F , we only consider subterms of reachable terms because
it suffices to consider them in discussing soundness. For brevity, subterms of reachable terms are also
called reachable. In reachable terms, the introduced symbols ⊥ and [ ]

ρ

i appear at appropriate positions
of a term, i.e., at the root position of the term or an i-th argument of a subterm f(. . .) where i > n and f is
an n-ary defined symbol.

4 Soundness for WLL and Ultra-WLL DCTRSs

In this section, we prove that SR is sound for WLL and U-WLL DCTRSs. In the following, we use R
as a U-WLL DCTRS over a signature F .

It would be possible to follow the proof shown in [12] for soundness of SR for WLL normal CTRSs.
However, the proof is very long, and it is easy to guess that an analogous proof for WLL and U-WLL
DCTRSs—more complicated systems than normal CTRSs—becomes much longer. In this paper, we try
to shorten the proof, providing a clearer one.

Our insight for a proof is that a term in T (F ,V) represents some corresponding terms in T (U(F),V),
and a derivation of SR(R) starting with 〈s〉 (s ∈ T (F ,V)) represents the corresponding computation tree
of U(R), whose root is s. We illustrate this observation by the following WLL and U-WLL normal
DCTRS:

R4 =


f(x)→ c⇐ x � c, a→ c, b→ c,
f(x)→d⇐ x � d, a→d, b→d,
g(x)→h(x,x), h(c,d)→ c, h(x, f(x))→d


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〈h(f(a,⊥,⊥), f(f(b,⊥,⊥),⊥,⊥))〉

SR(R4)��

h(f(a), f(f(b)))
U(R4)
tt

〈h(f(a,〈a〉,⊥), f(f(b,⊥,⊥),⊥,⊥))〉

SR(R4)��

h(u6(a,a), f(f(b)))
Φ //

U(R4)��

h(f(a), f(f(b))) corresponding terms

〈h(f(a,〈〈c〉〉,⊥), f(f(b,⊥,⊥),⊥,⊥))〉
SR(R4)��

h(u6(c,a), f(f(b))) h(f(a), f(f(b)))

〈h(f(a,〈c〉,⊥), f(f(b,⊥,⊥),⊥,⊥))〉
SR(R4)��

h(u6(c,a), f(f(b)))

U(R4)��

h(f(a), f(f(b)))

U(R4)��
〈h(f(〈d〉,〈c〉,⊥), f(f(b,⊥,⊥),⊥,⊥))〉

SR(R4)��
h(u6(c,d), f(f(b)))

U(R4)++

h(f(d), f(f(b)))
U(R4)**

〈h(f(〈d〉,〈c〉,⊥), f(f(b,〈b〉,⊥),⊥,⊥))〉
SR(R4)��

h(u6(c,d), f(f(b)))

U(R4)��
h(u6(c,d), f(u6(b,b)))

U(R4)��
h(f(d), f(f(b)))

U(R4)��
h(f(d), f(u6(b,b)))

U(R4)��
〈h(f(〈d〉,〈c〉,⊥), f(f(〈d〉,〈b〉,⊥),⊥,⊥))〉

SR(R4)��
h(u6(c,d), f(f(d))) h(u6(c,d), f(u6(b,d)))

U(R4)��

h(f(d), f(f(d))) h(f(d), f(u6(b,d)))

U(R4)��
〈h(f(〈d〉,〈c〉,⊥), f(f(〈d〉,〈〈c〉〉,⊥),⊥,⊥))〉

SR(R4)��

h(u6(c,d), f(f(d))) h(u6(c,d), f(u6(c,d))) h(f(d), f(f(d))) h(f(d), f(u6(c,d)))

〈h(f(〈d〉,〈c〉,⊥), f(f(〈d〉,〈c〉,⊥),⊥,⊥))〉
SR(R4)��

h(u6(c,d), f(f(d))) h(u6(c,d), f(u6(c,d)))

U(R4)��

h(f(d), f(f(d)))

U(R4)tt

h(f(d), f(u6(c,d)))

〈〈d〉〉 d

Figure 1: a derivation of SR(R4) and its corresponding computation tree (DAG) of U(R4).

To simplify the discussion, we use a normal CTRS, and omit [ ]ρj introduced during the application of
SR. R4 is transformed by U and SR, respectively, as follows:

U(R4) =


f(x)→u6(x,x), u6(c,x)→ c, a→ c, b→ c,
f(x)→u7(x,x), u7(d,x)→d, a→d, b→d,
g(x)→h(x,x), h(c,d)→ c, h(x, f(x))→d


SR(R4) =


f(x,⊥,z2)→ f(x,〈x〉,z2), f(x,〈c〉,z2)→〈c〉, a→〈c〉, b→〈c〉,
f(x,z1,⊥)→ f(x,z1,〈x〉), f(x,z1,〈d〉)→〈d〉, a→〈d〉, b→〈d〉,

g(x)→〈h(x,x)〉, h(c,d)→〈c〉, h(x, f(x,z1,z2))→〈d〉, . . .


Each reachable term in T (F ,V) represents a finite set of terms in T (U(F),V): f(a,〈c〉,⊥) represents two
terms f(a) and u6(c,a); 〈h(f(a,〈c〉,⊥), f(a,〈c〉,⊥))〉 represents four terms h(f(a), f(a)), h(f(a),u6(c,a)),
h(f(a), f(a)), and h(u6(c,a),u6(c,a)). These correspondence will be formalized as a mapping Φ from
T (F ,V) to 2T (U(F),V) later. Figure 1 illustrates a derivation of SR(R4) and its corresponding computa-
tion tree (more precisely, a DAG) of U(R4) where reduced terms are underlined, and in each row, the
leftmost term is the one appearing in the derivation of SR(R4) and the remaining are terms in T (U(F),V)
that are represented by the leftmost one.

We capture the observation above by a mapping defined below.

Definition 4.1 LetR be a U-WLL DCTRS. Then, a mapping Φ from reachable terms (and lists of terms)
in T (F ,V) to 2T (U(F),V) is recursively defined with an auxiliary mapping Ψ as follows:

• Φ(x) = {x} for x ∈ V ,

• Φ(c(
−→t1..n)) = {c(

−→
t ′1..n) |

−→
t ′1..n ∈Φ(

−→t1..n)} for c/n ∈ CR,

• Φ(f(
−→t1..n,−−→u1..m)) = Ψ(f(

−→t1..n,⊥, . . . ,⊥))∪
⋃

i∈{1,...,m},ui 6=⊥Ψ(f(
−→t1..n,⊥i−1,ui,⊥m−i) for f/n ∈ DR,
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• Φ(〈t〉) = Φ(t),

• Φ(t) = /0 where t is not of the form above,

• Φ(ε) = {ε},

• Φ(
−→t1..n) = {

−→
t ′1..n | t ′i ∈Φ(ti), 1≤ i≤ n} for n > 1,

• Ψ(f(
−→t1..n,⊥, . . . ,⊥)) = {f(

−→
t ′1..n) |

−→
t ′1..n ∈Φ(

−→t1..n)} for f/n ∈ DR,

• Ψ(f(
−−→
s′1..n,⊥i−1, [〈t ′〉,

−−→
t ′1..n j

]
ρ

j ,⊥m−i) = {Uρ

j (u
′,
−−−→
u′1..|X j|) | u

′ ∈ Φ(t ′),
−−−→
u′1..|X j| ∈ Φ(σ(

−→
X j))} for f/n ∈

DR, where ρ : f(−−→w1..n)→ r⇐ s1 � t1, . . . ,sk � tk ∈R is the i-th conditional rule of f, Uρ

j (t j,
−→
X j)→

r′ ∈U(ρ), X j = Var(f(−−→w1..n),
−−−→t1.. j−1), Vj = Var(−−−→t1.. j−1), and σ is a substitution such that σ(

−→
Vj ) =−−→

t ′1..n j
and σ

(−−−−−−→
ext(w1..n)

)
=
−−→
s′1..n, and

• Ψ(t) = /0 where t is not of the form above.

The mapping Φ is straightforwardly extended to substitutions that have only reachable terms in the
range: Φ(σ) = {σ ′ | Dom(σ ′)⊆Dom(σ),∀x ∈ Dom(σ). xσ ′ ∈Φ(xσ)}.

In applying Φ to reachable terms, Φ is never applied to terms rooted by either ⊥ or [ ]ρj . Though, to

simplify proofs below, we define Φ for [ ]ρj : Φ([
−→t1..n ]ρj ) =

−−−−→
Φ(t1..n). Φ([

−→t1..n ]ρj ) is a set of term sequences,
and in the following, we are interested in |Φ([

−→t1..n ]ρj )| rather than elements in Φ([
−→t1..n ]ρj ).

We say that a term s ∈ T (F ,V) contains an evaluation of conditions if s has a subterm of the form
f(
−→t1..n, . . . , [. . .]ρj , . . .) for some f/n ∈ F . We say that a term f(

−→t1..n,−−→u1..m) ∈ T (F ,V) cannot continue any
evaluation of conditions at root position if for any conditional f-rule l → r⇐ c ∈ R, ext(l) does not
match f(

−→t1..n,−−→u1..m). We also say that a term s ∈ T (F ,V) cannot continue any evaluation of conditions
if any subterm of s, which is rooted by a symbol f with f ∈ DR, cannot continue any evaluation of
conditions at root position. For a term s, |Φ(s)| = 1 means that s is mapped by Φ to a unique one in
T (U(F),V), i.e., s does not contain any evaluation or cannot continue any evaluation of conditions. For
a substitution σ and a term t, |Φ(σ |Var(t))| = 1 means that for each variable x in t, the term substituted
for x is mapped by Φ to a unique one in T (U(F),V), i.e., |Φ(xσ)|= 1. The mapping Φ has the following
properties.

Lemma 4.2 Let R be a U-WLL DCTRS, s be a term in T (F ,V), t be a reachable term in T (F ,V), and
σ be a substitution in Sub(F ,V). Then, all of the following hold:

(a) Φ(s) = {s}.

(b) t̂ ∈Φ(t) (i.e., |Φ(t)| ≥ 1).

(c) {t ′σ ′ | t ′ ∈Φ(t), σ ′ ∈Φ(σ)} ⊆Φ(tσ).

(d) If Φ(σ |Var(t)) = {σ ′} for some substitution σ ′ (i.e., |Φ(σ |Var(t))|= 1), then Φ( t̂ σ) = { t̂ σ ′}.

(e) If Φ(σ |Var(s)) = {σ ′} for some substitution σ ′ (i.e., |Φ(σ |Var(s))|= 1), then Φ(sσ) = {sσ ′}.

Proof (Sketch). Claims (a) and (b) are trivial by definition. Claim (c) can be proved by structural induc-
tion on t. Claim (d) can be proved analogously to (c) using Φ(σ |Var(t)) = {σ ′}. Claim (e) is trivial by
(d). 2
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As illustrated in Figure 1, our idea is simple and intuitive. Unfortunately, however, the proof for
soundness needs some technical lemmas, while the entire proof is simpler than that in [12].

Using the mapping Φ and soundness of U for WLL DCTRSs, we show that for a term s0 ∈ T (F ,V)
and a term t ∈ T (F ,V), if 〈s0〉 →∗SR(R) t, then s0→∗U(R) t̂ ∈ Φ(t) (Lemma 4.8 and Theorem 4.9). Since
Φ(〈s0〉) = {s0}, to show this claim generally, it suffices to prove the subclaim that for all reachable terms
s and t in T (F ,V), if s→l→r∈SR(R) t, then for each term t ′ ∈Φ(t), there exists a term s′ ∈Φ(s) such that
s′→∗U(R) t ′. If t ′ does not contain a converted term obtained from the reduced subterm in t, then t ′ is also
in Φ(s). Otherwise, for the single rewrite step s→l→r∈SR(R) t, one of the following three cases holds:
• The case where l→ r is an auxiliary rule inRaux. In this case, Φ(s)⊇Φ(t), and thus, the subclaim

holds. For example, for any rewrite step by Raux in Figure 1, each term in Φ(t) appears in Φ(s),
i.e., for each node t ′ for Φ(t), there exists a node that is for Φ(s) and is connected with t ′ by the
=-edge.

• The case where l → r is in SR(R) \Raux and r is linear. It is easy to find s′ ∈ Φ(s) such that
s′ is reduced by the rule in U(R) corresponding to l → r: s′ →U(R) t ′. In summary, for each
t ′ ∈ Φ(t), there exists a term s′ ∈ Φ(s) such that s′ (= ∪→U(R)) t ′. For example, the DAG for
U(R4) in Figure 1 has only =- or →U(R4)-edges because there are only rewrite steps with RL
rules in SR(R4).

• The remaining case where l→ r is in SR(R)\Raux and r is not linear. The difficulty of proving
the subclaim comes from this case. We will discuss the detail of the difficulty later.

In proving soundness of SR, neither a variable with non-linear occurrences nor a non-constructor pat-
tern in the left-hand sides in R is problematic. For example, 〈h(f(〈d〉,〈c〉,⊥), f(f(〈d〉,〈c〉,⊥),⊥,⊥))〉
in Figure 1 is reduced by SR(R4) to 〈〈d〉〉, but neither h(u6(c,d), f(f(d))) nor h(f(d), f(u6(c,d))) in
Φ(〈h(f(〈d〉,〈c〉,⊥), f(f(〈d〉,〈c〉,⊥),⊥,⊥))〉) can be reduced by U(R4) to d. Though, this is not a prob-
lem because for each converted term, we need the existence of an ancestor but not a descendant. Viewed
in this light, non-left-linearity of rules is not a problem, but non-right-linearity of rules causes difficulty
of proving soundness. On the other hand, 〈h(d, f(d,⊥,⊥))〉 is reduced by SR(R4) to h(d, f(d,〈d〉,⊥)),
and then to 〈〈d〉〉. We cannot reduce h(d,u6(d,d)) in Φ(〈h(d, f(d,〈d〉,⊥))〉) by the corresponding rule
h(x, f(x))→ d in U(R4) to d, but another term h(d, f(d)) in Φ(〈h(d, f(d,〈d〉,⊥))〉) can be reduced to d,
simulating the step of SR(R4).

Let us get back to the case where we apply non-right-linear rules in SR(R) \Raux. Figure 2 illus-
trates a derivation of SR(R4) and its corresponding computation tree of U(R4), where non-right-linear
rules are applied. In applying non-right-linear rules in SR(R) \Raux to s with s→l→r∈SR(R)\Raux t, it
is not only difficult but also sometimes impossible to show that for each t ′ ∈ Φ(t), there exists a term
s′ ∈ Φ(s) such that s′ →∗U(R) t ′. For example, 〈g(f(〈d〉,〈c〉,⊥))〉 in Figure 2 is reduced by SR(R4) to

〈〈h(f(〈d〉,〈c〉,⊥), f(〈d〉,〈c〉,⊥))〉〉, and represents two terms in T (U(F),V): Φ(〈g(f(〈d〉,〈c〉,⊥))〉) =
{ g(f(d)), g(u6(c,d)) }. Though, no term in Φ(〈g(f(〈d〉,〈c〉,⊥))〉) is reduced by a single step of
→SR(R4) to either h(f(d),u6(c,d)) or h(u6(c,d), f(d)) in Φ(〈〈h(f(〈d〉,〈c〉,⊥), f(〈d〉,〈c〉,⊥))〉〉). How-
ever, g(f(a)) ∈Φ(〈g(f(a,〈c〉,⊥))〉) can be reduced to both h(f(d),u6(c,d)) and h(u6(c,d), f(d)) includ-
ing rewrite steps of g(x)→ h(x,x) ∈ U(R4) corresponding to g(x)→ 〈h(x,x)〉 ∈ SR(R4). The exis-
tence of such reduction sequences represented by →+

U(R4)
-edges of the DAG in Figure 2 is ensured by

the reduction 〈g(f(a,〈c〉,⊥))〉 →∗SR(R4)
〈〈h(f(〈d〉,〈c〉,⊥), f(〈d〉,〈c〉,⊥))〉〉. In summary, for s0 →∗SR(R)

s→l→r∈SR(R)\Raux t, we will show the existence of a derivation s0→∗SR(R) s′→l→r∈SR(R)\Raux t ′→∗SR(R) t
such that for each term t ′′ ∈Φ(t ′), s′′→l′→r′∈U(R) t ′′ for some term s′′ ∈Φ(s′), where l′→ r′ corresponds
to l→ r (Lemmas 4.6 and 4.7).
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〈g(f(a,⊥,⊥))〉
SR(R4)��

g(f(a))
U(R4)

,,
〈g(f(a,〈a〉,⊥))〉

SR(R4)��
g(f(a)) g(u6(a,a))

U(R4)��
〈g(f(a,〈〈c〉〉,⊥))〉

SR(R4)��
g(f(a)) g(u6(c,a))

〈g(f(a,〈c〉,⊥))〉
SR(R4)��

g(f(a))
U(R4)
vv

+

U(R4)��
+ U(R4)

##

g(u6(c,a))
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g(f(d))

U(R4)��

g(u6(c,d))

U(R4)��
〈〈h(f(〈d〉,〈c〉,⊥), f(〈d〉,〈c〉,⊥))〉〉

SR(R4)��

h(f(d), f(d))
U(R4)
vv

h(f(d),u6(c,d)) h(u6(c,d), f(d))
U(R4)
))

h(u6(c,d),u6(c,d))
U(R4)

''
〈〈h(f(〈d〉,〈c〉,⊥), f(〈d〉,〈c〉,〈〈d〉〉))〉〉

SR(R4)��

h(f(d),u7(d,d)) h(f(d), f(d)) h(f(d),u6(c,d)) h(u6(c,d), f(d)) h(u6(c,d),u7(d,d)) h(. . .)

〈〈h(f(〈d〉,〈c〉,⊥), f(〈d〉,〈c〉,〈d〉))〉〉

SR(R4)��

h(f(d),u7(d,d))

U(R4)��

h(f(d), f(d)) h(f(d),u6(c,d)) h(u6(c,d), f(d)) h(u6(c,d),u7(d,d))

U(R4)��

h(. . .)
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SR(R4)��

h(c,d)

〈〈〈〈h(c,d)〉〉〉〉
SR(R4)��

h(c,d)

U(R4)��
〈〈〈〈〈c〉〉〉〉〉 c

Figure 2: another derivation of SR(R4) and its corresponding computation tree (DAG) of U(R4).

Before showing the key lemmas (Lemmas 4.6 and 4.7), we show some auxiliary lemmas along the
intuition above. The following lemma says that if a term t is reduced and matches a linear pattern
obtained fromR by applying ext, then the initial term t also matches the pattern.

Lemma 4.3 LetR be a U-WLL DCTRS, t be a reachable term in T (F ,V), w be a linear term in T (F ,V),
w′ = ext(w) (i.e., w′ ∈ T (F \{〈〉,⊥, [ ]ρj },V)),3 and θ be a substitution in Sub(F ,V). If t→∗SR(R) w′θ ,
then there exists a substitution σ such that t = w′σ and xσ →∗SR(R) xθ for all variables x ∈ Var(w).

Proof (Sketch). It suffices to show that if t →p,l→r∈SR(R) w′θ , then there exists a substitution σ such
that t = w′σ and xσ →∗SR(R) xθ for all variables x ∈ Var(w). This claim can be proved by structural
induction on w. 2

For the sake of readability, we introduce a binary relation⇒Φ,U(R) over T (F ,V): s⇒Φ,U(R) t if and
only if for each t ′ ∈ Φ(t), there exists a term s′ ∈ Φ(s) such that s′→∗U(R) t ′. It is clear that⇒Φ,U(R) is
reflexive and transitive. The relation⇒Φ,U(R) is closed under contexts.

Lemma 4.4 Let R be a U-WLL DCTRS, C[ ] be a context, and s and t be terms in T (F ,V) such that
s→∗SR(R) t and s⇒Φ,U(R) t. Then, C[s]⇒Φ,U(R) C[t].

3 Patterns w′1, . . . ,w
′
n,ext(t1), . . . ,ext(tk) in Definition 3.6 are in T (F/{〈〉,⊥, [ ]ρj },V).
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Proof (Sketch). Using the definition of Φ and Lemma 4.3, this lemma can be proved by structural in-
duction on C[ ]. 2

The following lemma is a variant of Lemma 4.4 that is useful to prove the main key lemma shown later.

Lemma 4.5 LetR be a U-WLL DCTRS, t be a term in T (F ,V), and σ and θ be substitutions such that
xσ →∗SR(R) xθ and xσ ⇒Φ,U(R) xθ for all variables x ∈ Var(t). Then, tσ ⇒Φ,U(R) tθ .

Proof (Sketch). It is easy to extend Lemma 4.4 to contexts with multiple holes. Thus, this lemma is a
direct consequence of the extended lemma since a linear term can be considered a context with multiple
holes. 2

When l→ r ∈ SR(R) has a variable x such that |r|x > 1 and |Φ(xθ)|> 1, we have at least two terms
obtained by converting xθ , and thus, Φ(rσ) contains a term that has no ancestor in Φ(lθ) w.r.t.→U(R).
This problem does not happen if Φ(θ |Var(r)) is a singleton set.

Lemma 4.6 Let R be a U-WLL DCTRS, l → r ∈ SR(R), and σ be a substitution such that for any
variable x ∈ Var(r), if |r|x > 1 and xσ 6=⊥ then |Φ(xσ)|= 1. Then, lσ ⇒Φ,U(R) rσ .

Proof (Sketch). Referring to the definition of Φ and Lemma 4.2, this lemma can be proved by a case
distinction depending on what l→ r is. 2

For a derivation s→∗SR(R) tθ , the following lemma ensures the existence of an ancestor for a variable
x in t such that |t|x = 1 and |Φ(xθ)|> 1.

Lemma 4.7 LetR be a U-WLL DCTRS, s and t be terms in T (F ,V), θ be a substitution in Sub(F ,V),
and X ⊆ {x ∈ Var(t) | |t|x = 1}. If |Φ(s)| = 1 and s→d

SR(R) tθ (d ≥ 0), then there exist a substitution

δ ∈ Sub(F ,V) and natural numbers d′ and dx for x ∈ X such that

(a) d′+∑x∈X dx ≤ d,

(b) s→d′
SR(R) tδ ,

(c) |Φ(xδ )|= 1 and xδ →dx
SR(R) xθ for all variables x ∈ X such that xθ 6=⊥, and

(d) xδ = xθ for all variables x ∈ Var(t)\{y ∈ X | yθ 6=⊥}.4

Proof (Sketch). Using Theorem 3.9, Lemma 4.2 (a), (c), (d), and (e), and Lemma 4.3, this lemma can
be proved by induction on the lexicographic product of d and the size of s. 2

We show the main key lemma on the relationship between→∗SR(R) and⇒Φ,U(R).

Lemma 4.8 LetR be a U-WLL DCTRS, and s and t be terms in T (F ,V). If |Φ(s)|= 1 and s→d
SR(R) t

(d ≥ 0), then s⇒Φ,U(R) t.

Proof (Sketch). Using Theorem 3.9, Lemmas 4.4, 4.6 and 4.7, this lemma can be proved by induction
on d. 2

Finally, we show the key result of this paper.

4 Note that if xθ =⊥, then xδ =⊥.
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Theorem 4.9 SR is sound for WLL and U-WLL DCTRSs.

Proof. LetR be a WLL and U-WLL DCTRS over a signatureF , s∈ T (F ,V), and t ∈ T (F ,V). Suppose
that 〈s〉→∗SR(R) t. It follows from Lemma 4.8 that 〈s〉⇒Φ,U(R) t. It follows from Lemma 4.2 (a), (b) that
Φ(〈s〉) = Φ(s) = {s} and t̂ ∈Φ(t), and hence, by the definition of⇒Φ,U(R), s→∗U(R) t̂. Since U is sound
forR by Theorem 3.3, it holds that s→∗R t̂. Therefore, SR is sound forR. 2

Let us consider the conversion T in Section 3.1 again. As a consequence of Theorems 3.5 and 4.9,
we show that the composed transformation SR◦T of a WLL DCTRS into a WLL TRS is sound for WLL
DCTRSs.

Theorem 4.10 The composed transformation SR◦T is sound and complete for WLL DCTRSs.

5 Conclusion

In this paper, we have shown that every WLL DCTRS can be converted to an equivalent WLL and U-
WLL DCTRS and the SR transformation is applicable to U-WLL DCTRSs without any change. Then,
we have proved that the SR transformation is sound for WLL and U-WLL DCTRSs. As a consequence
of these results, we have shown that the composition of the conversion and the SR transformation is a
sound structure-preserving transformation for WLL DCTRSs. For computational equivalence to WLL
SDCTRSs, we have to show that if R is confluent, then so is SR(R). To prove this claim as in [16] is
one of our future works. To expand the applicability of the SR transformation, we will extend the SR
transformation to other classes.

Acknowledgements We thank the anonymous reviewers very much for their useful comments to im-
prove this paper.
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