
EPTCS 387

Proceedings of the

Combined 30th International Workshop on

Expressiveness in Concurrency

and 20th Workshop on

Structural Operational Semantics

Antwerp, Belgium, 18th September 2023

Edited by: Claudio Antares Mezzina and Georgiana Caltais

Published: 14th September 2023

DOI: 10.4204/EPTCS.387

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . ii

Georgiana Caltais and Claudio Antares Mezzina

Invited Presentation: Timed Actors and Their Formal Verification . 1

Marjan Sirjani and Ehsan Khamespanah

Invited Contribution: EXPRESSing Session Types . 8

Ilaria Castellani, Ornela Dardha, Luca Padovani and Davide Sangiorgi

Invited Contribution: The Way We Were: Structural Operational Semantics Research in

Perspective . 26

Luca Aceto, Pierluigi Crescenzi, Anna Ingólfsdóttir and Mohammad Reza Mousavi

Accepted Abstract: Comparing Deadlock-Free Session Processes, Revisited (Short Paper) 41

Channa Dias Perera and Jorge A. Pérez

A Cancellation Law for Probabilistic Processes . 42

Rob van Glabbeek, Jan Friso Groote and Erik de Vink

A Lean-Congruence Format for EP-Bisimilarity . 59

Rob van Glabbeek, Peter Höfner and Weiyou Wang

Using Pi-Calculus Names as Locks . 76

Daniel Hirschkoff and Enguerrand Prebet

Deriving Abstract Interpreters from Skeletal Semantics . 97

Thomas Jensen, Vincent Rébiscoul and Alan Schmitt

Parallel Pushdown Automata and Commutative Context-Free Grammars in Bisimulation Semantics

(Extended Abstract) . 114

Jos C. M. Baeten and Bas Luttik

Quantifying Masking Fault-Tolerance via Fair Stochastic Games . 132

Pablo F. Castro, Pedro R. D’Argenio, Ramiro Demasi and Luciano Putruele

CRIL: A Concurrent Reversible Intermediate Language . 149

Shunya Oguchi and Shoji Yuen

G. Caltais and C. A. Mezzina (Eds): Combined Workshop on

Expressiveness in Concurrency and Structural Operational Semantics

(EXPRESS/SOS 2023).

EPTCS 387, 2023, pp. ii–iii, doi:10.4204/EPTCS.387.0

© G. Caltais, C. A. Mezzina

This work is licensed under the

Creative Commons Attribution License.

Preface

Georgiana Caltais

University of Twente, The Netherlands

Claudio Antares Mezzina

Università degli Studi di Urbino Carlo Bo, Urbino, Italy

This volume contains the proceedings of EXPRESS/SOS 2023, the Combined 30th International Work-

shop on Expressiveness in Concurrency (EXPRESS) and the 20th Workshop on Structural Operational

Semantics (SOS). The first edition of EXPRESS/SOS was held in 2012, when the EXPRESS and SOS

communities decided to organise an annual combined workshop bringing together researchers interested

in the formal semantics of systems and programming concepts, and in the expressiveness of computa-

tional models. Since then, EXPRESS/SOS was held as one of the affiliated workshops of the Interna-

tional Conference on Concurrency Theory (CONCUR). Following this tradition, EXPRESS/SOS 2023

was held affiliated to CONCUR 2023, as part of CONFEST 2023, in Antwerp, Belgium. This year’s

edition marks two important anniversaries: EXPRESS turns 30 and SOS 20. In celebration of this dual

anniversary, and to offer an overview of the past and future of these workshops, we are delighted to

present two contributions from distinguished members of both communities in these proceedings:

• EXPRESSing Session Types, by Ilaria Castellani, Ornela Dardha, Luca Padovani and Davide San-

giorgi;

• The Way We Were: Structural Operational Semantics Research in Perspective, by Luca Aceto,

Pierluigi Crescenzi, Anna Ingólfsdóttir and Mohammad Reza Mousavi.

The topics of interest for the EXPRESS/SOS workshop include (but are not limited to):

• expressiveness and rigorous comparisons between models of computation;

• expressiveness and rigorous comparisons between programming languages and models;

• logics for concurrency; analysis techniques for concurrent systems;

• comparisons between structural operational semantics and other formal semantic approaches;

• applications and case studies of structural operational semantics;

• software tools that automate, or are based on, structural operational semantics.

This volume contains revised versions of the 7 full papers and one abstract, selected by the Program

Committee, as well as the following two invited papers, related to the topics presented by our invited

speakers:

• Formalizing Real World Programming Languages with Skeletal Semantics , by Alan Schmitt (IN-

RIA, France);

• Timed Actors and their Formal Verification, by Marjan Sirjani (Malardalen University, Sweden).

We would like to thank the authors of the submitted papers, the invited speakers, the members of the pro-

gram committee, and their subreviewers for their contribution to both the meeting and this volume. We

also thank the CONCUR 2023 and the CONFEST 2023 organizing committees for hosting the workshop.

Finally, we would like to thank our EPTCS editor Rob van Glabbeek for publishing these proceedings

http://dx.doi.org/10.4204/EPTCS.387.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

G. Caltais, C. A. Mezzina iii

and his help during the preparation.

Georgiana Caltais and Claudio Antares Mezzina,

August 2023

Program Committee

• Valentina Castiglioni, Reykjavik University, Iceland

• Matteo Cimini, University of Massachusetts Lowell, US

• Cinzia Di Giusto, Université Côte d’Azur, France / CNRS, France

• Wan Fokkink, Vrije Universiteit Amsterdam, The Netherlands

• Sergey Goncharov, FAU Erlangen-Nürnberg, Germany

• Tobias Kappé, Open University of the Netherlands and ILLC, University of Amsterdam, The

Netherlands

• Vasileios Koutavas, Trinity College Dublin, Ireland

• Bas Luttik, Eindhoven University of Technology, The Netherlands

• Hernán Melgratti, Universidad de Buenos Aires, Argentina

• Mohammadreza Mousavi, King’s College London, UK

• Jorge A. Pérez, University of Groningen, The Netherlands

• G. Michele Pinna, Università di Cagliari, Italy

• Max Tschaikowski, Aalborg University, Denmark

Additional Reviewers

• Andrea Esposito, Università degli Studi di Urbino Carlo Bo, Urbino, Italy

G. Caltais and C. A. Mezzina (Eds): Combined Workshop on
Expressiveness in Concurrency and Structural Operational Semantics
(EXPRESS/SOS 2023).
EPTCS 387, 2023, pp. 1–7, doi:10.4204/EPTCS.387.1

© M. Sirjani, E. Khamespanah
This work is licensed under the
Creative Commons Attribution License.

Timed Actors and Their Formal Verification

Marjan Sirjani
Mälardalen University

Västerås, Sweden
marjan.sirjani@mdu.se

Ehsan Khamespanah
University of Tehran

Tehran, Iran
e.khamespanah@ut.ac.ir

In this paper we review the actor-based language, Timed Rebeca, with a focus on its formal se-
mantics and formal verification techniques. Timed Rebeca can be used to model systems consisting
of encapsulated components which communicate by asynchronous message passing. Messages are
put in the message buffer of the receiver actor and can be seen as events. Components react to these
messages/events and execute the corresponding message/event handler. Real-time features, like com-
putation delay, network delay and periodic behavior, can be modeled in the language. We explain
how both Floating-Time Transition System (FTTS) and common Timed Transition System (TTS)
can be used as the semantics of such models and the basis for model checking. We use FTTS when
we are interested in event-based properties, and it helps in state space reduction. For checking the
properties based on the value of variables at certain point in time, we use the TTS semantics. The
model checking toolset supports schedulability analysis, deadlock and queue-overflow check, and
assertion based verification of Timed Rebeca models. TCTL model checking based on TTS is also
possible but is not integrated in the tool.

1 Introduction

Actors are introduced for modeling and implementation of distributed systems [7, 3]. Timed Actors allow
us to introduce timing constraints, and progress of time, and are most useful for modeling time-sensitive
systems. Timed Rebeca is one of the first timed actor languages with model checking support [10].
Timed Rebeca restricts the modeller to a pure asynchronous actor-based paradigm, where the structure
of the model can represent the service oriented architecture, while the computational model matches
the network infrastructure [1]. In a different context, it may represent components of cyber-physical
systems, where components are triggered by events put in their input buffers, or by time events [14].
Timed Rebeca is equipped with analysis techniques based on the standard semantics of timed systems,
and also an innovative event-based semantics that is tailored for timed actor models [13].

Timed Rebeca is an extension of the Reactive Object Language, Rebeca [16]. It is reviewed and
compared to a few other actor languages in a survey published in ACM Computing Surveys in 2017 [4].
The very first ideas of Rebeca and its compositional verification is presented at AVoCS workshop in 2001
[15]. Timed Rebeca, different formal semantics of it, and the model checking support are presented in
multiple papers. Here we present an overall view and insight into different semantics and use a simple
example to show the differences visually.

2 Timed Rebeca

A Timed Rebeca model mainly consists of a number of reactive class definitions. These reactive classes
define the behavior of the classes of the actors in the model. The model also has a main block that defines
the instances of the actor classes.

http://dx.doi.org/10.4204/EPTCS.387.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Timed Actors and Their Formal Verification

We use a simple Timed Rebeca model as an example to explain the language features. In this example
we consider two different actors. The first actor is able to handle three different tasks, named as job1,
job2, and job3. The second actor can only handle one task, named as job4. The Timed Rebeca model
of this example is shown in Listing 1. there are two classes of actors: Actor1 (lines 1-15) and Actor2

(lines 17-27). The main block in lines 29-32 defines one instance of each class. Each reactive class has
a number of state variables, representing the local state of the actors. They may contain variables of
basic data types, including booleans, integers, arrays, or references to other actors. To make the example
model simple, none of the reactive classes of Listing 1 has any state variables. Each class can have a
constructor, which is used to initialize the created instances of the class by initializing the state variables,
and start up running of the model by sending messages to itself or other actors.

In the Timed Rebeca model of Listing 1, in the constructor of Actor1 (line 3), the actor sends itself a
job1 message. Each reactive class accepts a number of message types which are handled using message
servers (msgsrv). Actor1 has three message servers, job1 (lines 5-8), job2 (lines 9-11), and job3

(lines 12-14). Serving a message of type job1 results in sending job2 message to self which is put in
the message buffer of itself only after passing 1 unit of time (modeled by using the after construct).
The deadline construct denotes the deadline of the message to be handled, if at the time of handling
the event the deadline is passed the model checking tool notifies that. Then, there is a delay statement
which models progress of time for 5 units of time, this can be used to model a computation delay. In the
definition of the message servers, well-known program control structures can be used, including if-else
conditional statements, for and while loops, the definition of local variables, and assignments using usual
arithmetic, logic, and comparative operators.

Listing 1: A simple Timed Rebeca model with two
actors.
1 reactiveclass Actor1(3) {

2 Actor1() {

3 self.job1();

4 }

5 msgsrv job1() {

6 self.job2() after(1) deadline(10);

7 delay(5);

8 }

9 msgsrv job2() {

10
11 }

12 msgsrv job3() {

13 self.job3() after(1);

14 }

15 }

16
17 reactiveclass Actor2(3) {

18 knownrebecs {

19 Actor1 a1;

20 }

21 Actor2() {

22 self.job4() after(2);

23 }

24 msgsrv job4() {

25 a1.job3() after(2) deadline(5);

26 }

27 }

28
29 main {

30 Actor1 actor1():();

31 Actor2 actor2(actor1):();

32 }

In Timed Rebeca models, we assume that actors have local clocks which are synchronized throughout
the model. Each message is tagged with a time stamp (called a time tag). We use a delay(t) statement
to model the computation delay, and we use after(t) in combination with a send message statement to
model a network delay, or model a periodic event. When we use after(t) in a send message statement
it means that the time tag of the message when it is put in the queue of the receiver is the value of the
local clock of the sender plus the value of t. The progress of time is forced by the delay statement.

M. Sirjani, E. Khamespanah 3

(a) TTS of the Timed Rebeca model of Listing 1

(b) FTTS of the Timed Rebeca model of Listing 1. Each
actor has its own local clock represented by Time. The value
of local clock is considered in choosing the next transition.

(c) Relaxed-FTTS of the Timed Rebeca model of Listing 1.
Each actor has its own local clock represented by Time. The
message with the lowest time tag is chosen and the execution

of its message server is the label of the next transition.

Figure 1: Comparing TTS, FTTS, and the relaxed form of FTTS for the Timed Rebeca model of Listing 1.

We assume that the local clock of each actor is zero when the model starts execution, the local clock
is increased by value of t if there is a delay(t) statement. A send statement with an after does not
cause an increase in the local time necessarily. The local time of the receiver actor is set to the time tag of
the message when the actor picks the message, unless it is already greater than that. The latter situation
means that the message sits in the queue while the actor is busy executing another message, in this case
the after construct does not cause progress of time. The progress of time happens in the case that the
time tag of the message is greater than the local time of the receiver actor, in this case the local time will
be pushed forward. In Timed Rebeca, messages are executed atomically and are not preempted.

3 Different Semantics of Timed Rebeca

We first introduced an event-based semantics for Timed Rebeca and used McErlang for simulation of
Timed Rebeca models in [1, 12]. In this semantics we focused on the object-based features of actors,
encapsulation and information hiding, and decided on a coarse-grained semantics where serving a mes-
sage (or handing a request or signal) are the only observable behavior of actors. We considered taking
a message from top of the message queue and executing it as an observable action, and we called it an

4 Timed Actors and Their Formal Verification

event. Note that by a message queue in Timed Rebeca, we mean a bag of messages where each message
has a time tag of when the message is put in the buffer. Here, by “top of the message queue of an actor”,
we mean the message with the least time tag in the bag of messages targeted to that actor. In defining the
formal semantics of Timed Rebeca as a labeled transition system, we only have one type of label on the
transitions, events, which are taking messages and executing them. In [11], and its extended version [10],
we introduced this event-based semantics of Timed Rebeca as Floating Time Transition System (FTTS)
and compared it with the time semantics that is generally used for timed models (for example for Timed
CCS [2]) where the transitions can be of the type of an event, progress of time, and a silent action.

Although we consider FTTS as the original and most fit semantics for Timed Actors, it may also be
seen as a reduction technique in model checking. FTTS can give a significant reduction in state space
compared to the standard Timed Transition System. In [10] we proved that there is an action-based weak
bisimulation relation between FTTS and TTS of Timed Rebeca. Note that the focus here is on the labels
on the transitions not on the values of variables in the states.

The semantics presented in [12], is a relaxed form of FTTS in [10] where in choosing the next step
in a state we have a simpler policy. The SOS rules of FTTS and the relaxed version are presented in [10]
and [12], respectively. In each state, the SOS rule for the scheduler chooses the next message in the bags
of actors to be executed. In the relaxed form of FTTS, the scheduler simply chooses the message with the
least time tag (targeted to any actor). In FTTS, the schedular considers the local clock of each actor as
well. For each actor, the maximum between the local clock and the lowest time tag of the messages in the
message bag of the actor is computed. Then among all the actors, the scheduler chooses the actor with
the least of these amounts. The message on the top of the queue of this chosen actor will be executed
next. Comparing to the standard TTS, the relaxed form of FTTS preserves the order of execution of
messages of all actors if we consider the time tags of messages for ordering. The intuitive reason is that
in Timed Rebeca we consider a FIFO policy for scheduling the messages in the message buffer, when
we choose the message with the lowest time tag to be executed, it is guaranteed that from that point on,
there will be no messages with a smaller time tag added to the message buffer (of any actor). So, the
FIFO policy for serving messages can be correctly respected. The subtle point here is that the actor a
with the lowest time tag message m may be busy when message m is sitting in its message buffer, in the
meanwhile other messages from other actors may get the chance to be executed and send messages to
actor a. Of course, the time tag of those messages will be greater than the time tag of message m, but
still we are losing the “correct” content of the message buffer of a at some snapshots in time. By this
observation, we moved to the FTTS semantics in [10] where at any point in time, we have the correct
content of the message buffer. Using this semantics we may choose to use other scheduling policies for
messages (events) in the buffer, for example the earliest deadline first policy.

In Figure 1, we show parts of the the state transition system for Rebeca model in Listing 1. In
this figure, we see how in TTS we may have three types of labels on the transitions, an event, time
progress and τ (silent) transitions. In FTTS, in state 2 in Figure 1.b, the scheduler chooses the message
<job4,2,∞> while in the relaxed form of FTTS, in Figure 1.c, the scheduler chooses the message
<job2,1,10>. The reason is that although the message with the lowest time tag is <job2,1,10>, with
the time tag 1, the maximum between 1 and the value for the local clock of Actor1 is 5. The maximum
between 2 (the time tag for message <job4,2,∞>) and the value for the local clock of Actor2 (which
is zero in this state) is 2.

M. Sirjani, E. Khamespanah 5

(a) The state space for
TTS-based semantics

(b) The state space for
FTTS-based semantics

Figure 2: The state space of the Rebeca model of Listing 1, generated by Afra using TTS and FTTS
semantics

6 Timed Actors and Their Formal Verification

4 Model Checking Timed Rebeca Models

The verification algorithms of TTS with dense time are generally PSPACE-complete as stated in [6]. In
the existing model checking tools commonly the properties are limited to a subset of TCTL properties
without nested timed quantifiers. For this subset efficient algorthms are developed. In the case of Timed
Rebeca, we use discrete time, and hence TTS can be verified efficiently in polynomial time against TCTL
properties. Discrete time is the time model in which passage of time is modeled by natural numbers. We
developed a model checking tool and a reduction technique for Timed Rebeca models based on TTS
semantics against TCTL properties [8]. This toolset is not integrated in the Afra IDE [9].

We also developed a tool for the model checking of Timed Rebeca models based on both TTS and
FTTS semantics, which is integrated in Afra. The current implementation of the model checking toolset
supports schedulability analysis, and checking for deadlock-freedom, queue-overflow freedom, and as-
sertion based verification of Timed Rebeca models. Note that in FTTS, in each state actors may have
different local clocks, so, writing meaningful assertion needs special care. Assertions on state variables
of one actor are not problematic. The Timed Rebeca code of the case studies and the model checking
toolset are accessible from Rebeca homepage [5].

Figure 2 shows the state space generated automatically by the model checking tool, Afra, for the
Timed Rebeca model in Listing 1 based on the two semantics, TTS and FTTS. It is shown that the order
of events are preserved while time progress and τ transitions are hidden. In state S9_0 in Figure 2.a, and
state S5_0 in Figure 2.b, you see how the transition system becomes bounded using a shift operation on
the time. The shift keyword means that for example by the event a1.JOB3, we go back to state S8_0 (or
S5_0), where all the values of state variables, local variables and messages in the message buffers stay
the same but the value of parameters related to time (including time tag of all messages and local clock
value) change and have a shift by the same value.

References

[1] Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, Arni Hermann Reynisson, Steinar Hugi Sigurdarson & Mar-
jan Sirjani (2011): Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca. In
Mohammad Reza Mousavi & António Ravara, editors: Proceedings 10th International Workshop on the
Foundations of Coordination Languages and Software Architectures, FOCLASA 2011, Aachen, Germany,
10th September, 2011, EPTCS 58, pp. 1–19, doi:10.4204/EPTCS.58.1.

[2] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen & Jiri Srba (2007): Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, USA, doi:10.1017/CBO9780511814105.

[3] Gul Agha (1986): Actors: a model of concurrent computation in distributed systems. MIT press,
doi:10.7551/mitpress/1086.001.0001.

[4] Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas, Crystal Chang Din,
Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah, Kiko Fernandez-Reyes & Albert Mingkun
Yang (2017): A Survey of Active Object Languages. ACM Comput. Surv. 50(5), pp. 76:1–76:39,
doi:10.1145/3122848.

[5] Rebeca Research Group: Afra toolset homepage. Available at http://rebeca-lang.org/alltools/
Afra.

[6] Thomas A. Henzinger, Zohar Manna & Amir Pnueli (1991): Timed Transition Systems. In J. W. de Bakker,
Cornelis Huizing, Willem P. de Roever & Grzegorz Rozenberg, editors: Real-Time: Theory in Practice, REX
Workshop, Mook, The Netherlands, June 3-7, 1991, Proceedings, Lecture Notes in Computer Science 600,
Springer, pp. 226–251, doi:10.1007/BFb0031995.

https://doi.org/10.4204/EPTCS.58.1
https://doi.org/10.1017/CBO9780511814105
https://doi.org/10.7551/mitpress/1086.001.0001
https://doi.org/10.1145/3122848
http://rebeca-lang.org/alltools/Afra
http://rebeca-lang.org/alltools/Afra
https://doi.org/10.1007/BFb0031995

M. Sirjani, E. Khamespanah 7

[7] Carl Hewitt (1977): Viewing control structures as patterns of passing messages. Artificial intelligence 8(3),
pp. 323–364, doi:10.1016/0004-3702(77)90033-9.

[8] Ehsan Khamespanah, Ramtin Khosravi & Marjan Sirjani (2018): An efficient TCTL model checking algorithm
and a reduction technique for verification of timed actor models. Sci. Comput. Program. 153, pp. 1–29,
doi:10.1016/j.scico.2017.11.004.

[9] Ehsan Khamespanah, Ramtin Khosravi & Marjan Sirjani (2023): Afra: An Eclipse-Based Tool with Exten-
sible Architecture for Modeling and Model Checking of Rebeca Family Models. In Hossein Hojjat & Mieke
Massink, editors: Fundamentals of Software Engineering - 11th International Conference, FSEN 2023, May
4-5, 2023, Lecture Notes in Computer Science, Springer, doi:10.1007/978-3-031-42441-0_6.

[10] Ehsan Khamespanah, Marjan Sirjani, Zeynab Sabahi-Kaviani, Ramtin Khosravi & Mohammad-Javad Izadi
(2015): Timed Rebeca schedulability and deadlock freedom analysis using bounded floating time transition
system. Sci. Comput. Program. 98, pp. 184–204, doi:10.1016/j.scico.2014.07.005.

[11] Ehsan Khamespanah, Marjan Sirjani, Mahesh Viswanathan & Ramtin Khosravi (2015): Floating Time Tran-
sition System: More Efficient Analysis of Timed Actors. In Christiano Braga & Peter Csaba Ölveczky, editors:
Formal Aspects of Component Software - 12th International Conference, FACS 2015, Niterói, Brazil, Octo-
ber 14-16, 2015, Revised Selected Papers, Lecture Notes in Computer Science 9539, Springer, pp. 237–255,
doi:10.1007/978-3-319-28934-2_13.

[12] Arni Hermann Reynisson, Marjan Sirjani, Luca Aceto, Matteo Cimini, Ali Jafari, Anna Ingólfsdóttir &
Steinar Hugi Sigurdarson (2014): Modelling and simulation of asynchronous real-time systems using Timed
Rebeca. Sci. Comput. Program. 89, pp. 41–68, doi:10.1016/j.scico.2014.01.008.

[13] Marjan Sirjani & Ehsan Khamespanah (2016): On Time Actors. In Erika Ábrahám, Marcello M. Bonsangue
& Einar Broch Johnsen, editors: Theory and Practice of Formal Methods - Essays Dedicated to Frank de
Boer on the Occasion of His 60th Birthday, Lecture Notes in Computer Science 9660, Springer, pp. 373–
392, doi:10.1007/978-3-319-30734-3_25.

[14] Marjan Sirjani, Edward A. Lee & Ehsan Khamespanah (2020): Verification of Cyberphysical Systems. Math-
ematics 8(7), doi:10.3390/math8071068.

[15] Marjan Sirjani, Ali Movaghar & Mohammadreza Mousavi (2001): Compositional verification of an object-
based reactive system. In: Workshop on Automated Verification of Critical Systems AVoCS 2001.

[16] Marjan Sirjani, Ali Movaghar, Amin Shali & Frank S. de Boer (2004): Modeling and Verification of Re-
active Systems using Rebeca. Fundam. Informaticae 63(4), pp. 385–410. Available at http://content.
iospress.com/articles/fundamenta-informaticae/fi63-4-05.

https://doi.org/10.1016/0004-3702(77)90033-9
https://doi.org/10.1016/j.scico.2017.11.004
https://doi.org/10.1007/978-3-031-42441-0_6
https://doi.org/10.1016/j.scico.2014.07.005
https://doi.org/10.1007/978-3-319-28934-2_13
https://doi.org/10.1016/j.scico.2014.01.008
https://doi.org/10.1007/978-3-319-30734-3_25
https://doi.org/10.3390/math8071068
http://content.iospress.com/articles/fundamenta-informaticae/fi63-4-05
http://content.iospress.com/articles/fundamenta-informaticae/fi63-4-05

G. Caltais and C. A. Mezzina (Eds): Combined Workshop on

Expressiveness in Concurrency and Structural Operational Semantics

(EXPRESS/SOS 2023).

EPTCS 387, 2023, pp. 8–25, doi:10.4204/EPTCS.387.2

© I. Castellani, O. Dardha, L. Padovani & D. Sangiorgi

This work is licensed under the

Creative Commons Attribution License.

EXPRESSing Session Types

Ilaria Castellani

INRIA, Université Côte d’Azur

Luca Padovani

University of Camerino

Ornela Dardha

University of Glasgow

Davide Sangiorgi

University of Bologna, INRIA

To celebrate the 30th edition of EXPRESS and the 20th edition of SOS we overview how session

types can be expressed in a type theory for the standard π-calculus by means of a suitable encod-

ing. The encoding allows one to reuse results about the π-calculus in the context of session-based

communications, thus deepening the understanding of sessions and reducing redundancies in their

theoretical foundations. Perhaps surprisingly, the encoding has practical implications as well, by

enabling refined forms of deadlock analysis as well as allowing session type inference by means of a

conventional type inference algorithm.

1 Origins of EXPRESS: some personal memories

This year marks an important milestone in the history of the EXPRESS/SOS workshop series. Before

joining their destinies in 2012, the two workshops EXPRESS and SOS had been running on their own

since 1994 and 2004, respectively. Hence, the EXPRESS/SOS’23 workshop in Antwerp will constitute

the 30th edition of EXPRESS and the 20th edition of SOS.

Two of us (Ilaria Castellani and Davide Sangiorgi) were personally involved in the very first edition

of EXPRESS in 1998, and indeed, they may be said to have carried the workshop to the baptismal font,

together with Robert de Simone and Catuscia Palamidessi. Let us recall some facts and personal mem-

ories. The EXPRESS workshops were originally held as meetings of the European project EXPRESS,

a Network of Excellence within the Human Capital and Mobility programme, dedicated to expressive-

ness issues in Concurrency Theory. This NoE, which lasted from January 1994 till December 1997,

gathered researchers from several European countries and was particularly fruitful in supporting young

researchers’ mobility across different sites. The first three workshops of the NoE were held in Amster-

dam (1994), Tarquinia (1995), and Dagstuhl (1996). The fourth and final workshop was held in Santa

Margherita Ligure (1997). It was co-chaired by Catuscia Palamidessi and Joachim Parrow, and stood

out as a distinctive event, open to external participants and organised as a conference with a call for

papers. A few months after this workshop, in the first half of 1998, the co-chairs of the forthcoming

CONCUR’98 conference in Nice, Robert de Simone and Davide Sangiorgi, were wondering about en-

dowing CONCUR with a satellite event (such events were still unusual at the time) in order to enhance

its attractiveness. Moreover, Davide was sharing offices with Ilaria, who had been the NoE responsible

for the site of Sophia Antipolis and was also part of the organising committee of CONCUR’98. It was

so, during informal discussions, that the idea of launching EXPRESS as a stand-alone event affiliated

with CONCUR was conceived, in order to preserve the heritage of the NoE and give it a continuation.

Thus the first edition of EXPRESS, jointly chaired by Catuscia and Ilaria, took place in Nice in 1998, as

the first and unique satellite event of CONCUR. However, EXPRESS did not remain a lonely satellite

for too long, as other workshops were to join the orbit of CONCUR in the following years (INFINITY,

YR-CONCUR, SecCo, TRENDS, . . .), including SOS in 2004. The workshop EXPRESS’98 turned out

http://dx.doi.org/10.4204/EPTCS.387.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

I. Castellani, O. Dardha, L. Padovani & D. Sangiorgi 9

to be successful and very well attended. Since then, EXPRESS has been treading its path as a regu-

lar satellite workshop of CONCUR, with a new pair of co-chairs every year, each co-chair serving two

editions in a row. The workshop, which is traditionally held on the Monday preceding CONCUR, has

always attracted good quality submissions and has maintained a faithful audience over the years.

Coincidentally, this double anniversary of EXPRESS/SOS falls in the 30th anniversary of Kohei

Honda’s first paper on session types [26]. For this reason, we propose an overview of a particular expres-

siveness issue, namely the addition of session types to process calculi for mobility such as the π-calculus.

2 Session types and their expressiveness: introduction

Expressiveness is a key topic in the design and implementation of programming languages and models.

The issue is particularly relevant in the case of formalisms for parallel and distributed systems, due to

the breadth and variety of constructs that have been proposed.

Most importantly, the study of expressiveness has practical applications. If the behaviours that can

be programmed by means of a certain formalism L1 can also be programmed using another formalism

L2, then methods and concepts developed for the latter language (e.g., reasoning and implementation

techniques) may be transferred onto the former one that, in turn, may be more convenient to use from

a programming viewpoint. An important instance is the case when L2 is, syntactically, a subset of L1.

Indeed the quest for a “minimal” formalism is central in the work on expressiveness.

This paper is an overview of a particular expressiveness issue, namely the addition of session types

onto calculi for mobility such as the π-calculus. We will review the encoding of binary session types onto

the standard π-calculus [14, 15], based on an observation of Kobayashi [33]. The key idea of the encoding

is to represent a sequence of communications within a session as a chain of communications on linear

channels (channels that are meant to be used exactly once) through the use of explicit continuations, a

technique that resembles the modelling of communication patterns in the actor model [25]. We discuss

extensions of the encoding to subtyping, polymorphism and higher-order communication as well as

multiparty session types. Finally, we review two applications of the encoding to the problems of deadlock

analysis and of session type inference.

Session types, initially proposed in [26, 51, 27], describe sessions, i.e., interaction protocols in

distributed systems. While originally designed for process calculi, they have later been integrated

also in other paradigms, including (multi-threaded) functional programming [54, 44, 37, 40, 20, 35],

component-based systems [52], object-oriented languages [18, 19, 7], languages for Web Services and

Contracts [9, 38]. They have also been studied in logical-based type systems [5, 55, 6, 13, 36].

Session types allow one to describe the sequences of input and output operations that the participants

of a session are supposed to follow, explicitly indicating the types of messages being transmitted. This

structured sequentiality of operations makes session types suitable to model protocols. Central (type and

term) constructs in session types are also branch and select, the former being the offering of a set of

alternatives and the latter being the selection of one of the possible options at hand.

Session types were first introduced in a variant of the π-calculus to describe binary interactions.

Subsequently, they have been extended to multiparty sessions [28], where several participants interact

with each other. In the rest of this paper, we will focus on binary session types.

Session types guarantee privacy and communication safety within a session. Privacy means that

session channels are known and used only by the participants involved in the session. Communication

safety means that interaction within a session will proceed without mismatches of direction and of mes-

sage type. To achieve this, a session channel is split into two endpoints, each of which is owned by one

10 EXPRESSing Session Types

of the participants. These endpoints are used according to dual behaviours (and thus have dual types),

namely one participant sends what the other one is expecting to receive and vice versa. Indeed, duality

is a key concept in the theory of session types.

To better understand session types and the notion of duality, let us consider a simple example: the

equality test. A server and a client communicate over a session channel. The endpoints x and y of the

session channel are owned by the server and the client, respectively and exclusively, and must have dual

types. To guarantee duality of types, static checks are performed by the type system.

If the type of the server endpoint x is

S , ?Int.?Int.!Bool.end

— meaning that the process owning the channel endpoint x receives (?) an integer value followed by

another integer value and then sends (!) back a boolean value corresponding to the equality test of the

integers received — then the type of the client endpoint y should be

S , !Int.!Int.?Bool.end

— meaning that the process owning the channel endpoint y sends an integer value followed by another

integer value and then waits to receive back a boolean value — which is exactly the dual type.

There is a precise moment at which a session between two participants is established. It is the

connection phase, when a fresh (private) session channel is created and its endpoints are bound to each

communicating process. The connection is also the moment when duality, hence mutual compliance of

two session types, is verified. In order to establish a connection, primitives like accept/request or

(νxy), are added to the syntax of terms [51, 27, 53].

When session types and session terms are added to the syntax of standard π-calculus types and

terms, respectively, the syntax of types (and, as a consequence, of type environments) usually needs to

be split into two separate syntactic categories, one for session types and the other for standard π-calculus

types [51, 27, 56, 22]. Common typing features, like subtyping, polymorphism, recursion have then

to be added to both syntactic categories. Also the syntax of processes will contain both standard π-

calculus process constructs and session process constructs (for example, the constructs mentioned above

to create session channels). These syntactic redundancies bring in redundancies also in the theory, and

can make the proofs of properties of the language heavy. Moreover, if a new type construct is added, the

corresponding properties must be checked both on standard π-types and on session types. By “standard

type systems” we mean type systems originally studied in depth for sequential languages such as the λ -

calculus and then transplanted onto the π-calculus as types for channel names (rather than types for terms

as in the λ -calculus); they include, for instance, constructs for products, records, variants, polymorphism,

linearity, capabilities, and so on.

A further motivation for investigating the expressiveness of the π-calculus with or without session

types is the similarity between session constructs and standard π-calculus constructs. Consider the type

S = ?Int.?Int.!Bool.end. This type is assigned to a session channel endpoint and it describes a struc-

tured sequence of inputs and outputs by specifying the type of messages that the channel can transmit.

This way of proceeding reminds us of the linearised channels [34], which are channels used multiple

times for communication but only in a sequential manner. Linearised types can, in turn, be encoded

into linear types—i.e., channel types used exactly once [34]. Similarly, there are analogies between the

branch and select constructs of session types and the variant types [45, 46] of standard π-calculus types,

as well as between the duality of session types, in which the behaviour of a session channel is split into

I. Castellani, O. Dardha, L. Padovani & D. Sangiorgi 11

T ::= S (session type)

♯T (channel type)

Unit (unit type)

. . . (other types)

S ::= end (termination)

!T.S (send)

?T.S (receive)

⊕{li : Si}i∈I (select)

&{li : Si}i∈I (branch)

P,Q ::= x!〈v〉.P (output) 0 (inaction)

x?(y).P (input) P | Q (composition)

x⊳ l j.P (selection) (νxy)P (session restriction)

x⊲{li : Pi}i∈I (branching) (νx)P (channel restriction)

v ::= x (name) ⋆ (unit value)

(R- STNDCOM) x!〈v〉.P | x?(z).Q → P | Q[v/z]

(R-COM) (νxy)(x!〈v〉.P | y?(z).Q)→ (νxy)(P | Q[v/z])

(R-CASE) (νxy)(x⊳ l j.P | y⊲{li : Pi}i∈I)→ (νxy)(P | Pj) j ∈ I

(R-STNDRES) P → Q =⇒ (νx)P → (νx)Q

(R-RES) P → Q =⇒ (νxy)P → (νxy)Q

(R-PAR) P → Q =⇒ P | R → Q | R

(R-STRUCT) P ≡ P′, P → Q, Q′ ≡ Q =⇒ P′ → Q′

Figure 1: Syntax and reduction semantics of the session π-calculus

two endpoints, and the capability types of the standard π-calculus, that allow one to separate the input

and output usages of channels.

In this paper we follow the encoding of binary session types into linear π-types from [14, 15], then

discuss some extensions and applications. The encoding was first suggested by Kobayashi [33], as a

proof-of-concept without however formally studying it. Later, Demangeon and Honda [17] proposed

an encoding of session types into π-types with the aim of studying the subtyping relation, and proving

properties such as soundness of the encoding with respect to typing and full abstraction.

Structure of the paper. The rest of the paper is organised as follows. In Section 3 we introduce the

necessary background about the session π-calculus and the linear π-calculus. In Section 4 we recall

the encoding from the session π-calculus into the linear π-calculus, as well as its correctness result. In

Section 5 and Section 6 we discuss respectively some extensions and some applications of the encoding.

3 Background: π-calculus and session types

In this section, we recall the syntax and semantics of our two calculi of interest: the session π-calculus

and the standard typed π-calculus. We also introduce the notion of duality for session types.

12 EXPRESSing Session Types

t ::= ℓo[̃t] (linear output) ♯[̃t] (connection)

ℓi[̃t] (linear input) 〈li ti〉i∈I (variant type)

ℓ♯ [̃t] (linear connection) Unit (unit type)

/0[] (no capability) . . . (other types)

P,Q ::= x!〈ṽ〉.P (output) 0 (inaction)

x?(ỹ).P (input) P | Q (composition)

(νx)P (restriction) case v of {li (xi)⊲Pi}i∈I (case)

v ::= x (name) ⋆ (unit value)

l v (variant value)

(Rπ -COM) x!〈ṽ〉.P | x?(z̃).Q → P | Q[ṽ/z̃]

(Rπ -CASE) case l j v of {li (xi)⊲Pi}i∈I → Pj[v/x j] j ∈ I

(Rπ -RES) P → Q =⇒ (νx)P → (νx)Q

(Rπ -PAR) P → Q =⇒ P | R → Q | R

(Rπ -STRUCT) P ≡ P′, P → Q, Q′ ≡ Q =⇒ P′ → Q′

Figure 2: Syntax and reduction rules of the standard typed π-calculus

Session types and terms. The syntax for session types and session π-calculus terms is reported in Fig-

ure 1, together with the rules for the reduction semantics, in which ≡ is the usual structural congruence

relation, allowing one to rearrange parallel compositions and the scope of restrictions and to remove

useless restrictions. We refer to, e.g., [53, 22] for the rules for typing. Session types range over S and

types range over T ; the latter include session types, standard channel types denoted by ♯T , data types,

such as Unit and any other type construct needed for mainstream programming.

Session types are: end, the type of a terminated channel; ?T.S and !T.S (used in the equality test

example given in the introduction) indicating, respectively, the receive and send of a value of type T ,

with continuation type S. Branch and select are sets of labelled session types, whose labels have indices

ranging over a non-empty set I. Branch &{li : Si}i∈I indicates an external choice, namely what is offered,

and it is a generalisation of the input type in which the continuation Si depends on the received label li.

Dually, select ⊕{li : Si}i∈I indicates an internal choice, where only one of the available labels li’s will be

chosen, and it is a generalisation of the output type.

Session processes range over P,Q. The output process x!〈v〉.P sends a value v on channel endpoint

x and continues as P; the input process x?(y).P receives on x a value to substitute for the placeholder

y in the continuation P. The selection process x ⊳ l j.P selects label l j on channel x and proceeds as P.

The branching process x ⊲{li : Pi}i∈I offers a range of labelled alternative processes on channel x. The

session restriction construct (νxy)P creates a session channel, more precisely its two endpoints x and y,

and binds them in P. As usual, the term 0 denotes a terminated process and P | Q the parallel composition

of P and Q.

I. Castellani, O. Dardha, L. Padovani & D. Sangiorgi 13

Duality Session type duality is a key ingredient in session types theory as it is necessary for commu-

nication safety. Two processes willing to communicate, e.g., the client and the server in the equality test,

must first agree on a session protocol. Intuitively, client and server should perform dual operations: when

one process sends, the other receives, when one offers, the other chooses. Hence, the dual of an input

must be an output, the dual of branch must be a select, and vice versa. Formally, duality on session types

is defined as the following function:

end , end

!T.S , ?T.S

?T.S , !T.S

⊕{li : Si}i∈I , &{li : Si}i∈I

&{li : Si}i∈I , ⊕{li : Si}i∈I

The static checks performed by the typing rules make sure that the peer endpoints of the same session

channel have dual types. In particular, this is checked in the restriction rule (T-RES) below:

(T-RES)

Γ,x : T,y : T ⊢ P

Γ ⊢ (νxy)P

Standard π-calculus. The syntax and reduction semantics for the standard π-calculus are shown in

Figure 2. We use t to range over standard π-types, to distinguish them from types T and session types

S, given in the previous paragraph. We also use the notation ·̃ to indicate (finite) sequences of elements.

Standard π-types specify the capabilities of channels. The type /0[] is assigned to a channel without any

capability, which cannot be used for any input/output action. Standard types ℓi[̃t] and ℓo[̃t] are assigned

to channels used exactly once to receive and to send a sequence of values of type t̃, respectively. The

variant type 〈li ti〉i∈I is a labelled form of disjoint union of types ti whose indices range over a set I.

Linear types and variant types are essential in the encoding of session types. The addition of variant

types, as of any structured type, implies the addition of a constructor in the grammar for values, to

produce variant values of the form l v, and of a destructor in the grammar for processes, to consume

variant values. Such a destructor is represented by the term case v of {li (xi) ⊲Pi}i∈I , offering different

behaviours depending on which variant value l v is received and binding v to the corresponding xi. In the

operational semantics, the reduction rule in which a variant value is consumed (Rπ -CASE) is sometimes

called case normalisation. Unlike the session π-calculus, the standard π-calculus has just one restriction

operator that acts on single names, as in (νx)P.

4 Encoding sessions

In this section we present the encoding of session π-calculus types and terms into linear π-calculus types

and terms, together with the main technical results, following Dardha et al. [14, 15].

Type encoding. The encoding of session types into linear π-types is shown at the top of Figure 3.

Types produced by grammar T are encoded in a homomorphic way, e.g., J♯T K , ♯JT K. The encoding of

end is a channel with no capabilities /0[] that cannot be used further. Type ?T.S is encoded as the linear

input channel type carrying a pair of values whose types are the encodings of T and of S. The encoding

of !T.S is similar except that the type of the second component of the pair is the encoding of S, since it

14 EXPRESSing Session Types

JendK , /0[] (E-END)

J!T.SK , ℓo[JT K,JSK] (E-OUT)

J?T.SK , ℓi[JT K,JSK] (E-INP)

J⊕{li : Si}i∈IK , ℓo[〈li JSiK〉i∈I] (E-SELECT)

J&{li : Si}i∈IK , ℓi[〈li JSiK〉i∈I] (E-BRANCH)

JxK f , fx (E-NAME)

J⋆K f , ⋆ (E-STAR)

J0K f , 0 (E-INACTION)

Jx!〈v〉.PK f , (νc) fx!〈JvK f ,c〉.JPK f{x7→c} (E-OUTPUT)

Jx?(y).PK f , fx?(y,c).JPK f{x7→c} (E-INPUT)

Jx⊳ l j.PK f , (νc) fx!〈l j c〉.JPK f{x7→c} (E-SELECTION)

Jx⊲{li : Pi}i∈IK f , fx?(y). case y of {li (c)⊲ JPiK f{x7→c}}i∈I (E-BRANCHING)

JP | QK f , JPK f | JQK f (E-COMPOSITION)

J(νxy)PK f , (νc)JPK f{x,y7→c} (E-RESTRICTION)

J(νx)PK f , (νx)JPK f (E-NEW)

Figure 3: Encoding of types, values and processes.

describes the type of a channel as it will be used by the receiver process. The branch and the select types

are encoded as linear input and linear output channels carrying variant types having labels li and types

that are respectively the encoding of Si and the encoding of Si for all i ∈ I. Again, the reason for using

duality of the continuation in the encoding of the select type is the same as for the output type, as select

is a generalisation of output type.

Process encoding. The encoding of session processes into standard π-processes is shown at the bottom

of Figure 3. The encoding of a process P is parametrised by a function f from channel names to channel

names. We say that f is a renaming function for P if, for all the names x that occur free in P, either

f (x) = x or f (x) is a fresh name not occurring in n(P), where n(P) is the set of all names of P, both free

and bound. Also, f is the identity function on all bound names of P. Hereafter we write dom(f) for the

domain of f and fx as an abbreviation for f (x). During the encoding of a session process, its renaming

function f is progressively updated. For example, we write f{x 7→ c} or f{x,y 7→ c} for the update of

f such that the names x and y are associated to c. The notion of a renaming function is extended also to

values as expected. In the uses of the definition of the renaming function f for P (respectively v), process

P (respectively value v) will be typed in a typing context, say Γ. It is implicitly assumed that the fresh

names used by f (that is, the names y such that y = f (x), for some x 6= y) are also fresh for Γ.

The motivation for parametrising the encoding of processes and values with a renaming function

stems from the key idea of encoding a structured communication over a session channel as a chain

of one-shot communications over linear channels. Whenever we transmit some payload on a linear

channel, the payload is paired with a fresh continuation channel on which the rest of the communication

takes place. Such continuation, being fresh, is different from the original channel. Thus, the renaming

I. Castellani, O. Dardha, L. Padovani & D. Sangiorgi 15

function allows us to keep track of this fresh name after each communication.

We now provide some more details on the encoding of terms. Values are encoded as expected,

so that a channel name x is encoded to fx and the ⋆ unit value is encoded to itself. This encoding is

trivially extended to every ground value added to the language. In the encoding of the output process,

a new channel name c is created and is sent together with the encoding of the payload v along the

channel fx. The encoding of the continuation process P is parametrised by an updated f where the

name x is associated to c. Similarly, the input process listens on channel fx and receives a pair whose

first element (the payload) replaces the name y and whose second element (the continuation channel

c) replaces x in the continuation process by means of the updated renaming function f{x 7→ c}. As

indicated in Section 3, session restriction (νxy)P creates two fresh names and binds them in P as the

opposite endpoints of the same session channel. This is not needed in the standard π-calculus. The

restriction construct (νx)P creates and binds a unique name x in P; this name identifies both endpoints of

the communicating channel. The encoding of a session restriction process (νxy)P is a standard channel

restriction process (νc)JPK f{x,y7→c} with the new name c used to substitute both x and y in the encoding

of P. Selection x⊳ l j.P is encoded as the process that first creates a new channel c and then sends on fx a

variant value l j c, where l j is the selected label and c is the channel created to be used for the continuation

of the session. The encoding of branching receives on fx a value, typically being a variant value, which

is the guard of the case process. According to the transmitted label, one of the corresponding processes

JPiK f{x7→c} for i∈ I will be chosen. Note that the name c is bound in any process JPiK f{x7→c}. The encoding

of the other process constructs, namely inaction, standard channel restriction, and parallel composition,

acts as a homomorphism.

Example 4.1 (Equality test). We illustrate the encoding of session types and terms on the equality test

from the introduction. Thus we also make use of boolean and integer values, and simple operations on

them, whose addition to the encoding is straightforward.

The encoding of the server’s session type S is

JSK = ℓi[Int, ℓi[Int, ℓo[Bool, /0[]]]]

while that of the client’s session type S is

JSK = ℓo[Int, ℓi[Int, ℓo[Bool, /0[]]]]

Note how the encoding of dual session types boils down to linear channel types that have the same

payload and dual outermost capabilities ℓi[·] and ℓo[·]. This property holds in general and can be

exploited to express the (complex) notion of session type duality in terms of the (simple) property of type

equality, as we will see in Section 6.

The server process, communicating on endpoint x of type S, is

server , x?(z1).x?(z2).x!〈z1 == z2〉.0

and the client process, communicating on endpoint y of type S, is

client , y!〈3〉.y!〈5〉.y?(eq).0

Then we have
JserverK{x7→s} = s?(z1,c).Jx?(z2).x!〈z1 == z2〉.0K{x7→c}

= s?(z1,c).c?(z2,c
′).(νc′′)c′!〈z1 == z2,c

′′〉.0

16 EXPRESSing Session Types

Similarly,

JclientK{y7→s} = (νc)s!〈3,c〉.(νc′)c!〈5,c′〉.c′?(eq,c′′).0

The whole server-client system is thus encoded as follows, using /0 for the identity function.

J(νxy)(server | client)K /0 = (νs)J(server | client)K{x,y7→s} = (νs)
(
JserverK{x7→s} | JclientK{y7→s}

)

(The update {x,y 7→ s} reduces to {x 7→ s} on the server and to {y 7→ s} on the client because they do

not contain occurrences of y and x respectively.)

Correctness of the encoding. The presented encoding can be considered as a semantics of session

types and session terms. The following theoretical results show that indeed we can derive the typing

judgements and the properties of the π-calculus with sessions via the encoding and the corresponding

properties of the linear π-calculus.

First, the correctness of an encoded typing judgement on the target terms implies the correctness of

the judgement on the source terms, and conversely. Similar results hold for values. The encoding is

extended to session typing contexts in the expected manner.

Theorem 4.2 (Type correctness). The following properties hold:

1. If Γ ⊢ P, then JΓK f ⊢ JPK f for some renaming function f for P;

2. If JΓK f ⊢ JPK f for some renaming function f for P, then Γ ⊢ P.

Theorem 4.2, and more precisely its proof [15, 12], shows that the encoding can be actually used to

reconstruct the typing rules of session types. That is, the typing rules for an operator op of the session

π-calculus can be ‘read back’ from the typing of the encoding of op.

Next we recall the operational correctness of the encoding. That is, the property that the encoding

allows one to faithfully reconstruct the behaviour of a source term from that of the corresponding target

term. We recall that → is the reduction relation of the two calculi. We write →֒ for the extension of

the structural congruence ≡ with a case normalisation indicating the decomposition of a variant value

(Section 3).

Theorem 4.3 (Operational correspondence). Let P be a session process, Γ a session typing context, and

f a renaming function for P such that JΓK f ⊢ JPK f . Then the following statements hold.

1. If P → P′, then JPK f →→֒ JP′K f .

2. If JPK f → Q, then there is a session process P′ such that

• either P → P′;

• or there are x and y such that (νxy)P → P′

and Q →֒ JP′K f .

Statement 1 of the above theorem tells us that the reduction of an encoded process mimics faithfully

the reduction of the source process, modulo structural congruence or case normalisation. Statement 2

of the theorem tells us that if the encoding of a process P reduces to the encoding of a process P′ (via

some intermediate process Q), then the source process P will reduce directly to P′ or it might need a

wrap-up under restriction. The reason for the latter is that in the session π-calculus [53], reduction only

occurs under restriction and cannot occur along free names. In particular, in the theorem, f is a generic

renaming function; this function could map two free names, say x and y, onto the same name; in this

case, an input at x and an output at y in the source process could not produce a reduction, whereas they

might in the target process.

The two theorems above allow us to derive, as a straightforward corollary, the subject reduction

property for the session calculus.

I. Castellani, O. Dardha, L. Padovani & D. Sangiorgi 17

Corollary 4.4 (Session Subject Reduction). If Γ ⊢ P and P → Q, then Γ ⊢ Q.

Other properties of the session π-calculus can be similarly derived from corresponding properties of

the standard π-calculus. For instance, since the encoding respects structural congruence (that is, P ≡ P′

if and only if JPK f ≡ JP′K f), we can derive the invariance of typing under structural congruence in the

session π-calculus.

Corollary 4.5 (Session Structural Congruence). If Γ ⊢ P and P ≡ P′, then also Γ ⊢ P′.

5 Extensions

In this section we discuss several extensions for the presented encoding, which have been proposed

in order to accommodate the additional features of subtyping, polymorphism, recursion, higher-order

communication and multiparty interactions.

Subtyping. Subtyping is a relation between types based on a notion of substitutability. If T is a subtype

of T ′, then any channel of type T can be safely used in a context where a channel of type T ′ is expected.

In the standard π-calculus, subtyping originates from capability types — the possibility of distinguishing

the input and output usage of channels [43, 46]. (This is analogous to what happens in languages with

references, where capabilities are represented by the read and write usages.) Precisely, the input channel

capability is co-variant, whereas the output channel capability is contra-variant in the types of values

transmitted (the use of capabilities is actually necessary with linear types, as reported in Figure 2).

Subtyping can then be enhanced by means of the variant types, which are co-variant both in depth and

in breadth. In the case of session π-calculus, subtyping must be dealt with also at the level of session

types [22]; for instance, branch and select are both co-variant in depth, whereas they are co-variant and

contra-variant in breadth, respectively. This duplication of effort can become heavy, particularly when

types are enriched with other constructs (a good example are recursive types). The encoding of session

types naturally accommodates subtyping, indeed subtyping of the standard π-calculus can be used to

derive subtyping on session types. Writing <: and ≤ for, respectively, subtyping for session types and

for standard π-types, for instance we have:

Theorem 5.1 (Encoding for Subtyping). T <: T ′ if and only if JT K ≤ JT ′K.

Polymorphism and Higher-Order Communication. Polymorphism is a common and useful type ab-

straction in programming languages, as it allows operations that are generic by using an expression with

several types. Parametric polymorphism has been studied in the standard π-calculus [46], and in the

π-calculus with session types [4]; for bounded polymorphism in session π-calculus see Gay [21].

The Higher-Order π-calculus (HOπ) models mobility of processes that can be sent and received and

thus can be run locally [46]. Higher-order communication for the session π-calculus [39] has the same

benefits as for the π-calculus, in particular, it models code mobility in a distributed scenario.

Extensions of the encoding to support polymorphism and HOπ have been studied in [14, 15, 12] and

used to test its robustness. The syntax of types and terms is extended to accommodate the new constructs.

For polymorphism, session types and standard π-types are extended with a type variable X and with

polymorphic types 〈X ;T 〉 and 〈X ; t〉, respectively. For higher-order communication, session types and

standard π-types are extended with the functional type T → σ , assigned to a functional term that can

be used without any restriction, and with the linear functional type T
1
→ σ that must be used exactly

once. Correspondingly, the syntax of processes is extended to accommodate the unpacking process

18 EXPRESSing Session Types

(open v as (X ;x) in P) to deal with polymorphism, and with call-by-value λ -calculus primitives, namely

abstraction (λx : T.P) and application (PQ), to deal with higher-order communication.

The encoding of the new type and process constructs is a homomorphism in all cases. Consequently,

the proof cases added to Theorems 4.2 and 4.3 are trivial.

Recursion. The encoding was also extended to accommodate recursive types and replicated processes

by Dardha [10]. Here, the new added types are a recursive type µX .T and a type variable X , as well as

the replicated process ∗P. Recursive (session) types are required to be guarded, meaning that in µX .T ,

variable X may occur free in T only under at least one of the other type constructs. The paper uses a new

duality function, called complement, which is inspired by the work of Bernardi et al. [2, 1]. Some new

cases for the encoding of recursive session types and processes are:

JXK , X

JµX .SK , µX .JSK

J∗PK f , ∗JPK f

The extended encoding is proved to be sound and complete with respect to typing and reduction (aka

operational correspondence). We refer the interested reader to [10, 11].

Multiparty Session Types. Multiparty Session Types (MPSTs) [28, 29] accommodate communica-

tions between more than two participants. Since their introduction, they have become a major area of

investigation within the session type community. Their meta-theory is more complex than that of the

binary case, and it is beyond the scope of this paper to revise it in detail.

The core syntax of multiparty session types is given by the following grammar

S ::= end | X | µX .S (termination, type variable, recursive type)

p⊕i∈I!li(Ui).Si (select towards role p)

p&i∈I?li(Ui).Si (branch from role p)

B ::= Unit | . . . (base type) U ::= B | S (closed under µ) (payload type)

where selection and branching types are annotated with roles identifying the participant of a multiparty

session to which a message is sent or from which a message is expected. The message consists of a label

li and a payload of type Ui, whereas the continuation Si indicates how the session endpoint is meant to

be used afterwards.

A multiparty session type describes the behaviour of a participant of a multiparty session with respect

to all the other participants it interacts with, identified by their role in the session type. In order to obtain

the behaviour of a participant with respect to another particular participant of the multiparty session,

say q, the multiparty session type must be projected onto q. Hereafter, we write S↾q for the partial

projection of S onto q, referring to [47, 48] for its precise definition. Projection yields a type defined by

the following syntax, which resembles that of binary session types:

H ::= end | X | µX .H (termination, type variable, recursive type)

⊕i∈I!li(Ui).Hi (select)

&i∈I?li(Ui).Hi (branch)

Projection is a key feature of MPSTs as it is needed in the technical development of a sound type

system. At the same time, it also provides a hook by which multiparty sessions and multiparty session

I. Castellani, O. Dardha, L. Padovani & D. Sangiorgi 19

types can be encoded in the standard π-calculus through the encoding of (binary) session types that we

have outlined in Section 3.

Let us briefly comment on the encoding of MPST into linear types given by Scalas et al. [47, 48].

This encoding is fully fledged as it covers the whole MPST and it preserves the theory’s distributivity.

Previous work by Caires and Pérez [3] presents an encoding of MPST into binary session types via a

medium process, which acts as an orchestrator for the encoding, thus losing distributivity. In the encoding

of Scalas et al. no orchestrator is used, hence the encoding preserves its intended choreographic nature

as opposed to being orchestrated.

The encoding of a multiparty session type from Scalas et al. is formally defined as:

JSK , [p : JS↾pK]p∈S

resulting in a record of types with an entry for each role p occurring in the multiparty session type S.

The encoding of a projected type, namely JS↾pK, can then be obtained by suitably adapting the function

defined in Figure 3. The main cases are summarised below, and the encoding is a homomorphism for the

other constructs in the syntactic category H presented above.

J⊕i∈I!li(Ui).HiK , ℓo[〈li (JUiK,JHiK)〉i∈I]

J&i∈I?li(Ui).HiK , ℓi[〈li (JUiK,JHiK)〉i∈I]

The encoding of processes is quite complex and beyond the scope of this paper. The interested

reader may refer to Scalas et al. [47, 49] for the formal details and a Scala implementation of multiparty

sessions based on this encoding. The encoding of MPST into linear types satisfies several properties,

including duality and subtyping preservation, correctness of the encoding with respect to typing, oper-

ational correspondence and deadlock freedom preservation. These properties are given in Section 6 of

[47].

6 Applications

The encoding from session types to linear channel types can be thought of as a way of “explaining” a

high-level type language in terms of a simpler, lower-level type language. Protocols written in the lower-

level type language tend to be more cumbersome and less readable than the session types they encode.

For this reason, it is natural to think of the encoding as nothing more than a theoretical study. Yet, as

we are about to see in this section, the very same encoding has also enabled (or at least inspired) further

advancements in the theory and practice of session types.

6.1 A Type System for Deadlock Freedom

A well-typed session π–calculus process (and equivalently a well-typed standard π–calculus one) enjoys

communication safety (no message with unexpected type is ever exchanged) but not deadlock freedom.

For example, both the session π–calculus process

(νx1x2)(νy1y2)(x1?(z).y1!〈z〉.0 | y2?(w).x2!〈w〉.0) (1)

and the standard π–calculus process

(νx)(νy)(x?().y!〈〉.0 | y?().x!〈〉.0) (2)

20 EXPRESSing Session Types

are well-typed in the respective typing disciplines, but the behaviours they describe on the two ses-

sions/channels are intermingled in such a way that no communication can actually occur: the input from

each session/channel must be completed in order to perform the output on the other session/channel.

Several type systems that ensure deadlock freedom in addition to communication safety have been

studied for session and standard typed π-calculi. In a particular line of work, Kobayashi [30, 32] has

studied a typing discipline that associates priorities to channel types so as to express, at the type level,

the relative order in which channels are used, thus enabling the detection of circular dependencies, such

as the one shown above. Later on, Padovani [41] has specialised this technique for the linear π–calculus

and, as an effect of the encoding illustrated in Section 3, for the session π–calculus as well. To illustrate

the technique, in this section we consider a refinement of the linear input/output types in Figure 2 as

follows

t ::= ℓo[t̃]
m | ℓi[t̃]

n | · · ·

where m and n are integers representing priorities: the smaller the number, the higher the priority with

which the channel must be used. In the process (2) above, we could assign the types ℓi[]
m and ℓo[]

n to

respectively x and y on the lhs of | and the types ℓo[]
m and ℓi[]

n to respectively x and y on the rhs of |. Note

that each channel is assigned two types having dual polarities (each channel is used in complementary

ways on the two sides of |) and the same priority. Then, the type system imposes constraints on priorities

to reflect the order in which channels are used: on the lhs of | we have the constraint m < n since the

input on x (with priority m) blocks the output on y (with priority n); on the rhs of | the opposite happens,

resulting in the constraint n < m. Obviously, these two constraints are not simultaneously satisfiable,

hence the process as a whole is ruled out as ill typed.

In such simple form, this technique fails to deal with most recursive processes. We illustrate the

issue through the following server process that computes the factorial of a natural number, in which we

use a few standard extensions (replication, conditional, numbers and their operations) to the calculus

introduced earlier.

∗fact?(x,y).if x = 0 then y!〈1〉 else (νz)(fact!〈x−1,z〉 | z?(k).y!〈x× k〉) (3)

The server accepts requests on a shared channel fact. Each request carries a natural number x and

a linear channel y on which the factorial of x is sent as response. The modelling follows the standard

recursive definition of the factorial function. In particular, in the recursive case a fresh linear channel z

is created from which the factorial k of x−1 is received. At that point, the factorial x× k of x can be sent

on y. Now assume, for the sake of illustration, that m and n are the priorities associated with y and z,

respectively. Since z is used in the same position as y in the recursive invocation of fact, we expect that

z and y should have the same type hence the same priority m = n. This clashes with the input on z that

blocks the output on y, requiring n < m. The key observation we can make in order to come up with a

more flexible handling of priorities is that a replicated process like (3) above cannot have any free linear

channel. In fact, the only free channel fact is a shared one whereas y is received by the process and z is

created within the process. As a consequence, the absolute value of the priorities m and n we associate

with y and z does not matter (as long as they satisfy the constraint n < m) and they can vary from one

request to another. In more technical terms, this corresponds to making fact polymorphic in the priority

of the channel y received from it and allowing a (priority-limited) form of polymorphic recursion when

we type outputs such as fact!〈x−1,z〉.
It must be pointed out that a process such as (3) is in the scope of Kobayashi’s type systems [32]. The

additional expressiveness resulting from priority polymorphism enables the successful analysis of recur-

sive processes that interleave actions on different linear channels also in cyclic network topologies. We

I. Castellani, O. Dardha, L. Padovani & D. Sangiorgi 21

do not showcase these more complex scenarios in this brief survey, instead referring the interested reader

to [41] for an exhaustive presentation of the technique and to [42] for a proof-of-concept implementation.

As a final remark, it is interesting to note that this technique can be retrofitted to a calculus with native

sessions, but it was born in the context of the standard π–calculus, which features a more primitive

communication model. The point is that, in the standard π–calculus, sequential communications are

encoded in a continuation-passing style, meaning that higher-order channels are the norm rather than

the exception. So, the quest for expressive type systems ensuring (dead)lock freedom in the standard

π–calculus could not ignore this feature, and this necessity has been a major source of inspiration for

the support of priority polymorphism. In this direction, Carbone et al. [8] study (dead)lock freedom for

session π-processes using the encoding from Section 4 and the technique from [32] and show that this

combined technique is more fine-grained than other ones adopted in session π-calculi. Dardha and Pérez

[16] present a full account of the deadlock freedom property in session π-calculi, and compare deadlock

freedom obtained by using the encoding and the work from [32] to linear logic approaches, which are

used as a yardstick for deadlock freedom.

6.2 Session Type Inference

A major concern regarding all type systems is their realisability and applicability in real-world program-

ming languages. In this respect, session type systems pose at least three peculiar challenges: (1) the fact

that session endpoints must be treated as linear resources that cannot be duplicated or discarded; (2)

the need to update the session type associated with a session endpoint each time the endpoint is used;

(3) the need to express session type duality constraints in addition to the usual type equality constraints.

The first challenge can be easily dealt with only in those (few) languages that provide native support for

linear (or at least affine) types. Alternatively, it is possible to devise mechanisms that detect linearity (or

affinity) violations at runtime with a modest overhead. The second challenge can be elegantly addressed

by adopting a functional API for sessions [24], whereby each function/method using a session endpoint

returns (possibly along with other results) the same endpoint with its type suitably updated. The last

challenge, which is the focus of this section, is a subtle one since session type duality is a complex rela-

tion that involves the whole structure of two session types. In fact, it has taken quite some time even just

to correctly define duality in the presence of recursive session types [2, 23].

Somewhat surprisingly, the encoding of session types into linear channel types allows us to cope with

this challenge in the most straightforward way, simply by getting rid of it. In Example 4.1 we have shown

two session types, one dual of the other, whose respective encodings are equal except for the outermost

capabilities. This property holds in general.

Proposition 6.1. Let · be the partial involution on types such that /0[] = /0[] and ℓi[t̃] = ℓo[t̃] and ℓo[t̃] =
ℓi[t̃]. Then JSK = JSK for every S.

In fact, it is possible to devise a slightly different representation of capabilities so that (session) type

duality can be expressed solely in terms of type equality. To this aim, let ◦ and • be any two types which

we use to represent the absence and presence of a given capability, respectively. We do not need any

particular property of ◦ and • except the fact that they must be different. In fact, they need not even be

inhabited. Now, we can devise a slightly different syntax for linear channel types, as follows:

t ::= ℓκ ,κ [t̃] | · · · κ ::= ◦ | •

The idea is that a linear channel type carries two separate input and output capabilities (hereafter

ranged over by κ and ι), each of which can be either present or absent. For example, ℓ◦,◦[] would be

22 EXPRESSing Session Types

the same as /0[], ℓ•,◦[t̃] would be the same as ℓi[t̃] and ℓ◦,•[t̃] would be the same as ℓo[t̃]. With this

representation of linear channel types the dual of a type can be defined simply as ℓκ ,ι [t̃] = ℓι ,κ [t̃], where

the input/output capabilities are swapped. Now, suppose that we wish to express a duality constraint

S = T stating that S is the dual of T and let ℓκ ,ι [s̃] = JSK and ℓκ ′,ι ′ [t̃] = JT K be the encodings of S and T ,

respectively. Using Proposition 6.1 and the revised representation of linear channel types we obtain

S = T ⇐⇒ κ = ι ′∧ ι = κ ′∧ s̃ = t̃

thereby turning a session type duality constraint into a conjunction of type equality constraints.

This apparently marginal consequence of using encoded (as opposed to native) session types makes

it possible to rely on completely standard features of conventional type systems to express and infer

complex structural relations on session types. In particular, it allows any Hindley-Milner type inference

algorithm to perform session type inference. FuSe [42] is a library implementation of session types for

OCaml that showcases this idea at work. The library supports higher-order sessions, recursive session

types and session subtyping by piggybacking on OCaml’s type system. Clearly, the inferred (encoded)

session types are not as readable as the native ones. This may pose problems in the presence of type

errors. To address this issue, the library is accompanied by an external tool called Rosetta that decodes

encoded session types and pretty prints them as native ones using the inverse of the encoding function

J·K.1 On similar lines, Scalas and Yoshida [50] develop lchannels, a Scala library for session types

fully based on the encoding of session types into linear types. As a result, the structure of a session type

is checked statically by analysing its encoding onto channel types in Scala, while linearity is checked

dynamically at run time as in FuSe, as Scala has no support for linearity.

References

[1] Giovanni Bernardi, Ornela Dardha, Simon J. Gay & Dimitrios Kouzapas (2014): On Duality Relations for

Session Types. In: TGC, LNCS 8902, Springer, pp. 51–66, doi:10.1007/978-3-662-45917-1_4.

[2] Giovanni Bernardi & Matthew Hennessy (2014): Using Higher-Order Contracts to Model Session

Types (Extended Abstract). In: CONCUR, LNCS 8704, Springer, pp. 387–401, doi:10.1007/

978-3-662-44584-6_27.

[3] Luı́s Caires & Jorge A. Pérez (2016): Multiparty Session Types Within a Canonical Binary Theory, and

Beyond. In Elvira Albert & Ivan Lanese, editors: FORTE, LNCS 9688, Springer, pp. 74–95, doi:10.1007/

978-3-319-39570-8_6.

[4] Luı́s Caires, Jorge A. Pérez, Frank Pfenning & Bernardo Toninho (2013): Behavioral Polymorphism and

Parametricity in Session-Based Communication. In: ESOP, LNCS 7792, Springer, pp. 330–349, doi:10.

1007/978-3-642-37036-6_19.

[5] Luı́s Caires & Frank Pfenning (2010): Session Types as Intuitionistic Linear Propositions. In: Proc.

of CONCUR 2010, Lecture Notes in Computer Science 6269, Springer, pp. 222–236, doi:10.1007/

978-3-642-15375-4_16.

[6] Luı́s Caires, Frank Pfenning & Bernardo Toninho (2014): Linear Logic Propositions as Session Types.

MSCS, doi:10.1017/S0960129514000218.

[7] Sara Capecchi, Mario Coppo, Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou & Elena Giachino

(2009): Amalgamating sessions and methods in object-oriented languages with generics. Theor. Comput.

Sci. 410(2-3), pp. 142–167, doi:10.1016/j.tcs.2008.09.016.

1The source code of FuSe and Rosetta is publicly available at https://github.com/boystrange/FuSe.

https://doi.org/10.1007/978-3-662-45917-1_4
https://doi.org/10.1007/978-3-662-44584-6_27
https://doi.org/10.1007/978-3-662-44584-6_27
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1007/978-3-642-37036-6_19
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1016/j.tcs.2008.09.016
https://github.com/boystrange/FuSe

I. Castellani, O. Dardha, L. Padovani & D. Sangiorgi 23

[8] Marco Carbone, Ornela Dardha & Fabrizio Montesi (2014): Progress as Compositional Lock-Freedom. In:

COORDINATION, LNCS 8459, Springer, pp. 49–64, doi:10.1007/978-3-662-43376-8_4.

[9] Marco Carbone, Kohei Honda & Nobuko Yoshida (2007): Structured Communication-Centred Programming

for Web Services. In: ESOP, LNCS 4421, Springer, pp. 2–17, doi:10.1007/978-3-540-71316-6_2.

[10] Ornela Dardha (2014): Recursive Session Types Revisited. In: BEAT, EPTCS 162, pp. 27–34, doi:10.4204/

EPTCS.162.4.

[11] Ornela Dardha (2014): Recursive Session Types Revisited.

http://www.dcs.gla.ac.uk/~ornela/my_papers/D14-Extended.pdf.

[12] Ornela Dardha (2016): Type Systems for Distributed Programs: Components and Sessions. Atlantis Studies

in Computing 7, Springer / Atlantis Press, doi:10.2991/978-94-6239-204-5.

[13] Ornela Dardha & Simon J. Gay (2018): A New Linear Logic for Deadlock-Free Session-Typed Processes.

In Christel Baier & Ugo Dal Lago, editors: FOSSACS, LNCS 10803, Springer, pp. 91–109, doi:10.1007/

978-3-319-89366-2_5.

[14] Ornela Dardha, Elena Giachino & Davide Sangiorgi (2012): Session types revisited. In: PPDP, ACM, New

York, NY, USA, pp. 139–150, doi:10.1145/2370776.2370794.

[15] Ornela Dardha, Elena Giachino & Davide Sangiorgi (2017): Session types revisited. Inf. Comput. 256, pp.

253–286, doi:10.1016/j.ic.2017.06.002.

[16] Ornela Dardha & Jorge A. Pérez (2022): Comparing type systems for deadlock freedom. J. Log. Algebraic

Methods Program. 124, p. 100717, doi:10.1016/j.jlamp.2021.100717.

[17] Romain Demangeon & Kohei Honda (2011): Full Abstraction in a Subtyped pi-Calculus with Linear Types.

In: CONCUR, LNCS 6901, Springer, pp. 280–296, doi:10.1007/978-3-642-23217-6_19.

[18] Mariangiola Dezani-Ciancaglini, Elena Giachino, Sophia Drossopoulou & Nobuko Yoshida (2007): Bounded

Session Types for Object Oriented Languages. In: FMCO, LNCS 4709, Springer, pp. 207–245, doi:10.

1007/978-3-540-74792-5_10.

[19] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida & Sophia Drossopoulou (2006): Ses-

sion Types for Object-Oriented Languages. In: ECOOP 2006, LNCS 4067, Springer, pp. 328–352, doi:10.

1007/11785477_20.

[20] Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley & J. Garrett Morris (2021): Separating Sessions

Smoothly. In Serge Haddad & Daniele Varacca, editors: CONCUR, LIPIcs 203, Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, pp. 36:1–36:18, doi:10.4230/LIPIcs.CONCUR.2021.36.

[21] Simon J. Gay (2008): Bounded polymorphism in session types. Mathematical Structures in Computer Science

18(5), pp. 895–930, doi:10.1017/S0960129508006944.

[22] Simon J. Gay & Malcolm Hole (2005): Subtyping for session types in the pi calculus. Acta Inf. 42(2-3), pp.

191–225, doi:10.1007/s00236-005-0177-z.

[23] Simon J. Gay, Peter Thiemann & Vasco T. Vasconcelos (2020): Duality of Session Types: The Final Cut.

In Stephanie Balzer & Luca Padovani, editors: PLACES@ETAPS, EPTCS 314, pp. 23–33, doi:10.4204/

EPTCS.314.3.

[24] Simon J. Gay & Vasco Thudichum Vasconcelos (2010): Linear type theory for asynchronous session types.

J. Funct. Program. 20(1), pp. 19–50, doi:10.1017/S0956796809990268.

[25] Carl Hewitt (1977): Viewing Control Structures as Patterns of Passing Messages. Artif. Intell. 8(3), pp.

323–364, doi:10.1016/0004-3702(77)90033-9.

[26] Kohei Honda (1993): Types for Dyadic Interaction. In: CONCUR, LNCS 715, Springer, pp. 509–523,

doi:10.1007/3-540-57208-2_35.

[27] Kohei Honda, Vasco Vasconcelos & Makoto Kubo (1998): Language primitives and type disciplines for

structured communication-based programming. In: ESOP, LNCS 1381, Springer, pp. 22–138, doi:10.1007/

BFb0053567.

https://doi.org/10.1007/978-3-662-43376-8_4
https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.4204/EPTCS.162.4
https://doi.org/10.4204/EPTCS.162.4
http://www.dcs.gla.ac.uk/~ornela/my_papers/D14-Extended.pdf
https://doi.org/10.2991/978-94-6239-204-5
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1145/2370776.2370794
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1016/j.jlamp.2021.100717
https://doi.org/10.1007/978-3-642-23217-6_19
https://doi.org/10.1007/978-3-540-74792-5_10
https://doi.org/10.1007/978-3-540-74792-5_10
https://doi.org/10.1007/11785477_20
https://doi.org/10.1007/11785477_20
https://doi.org/10.4230/LIPIcs.CONCUR.2021.36
https://doi.org/10.1017/S0960129508006944
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1016/0004-3702(77)90033-9
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567

24 EXPRESSing Session Types

[28] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty asynchronous session types. In: POPL,

43(1), ACM, pp. 273–284, doi:10.1145/1328438.1328472.

[29] Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty asynchronous session types. Journal

of the ACM 63(1), p. 9, doi:10.1145/2827695.

[30] Naoki Kobayashi (2002): A Type System for Lock-Free Processes. Inf. Comput. 177(2), pp. 122–159, doi:10.

1006/inco.2002.3171.

[31] Naoki Kobayashi (2002): Type Systems for Concurrent Programs. In: 10th Anniversary Colloquium of

UNU/IIST, pp. 439–453, doi:10.1007/978-3-540-40007-3_26.

[32] Naoki Kobayashi (2006): A New Type System for Deadlock-Free Processes. In: CONCUR, LNCS 4137,

Springer, pp. 233–247, doi:10.1007/11817949_16.

[33] Naoki Kobayashi (2007): Type Systems for Concurrent Programs. Available at http://www.kb.ecei.

tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf. Extended version of [31], Tohoku Uni-

versity.

[34] Naoki Kobayashi, Benjamin C. Pierce & David N. Turner (1999): Linearity and the pi-calculus. ACM Trans.

Program. Lang. Syst. 21(5), pp. 914–947, doi:10.1145/330249.330251.

[35] Wen Kokke & Ornela Dardha (2021): Deadlock-free session types in linear Haskell. In Jurriaan Hage, editor:

Haskell, ACM, pp. 1–13, doi:10.1145/3471874.3472979.

[36] Wen Kokke & Ornela Dardha (2021): Prioritise the Best Variation. In Kirstin Peters & Tim A. C. Willemse,

editors: FORTE, LNCS 12719, Springer, pp. 100–119, doi:10.1007/978-3-030-78089-0_6.

[37] Sam Lindley & J. Garrett Morris (2016): Embedding session types in Haskell. In: Proc. of Haskell, ACM,

pp. 133–145, doi:10.1145/2976002.2976018.

[38] Fabrizio Montesi & Nobuko Yoshida (2013): Compositional Choreographies. In: CONCUR, LNCS 8052,

Springer, pp. 425–439, doi:10.1007/978-3-642-40184-8_30.

[39] Dimitris Mostrous & Nobuko Yoshida (2007): Two Session Typing Systems for Higher-Order Mobile Pro-

cesses. In: TLCA, LNCS 4583, Springer, pp. 321–335, doi:10.1007/978-3-540-73228-0_23.

[40] Dominic Orchard & Nobuko Yoshida (2017): Session Types with Linearity in Haskell. Behavioural Types:

from Theory to Tools, pp. 219–242, doi:10.13052/rp-9788793519817.

[41] Luca Padovani (2014): Deadlock and lock freedom in the linear π-calculus. In Thomas A. Henzinger & Dale

Miller, editors: CSL-LICS, ACM, pp. 72:1–72:10, doi:10.1145/2603088.2603116.

[42] Luca Padovani (2017): Type-Based Analysis of Linear Communications. In Simon Gay & António

Ravara, editors: Behavioural Types: from Theory to Tools, River Publishers, pp. 193–217, doi:10.13052/

rp-9788793519817.

[43] Benjamin C. Pierce & Davide Sangiorgi (1993): Typing and Subtyping for Mobile Processes. In: LICS, IEEE

Computer Society, pp. 376–385, doi:10.1109/LICS.1993.287570.

[44] Riccardo Pucella & Jesse A. Tov (2008): Haskell session types with (almost) no class. In: Proc. of Haskell,

ACM, doi:10.1145/1411286.1411290.

[45] Davide Sangiorgi (1998): An Interpretation of Typed Objects into Typed pi-Calculus. Inf. Comput. 143(1),

pp. 34–73, doi:10.1006/inco.1998.2711.

[46] Davide Sangiorgi & David Walker (2001): The Pi-Calculus - a theory of mobile processes. Cambridge

University Press.

[47] Alceste Scalas, Ornela Dardha, Raymond Hu & Nobuko Yoshida (2017): A Linear Decomposition of Mul-

tiparty Sessions for Safe Distributed Programming. In Peter Müller, editor: ECOOP, LIPIcs 74, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, pp. 24:1–24:31, doi:10.4230/LIPIcs.ECOOP.2017.24.

[48] Alceste Scalas, Ornela Dardha, Raymond Hu & Nobuko Yoshida (2017): A Linear Decomposition of Multi-

party Sessions for Safe Distributed Programming. Technical Report 2, Imperial College London. Available

at https://www.doc.ic.ac.uk/research/technicalreports/2017/#2.

https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1006/inco.2002.3171
https://doi.org/10.1006/inco.2002.3171
https://doi.org/10.1007/978-3-540-40007-3_26
https://doi.org/10.1007/11817949_16
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
https://doi.org/10.1145/330249.330251
https://doi.org/10.1145/3471874.3472979
https://doi.org/10.1007/978-3-030-78089-0_6
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1007/978-3-642-40184-8_30
https://doi.org/10.1007/978-3-540-73228-0_23
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1109/LICS.1993.287570
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.1006/inco.1998.2711
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://www.doc.ic.ac.uk/research/technicalreports/2017/#2

I. Castellani, O. Dardha, L. Padovani & D. Sangiorgi 25

[49] Alceste Scalas, Ornela Dardha, Raymond Hu & Nobuko Yoshida (2017): A Linear Decomposition of Mul-

tiparty Sessions for Safe Distributed Programming (Artifact). Dagstuhl Artifacts Ser. 3(2), pp. 03:1–03:2,

doi:10.4230/DARTS.3.2.3.

[50] Alceste Scalas & Nobuko Yoshida (2016): Lightweight Session Programming in Scala. In Shriram Kr-

ishnamurthi & Benjamin S. Lerner, editors: ECOOP, LIPIcs 56, Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, pp. 21:1–21:28, doi:10.4230/LIPIcs.ECOOP.2016.21.

[51] Kaku Takeuchi, Kohei Honda & Makoto Kubo (1994): An Interaction-based Language and its Typing System.

In: PARLE, LNCS 817, Springer, pp. 398–413, doi:10.1007/3-540-58184-7_118.

[52] Antonio Vallecillo, Vasco Thudichum Vasconcelos & António Ravara (2006): Typing the Behavior of Soft-

ware Components using Session Types. Fundam. Inform. 73(4), pp. 583–598. Available at https://

content.iospress.com/articles/fundamenta-informaticae/fi73-4-07.

[53] Vasco T. Vasconcelos (2012): Fundamentals of session types. Information Computation 217, pp. 52–70,

doi:10.1016/j.ic.2012.05.002.

[54] Vasco Thudichum Vasconcelos, Simon J. Gay & António Ravara (2006): Type checking a multithreaded

functional language with session types. Theor. Comput. Sci. 368(1-2), pp. 64–87, doi:10.1016/j.tcs.

2006.06.028.

[55] Philip Wadler (2012): Propositions as sessions. In: ICFP, ACM, pp. 273–286, doi:10.1145/2364527.

2364568.

[56] Nobuko Yoshida & Vasco Thudichum Vasconcelos (2007): Language Primitives and Type Discipline for

Structured Communication-Based Programming Revisited: Two Systems for Higher-Order Session Commu-

nication. Electr. Notes Theor. Comput. Sci. 171(4), pp. 73–93, doi:10.1016/j.entcs.2007.02.056.

https://doi.org/10.4230/DARTS.3.2.3
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1007/3-540-58184-7_118
https://content.iospress.com/articles/fundamenta-informaticae/fi73-4-07
https://content.iospress.com/articles/fundamenta-informaticae/fi73-4-07
https://doi.org/10.1016/j.ic.2012.05.002
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1016/j.entcs.2007.02.056

G. Caltais and C. A. Mezzina (Eds): Combined Workshop on
Expressiveness in Concurrency and Structural Operational Semantics
(EXPRESS/SOS 2023).
EPTCS 387, 2023, pp. 26–40, doi:10.4204/EPTCS.387.3

© Aceto, Crescenzi, Ingólfsdóttir, and Mousavi
This work is licensed under the
Creative Commons Attribution License.

The Way We Were: Structural Operational Semantics
Research in Perspective

Luca Aceto
Department of Computer Science,

Reykjavik University,
Reykjavik, Iceland

Gran Sasso Science Institute,
L’Aquila, Italy

luca@ru.is luca.aceto@gssi.it

Pierluigi Crescenzi
Gran Sasso Science Institute,

L’Aquila, Italy
pierluigi.crescenzi@gssi.it

Anna Ingólfsdóttir
Department of Computer Science,

Reykjavik University,
Reykjavik, Iceland
annai@ru.is

Mohammad Reza Mousavi
Department of Informatics,

King’s College London
London, UK

mohammad.mousavi@kcl.ac.uk

1 Introduction

This position paper on the (meta-)theory of Structural Operational Semantic (SOS) is motivated by the
following two questions:

• Is the (meta-)theory of SOS dying out as a research field?

• If so, is it possible to rejuvenate this field with a redefined purpose?

In this article, we will consider possible answers to those questions by first analysing the history of the
EXPRESS/SOS workshops and the data concerning the authors and the presentations featured in the
editions of those workshops as well as their subject matters.

The first International Workshop on Structural Operation was held in London, UK in 2004. The
workshop was established as ‘a forum for researchers, students and practitioners interested in new de-
velopments, and directions for future investigation, in the field of structural operational semantics. One
of the specific goals of the workshop was to establish synergies between the concurrency and program-
ming language communities working on the theory and practice of SOS.’ At its ninth edition, the SOS
workshop joined forces with the nineteenth edition of International Workshop on Expressiveness in Con-
currency. The joint workshop was meant to cover the broader scope of ‘the formal semantics of systems
and programming concepts, and on the expressiveness of mathematical models of computation.’

We examined the contributions dedicated to the theory of SOS presented in the EXPRESSS/SOS
workshop series (and, prior to that, in the SOS workshop) and whether they appeared before or after
the merger between the EXPRESS and SOS workshops. We also used the collected data to compute a
well-established measure of similarity between the two phases in the life of the SOS workshop, before
and after the merger with EXPRESS. Beyond these data- and graph-mining analyses, we reflect on the
major results developed in nearly four decades of research on SOS and identify, in our admittedly biased
opinion, its strengths and gaps.

http://dx.doi.org/10.4204/EPTCS.387.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Aceto, Crescenzi, Ingólfsdóttir, and Mousavi 27

The results of our quantitative and qualitative analyses all indicate a diminishing interest in the theory
of SOS as a field of research. Even though ‘all good things must come to an end’, we strive to finish this
position paper on an upbeat note by addressing our second motivating question with some optimism. To
this end, we use our personal reflections and an analysis of recent trends in two of the flagship conferences
in the field of Programming Languages (namely POPL and PDLI) to draw some conclusions on possible
future directions that may rejuvenate research on the (meta-)theory of SOS. We hope that our musings
will entice members of the research community to breathe new life into a field of research that has been
kind to three of the authors of this article.

Whence this collaboration? This article is the result of a collaboration between a researcher from the
theory of algorithms and their applications, Pierluigi Crescenzi, and three contributors to the theory of
SOS. Pierluigi Crescenzi has recently offered data- and graph-mining analyses of conferences such as
CONCUR, in cooperation with Luca Aceto in [4], SIROCCO [24] and ICALP—see the presentation
available at https://slides.com/piluc/icalp-50?token=fl3BBJ8j. All authors thought that it
was natural to combine quantitative data- and graph-mining analysis techniques with qualitative domain-
specific knowledge to offer a fairly well-rounded perspective on the developments in the (meta-)theory
of SOS and its relation to the SOS and EXPRESS/SOS workshops. Both the Java code and the Julia
software developed by Pierluigi Crescenzi, which was used for the quantitative analyses reported in this
article and the aforementioned earlier ones, are publicly available at the following GitHub repository:
https://github.com/piluc/ConferenceMining. We encourage everyone interested in carrying out
data- and graph-mining analyses of conferences to use it!

2 Data Collection and Analysis

To set the stage for our reflections on the (meta-)theory of SOS, we have carried out some data analysis
on the SOS and EXPRESS/SOS workshops.

2.1 Data Collection

We extracted the following data from all the eleven past editions of the joint EXPRESS/SOS workshop:

1. the authors and titles of contributed talks;

2. invited speakers and the titles of their presentations or papers;

3. the number of submissions and accepted papers; and

4. at least two and at most three subject matter classifiers from the scope of EXPRESS/SOS.

Much of the gathered data was extracted from the tables of contents and proceedings of those editions
of the workshop, which are all available in open access form as volumes of Electronic Proceedings in
Computer Science (EPTCS), and from the DBLP page devoted to the Workshop on Structural Opera-
tional Semantics. In case of missing information regarding the number of submissions, we approached
the workshops chairs and gathered that information through personal communication. For subject matter
classification, since the general classifications, such as the one by the ACM, were too general for our
purposes, we manually read the abstract (and in a few cases full papers) and identified domain-specific
classifiers, using the scope definition of the EXPRESS/SOS workshop.

The results of our data collection are publicly available online.

https://www.pilucrescenzi.it/
https://slides.com/piluc/icalp-50?token=fl3BBJ8j
https://github.com/piluc/ConferenceMining
https://cgi.cse.unsw.edu.au/~eptcs/
https://cgi.cse.unsw.edu.au/~eptcs/
https://dblp.org/db/conf/sos/index.html
https://dblp.org/db/conf/sos/index.html
https://docs.google.com/spreadsheets/d/1OtDI1cbUV46cpT8W_l2BAUrmrXT5R8ZfDwFn2PHRuQ0/edit?usp=sharing

28 SOS Research in Perspective

The choice of focusing our analysis on the last eleven editions was motivated by the fact that, since
2012, the SOS workshop decided to join forces with the EXPRESS workshop and created a new joint
venue. This gave us a consistent view of how the topics featured in the joint workshop have evolved
over time and of how (structural) operational semantics has been represented in the joint workshop since
2012. However, using the data we collected, we also took the opportunity to compare the two phases
of the SOS workshop, the first as an independent workshop in the period 2004–2011 and the second as
EXPRESS/SOS from 2012 till 2022.

2.2 Automatic Analysis

Based on the articles that were archived in the workshop proceedings, we found that
• 194 authors contributed articles to the workshop proceedings since 2004;

• 90 colleagues published papers in the proceedings of the first eight editions of the SOS workshop;

• 122 researchers contributed articles to the joint EXPRESS/SOS workshop in the period 2012–
2022;

• 18 authors published papers in the SOS workshop proceedings both before and after the merger
with the EXPRESS workshop, which means that there were 104 contributors to EXPRESS/SOS
who had never published in the SOS workshop in the period 2004–2011.

The above-mentioned data allow us to compute a measure of similarity between the two phases of the
SOS workshop, before and after the merger with EXPRESS, using the Sørensen-Dice index, which is a
statistic used to measure the similarity of two samples. Given two sets A and B, the Jaccard index J(A,B)
is equal to |A∩B|

|A∪B| , and the Sørensen-Dice index is equal to 2J(A,B)
1+J(A,B) , see [28, 66].

The Sørensen-Dice index for the lists of authors in the two phases of the SOS workshop is roughly
0.17. This value indicates that the SOS workshop is not as similar to the joint EXPRESS/SOS workshop
as one might have expected. By way of comparison, quoting from the data- and graph-mining analysis
of CONCUR presented in [4],

the conference that is most similar to CONCUR is LICS (with Sørensen-Dice index approxi-
mately equal to 0.3), followed by TACAS (approximately 0.25), CAV (approximately 0.24),
and CSL (approximately 0.21).

Computing the Sørensen-Dice index for SOS 2004–2022 and CONCUR, LICS, PLDI and POPL yields
low values of similarity, namely 0.106396 (CONCUR), 0.0622966 (LICS), 0.00585138 (PLDI) and
0.0303169 (POPL). This is due to the fact that the sets of authors of those conferences is much larger
than that of the SOS workshop, namely 1475 (CONCUR), 1953 (LICS), 3220 (PLDI) and 1979 (POPL).

When quantifying the degree of similarity between a small workshop like SOS with larger confer-
ences, it might be more appropriate to consider the Szymkiewicz–Simpson coefficient (also known as
the overlap coefficient) [65, 68, 69, 73]. Given two sets A and B, the Szymkiewicz–Simpson coefficient is
equal to |A∩B|

min(|A|,|B|) . The values of that coefficient for the conferences we considered above are roughly
0.45 (CONCUR), 0.34 (LICS), 0.05 (PLDI) and 0.17 (POPL). Those values seem to support the view
that SOS is rather similar to CONCUR and LICS, has some similarity with POPL, but is very dissimilar
to PLDI.

2.3 Centrality Measures

The static graph (or collaboration graph) of SOS is an undirected graph whose nodes are the authors who
presented at least one paper at SOS, and whose edges link two authors who coauthored at least one paper

Aceto, Crescenzi, Ingólfsdóttir, and Mousavi 29

(not necessarily presented at SOS). In other words, this graph is the subgraph of the DBLP collaboration
graph induced by the set of SOS authors.

Centrality measures have been used as a key tool for understanding social networks, such as the
static graph of SOS, and are used to assess the ‘importance’ of a given node in a network—see, for
instance, [35]. Therefore, to quantify the role played by authors who have contributed to the SOS work-
shop, we have computed the following classic centrality measures on the largest connected component
of the static graph of SOS.

• Degree: This is the number of neighbours of a node in the graph (that is, the number of coauthors).

• Closeness: This is the average distance from one author to all other authors of its connected com-
ponent.

• Betweenness: This is the fraction of shortest paths, passing through one author, between any pair
of other authors in its connected component.

The top ten SOS authors with respect to the above-mentioned three centrality measures are, in decreasing
order:

• Degree: Luca Aceto, Anna Ingólfsdóttir, Mohammad Reza Mousavi, Nobuko Yoshida, Rob van
Glabbeek, Bas Luttik, Wan Fokkink, Michel Reniers, Catuscia Palamidessi, and Rocco De Nicola.

• Closeness: Luca Aceto, Rob van Glabbeek, Nobuko Yoshida, Matthew Hennessy, Catuscia Pala-
midessi, Anna Ingólfsdóttir, Rocco De Nicola, Daniele Gorla, Bas Luttik, and Uwe Nestmann.

• Betweenness: Luca Aceto, Matthew Hennessy, Nobuko Yoshida, Rob van Glabbeek, Rocco De
Nicola, Catuscia Palamidessi, Daniele Gorla, Frank de Boer, Bartek Klin, and Uwe Nestmann.

In addition, we also calculated the temporal closeness, which is an analogue of closeness that takes
the number of years of a collaboration between two authors into account—see the paper [25] for more
information on this centrality measure. The top ten SOS authors according to temporal closeness are, in
decreasing order: Luca Aceto, Anna Ingólfsdóttir, Wan Fokkink, Rocco De Nicola, Catuscia Palamidessi,
Bas Luttik, Michel Reniers, Rob van Glabbeek, Jan Friso Groote, and Mohammad Reza Mousavi.

Finally, to get a glimpse of the evolution of the aforementioned measures of similarity and centrality
in the two phases of the SOS workshop, we computed them on the static graphs before and after the
merger with EXPRESS.

Before the merger with EXPRESS, the 2004–2011 editions of SOS had Szymkiewicz–Simpson index
approximately of 0.42 with CONCUR, 0.37 with LICS, 0.067 with PLDI and 0.2 with POPL. After the
merger with EXPRESS, those figures become 0.512 for CONCUR, 0.352 for LICS, 0.032 for PLDI and
0.152 for POPL. So, from 2012 onwards, SOS has become more similar to CONCUR and even more
dissimilar to PLDI and POPL than before.

The top ten authors at the SOS workshop also change before and after the merger. When focusing on
the period before the merger, the most central authors are as follows, in decreasing order:

• Degree: Luca Aceto, Michel Reniers, Mohammad Reza Mousavi, Anna Ingólfsdóttir, Wan
Fokkink, Rocco De Nicola, José Meseguer, Rob van Glabbeek, Catuscia Palamidessi, and David
de Frutos-Escrig.

• Closeness: Luca Aceto, Anna Ingólfsdóttir, Rocco De Nicola, Rob van Glabbeek, Matthew Hen-
nessy, Georgiana Caltais, Mohammad Reza Mousavi, Eugen-Ioan Goriac, Michel Reniers, and
Catuscia Palamidessi.

30 SOS Research in Perspective

• Betweenness: Rocco De Nicola, Luca Aceto, Catuscia Palamidessi, José Meseguer, Frank de Boer,
Filippo Bonchi, Matthew Hennessy, Michel Reniers, Rob van Glabbeek, and David de Frutos-
Escrig.

• Temporal closeness: Luca Aceto, Anna Ingólfsdóttir, Wan Fokkink, Michel Reniers, Mohammad
Reza Mousavi, José Meseguer, Jan Friso Groote, Rob van Glabbeek, Rocco De Nicola, and Catu-
scia Palamidessi.

After the merger with EXPRESS, our graph-mining analysis yields the following most central authors,
in decreasing order:

• Degree: Nobuko Yoshida, Luca Aceto, Bas Luttik, Rob van Glabbeek, Mohammad Reza Mousavi,
Uwe Nestmann, Anna Ingólfsdóttir, Jorge Pérez, Jos Baeten, and Hans Hüttel.

• Closeness: Nobuko Yoshida, Luca Aceto, Rob van Glabbeek, Catuscia Palamidessi, Anna In-
gólfsdóttir, Bas Luttik, Uwe Nestmann, Mohammad Reza Mousavi, Iain Phillips, and Mariangiola
Dezani-Ciancaglini.

• Betweenness: Nobuko Yoshida, Rob van Glabbeek, Daniele Gorla, Luca Aceto, Bas Luttik, Bartek
Klin, Uwe Nestmann, Catuscia Palamidessi, Hans Hüttel, and Rance Cleaveland.

• Temporal closeness: Luca Aceto, Anna Ingólfsdóttir, Bas Luttik, Tim Willemse, Catuscia Pa-
lamidessi, Mohammad Reza Mousavi, Jos Baeten, Jan Friso Groote, Jorge Pérez, and Rob van
Glabbeek.

2.4 The Two Lives of the SOS Workshop

As we saw above, the first and the second life of the SOS workshop are not that similar after all, which
seems to indicate that the eleven joint editions of the EXPRESS/SOS workshop were more about expres-
siveness than about structural operational semantics1. To see whether this is really the case, we visually
summarise the data we collected in Figure 1 and provide its details below:

• The proceedings of EXPRESS/SOS 2012 included 10 papers, five of which dealt with topics re-
lated to operational semantics and its mathematical (meta-)theory—that’s 50% of the articles and
the largest percentage of SOS contributions to EXPRESS/SOS in the period 2012–2022.

• The proceedings of EXPRESS/SOS 2013 included seven papers, two of which dealt with topics
related to operational semantics and its mathematical (meta-)theory—that’s 28.5% of the contri-
butions .

• The proceedings of EXPRESS/SOS 2014 included eight papers, two of which (25%) dealt with
topics related to the theory of structural operational semantics.

• The proceedings of EXPRESS/SOS 2015 included six papers, one of which (16.7%) dealt with
topics related to the theory of structural operational semantics.

• The proceedings of EXPRESS/SOS 2016 included five papers, none of which dealt mainly with
operational semantics.

1Another possible explanation for the low degree of similarity between the pre- and post-merger incarnations of the SOS
workshop is that the community welcomed many new authors from 2012 onwards. This would be a healthy and welcome
development and is, in fact, supported by the data we collected. However, the analysis we present in what follows gives some
indication that, since 2014, the scientific programme of EXPRESS/SOS has featured only a few papers on structural operational
semantics.

Aceto, Crescenzi, Ingólfsdóttir, and Mousavi 31

• The proceedings of EXPRESS/SOS 2017 included six papers, one of which (16.7%) dealt mainly
with operational semantics.

• The proceedings of EXPRESS/SOS 2018 included seven papers, none of which dealt mainly with
operational semantics.

• The proceedings of EXPRESS/SOS 2019 included seven papers, two of which 28.5% dealt mainly
with operational semantics.

• The proceedings of EXPRESS/SOS 2020 included six papers, none of which dealt mainly with
operational semantics.

• The proceedings of EXPRESS/SOS 2021 included six papers, none of which dealt mainly with
operational semantics.

• The proceedings of EXPRESS/SOS 2022 included eight papers, none of which dealt mainly with
operational semantics.

Figure 1: Total number of accepted paper (blue) and the number of accepted papers on SOS theory at the
EXPRESS/SOS Workshop since 2012.

So, only 13 out of the 76 papers published in the proceedings of EXPRESS/SOS since 2012 dealt
with topics in SOS theory (17.1% of published papers). In passing, we also note that 16 out of the 110
presentations at the workshop in the period 2012–2022 were devoted to topics in SOS theory (that is,
14.5% of the workshop presentations). Research in SOS was well represented at EXPRESS/SOS in the
first three editions of the joint workshop. However, five of the last seven instalments of the workshop
did not include any presentations devoted to topics that were mainly related to structural operational

32 SOS Research in Perspective

semantics. In particular, EXPRESS/SOS 2020–2022 did not have any talks on the theory and applications
of structural operational semantics.

2.5 Reflections on the Analysis Results

Reading through the EXPRESS/SOS contributions relevant to the theory of SOS reveals that the most
recent results mostly focused on two aspects of SOS specifications: foundational aspects concerning the
bialgebraic interpretation of SOS due to Turi and Plotkin [70], as well as compositionality of quantitative
notions of equivalence such as probabilistic bisimilarity. Below, we provide a more nuanced analysis of
this trend.

Another observation is that the diminishing strength in the provision of results on the theory of SOS
can be largely attributed to a lack of projects (particularly, PhD studentships) in this area. Almost all
of the results on the meta-theory of SOS contributed to the EXPRESS/SOS series had a co-author with
a PhD project on this topic. A reduction in the number of doctoral students does not bode well for the
healthy development of any research field.

3 Personal Reflections

Since the appearance of Plotkin’s seminal Aarhus technical report [59], reprinted in slightly revised form
as a journal paper in [61] with some historical remarks by Plotkin himself in [60], structural operational
semantics has arguably become the most widely used approach to defining the semantics of programming
and executable specification languages. To our mind, it is as impactful and popular today as it has been
for over forty years. Indeed, one would be hard pressed to find papers on the theory of programming
and specification languages that do not use structural operational semantics in some way. Moreover, the
semantics of full-blown programming or domain-specific languages is still given in that style, reflect-
ing its flexibility and applicability—see, for instance, the paper [44] for a small-step semantics of full
Ethereum-virtual-machine bytecode that is formalised in the F∗ proof assistant [67] and then validated
against the official Ethereum test suite.

As Plotkin highlights in his aforementioned piece on the origins of structural operational semantics,
the essence of that approach to semantics is that it is rule based and that the rules should be syntax
directed in order to support compositional language specifications and reasoning, as in the denotational
approach to semantics. Conceptually, this rule-based view of operational semantics naturally led to
the development of a theory of SOS language specifications that focused on the rules used in semantic
definitions. The gist of that line of research, which can be traced back to de Simone’s work [64], was
to study rule formats for operational specifications guaranteeing that every program in the specified
language afford some semantic property of interest. So, rule formats offered a way to reduce the checking
of semantic properties of programs in a language to syntactic checks on the rules used to define the
operational semantics of the language. The literature on what came to be called the ‘meta-theory of
structural operational semantics’ is by now very large and we cannot do it justice in this paper. We
refer the interested reader to the survey articles [6, 58] and to the references therein as well as the
proceedings of SOS, EXPRESS/SOS, and of conferences such as CONCUR, LICS and POPL, for much
more information and recent references. Naturally, since its first edition in 2004, the SOS workshop has
served as a venue for the publication of several articles on SOS meta-theory.

Three of the authors of this piece have been amongst the contributors to the development of the
fascinating research on rule formats for operational specifications and thoroughly enjoyed doing so.

Aceto, Crescenzi, Ingólfsdóttir, and Mousavi 33

However, we feel that the time has come for a critical appraisal of the strengths, weaknesses and possible
future of that line of research and to speculate about whether the data we discussed in Section 2 reflects
the musings we present in the rest of this note.

3.1 Strengths

In our, admittedly biased, opinion, research on rule formats for structural operational semantics has led
to a wealth of interesting and elegant theoretical results, ranging from those on the meaning of rule-based
specifications using rules with negative premises (see, for instance, the articles [13, 40, 18]) to congru-
ence formats for several behavioural equivalences obtained uniformly from their modal characterisations
via modal decomposition (see, for example, [11, 34, 32, 33] and the references therein). Early studies of
congruence rule formats, such as those reported in the seminal [12, 45], were accompanied by charac-
terisations of the largest congruences included in trace semantics induced by the collection of operators
that can be specified in the rule formats studied in those references. After all these years, we still find it
amazing that such results could be proved at all!

Below we provide a non-exhaustive list of the available meta-theorems with sufficient strength (more
than a single paper, with more than one application to a language) and we refer to the past review
papers/chapters [6, 58] for a more exhaustive list to the date of their publication:

• Congruence: proving congruence (compositionality) for various notions of strong [52, 72], weak
[32], higher-order [54], data-rich [56], timed [47], and quantitative behavioural equivalences [26,
16, 17]; supporting various syntactic language features such as formal variables and binders [52,
20], as well as semantic features such as negative premises and predicates, terms as labels, and
ordering on rules.

• (De-)Compositional reasoning methods: decomposing logical formulae (in the multi-modal µ-
calculus, also known as Hennessy-Milner logic with recursion, [49, 50]) according to the semantics
of various operators for various notions of bisimilarity [33, 32, 34] and their quantitative exten-
sions [16, 17]; interestingly, this can lead not only to a reasoning method for checking modal
formulae, but can also serve as a recipe for ‘generating’ congruence formats for different notions
of equivalence, once their modal characterisation is defined.

• Axiomatisation and algebraic properties: to generate sound and ground-complete axiomatisations
for strong bisimilarity [2], as well as weak behavioural equivalences [41], and equivalences with
data [37]. An orthogonal line of enquiry considered identifying sufficient conditions guaranteeing
various algebraic properties of language operators such as commutativity [57], associativity [23],
zero and unit elements [3], and idempotence [1]; we refer to an accessible overview paper [8]
summarising such results to its date of publication.

There have been a number of implementations of such results in tools [7, 55, 71], mostly based on
rewriting logic [21].

Several of the theorems from the theory of structural operational semantics have found application in
the study of process calculi, reducing the need to prove congruence and axiomatisation results, amongst
others, from scratch for each calculus and have been extended to settings including, for instance, prob-
abilistic and stochastic features (see, for example, [17, 26]), as well as to higher-order calculi, as in
the recent [43]. The article [43] belongs to a fruitful and still active line of research, stemming from
the seminal work by Turi and Plotkin [70], providing bialgebraic foundations to the theory of structural
operational semantics.

34 SOS Research in Perspective

The contributions to the work on rule formats and on the meta-theory of structural operational se-
mantics have striven to achieve a reasonably good trade-off between the generality of the technical results
and the ease with which they can be applied to specific languages. Ideally, one would always like to have
simple syntactic restrictions on rule formats that guarantee desired semantic properties in a wide variety
of applications. Indeed, following a Pareto Principle, very often simple rule formats cover many of the
languages of interest and one quickly hits a threshold where complex and hard-to-check definitions are
needed to extend the applicability of obtained results. In many cases, the ‘curse of generality’ led to
definitions of rule formats whose constraints are arguably not purely syntactic any more and may even
be undecidable. As an example, Klin and Nachyla [48] have shown that it is undecidable whether an
operational specification that uses rules with negative premises has a least supported model and whether
it has a unique supported model or a stable model. It is also undecidable whether such a specification
is complete. As mentioned by Klin and Nachyla in the aforementioned reference, these negative results
entail that formats such as the complete ntyft/ntyxt [31] ‘are not bona fide syntactic formats, as there is
no algorithmic way to tell whether a given specification fits such a format.’ So, the pursuit of generality
is, to our mind, a double-edged sword and can be seen as both a strength and a weakness of several result
on rule formats and the meta-theory of structural operational semantics.

In the context of EXPRESS/SOS, we observed that this tradition of strong theoretical results is dying
down: from 2012 to 2017, we counted nine contribution to the foundation of SOS specifications [7, 14,
27, 37, 38, 39, 48, 51, 62], including on the bialgebraic framework [14, 48, 62], as well as congruence
for quantitative notions of equivalence [27, 38, 39, 51] and axiomatisation results [37]; however, this
number dropped to only one contribution from 2018 to 2022 on the meaning of SOS specification and
compositionality of equivalences on open terms [42].

In summary, we believe that the study of rule formats and of the meta-theory of structural operational
semantics has yielded many elegant results that have been of some use for the working concurrency
theorist. However, first, the number of such contributions has significantly dropped in the past few years
and, second, one has to wonder whether that line of work has had impact on the field of programming
language semantics. We will offer some musings on that question in the coming section.

3.2 Gaps

To our mind, apart from its intrinsic scientific interest, the theory of structural operational semantics
based on rule formats has served the concurrency-theory community well by providing elegant, and
often general and deep, results that have both explained the underlying reasons why specific languages
enjoyed several semantic properties and served as tools to prove new theorems as instances of a general
framework. The use of ‘syntactic’ rule formats to establish properties of interest about formal systems has
also been used in logic. By way of example, Ciabattoni and Leitsch have given algorithmic conditions
guaranteeing that some logics enjoy cut elimination [19]. However, despite its undoubted successes,
to our mind, the theory of rule formats has not yet had the impact one might have expected on the
community working on the theory of programming languages. Perusing the proceedings of the premier
conferences in that field indicates that much of the research on programming-language semantics and its
applications is done in the context of proof assistants such as Coq [9, 22]2 and on frameworks built on top
of those—see, for instance, the highly influential Iris framework for higher-order concurrent separation
logic [46].

We speculate that this relative lack of impact might be due to the fact that the theory of structural

2Coq is available at https://coq.inria.fr/.

https://coq.inria.fr/

Aceto, Crescenzi, Ingólfsdóttir, and Mousavi 35

operational semantics based on rule formats has been mostly developed within the process algebra com-
munity. This has naturally led to the development of results and frameworks having process calculi as
main application area. As a consequence, despite some foundational research [5, 30, 56], the devel-
opment of a widely-applicable theory of rule formats for languages having first-class notions of data
and memory, as well as binding constructs is still somewhat in its infancy. This limits the applicability
of the results obtained by the concurrency theory community to mainstream programming languages.
Moreover, the software tools embodying the theory of structural operational semantics developed so far
have mostly taken the form of prototypes and are arguably not as mature and usable as those produced
by groups working on the theory of programming languages [63]. The initial work carried out within
the PLanCompS [10] aimed to address this gap based on the Modular SOS framework that has been
pioneered by Mosses [53]; this line of work has been influential and has led to other frameworks such as
the iCoLa framework for incremental language development [36].

3.3 Trends and Opportunities

To relate the past strengths to future trends, particularly regarding emerging application areas of op-
erational semantics, we analysed the table of contents of five past editions of flagship conferences in
programming languages: POPL (from 2021 to 2023, inclusive) and PLDI (from 2021 to 2022, inclu-
sive). The aim of the analysis was to find areas where the available strength in the theory of SOS can
be exploited. We aimed to be as inclusive as possible and tried to mention any such areas, even if the
exploitation of available strength would require a major rework or transformation of ideas and results.
Below we provide a raw list of keywords that we encountered in our analysis:

• POPL 2023: Semantics of Probabilistic and Quantum programs, Coq Proof Libraries, Nominal
Sets, Co-Algebra and Bisimulation, Multi-Language Semantics, Session types.

• POPL 2022: Session types, Semantics of Probabilistic and Quantum programs, Semantic Substi-
tution and congruence.

• POPL 2021: Semantics of Probabilistic Programs, Nominal Semantics, Hyper-properties and non-
interference, functorial semantics

• PLDI 2022: Information flow analysis, equational and algebraic reasoning (also applied to quan-
tum programs), sound sequentialisation, Kleene algebra, language interoperability, verified com-
pilation (also applied to quantum programs).

• PLDI 2021: Language translation conformance and compiler verification, session types, regular
expressions, semantics of probabilistic and quantum programs.

In all the POPL and PLDI editions we reviewed, abstract interpretation (also for quantum programs),
analysing weak memory models, and reasoning using separation logics are featured prominently.

It appears from our analysis that the following activities may have substantial potential impact:

• semantic meta-theorems about quantitative transition systems (particularly probabilistic and quan-
tum transition systems [15, 29]);

• providing mechanised semantic frameworks, particularly in proof assistants such as Coq;

• defining general semantic frameworks and theorems for different memory models and models of
parallelism;

• defining general compositional frameworks for reasoning with separation logics and logics of in-
correctness;

36 SOS Research in Perspective

• devising algorithms for test-case generation, for instance, for compiler testing, based on a semantic
framework.

We hope to see work on some of those topics in the near future, which might lead to a new lease of life
for the (meta-)theory of SOS and its applications.

Acknowledgements We thank Valentina Castiglioni and Peter Mosses for their comments on a draft
of this piece. Luca Aceto and Anna Ingólfsdóttir were partly supported by the projects ‘Open Prob-
lems in the Equational Logic of Processes (OPEL)’ (grant no. 196050) and ‘Mode(l)s of Verification
and Monitorability (MoVeMent)’ (grant no. 217987) of the Icelandic Research Fund. Mohammad Reza
Mousavi have been partially supported by the UKRI Trustworthy Autonomous Systems Node in Veri-
fiability, Grant Award Reference EP/V026801/2 and the EPSRC grant on Verified Simulation for Large
Quantum Systems (VSL-Q), Grant Award Reference EP/Y005244/1.

References

[1] Luca Aceto, Arnar Birgisson, Anna Ingólfsdóttir, Mohammad Reza Mousavi & Michel A. Reniers (2012):
Rule formats for determinism and idempotence. Science of Computer Programming 77(7-8), pp. 889–907,
doi:10.1016/j.scico.2010.04.002.

[2] Luca Aceto, Bard Bloom & Frits W. Vaandrager (1994): Turning SOS Rules into Equations. Information and
Computation 111(1), pp. 1–52, doi:10.1006/inco.1994.1040.

[3] Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, Mohammad Reza Mousavi & Michel A. Reniers (2011):
SOS rule formats for zero and unit elements. Theoretical Computer Science 412(28), pp. 3045–3071,
doi:10.1016/j.tcs.2011.01.024.

[4] Luca Aceto & Pierluigi Crescenzi (2022): CONCUR Through Time. Bulletin of the EATCS 138, pp. 157–166.
Available at http://bulletin.eatcs.org/index.php/beatcs/article/view/737.

[5] Luca Aceto, Ignacio Fábregas, Álvaro García-Pérez, Anna Ingólfsdóttir & Yolanda Ortega-Mallén (2019):
Rule Formats for Nominal Process Calculi. Logical Methods in Computer Science 15(4), pp. 2:1–2:46,
doi:10.23638/LMCS-15(4:2)2019.

[6] Luca Aceto, Wan Fokkink & Chris Verhoef (2001): Structural Operational Semantics. In Jan A. Bergstra,
Alban Ponse & Scott A. Smolka, editors: Handbook of Process Algebra, North-Holland / Elsevier, pp. 197–
292, doi:10.1016/b978-044482830-9/50021-7.

[7] Luca Aceto, Eugen-Ioan Goriac & Anna Ingólfsdóttir (2013): Meta SOS - A Maude Based SOS Meta-
Theory Framework. In Johannes Borgström & Bas Luttik, editors: Proceedings Combined 20th Inter-
national Workshop on Expressiveness in Concurrency and 10th Workshop on Structural Operational Se-
mantics, EXPRESS/SOS 2013, Buenos Aires, Argentina, 26th August, 2013, EPTCS 120, pp. 93–107,
doi:10.4204/EPTCS.120.8.

[8] Luca Aceto, Anna Ingólfsdóttir, Mohammad Reza Mousavi & Michel A. Reniers (2009): Algebraic Prop-
erties for Free! Bulletin of the European Association for Theoretical Computer Science (BEATCS) 99, pp.
81–104.

[9] Yves Bertot & Pierre Castéran (2004): Interactive Theorem Proving and Program Development - Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS Series,
Springer, doi:10.1007/978-3-662-07964-5.

[10] L. Thomas van Binsbergen, Neil Sculthorpe & Peter D. Mosses (2016): Tool support for component-based
semantics. In Lidia Fuentes, Don S. Batory & Krzysztof Czarnecki, editors: Companion Proceedings of
the 15th International Conference on Modularity, Málaga, Spain, March 14 - 18, 2016, ACM, pp. 8–11,
doi:10.1145/2892664.2893464.

https://doi.org/10.1016/j.scico.2010.04.002
https://doi.org/10.1006/inco.1994.1040
https://doi.org/10.1016/j.tcs.2011.01.024
http://bulletin.eatcs.org/index.php/beatcs/article/view/737
https://doi.org/10.23638/LMCS-15(4:2)2019
https://doi.org/10.1016/b978-044482830-9/50021-7
https://doi.org/10.4204/EPTCS.120.8
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1145/2892664.2893464

Aceto, Crescenzi, Ingólfsdóttir, and Mousavi 37

[11] Bard Bloom, Wan Fokkink & Rob van Glabbeek (2004): Precongruence formats for decorated trace seman-
tics. ACM Transactions on Computational Logic 5(1), pp. 26–78, doi:10.1145/963927.963929.

[12] Bard Bloom, Sorin Istrail & Albert R. Meyer (1995): Bisimulation Can’t be Traced. Journal of the ACM
42(1), pp. 232–268, doi:10.1145/200836.200876.

[13] Roland N. Bol & Jan Friso Groote (1996): The Meaning of Negative Premises in Transition System Specifi-
cations. Journal of the ACM 43(5), pp. 863–914, doi:10.1145/234752.234756.

[14] Marcello M. Bonsangue, Stefan Milius & Jurriaan Rot (2012): On the specification of operations on the
rational behaviour of systems. In Bas Luttik & Michel A. Reniers, editors: Proceedings Combined 19th
International Workshop on Expressiveness in Concurrency and 9th Workshop on Structured Operational
Semantics, EXPRESS/SOS 2012, Newcastle upon Tyne, UK, September 3, 2012, EPTCS 89, pp. 3–18,
doi:10.4204/EPTCS.89.2.

[15] Richard Bornat, Jaap Boender, Florian Kammueller, Guillaume Poly & Rajagopal Nagarajan (2020): De-
scribing and Simulating Concurrent Quantum Systems. In Armin Biere & David Parker, editors: Tools and
Algorithms for the Construction and Analysis of Systems - 26th International Conference, TACAS 2020,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin,
Ireland, April 25-30, 2020, Proceedings, Part II, Lecture Notes in Computer Science 12079, Springer, pp.
271–277, doi:10.1007/978-3-030-45237-7_16.

[16] Valentina Castiglioni, Daniel Gebler & Simone Tini (2018): SOS-based Modal Decomposition on Non-
deterministic Probabilistic Processes. Logical Methods in Computer Science 14(2), doi:10.23638/LMCS-
14(2:18)2018.

[17] Valentina Castiglioni & Simone Tini (2020): Probabilistic divide & congruence: Branching bisimilarity.
Theoretical Computer Science 802, pp. 147–196, doi:10.1016/j.tcs.2019.09.037.

[18] Martin Churchill, Peter D. Mosses & Mohammad Reza Mousavi (2013): Modular Semantics for Transi-
tion System Specifications with Negative Premises. In Pedro R. D’Argenio & Hernán C. Melgratti, editors:
CONCUR 2013 - Concurrency Theory - 24th International Conference, CONCUR 2013, Buenos Aires, Ar-
gentina, August 27-30, 2013. Proceedings, Lecture Notes in Computer Science 8052, Springer, pp. 46–60,
doi:10.1007/978-3-642-40184-8_5.

[19] Agata Ciabattoni & Alexander Leitsch (2008): Towards an algorithmic construction of cut-elimination proce-
dures. Mathematical Structures in Computer Science 18(1), pp. 81–105, doi:10.1017/S0960129507006573.

[20] Matteo Cimini, Mohammad Reza Mousavi, Michel A. Reniers & Murdoch James Gabbay (2012): Nominal
SOS. In Ulrich Berger & Michael W. Mislove, editors: Proceedings of the 28th Conference on the Mathe-
matical Foundations of Programming Semantics, MFPS 2012, Bath, UK, June 6-9, 2012, Electronic Notes
in Theoretical Computer Science 286, Elsevier, pp. 103–116, doi:10.1016/j.entcs.2012.08.008.

[21] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet, José Meseguer & Car-
olyn L. Talcott, editors (2007): All About Maude - A High-Performance Logical Framework, How to Spec-
ify, Program and Verify Systems in Rewriting Logic. Lecture Notes in Computer Science 4350, Springer,
doi:10.1007/978-3-540-71999-1.

[22] Thierry Coquand & Gérard P. Huet (1988): The Calculus of Constructions. Information and Computation
76(2/3), pp. 95–120, doi:10.1016/0890-5401(88)90005-3.

[23] Sjoerd Cranen, Mohammad Reza Mousavi & Michel A. Reniers (2008): A Rule Format for Associativity. In
Franck van Breugel & Marsha Chechik, editors: CONCUR 2008 - Concurrency Theory, 19th International
Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008. Proceedings, Lecture Notes in Computer
Science 5201, Springer, pp. 447–461, doi:10.1007/978-3-540-85361-9_35.

[24] Pierluigi Crescenzi (2023): Thirty Years of SIROCCO A Data and Graph Mining Comparative Analysis of
Its Temporal Evolution. In Sergio Rajsbaum, Alkida Balliu, Joshua J. Daymude & Dennis Olivetti, editors:
Structural Information and Communication Complexity - 30th International Colloquium, SIROCCO 2023,
Alcalá de Henares, Spain, June 6-9, 2023, Proceedings, Lecture Notes in Computer Science 13892, Springer,
pp. 18–32, doi:10.1007/978-3-031-32733-9_2.

https://doi.org/10.1145/963927.963929
https://doi.org/10.1145/200836.200876
https://doi.org/10.1145/234752.234756
https://doi.org/10.4204/EPTCS.89.2
https://doi.org/10.1007/978-3-030-45237-7_16
https://doi.org/10.23638/LMCS-14(2:18)2018
https://doi.org/10.23638/LMCS-14(2:18)2018
https://doi.org/10.1016/j.tcs.2019.09.037
https://doi.org/10.1007/978-3-642-40184-8_5
https://doi.org/10.1017/S0960129507006573
https://doi.org/10.1016/j.entcs.2012.08.008
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1016/0890-5401(88)90005-3
https://doi.org/10.1007/978-3-540-85361-9_35
https://doi.org/10.1007/978-3-031-32733-9_2

38 SOS Research in Perspective

[25] Pierluigi Crescenzi, Clémence Magnien & Andrea Marino (2020): Finding Top-k Nodes for Temporal Close-
ness in Large Temporal Graphs. Algorithms 13(9), p. 211, doi:10.3390/a13090211.

[26] Pedro R. D’Argenio, Daniel Gebler & Matias David Lee (2016): A general SOS theory for the
specification of probabilistic transition systems. Information and Computation 249, pp. 76–109,
doi:10.1016/j.ic.2016.03.009.

[27] Pedro R. D’Argenio, Matias David Lee & Daniel Gebler (2015): SOS rule formats for convex and ab-
stract probabilistic bisimulations. In Silvia Crafa & Daniel Gebler, editors: Proceedings of the Com-
bined 22th International Workshop on Expressiveness in Concurrency and 12th Workshop on Structural
Operational Semantics, EXPRESS/SOS 2015, Madrid, Spain, 31st August 2015, EPTCS 190, pp. 31–45,
doi:10.4204/EPTCS.190.3.

[28] Lee Raymond Dice (1945): Measures of the Amount of Ecologic Association Between Species. Ecology
26(3), pp. 297–302, doi:10.2307/1932409.

[29] Yuan Feng, Yuxin Deng & Mingsheng Ying (2014): Symbolic Bisimulation for Quantum Processes. ACM
Transactions on Computational Logic 15(2), pp. 14:1–14:32, doi:10.1145/2579818.

[30] Marcelo P. Fiore & Sam Staton (2009): A congruence rule format for name-passing process calculi. Infor-
mation and Computation 207(2), pp. 209–236, doi:10.1016/j.ic.2007.12.005.

[31] Wan Fokkink & Rob van Glabbeek (1996): Ntyft/Ntyxt Rules Reduce to Ntree Rules. Information and Com-
putation 126(1), pp. 1–10, doi:10.1006/inco.1996.0030.

[32] Wan Fokkink & Rob van Glabbeek (2017): Divide and congruence II: From decomposition of modal for-
mulas to preservation of delay and weak bisimilarity. Information and Computation 257, pp. 79–113,
doi:10.1016/j.ic.2017.10.003.

[33] Wan Fokkink, Rob van Glabbeek & Bas Luttik (2019): Divide and congruence III: From decomposi-
tion of modal formulas to preservation of stability and divergence. Information and Computation 268,
doi:10.1016/j.ic.2019.104435.

[34] Wan Fokkink, Rob van Glabbeek & Paulien de Wind (2012): Divide and congruence: From decomposition
of modal formulas to preservation of branching and η-bisimilarity. Information and Computation 214, pp.
59–85, doi:10.1016/j.ic.2011.10.011.

[35] Linton C. Freeman (1978–1979): Centrality in Social Networks Conceptual Clarification. Social Networks
1(3), pp. 215–239, doi:10.1016/0378-8733(78)90021-7.

[36] Damian Frölich & L. Thomas van Binsbergen (2022): iCoLa: A Compositional Meta-language with Sup-
port for Incremental Language Development. In Bernd Fischer, Lola Burgueño & Walter Cazzola, editors:
Proceedings of the 15th ACM SIGPLAN International Conference on Software Language Engineering, SLE
2022, Auckland, New Zealand, December 6-7, 2022, ACM, pp. 202–215, doi:10.1145/3567512.3567529.

[37] Daniel Gebler, Eugen-Ioan Goriac & Mohammad Reza Mousavi (2013): Algebraic Meta-Theory of Pro-
cesses with Data. In Johannes Borgström & Bas Luttik, editors: Proceedings Combined 20th Inter-
national Workshop on Expressiveness in Concurrency and 10th Workshop on Structural Operational Se-
mantics, EXPRESS/SOS 2013, Buenos Aires, Argentina, 26th August, 2013, EPTCS 120, pp. 63–77,
doi:10.4204/EPTCS.120.6.

[38] Daniel Gebler & Simone Tini (2013): Compositionality of Approximate Bisimulation for Probabilistic Sys-
tems. In Johannes Borgström & Bas Luttik, editors: Proceedings Combined 20th International Workshop
on Expressiveness in Concurrency and 10th Workshop on Structural Operational Semantics, EXPRESS/SOS
2013, Buenos Aires, Argentina, 26th August, 2013, EPTCS 120, pp. 32–46, doi:10.4204/EPTCS.120.4.

[39] Daniel Gebler & Simone Tini (2014): Fixed-point Characterization of Compositionality Properties of Prob-
abilistic Processes Combinators. In Johannes Borgström & Silvia Crafa, editors: Proceedings Combined
21st International Workshop on Expressiveness in Concurrency, EXPRESS 2014, and 11th Workshop on
Structural Operational Semantics, SOS 2014, Rome, Italy, 1st September 2014, EPTCS 160, pp. 63–78,
doi:10.4204/EPTCS.160.7.

https://doi.org/10.3390/a13090211
https://doi.org/10.1016/j.ic.2016.03.009
https://doi.org/10.4204/EPTCS.190.3
https://doi.org/10.2307/1932409
https://doi.org/10.1145/2579818
https://doi.org/10.1016/j.ic.2007.12.005
https://doi.org/10.1006/inco.1996.0030
https://doi.org/10.1016/j.ic.2017.10.003
https://doi.org/10.1016/j.ic.2019.104435
https://doi.org/10.1016/j.ic.2011.10.011
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1145/3567512.3567529
https://doi.org/10.4204/EPTCS.120.6
https://doi.org/10.4204/EPTCS.120.4
https://doi.org/10.4204/EPTCS.160.7

Aceto, Crescenzi, Ingólfsdóttir, and Mousavi 39

[40] Rob van Glabbeek (2004): The meaning of negative premises in transition system specifications II. Journal
of Logical and Algebraic Methods in Programming 60–61, pp. 229–258, doi:10.1016/j.jlap.2004.03.007.

[41] Rob van Glabbeek (2011): On cool congruence formats for weak bisimulations. Theoretical Computer
Science 412(28), pp. 3283–3302, doi:10.1016/j.tcs.2011.02.036.

[42] Rob van Glabbeek (2019): On the Meaning of Transition System Specifications. In Jorge A. Pérez & Jurriaan
Rot, editors: Proceedings Combined 26th International Workshop on Expressiveness in Concurrency and
16th Workshop on Structural Operational Semantics, EXPRESS/SOS 2019, Amsterdam, The Netherlands,
26th August 2019, EPTCS 300, pp. 69–85, doi:10.4204/EPTCS.300.5.

[43] Sergey Goncharov, Stefan Milius, Lutz Schröder, Stelios Tsampas & Henning Urbat (2023): Towards a
Higher-Order Mathematical Operational Semantics. Proceedings of the ACM on Programming Languages
7(POPL), pp. 632–658, doi:10.1145/3571215.

[44] Ilya Grishchenko, Matteo Maffei & Clara Schneidewind (2018): A Semantic Framework for the Security
Analysis of Ethereum Smart Contracts. In Lujo Bauer & Ralf Küsters, editors: Principles of Security and
Trust - 7th International Conference, POST 2018, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Lecture Notes
in Computer Science 10804, Springer, pp. 243–269, doi:10.1007/978-3-319-89722-6_10.

[45] Jan Friso Groote & Frits W. Vaandrager (1992): Structured Operational Semantics and Bisimulation as a
Congruence. Information and Computation 100(2), pp. 202–260, doi:10.1016/0890-5401(92)90013-6.

[46] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal & Derek Dreyer (2018):
Iris from the ground up: A modular foundation for higher-order concurrent separation logic. Journal of
Functional Programming 28, p. e20, doi:10.1017/S0956796818000151.

[47] Marco Kick (2002): Coalgebraic Modelling of Timed Processes. Ph.D. thesis, School of Informatics, Univer-
sity of Edinburgh. Available at https://www.lfcs.inf.ed.ac.uk/reports/04/ECS-LFCS-04-435/.

[48] Bartek Klin & Beata Nachyla (2017): Some undecidable properties of SOS specifications. Journal of Logical
and Algebraic Methods in Programming 87, pp. 94–109, doi:10.1016/j.jlamp.2016.08.005.

[49] Dexter Kozen (1983): Results on the Propositional mu-Calculus. Theoretical Computer Science 27, pp.
333–354, doi:10.1016/0304-3975(82)90125-6.

[50] Kim Guldstrand Larsen (1990): Proof Systems for Satisfiability in Hennessy-Milner Logic with Recursion.
Theoretical Computer Science 72(2&3), pp. 265–288, doi:10.1016/0304-3975(90)90038-J.

[51] Matias David Lee, Daniel Gebler & Pedro R. D’Argenio (2012): Tree rules in probabilistic transition system
specifications with negative and quantitative premises. In Bas Luttik & Michel A. Reniers, editors: Pro-
ceedings Combined 19th International Workshop on Expressiveness in Concurrency and 9th Workshop on
Structured Operational Semantics, EXPRESS/SOS 2012, Newcastle upon Tyne, UK, September 3, 2012,
EPTCS 89, pp. 115–130, doi:10.4204/EPTCS.89.9.

[52] Cornelis A. Middelburg (2001): Variable binding operators in transition system specifications. Journal of
Logical and Algebraic Methods in Programming 47(1), pp. 15–45, doi:10.1016/S1567-8326(00)00003-5.

[53] Peter D. Mosses (2004): Modular structural operational semantics. Journal of Logical and Algebraic Meth-
ods in Programming 60–61, pp. 195–228, doi:10.1016/j.jlap.2004.03.008.

[54] Mohammad Reza Mousavi, Murdoch Gabbay & Michel A. Reniers (2005): SOS for Higher Order Processes.
In Martín Abadi & Luca de Alfaro, editors: CONCUR 2005 - Concurrency Theory, 16th International Con-
ference, CONCUR 2005, San Francisco, CA, USA, August 23-26, 2005, Proceedings, Lecture Notes in
Computer Science 3653, Springer, pp. 308–322, doi:10.1007/11539452_25.

[55] Mohammad Reza Mousavi & Michel A. Reniers (2005): Prototyping SOS Meta-theory in Maude. In Peter D.
Mosses & Irek Ulidowski, editors: Proceedings of the Second Workshop on Structural Operational Seman-
tics, SOS@ICALP 2005, Lisbon, Portugal, July 10, 2005, Electronic Notes in Theoretical Computer Science
156, Elsevier, pp. 135–150, doi:10.1016/j.entcs.2005.09.030.

https://doi.org/10.1016/j.jlap.2004.03.007
https://doi.org/10.1016/j.tcs.2011.02.036
https://doi.org/10.4204/EPTCS.300.5
https://doi.org/10.1145/3571215
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1016/0890-5401(92)90013-6
https://doi.org/10.1017/S0956796818000151
https://www.lfcs.inf.ed.ac.uk/reports/04/ECS-LFCS-04-435/
https://doi.org/10.1016/j.jlamp.2016.08.005
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(90)90038-J
https://doi.org/10.4204/EPTCS.89.9
https://doi.org/10.1016/S1567-8326(00)00003-5
https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/10.1007/11539452_25
https://doi.org/10.1016/j.entcs.2005.09.030

40 SOS Research in Perspective

[56] Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso Groote (2005): Notions of bisimula-
tion and congruence formats for SOS with data. Information and Computation 200(1), pp. 107–147,
doi:10.1016/j.ic.2005.03.002.

[57] Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso Groote (2005): A syntactic commutativity format
for SOS. Information Processing Letters 93(5), pp. 217–223, doi:10.1016/j.ipl.2004.11.007.

[58] Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso Groote (2007): SOS formats and meta-theory: 20
years after. Theoretical Computer Science 373(3), pp. 238–272, doi:10.1016/j.tcs.2006.12.019.

[59] Gordon D. Plotkin (1981): A Structural Approach to Operational Semantics. Technical Report DAIMI FN-
19, Computer Science Department, Aarhus University.

[60] Gordon D. Plotkin (2004): The origins of structural operational semantics. Journal of Logical and Algebraic
Methods in Programming 60–61, pp. 3–15, doi:10.1016/j.jlap.2004.03.009.

[61] Gordon D. Plotkin (2004): A structural approach to operational semantics. Journal of Logical and Algebraic
Methods in Programming 60–61, pp. 17–139, doi:10.1016/j.jlap.2004.05.001.

[62] Jurriaan Rot (2017): Distributive Laws for Monotone Specifications. In Kirstin Peters & Simone Tini, editors:
Proceedings Combined 24th International Workshop on Expressiveness in Concurrency and 14th Workshop
on Structural Operational Semantics, EXPRESS/SOS 2017, Berlin, Germany, 4th September 2017, EPTCS
255, pp. 83–97, doi:10.4204/EPTCS.255.6.

[63] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar & Rok
Strnisa (2010): Ott: Effective tool support for the working semanticist. J. Funct. Program. 20(1), pp. 71–122,
doi:10.1017/S0956796809990293.

[64] Robert de Simone (1985): Higher-Level Synchronising Devices in Meije-SCCS. Theoretical Computer Sci-
ence 37, pp. 245–267, doi:10.1016/0304-3975(85)90093-3.

[65] George Gaylord Simpson (1960): Notes on the Measurement of Faunal Resemblance. American Journal of
Science, Bradley Volume 258-A, pp. 300–311.

[66] Thorvald Julius Sørensen (1948): A method of establishing groups of equal amplitude in plant sociology
based on similarity of species and its application to analyses of the vegetation on Danish commons. Kon-
gelige Danske Videnskabernes Selskab 5(4), pp. 1–34. Available at https://www.royalacademy.dk/
Publications/High/295_S%C3%B8rensen,%20Thorvald.pdf.

[67] Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest,
Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoué
& Santiago Zanella-Béguelin (2016): Dependent Types and Multi-Monadic Effects in F*. In: 43rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), ACM, pp. 256–270,
doi:10.1145/2837614.2837655.

[68] Dezydery Szymkiewicz (1926): Etude Comparative de la Distribution Florale. Rev. Forest 1.
[69] Dezydery Szymkiewicz (1934): Une Contribution Statistique a la Géographie Floristique. Acta Societatis

Botanicorum Poloniae 34(3), pp. 249–265, doi:10.5586/asbp.1934.012.
[70] Daniele Turi & Gordon D. Plotkin (1997): Towards a Mathematical Operational Semantics. In: Proceedings,

12th Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, June 29 - July 2, 1997, IEEE
Computer Society, pp. 280–291, doi:10.1109/LICS.1997.614955.

[71] Alberto Verdejo & Narciso Martí-Oliet (2006): Executable structural operational semantics in Maude. Jour-
nal of Logical and Algebraic Methods in Programming 67(1-2), pp. 226–293, doi:10.1016/j.jlap.2005.09.008.

[72] Chris Verhoef (1995): A Congruence Theorem for Structured Operational Semantics with Predicates and
Negative Premises. Nordic Journal on Computing 2(2), pp. 274–302.

[73] M. K. Vijaymeena & K. Kavitha (2016): A Survey on Similarity Measures in Text Mining. Machine Learning
and Applications 3(1), pp. 19–28, doi:10.5121/mlaij.2016.310.

https://doi.org/10.1016/j.ic.2005.03.002
https://doi.org/10.1016/j.ipl.2004.11.007
https://doi.org/10.1016/j.tcs.2006.12.019
https://doi.org/10.1016/j.jlap.2004.03.009
https://doi.org/10.1016/j.jlap.2004.05.001
https://doi.org/10.4204/EPTCS.255.6
https://doi.org/10.1017/S0956796809990293
https://doi.org/10.1016/0304-3975(85)90093-3
https://www.royalacademy.dk/Publications/High/295_S%C3%B8rensen,%20Thorvald.pdf
https://www.royalacademy.dk/Publications/High/295_S%C3%B8rensen,%20Thorvald.pdf
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.5586/asbp.1934.012
https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1016/j.jlap.2005.09.008
https://doi.org/10.5121/mlaij.2016.310

G. Caltais and C. A. Mezzina (Eds): Combined Workshop on
Expressiveness in Concurrency and Structural Operational Semantics
(EXPRESS/SOS 2023).
EPTCS 387, 2023, pp. 41–41, doi:10.4204/EPTCS.387.4

© C. Dias Perera, J.A.Pérez
This work is licensed under the
Creative Commons Attribution License.

Comparing Deadlock-Free Session Processes, Revisited
(Short Paper)

Channa Dias Perera
University of Groningen (NL)

Jorge A. Pérez
University of Groningen (NL)

We are interested in type systems that enforce the deadlock-freedom property for π-calculus pro-
cesses. Several different type systems have been proposed, which consider different dialects of the
π-calculus and use different insights to rule out the circular dependencies that induce deadlocks.

Prior work by Dardha and Pérez rigorously compared two kinds of type systems: (i) type sys-
tems based on priorities, as pioneered by Kobayashi; and (ii) type systems based on Curry-Howard
interpretations of linear logic propositions as session types. They show that the former subsume the
latter, i.e., type systems based on linear logic induce a class of deadlock-free processes that is strictly
included in the class induced by priority-based systems. Dardha and Pérez’s comparison considers
languages with similar (reduction) semantics, which admit the same definition of deadlock-freedom.

In this short paper, we report on ongoing work aimed at extending Dardha and Pérez’s classifi-
cation to consider a class of deadlock-free processes with a self-synchronizing transition semantics,
which is induced by presentations of linear logic based on hypersequents. Integrating this class into a
formal comparison is interesting but subtle, as trivially deadlocked-processes in Dardha and Pérez’s
setting actually enjoy the deadlock-freedom property under the self-synchronizing regime.

http://dx.doi.org/10.4204/EPTCS.387.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

G. Caltais and C. A. Mezzina (Eds): Combined Workshop on
Expressiveness in Concurrency and Structural Operational Semantics
(EXPRESS/SOS 2023).
EPTCS 387, 2023, pp. 42–58, doi:10.4204/EPTCS.387.5

© Van Glabbeek, Groote & De Vink
This work is licensed under the
Creative Commons Attribution License.

A Cancellation Law for Probabilistic Processes

Rob van Glabbeek*

University of Edinburgh

University of New South Wales

rvg@stanford.edu

Jan Friso Groote
Eindhoven University of Technology

j.f.groote@tue.nl

Erik de Vink
Eindhoven University of Technology

evink@win.tue.nl

We show a cancellation property for probabilistic choice. If µ ⊕ρ and ν ⊕ρ are branching proba-
bilistic bisimilar, then µ and ν are also branching probabilistic bisimilar. We do this in the setting of
a basic process language involving non-deterministic and probabilistic choice and define branching
probabilistic bisimilarity on distributions. Despite the fact that the cancellation property is very ele-
gant and concise, we failed to provide a short and natural combinatorial proof. Instead we provide
a proof using metric topology. Our major lemma is that every distribution can be unfolded into an
equivalent stable distribution, where the topological arguments are required to deal with uncountable
branching.

1 Introduction

A familiar property of the real numbers R is the additive cancellation law: if x+ z = y+ z then x = y.
Switching to the Boolean setting, and interpreting + by ∨ and = by⇔, the property becomes (x∨ z)⇔
(y∨z) implies x⇔ y. This is not generally valid. Namely, if z is true, nothing can be derived regarding the
truth values of x and y. Algebraically speaking, the reals provide an ‘additive inverse’, and the Booleans
do not have a ‘disjunctive’ version of it.

A similar situation holds for strong bisimilarity in the pure non-deterministic setting vs. strong bisim-
ilarity in the mixed non-deterministic and probabilistic setting. When we have E + G↔ F + G for
the non-deterministic processes E +G and F +G, it may or may not be the case that E ↔ F . How-
ever, if P 1/2⊕ R ↔ Q 1/2⊕ R for the probabilistic processes P 1/2⊕ R and Q 1/2⊕ R, with probabilistic
choice 1/2⊕ , we can exploit a semantic characterization of bisimilarity as starting point of a calculation.
The characterization reads

P↔Q iff ∀C ∈ E /↔: µ[C] = ν [C] (1)

where the distributions µ,ν ∈Distr(E) are induced by P and Q. To spell out the above, two probabilistic
processes P and Q are strongly bisimilar iff the distributions µ and ν induced by P and Q, respectively,
assign the same probability to every equivalence class C of non-deterministic processes modulo strong
bisimilarity. In the situation that P 1/2⊕ R↔ Q 1/2⊕ R we obtain from (1), for equivalence classes
C ∈ E /↔ and distributions µ , ν , and ρ induced by the processes P, Q, and R, that

P 1/2⊕ R↔ Q 1/2⊕ R =⇒ ∀C ∈ E /↔: 1
2 µ[C]+ 1

2 ρ[C] = 1
2 ν [C]+ 1

2 ρ[C] =⇒
∀C ∈ E /↔: 1

2 µ[C] = 1
2 ν [C] =⇒ ∀C ∈ E /↔: µ[C] = ν [C] =⇒ P↔Q

relying on the arithmetic of the reals.
We are interested in whether the cancellation law also holds for weaker notions of process equiva-

lence for probabilistic processes, especially for branching probabilistic bisimilarity as proposed in [16].

*Supported by Royal Society Wolfson Fellowship RSWF\R1\221008

http://dx.doi.org/10.4204/EPTCS.387.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Van Glabbeek, Groote & De Vink 43

We find that it does but the proof is involved. A number of initial attempts were directed towards finding
a straightforward combinatorial proof, but all failed. A proof in a topological setting, employing the
notion of sequential compactness to deal with potentially infinite sequences of transitions is reported in
this paper. We leave the existence of a shorter, combinatorial proof as an open question.

Our strategy to prove the above cancellation law for probabilistic processes and branching proba-
bilistic bisimilarity is based on two intermediate results: (i) every probabilistic process unfolds into a
so-called stable probabilistic process, and (ii) for stable probabilistic processes a characterization of the
form (1) does hold. Intuitively, a stable process is a process that cannot do an internal move without
leaving its equivalence class.

In order to make the above more concrete, let us consider an example. For the ease of presentation
we use distributions directly, rather than probabilistic processes. Let the distributions µ and ν be given
by

µ = 1
2 δ (a .∂ (0))⊕ 1

2 δ (b.∂ (0))
ν = 1

3 δ (τ .(∂ (a .∂ (0)) 1
2
⊕ ∂ (b.∂ (0))))⊕ 1

3 δ (a .∂ (0))⊕ 1
3 δ (b.∂ (0))

with a and b two different actions. The distribution µ assigns probability 0.5 to a .∂ (0), meaning an
a-action followed by a deadlock with probability 1, and probability 0.5 to b.∂ (0), i.e. a b-action fol-
lowed by deadlock with probability 1. The distribution ν assigns both these non-deterministic processes
probability 1

3 and assigns the remaining probability 1
3 to τ .(∂ (a .∂ (0)) 1

2
⊕ ∂ (b.∂ (0))), where a τ-action

precedes a 50-50 percent choice between the processes mentioned earlier. Below, we show that µ and ν

are branching probabilistic bisimilar, i.e. µ ↔b ν . However, if C1, C2 and C3 are the three different
equivalence classes of τ .(∂ (a .∂ (0)) 1

2
⊕ ∂ (b.∂ (0)), a .∂ (0) and b.∂ (0), respectively, we have

µ[C1] = 0 6= 1
3 = ν [C1], µ[C2] =

1
2 6=

1
3 = ν [C2], and µ[C3] =

1
2 6=

1
3 = ν [C3].

Thus, although µ ↔b ν , it does not hold that µ[C] = ν [C] for every equivalence class C. Note that the
distribution ν is not stable, in the sense that it allows an internal transition to the branchingly equivalent ν .

As indicated, we establish in this paper a cancellation law for branching probabilistic bisimilarity in
the context of mixed non-deterministic and probabilistic choice, exploiting the process language of [6],
while dealing with distributions of finite support over non-deterministic processes for its semantics. We
propose the notion of a stable distribution and show that every distribution can be unfolded into a stable
distribution by chasing its (partial) τ-transitions. Our framework, including the notion of branching
probabilistic bisimulation, builds on that of [19, 16].

Another trait of the current paper, as in [19, 16], is that distributions are taken as semantic foundation
for bisimilarity, rather than seeing bisimilarity primarily as an equivalence relation on non-deterministic
processes, which is subsequently lifted to an equivalence relation on distributions, as is the case for the
notion of branching probabilistic bisimilarity of [27, 26] and also of [2, 1]. The idea to consider distribu-
tions as first-class citizens for probabilistic bisimilarity stems from [11]. In the systematic overview of
the spectrum [3], also Baier et al. argue that a behavioral relation on distributions is needed to properly
deal with silent moves.

Metric spaces and complete metric spaces, as well as their associated categories, have various uses
in concurrency theory. In the setting of semantics of probabilistic systems, metric topology has been
advocated as underlying denotational domain, for example in [5, 21, 25]. For quantitative comparison
of Markov systems, metrics and pseudo-metric have been proposed for a quantitative notion of behavior
equivalence, see e.g. [10, 13, 7]. The specific use of metric topology in this paper to derive an existential
property of a transition system seems new.

44 A Cancellation Law for Probabilistic Processes

The remainder of the paper is organized as follows. Section 2 collects some definitions from metric
topology and establishes some auxiliary results. A simple process language with non-deterministic and
probabilistic choice is introduced in Section 3, together with examples and basic properties of the opera-
tional semantics. Our definition of branching probabilistic bisimilarity is given in Section 4, followed by
a congruence result with respect to probabilistic composition and a confluence property. The main con-
tribution of the paper is presented in Sections 5 and 6. Section 5 shows in a series of continuity lemmas
that the set of branching probabilistic bisimilar descendants is a (sequentially) compact set. Section 6
exploits these results to argue that unfolding of a distribution by inert τ-transitions has a stable end point,
meaning that a stable branchingly equivalent distribution can be reached. With that result in place, a
cancellation law for branching probabilistic bisimilarity is established. Finally, Section 7 wraps up with
concluding remarks and a discussion of future work.

2 Preliminaries

For a non-empty set X , we define Distr(X) as the set of all probability distributions over X of finite
support, i.e., Distr(X) = { µ : X → [0,1] | ∑x∈X µ(x) = 1, µ(x)> 0 for finitely many x ∈ X }. We use
spt(µ) to denote the finite set { x ∈ X | µ(x) > 0 }. Often, we write µ =

⊕
i∈I pi ·xi for an index set I,

pi > 0 and xi ∈ X for i ∈ I, where pi > 0 for finitely many i ∈ I. Implicitly, we assume ∑ i∈I pi = 1. We
also write rµ⊕ (1− r)ν and, equivalently, µ r⊕ ν for µ,ν ∈ Distr(X) and 0 6 r 6 1. As expected, we
have that (rµ⊕(1−r)ν)(x) = (µ r⊕ ν)(x) = rµ(x)+(1−r)ν(x) for x∈ X . The Dirac distribution on x,
the unique distribution with support x, is denoted δ (x).

The set Distr(X) becomes a complete1 metric space when endowed with the sup-norm [14], given
by d(µ,ν) = supx∈X |µ(x)−ν(x)|. This distance is also known as the distance of uniform convergence
or Chebyshev distance.

Theorem 1. If Y ⊆ X is finite, then Distr(Y) is a sequentially compact subspace of Distr(X). This means
that every sequence in Distr(Y) has a convergent subsequence with a limit in Distr(Y).

Proof. Distr(Y) is a bounded subset of Rn, where n := |Y | is the size of Y . It also is closed. For Rn

equipped with the Euclidean metric, the sequential compactness of closed and bounded subsets is known
as the Bolzano-Weierstrass theorem [23]. When using the Chebyshev metric, the same proof applies.

In Section 5 we use the topological structure of the set of distributions over non-deterministic processes
to study unfolding of partial τ-transitions. There we make use of the following representation property.

Lemma 2. Suppose the sequence of distributions (µi)
∞
i=0 converges to the distribution µ in Distr(X).

Then a sequence of distributions (µ ′i)
∞
i=0 in Distr(X) and a sequence of probabilities (ri)

∞
i=0 in [0,1] exist

such that µi = (1− ri)µ ⊕ ri µ
′
i for i ∈N and lim i→∞ ri = 0.

Proof. Let i ∈N. For x ∈ spt(µ), the quotient µi(x)/µ(x) is non-negative, but may exceed 1. However,

0 6 min{ µi(x)
µ(x) | x ∈ spt(µ) } 6 1, since the numerator cannot strictly exceed the denominator for all

x ∈ spt(µ). Let ri = 1−min{ µi(x)
µ(x) | x ∈ spt(µ)} for i ∈N. Then we have 06 ri 6 1.

1A Cauchy sequence is a sequence of points in a metric space whose elements become arbitrarily close to each other as the
sequence progresses. The space is complete if every such sequence has a limit within the space.

Van Glabbeek, Groote & De Vink 45

For i ∈ N, define µ ′i ∈ Distr(X) as follows. If ri > 0 then µ ′i (x) = 1/ri ·
[
µi(x)− (1− ri)µ(x)

]
for x ∈ X ; if ri = 0 then µ ′i = µ . We verify for ri > 0 that µ ′i is indeed a distribution: (i) For x /∈ spt(µ) it
holds that µ(x) = 0, and therefore µ ′i (x) = 1/ri ·µi(x)> 0. For x ∈ spt(µ),

µ
′
i (x) = 1/ri ·

[
µi(x)− (1− ri)µ(x)

]
= µ(x)/ri ·

[µi(x)
µ(x)

− µi(xmin)

µ(xmin)

]
> 0

for xmin ∈ spt(µ) such that µi(xmin)/µ(xmin) is minimal. (ii) In addition,

∑{µ ′i (x) | x ∈ X }= 1/ri ·∑{µi(x) | x /∈ spt(µ)}+1/ri ·∑{µi(x)− (1− ri)µ(x) | x ∈ spt(µ)}=
1/ri ·∑{µi(x) | x ∈ X }− (1− ri)/ri ·∑{µ(x) | x ∈ spt(µ)}= 1/ri− (1− ri)/ri = ri/ri = 1.

Therefore, 06 µ ′i (x)6 1 and ∑{µ ′i (x) | x ∈ X }= 1.
Now we prove that µi = (1− ri)µ ⊕ ri µ

′
i . If ri = 0, then µi = µ , µ ′i = µ , and µi = (1− ri)µ⊕ ri µ

′
i .

If ri > 0, then µi(x) = (1− ri)µ(x)⊕ ri µ
′
i (x) by definition of µ ′i (x) for all x ∈ X . Thus, also µi =

(1− ri)µ⊕ ri µ
′
i in this case.

Finally, we show that lim i→∞ ri = 0. Let x′min ∈ spt(µ) be such that µ(x′min) is minimal. Then we
have

ri = 1−min{ µi(x)

µ(x)
| x ∈ spt(µ)}= max{ µ(x)−µi(x)

µ(x)
| x ∈ spt(µ), µ(x)> µi(x)}6

d(µ,µi)

µ(x′min)

By assumption, lim i→∞ d(µ,µi) = 0. Hence also lim i→∞ ri = 0, as was to be shown.

The following combinatorial result is helpful in the sequel.

Lemma 3. Let I and J be finite index sets, pi,q j ∈ [0,1] and µi,ν j ∈ Distr(X), for i ∈ I and j ∈ J,
such that

⊕
i∈I piµi =

⊕
j∈J q jν j. Then ri j > 0 and ρi j ∈ Distr(X) exist such that ∑ j∈J ri j = pi and

pi ·µi =
⊕

j∈J ri j ·ρi j for all i ∈ I, and ∑ i∈I ri j = q j and q j ·ν j =
⊕

i∈I ri j ·ρi j for all j ∈ J.

Proof. Let ξ =
⊕

i∈I pi ·µi =
⊕

j∈J q j ·ν j. We define ri j = ∑x∈spt(ξ)
pi µi(x) ·q j ν j(x)

ξ (x)
for all i ∈ I and

j ∈ J. In case ri j = 0, choose ρi j ∈ Distr(X) arbitrarily. In case ri j 6= 0, define ρi j ∈ Distr(X), for i ∈ I
and j ∈ J, by

ρi j(x) =

pi µi(x) ·q j ν j(x)

ri j ξ (x)
if ξ (x)> 0,

0 otherwise

for all x ∈ X . By definition of ri j and ρi j it holds that ∑{ρi j(x) | x ∈ X }= 1. So, ρi j ∈ Distr(X) indeed.
We verify ∑ j∈J ri j = pi and pi ·µi =

⊕
j∈J ri j ·ρi j for i ∈ I.

∑ j∈J ri j = ∑ j∈J ∑x∈spt(ξ) pi µi(x) ·q j ν j(x)/ξ (x)

= ∑x∈spt(ξ) pi µi(x) ·∑ j∈J q j ν j(x)/ξ (x)

= ∑x∈spt(ξ) pi µi(x) (since ξ =
⊕

j∈J q j ·ν j)

= pi ∑x∈spt(ξ) µi(x)

= pi .

Next, pick y ∈ X and i ∈ I. If ξ (y) = 0, then pi µi(y) = 0, since ξ (y) = ∑ i∈I pi µi(y), and ri j = 0 or
ρi j(y) = 0 for all j ∈ J, by the various definitions, thus ∑ j∈J ri j ρi j(y) = 0 as well.

46 A Cancellation Law for Probabilistic Processes

Suppose ξ (y)> 0. Put Ji = { j ∈ J | ri j > 0}. If j ∈ J\Ji, i.e. if ri j = 0, then pi µi(y)q j ν j(y)/ξ (y) = 0
by definition of ri j. Therefore we have

∑ j∈J ri jρi j(y) = ∑ j∈Ji ri j ρi j(y)

= ∑ j∈Ji ri j pi µi(y) ·q j ν j(y)/(ri j ξ (y))

= ∑ j∈Ji pi µi(y) ·q j ν j(y)/ξ (y)

= ∑ j∈J pi µi(y) ·q j ν j(y)/ξ (y) (summand zero for j ∈ J\Ji)

= pi µi(y)/ξ (y) ·∑ j∈J q j ν j(y)

= pi µi(y) (since ξ =
⊕

j∈J q j ·ν j).

The statements ∑i∈I ri j = q j and q j ·ν j =
⊕

i∈I ri j ·ρi j for j ∈ J follow by symmetry.

3 An elementary processes language

In this section we define a syntax and transition system semantics for non-deterministic and probabilistic
processes. Depending on the top operator, following [6], a process is either a non-deterministic pro-
cess E ∈ E , with constant 0, prefix operators α . and non-deterministic choice +, or a probabilistic
process P ∈P , with the Dirac operator ∂ and probabilistic choices r⊕ .

Definition 4 (Syntax). The classes E and P of non-deterministic and probabilistic processes, respec-
tively, over the set of actions A , are given by

E ::= 0 | α .P | E +E P ::= ∂ (E) | P r⊕ P

with actions α from A and where 06 r 6 1.

We use E,F, . . . to range over E and P,Q, . . . to range over P . The probabilistic process P1 r⊕ P2 behaves
as P1 with probability r and behaves as P2 with probability 1− r.

We introduce a complexity measure c : E ∪P→N for non-deterministic and probabilistic processes
based on the size of a process. It is given by c(0) = 0, c(a .P) = c(P)+ 1, c(E +F) = c(E)+ c(F),
and c(∂ (E)) = c(E)+1, c(P r⊕ Q) = c(P)+ c(Q).

Examples As illustration, we provide the following pairs of non-deterministic processes, which are
branching probabilistic bisimilar in the sense of Definition 9.

(i) H1 = a .
(
P 1

4
⊕ (P 1

3
⊕ Q)

)
and H2 = a .

(
P 1

2
⊕ (Q 1

2
⊕ Q)

)
(ii) G1 = a .(P 1

2
⊕ Q) and G2 = a .

(
∂
(
τ .(P 1

2
⊕ Q)

)
1
3
⊕(P 1

2
⊕ Q)

)
(iii) I1 = a .∂ (b.P+ τ .Q) and I2 = a .∂ (τ .∂ (b.P+ τ .Q)+b.P+ τ .Q)

The examples H1 and H2 are taken from [22], and G1 and G2 are taken from [16]. The processes G2
and I2 contain a so-called inert τ-transition.

As usual, the SOS semantics for E and P makes use of two types of transition relations [20, 6, 16].

Van Glabbeek, Groote & De Vink 47

Definition 5 (Operational semantics).
(a) The transition relations→⊆ E ×A ×Distr(E) and 7→ ⊆P×Distr(E) are given by

P 7→ µ

α .P α−→ µ
(PREF)

E1
α−→ µ1

E1 +E2
α−→ µ1

(ND-CHOICE 1)
E2

α−→ µ2

E1 +E2
α−→ µ2

(ND-CHOICE 2)

∂ (E) 7→ δ (E)
(DIRAC)

P1 7→ µ1 P2 7→ µ2

P1 r⊕ P2 7→ µ1 r⊕ µ2
(P-CHOICE)

(b) The transition relation→⊆Distr(E)×A ×Distr(E) is such that µ
α−→ µ ′ whenever µ =

⊕
i∈I pi ·Ei,

µ ′ =
⊕

i∈I pi ·µ ′i , and Ei
α−→ µ ′i for all i ∈ I.

In rule (DIRAC) of the relation 7→we have that the syntactic Dirac process ∂ (E) is coupled to the semantic
Dirac distribution δ (E). Similarly, in (P-CHOICE), the syntactic probabilistic operator r⊕ in P1 r⊕ P2 is
replaced by semantic probabilistic composition in µ1 r⊕ µ2. Thus, with each probabilistic process P∈P
we associate a distribution [[P]]∈Distr(E) as follows: [[∂ (E)]] = δ (E) and [[P r⊕ Q]] = [[P]] r⊕ [[Q]], which
is the distribution r[[P]]⊕ (1− r)[[Q]].

The relation −→ for non-deterministic processes is finitely branching, but the relation −→ for proba-
bilistic processes is not. Following [27, 26], the transition relation→ on distributions as given by Def-
inition 5 allows for a probabilistic combination of non-deterministic alternatives resulting in a so-called
combined transition. For example, for the process E = a .(P 1

2
⊕ Q)+a .(P 1

3
⊕ Q) of [6], we have that the

Dirac process ∂ (E) = ∂ (a .(P 1
2
⊕ Q)+ a .(P 1

3
⊕ Q)) provides an a-transition to [[P 1

2
⊕ Q]] as well as an

a-transition to [[P 1
3
⊕ Q]]. So, since we can represent the distribution δ (E) by δ (E) = 1

2 δ (E)⊕ 1
2 δ (E),

the distribution δ (E) also has a combined transition

δ (E) = 1
2 δ (E)⊕ 1

2 δ (E) a−→ 1
2 [[P 1

2
⊕ Q]]⊕ 1

2 [[P 1
3
⊕ Q]] = [[P 5

12
⊕ Q]].

As noted in [28], the ability to combine transitions is crucial for obtaining transitivity of probabilistic
process equivalences that take internal actions into account.

Example Referring to the examples of processes above, we have, e.g,

H1 : δ (a .(P 1
4
⊕ (P 1

3
⊕ Q)))

a−→ [[P 1
4
⊕ (P 1

3
⊕ Q)]] = 1

2 [[P]]⊕
1
2 [[Q]]

H2 : δ (a .(P 1
2
⊕ (Q 1

2
⊕ Q)))

a−→ [[P 1
2
⊕ (Q 1

2
⊕ Q)]] = 1

2 [[P]]⊕
1
2 [[Q]]

G2 : a .
(
∂
(
τ .(P 1

2
⊕ Q)

)
1
3
⊕(P 1

2
⊕ Q)

) a−→ δ
(
τ .(P 1

2
⊕ Q)

)
1
3
⊕(P 1

2
⊕ Q).

Because a transition of a probabilistic process yields a distribution, the a-transitions of H1 and H2 have
the same target. It is noted that G2 doesn’t provide a further transition unless both its components P
and Q do so to match the transition of τ .(P 1

2
⊕ Q).

In preparation to the definition of the notion of branching probabilistic bisimilarity in Section 4 we
introduce some notation.
Definition 6. For µ,µ ′ ∈Distr(E) and α ∈A we write µ

(α)−−→ µ ′ iff (i) µ
α−→ µ ′, or (ii) α = τ and

µ ′ = µ , or (iii) α = τ and there exist µ1,µ2,µ
′
1,µ

′
2 ∈ Distr(E) such that µ = µ1 r⊕ µ2, µ ′ = µ ′1 r⊕ µ ′2,

µ1
τ−→ µ ′1 and µ2 = µ ′2 for some r ∈ (0,1).

Cases (i) and (ii) in the definition above correspond with the limits r = 1 and r = 0 of case (iii). We use
=⇒ to denote the reflexive transitive closure of (τ)−−→. A transition µ

(τ)−−→ µ ′ is called a partial transition,
and a transition µ ⇒ µ ′ is called a weak transition.

48 A Cancellation Law for Probabilistic Processes

Example
(a) According to Definition 6 we have

1
3 δ (τ .(P 1

2
⊕ Q))⊕ 2

3 [[P 1
2
⊕ Q]]

(τ)−−→ 1
3 [[P 1

2
⊕ Q]]⊕ 2

3 [[P 1
2
⊕ Q]] = [[P 1

2
⊕ Q]].

(b) There are typically multiple ways to construct a weak transition⇒. Consider the weak transition
1
2 δ (τ .∂ (τ .P))⊕ 1

3 δ (τ .P)⊕ 1
6 [[P]] =⇒ [[P]] which can be obtained, among uncountably many other

possibilities, via

1
2 δ (τ .∂ (τ .P))⊕ 1

3 δ (τ .P)⊕ 1
6 [[P]]

(τ)−−→
1
2 δ (τ .P))⊕ 1

3 δ (τ .P)⊕ 1
6 [[P]] =

5
6 δ (τ .P)⊕ 1

6 [[P]]
(τ)−−→ [[P]],

or via

1
2 δ (τ .∂ (τ .P))⊕ 1

3 δ (τ .P)⊕ 1
6 [[P]]

(τ)−−→ 1
2 δ (τ .∂ (τ .P))⊕ 1

3 δ (P)⊕ 1
6 [[P]] =

1
2 δ (τ .∂ (τ .P))⊕ 1

2 δ (P) (τ)−−→ 1
2 δ (τ .P)⊕ 1

2 [[P]]
(τ)−−→ 1

2 [[P]]⊕
1
2 [[P]] = [[P]].

(c) The distribution 1
2 δ (τ .∂ (a .∂ (0)+b.∂ (0)))⊕ 1

2 δ (a .∂ (c .∂ (0))) doesn’t admit a τ-transition nor
an a-transition. However, we have

1
2 δ (τ .∂ (a .∂ (0)+b.∂ (0)))⊕ 1

2 δ (a .∂ (c .∂ (0))) (τ)−−→
1
2 ∂ (a .∂ (0)+b.∂ (0))⊕ 1

2 δ (a .∂ (c .∂ (0))) a−→ 1
2 δ (0)⊕ 1

2 δ (c .∂ (0)).

The following lemma states that the transitions α−→, (α)−−→, and ⇒ of Definitions 5 and 6 can be proba-
bilistically composed.

Lemma 7. Let, for a finite index set I, µi,µ
′
i ∈ Distr(E) and pi > 0 such that ∑i∈I pi = 1.

(a) If µi
α−→ µ ′i for all i ∈ I, then

⊕
i∈I pi ·µi

α−→
⊕

i∈I pi ·µ ′i .
(b) If µi

(τ)−−→ µ ′i for all i ∈ I, then
⊕

i∈I pi ·µi
(τ)−−→

⊕
i∈I pi ·µ ′i .

(c) If µi =⇒ µ ′i for all i ∈ I, then
⊕

i∈I pi ·µi =⇒
⊕

i∈I pi ·µ ′i .

Proof. Let µ =
⊕

i∈I pi ·µi and µ ′ =
⊕

i∈I pi ·µ ′i . Without loss of generality, we may assume that pi > 0
for all i ∈ I.

(a) Suppose µi
α−→ µ ′i for all i ∈ I. Then, by Definition 5, µi =

⊕
j∈Ji

pi j ·Ei j, µ ′i =
⊕

j∈Ji
pi j ·ηi j,

and Ei j
α−→ ηi j for j ∈ Ji for a suitable index set Ji, pi j > 0 and ηi j ∈ Distr(E). Define the index set K

and probabilities qk for k ∈ K by K = { (i, j) | i ∈ I, j ∈ Ji } and q(i, j) = pi pi j for (i, j) ∈ K, so that
∑k∈K qk = 1. Then we have µ =

⊕
k∈K qk ·Ei j and µ ′ =

⊕
k∈K qk ·ηi j. Therefore, by Definition 5, it

follows that µ
α−→ µ ′.

(b) Let µi
(τ)−−→ µ ′i for all i ∈ I. Then, for all i ∈ I, by Definition 6, there exists ri ∈ [0,1] and

µ
stay
i ,µ

go
i ,µ ′′i ∈Distr(E), such that µi = µ

stay
i ri⊕ µ

go
i , µ ′i = µ

stay
i ri⊕ µ ′′i , and either ri = 1 or µ

go
i

τ−→ µ ′′i .
In case ri = 0 for all i ∈ I, we have that µi

τ−→ µ ′i for all i ∈ I, and thus µ
τ−→ µ ′ by the first claim of

the lemma, and µ
(τ)−−→ µ ′ by Definition 6(i). In case ri = 1 for all i ∈ I, we have µ ′ = µ and thus

µ
(τ)−−→ µ ′ by Definition 6(ii). Otherwise, let I′ := { i∈ I | ri < 1}, r =∑ i∈I pi ·ri, µstay :=

⊕
i∈I

pi ·ri
r ·µ

stay
i ,

µgo :=
⊕

i∈I′
pi ·(1−ri)

1−r ·µgo
i and µ ′′ :=

⊕
i∈I′

pi ·(1−ri)
1−r ·µ ′′i . Then µgo τ−→ µ ′′ by the first claim of the lemma.

Moreover, µ = µstay
r⊕ µgo, µ ′ = µstay

r⊕ µ ′′ and r ∈ (0,1). So µ
(τ)−−→ µ ′ by Definition 6(iii).

(c) Let µi =⇒ µ ′i for all i ∈ I. As I is finite and =⇒ is reflexive, there exists an n ∈ N such that
µi = µ

(0)
i

(τ)−−→ µ
(1)
i

(τ)−−→ . . .
(τ)−−→ µ

(n)
i = µ ′i for all i ∈ I. Now µ =⇒ µ ′ follows by n applications of the

second statement of the lemma.

Van Glabbeek, Groote & De Vink 49

Likewise, the next lemma allows probabilistic decomposition of transitions α−→, (α)−−→ and =⇒.

Lemma 8. Let µ,µ ′ ∈ Distr(E) and µ =
⊕

i∈I pi ·µi with pi > 0 for i ∈ I.

(a) If µ
α−→ µ ′, then there are µ ′i for i ∈ I such that µi

α−→ µ ′i for i ∈ I and µ ′ =
⊕

i∈I pi ·µ ′i .
(b) If µ

(τ)−−→ µ ′, then there are µ ′i for i ∈ I such that µi
(τ)−−→ µ ′i for i ∈ I and µ ′ =

⊕
i∈I pi ·µ ′i .

(c) If µ =⇒ µ ′, then there are µ ′i for i ∈ I such that µi⇒ µ ′i for i ∈ I and µ ′ =
⊕

i∈I pi ·µ ′i .

Proof. (a) Suppose µ
α−→ µ ′. By Definition 5 µ =

⊕
j∈J q j ·E j, µ ′ =

⊕
j∈J q j ·η j, and E j

α−→ η j for all
j ∈ J, for suitable index set J, q j > 0, E j ∈ E , and η j ∈ Distr(E). By Lemma 3 there are ri j > 0 and
ρi j ∈Distr(E) such that ∑ j∈J ri j = pi and pi µi =

⊕
j∈J ri jρi j for i ∈ I, and ∑ i∈I ri j = q j and q j ·δ (E j) =⊕

i∈I ri jρi j for all j ∈ J. Hence, ρi j = δ (E j) for i ∈ I, j ∈ J.
For all i ∈ I, let µ ′i =

⊕
j∈J (ri j/pi)η j. Then µi

α−→ µ ′i , for all i ∈ I, by Lemma 7(a). Moreover, it
holds that

⊕
i∈I pi µ

′
i =

⊕
i∈I pi ·

⊕
j∈J (ri j/pi)η j =

⊕
j∈J
⊕

i∈I ri j ·η j =
⊕

j∈J q j ·η j = µ ′.
(b) Suppose µ

(τ)−−→ µ ′. By Definition 6, either (i) µ
τ−→ µ ′, or (ii) µ ′ = µ , or (iii) there exist

ν1,ν2,ν
′
1,ν
′
2 ∈Distr(E) such that µ = ν1 r⊕ ν2, µ ′ = ν ′1 r⊕ ν ′2, ν1

τ−→ ν ′1 and ν2 = ν ′2 for some r ∈ (0,1).
In case (i), the required µ ′i exist by the first statement of this lemma. In case (ii) one can simply take
µ ′i := µi for all i ∈ I. Hence assume that case (iii) applies. Let J := {1,2}, q1 := r and q2 := 1− r. By
Lemma 3 there are ri j ∈ [0,1] and ρi j ∈ Distr(E) with ∑ j∈J ri j = pi and µi =

⊕
j∈J

ri j
pi
·ρi j for all i ∈ I,

and ∑i∈I ri j = q j and ν j =
⊕

i∈I
ri j
q j
·ρi j for all j ∈ J.

Let I′ := {i ∈ I | ri1 > 0}. Since ν1 =
⊕

i∈I′
ri1
r ·ρi1

τ−→ ν ′1, by the first statement of the lemma,
for all i ∈ I′ there are ρ ′i1 such that ρi1

τ−→ ρ ′i1 and ν ′1 =
⊕

i∈I′
ri1
r ·ρ

′
i1. For all i ∈ I\I′ pick ρ ′i1 ∈

Distr(E) arbitrarily. It follows that µi = ρi1 ri1
pi
⊕ ρi2

(τ)−−→ ρ ′i1 ri1
pi
⊕ ρi2 =: µ ′i for all i ∈ I. Moreover,⊕

i∈I pi ·µ ′i =
⊕

i∈I pi ·(ρ ′i1 ri1
pi
⊕ ρi2) = (

⊕
i∈I

ri1
r ·ρ

′
i1) r⊕ (

⊕
i∈I

ri2
1−r ·ρi2) = ν ′1 r⊕ ν2 = µ ′ .

(c) The last statement follows by transitivity from the second one.

4 Branching probabilistic bisimilarity

In this section we recall the notion of branching probabilistic bisimilarity [16]. The notion is based on a
decomposability property due to [9] and a transfer property.

Definition 9 (Branching probabilistic bisimilarity).
(a) A relation R ⊆ Distr(E)×Distr(E) is called weakly decomposable iff it is symmetric and for all

µ,ν ∈ Distr(E) such that µ R ν and µ =
⊕

i∈I pi ·µi there are ν̄ ,νi ∈ Distr(E), for i ∈ I, such that

ν =⇒ ν̄ , µ R ν̄ , ν̄ =
⊕

i∈I pi ·νi, and µi R νi for all i ∈ I.

(b) A relation R ⊆ Distr(E)×Distr(E) is called a branching probabilistic bisimulation relation iff it is
weakly decomposable and for all µ,ν ∈Distr(E) with µ R ν and µ

α−→ µ ′, there are ν̄ ,ν ′ ∈Distr(E)
such that

ν =⇒ ν̄ , ν̄
(α)−−→ ν ′, µ R ν̄ , and µ ′R ν ′.

(c) Branching probabilistic bisimilarity ↔b ⊆ Distr(E)×Distr(E) is defined as the largest branching
probabilistic bisimulation relation on Distr(E).

Note that branching probabilistic bisimilarity is well-defined following the usual argument that any union
of branching probabilistic bisimulation relations is again a branching probabilistic bisimulation relation.
In particular, (weak) decomposability is preserved under arbitrary unions. As observed in [15], branching
probabilistic bisimilarity is an equivalence relation.

50 A Cancellation Law for Probabilistic Processes

Two non-deterministic processes are considered to be branching probabilistic bisimilar iff their Dirac
distributions are, i.e., for E,F ∈ E we have E ↔b F iff δ (E)↔b δ (F). Two probabilistic processes are
considered to be branching probabilistic bisimilar iff their associated distributions over E are, i.e., for
P,Q ∈P we have P↔b Q iff [[P]]↔b [[Q]].

For a set M ⊆ Distr(E), the convex closure cc(M) is defined by

cc(M) = {
⊕

i∈I piµi | ∑i∈I pi = 1, µi ∈M, I a finite index set}.

For a relation R ⊆ Distr(E)×Distr(E) the convex closure of R is defined by

cc(R) = { 〈
⊕

i∈I piµi,
⊕

i∈I piνi〉 | µiRνi, ∑i∈I pi = 1, I a finite index set}.

The notion of weak decomposability has been adopted from [22, 24]. The underlying idea stems
from [9]. Weak decomposability provides a convenient dexterity to deal with combined transitions as
well as with sub-distributions. For example, regarding sub-distributions, to distinguish the probabilis-
tic process 1

2 ∂ (a .∂ (0))⊕ 1
2 ∂ (b.∂ (0)) from ∂ (0) a branching probabilistic bisimulation relation relat-

ing 1
2 δ (a .∂ (0))⊕ 1

2 δ (b.∂ (0)) and δ (0) is by weak decomposability also required to relate δ (a .∂ (0))
and δ (b.∂ (0)) to subdistributions of a weak descendant of δ (0), which can only be δ (0) itself. Since
δ (a .∂ (0)) has an a-transition while δ (0) has not, and similar for a b-transition of δ (b.∂ (0)), it follows
that 1

2 ∂ (a .∂ (0))⊕ 1
2 ∂ (b.∂ (0)) and ∂ (0) are not branching probabilistic bisimilar.

By comparison, on finite processes, as used in this paper, the notion of branching probabilistic bisim-
ilarity of Segala & Lynch [27] can be defined in our framework exactly as in (b) and (c) above, but taking
a decomposable instead of a weakly decomposable relation, i.e. if µ R ν and µ =

⊕
i∈I piµi then there

are νi for i ∈ I such that ν =
⊕

i∈I piνi and µi R νi for i ∈ I. This yields a strictly finer equivalence.

Example

(a) The distributions δ (G1) = δ (a .(P 1
2
⊕ Q)) and δ (G2) = δ (a .(∂ (τ .(P 1

2
⊕ Q)) 1

3
⊕ (P 1

2
⊕ Q))) both

admit at the top level an a-transition only:

δ (a .(P 1
2
⊕ Q))

a−→ 1
2 [[P]]⊕

1
2 [[Q]]

δ (a .(∂ (τ .(P 1
2
⊕ Q)) 1

3
⊕ (P 1

2
⊕ Q)))

a−→ 1
3 δ (τ .(P 1

2
⊕ Q))⊕ 1

3 [[P]]⊕
1
3 [[Q]].

Let the relation R contain the pairs

〈δ (τ .(P 1
2
⊕ Q)), 1

2 [[P]]⊕
1
2 [[Q]]〉 and 〈µ,µ〉 for µ ∈ Distr(E).

The symmetric closure R† of R is clearly a branching probabilistic bisimulation relation. We claim
that therefore also its convex closure cc(R†) is a branching probabilistic bisimulation relation. Con-
sidering that 〈δ (τ .(P 1

2
⊕ Q)), 1

2 [[P]]⊕
1
2 [[Q]]〉 and 〈1

2 [[P]]⊕
1
2 [[Q]], 1

2 [[P]]⊕
1
2 [[Q]]〉 are in R, we have

that

〈1
3 δ (τ .(P 1

2
⊕ Q)⊕ 2

3(
1
2 [[P]]⊕

1
2 [[Q]]), 1

3(
1
2 [[P]]⊕

1
2 [[Q]])⊕ 2

3(
1
2 [[P]]⊕

1
2 [[Q]]))〉 ∈ cc(R†).

Adding the pair of processes 〈δ (a .(P 1
2
⊕ Q)),δ (a .(∂ (τ .(P 1

2
⊕ Q)) 1

3
⊕ (P 1

2
⊕ Q)))〉 and closing for

symmetry, then yields a branching probabilistic bisimulation relation relating δ (G1) and δ (G2).

Van Glabbeek, Groote & De Vink 51

(b) The a-derivatives of I1 and I2, i.e. the distributions I′1 = δ (b.P+τ .Q) and I′2 = δ (τ .∂ (b.P+τ .Q)+
b.P + τ .Q) are branching probabilistic bisimilar. A τ-transition of I′2 partially based on its left
branch, can be simulated by I′1 by a partial transition:

I′2 = r·[[I′2]]⊕ (1− r)·[[I′2]]
τ−→ r·δ (b.P+ τ .Q)⊕ (1− r)·[[Q]]

I′1 = r·[[I′1]]⊕ (1− r)·[[I′1]]
(τ)−−→ r·[[I′1]]⊕ (1− r)·[[Q]] = r·δ (b.P+ τ .Q)⊕ (1− r)·[[Q]].

A τ-transition of I′1 can be directly simulated by I′2 of course. It follows that the relation R =
{〈δ (I1),δ (I2)〉,〈I′1, I′2〉}† ∪ { 〈µ,µ〉 | µ ∈ Distr(E) }, the symmetric relation containing the pairs
mentioned and the diagonal of Distr(E), constitutes a branching probabilistic bisimulation relation
containing I1 and I2.

In the sequel we frequently need that probabilistic composition respects branching probabilistic bisimi-
larity of distributions, i.e. if, with respect to some index set I, we have distributions µi and νi such that
µi↔b νi for i ∈ I, then also µ ↔b ν for the distributions µ =

⊕
i∈I piµi and ν =

⊕
i∈I piνi. The property

directly follows from the following lemma, which is proven in [15].

Lemma 10. Let distributions µ1,µ2,ν1,ν2 ∈Distr(E) and 06 r6 1 be such that µ1↔b ν1 and µ2↔b ν2.
Then it holds that µ1 r⊕ µ2↔b ν1 r⊕ ν2.

We apply the above property in the proof of the next result. In the sequel any application of Lemma 10
will be done tacitly.

Lemma 11. Let µ,ν ∈ Distr(E) such that µ ↔b ν and µ =⇒ µ ′ for some µ ′ ∈ Distr(E). Then there are
ν ′ ∈ Distr(E) such that ν =⇒ ν ′ and µ ′↔b ν ′.

Proof. We check that a partial transition µ
(τ)−−→ µ ′ can be matched by ν given µ ↔b ν . So, suppose µ =

µ1 r⊕ µ2, µ1
τ−→ µ ′1, and µ ′= µ ′1 r⊕ µ2. By weak decomposability of↔b we can find distributions ν̄ ,ν1,ν2

such that ν =⇒ ν̄ = ν1 r⊕ ν2 and µ ↔b ν̄ , ν1 ↔b µ1, ν2 ↔b µ2. Choose distributions ν̄1, ν̄
′
1 such that

ν1 =⇒ ν̄1
(τ)−−→ ν ′1 and ν̄1 ↔b µ1, ν ′1 ↔b µ ′1. Put ν ′ = ν ′1 r⊕ ν2. Then ν =⇒ ν ′, using Lemma 7c, and we

have by Lemma 10 that ν ′ = ν ′1 r⊕ ν2↔b µ ′1 r⊕ µ2 = µ ′ since ν ′1↔b µ ′1 and ν2↔b µ2.

5 Branching probabilistic bisimilarity is continuous

Fix a finite set of non-deterministic processes F ⊆E that is transition closed, in the sense that if E ∈F
and E α−→

⊕
i∈I pi·Fi then also Fi ∈F . Consequently, if µ ∈Distr(F) and µ

(α)−−→ µ ′ then µ ′ ∈Distr(F).
Also, if µ ∈Distr(F) and µ =⇒ µ̄ then µ̄ ∈Distr(F). By Theorem 1 Distr(F) is a sequentially compact
subspace of the complete metric space Distr(E), meaning that every sequence (µi)

∞
i=0 in Distr(F) has

a subsequence (µik)
∞
k=0 such that limk→∞ µik = µ for some distribution µ ∈ Distr(F). In particular, if

lim i→∞ µi = µ and µi ∈Distr(F), then also µ ∈Distr(F), i.e. Distr(F) is a closed subset of Distr(E).
Due to the finitary nature of our process algebra, each distribution µ ∈ Distr(E) occurs in Distr(F) for
some such F , based on spt(µ).

In the following three lemmas we establish a number of continuity results. Assume lim i→∞ νi = ν .
Then Lemma 12 states that, for a Dirac distribution δ (E), if δ (E) α−→ νi for i ∈N then also δ (E) α−→ ν .
Lemma 13 extends this and shows that, for a general distribution µ , if µ

α−→ νi for i ∈N then µ
α−→ ν .

Finally, Lemma 14 establishes the limit case: if lim i→∞ µi = µ and µi
α−→ νi for i ∈N then µ

α−→ ν .

Lemma 12. Let E ∈ F be a non-deterministic process, α ∈ A an action, (νi)
∞
i=0 ∈ Distr(F)∞ an

infinite sequence in Distr(F), and ν ∈ Distr(F) a distribution satisfying lim i→∞ νi = ν . If, for all
i ∈N, δ (E) (α)−−→ νi then it holds that δ (E) (α)−−→ ν .

52 A Cancellation Law for Probabilistic Processes

Proof. For E ∈ F and α ∈ A , define E�α = cc({ µ | E α−→ µ}), pronounced E ‘after’ α , to be the
convex closure in Distr(E) of all distributions that can be reached from E by an α-transition. Then
δ (E) α−→ ν iff ν ∈ E�α . Recall that transitions for non-deterministic processes are not probabilistically
combined. See Definition 5. Since E�α ⊆ Distr(F) is the convex closure of a finite set of distributions,
it is certainly closed in the space Distr(F). Since it holds that δ (E) α−→ νi for all i∈N, one has νi ∈ E�α
for i ∈N. Hence, lim i→∞ νi = ν implies that ν ∈ E�α , i.e. δ (E) α−→ ν .

For E ∈ F , define E�(τ) := cc({µ | E τ−→ µ} ∪ {E}). Then δ (E) (τ)−−→ ν iff ν ∈ E�(τ). The set
E�(τ)⊆ Distr(F) is closed, and thus νi ∈ E�(τ) implies ν ∈ E�(τ), which means δ (E) (τ)−−→ ν .

The above result for Dirac distributions holds for general distributions as well.
Lemma 13. Let µ,ν ∈ Distr(F), α ∈A , (νi)

∞
i=0 ∈ Distr(F)∞, and assume lim i→∞ νi = ν . If it holds

that µ
(α)−−→ νi for all i ∈N, then also µ

(α)−−→ ν .

Proof. Suppose µ
(α)−−→ νi for all i ∈ I. Let µ =

⊕k
j=1 p j ·E j. By Lemma 8, for all i ∈N and 1 6 j 6 k

there are νi j such that δ (E j)
(α)−−→ νi j and νi =

⊕k
j=1 p j ·νi j. The countable sequence (νi1,νi2, . . . ,νik)

∞
i=0

of k-dimensional vectors of probability distributions need not have a limit. However, by the sequential
compactness of Distr(F) this sequence has an infinite subsequence in which the first components νi1
converge to a limit η1. That sequence in turn has an infinite subsequence in which also the second
components νi2 converge to a limit η2. Going on this way, one finds a subsequence (νih1,νih2, . . . ,νihk)

∞
h=0

of (νi1,νi2, . . . ,νik)
∞
i=0 for i0 < i1 < .. . that has a limit, say limh→∞(νih1,νih2, . . . ,νihk) = (η1,η2, . . . ,ηk).

Using that limh→∞ νih = ν , one obtains ν =
⊕k

j=1 p j ·η j. For each j = 1, . . . ,k, by Lemma 12, since
δ (E j)

(α)−−→ νi j for all i ∈ I and limh→∞ νih j = η j, we conclude that δ (E j)
(α)−−→ η j. Thus, by Lemma 7,

µ =
⊕k

j=1 p j ·E j
(α)−−→

⊕k
j=1 p j ·η j = ν .

Next, we consider a partial transition over a convergent sequence of distributions.
Lemma 14. Let (µi)

∞
i=0,(νi)

∞
i=0 ∈Distr(F)∞ such that lim i→∞ µi = µ and lim i→∞ νi = ν . If it holds that

µi
(α)−−→ νi for all i ∈N, then also µ

(α)−−→ ν .

Proof. Since lim i→∞ µi = µ , we can write µi = (1− ri)µ ⊕ ri µ
′′
i , for suitable µ ′′i ∈ Distr(F) and ri > 0

such that lim i→∞ ri = 0, as guaranteed by Lemma 2. Because µi
(α)−−→ νi, by Lemma 8 there are distribu-

tions ν ′i ,ν
′′
i ∈ Distr(F) for i ∈N such that νi = (1− ri)ν

′
i ⊕ riν

′′
i , µ

(α)−−→ ν ′i , and µ ′′i
(α)−−→ ν ′′i . We have

lim i→∞ ν ′i = ν as well, since lim i→∞ ri = 0. Thus, lim i→∞ ν ′i = ν and µ
(α)−−→ ν ′i for i ∈N. Therefore, it

follows by Lemma 13 that µ
(α)−−→ ν .

For µ,ν ∈ Distr(F), we write µ ⇒n ν if there are η0,η1, . . . ,ηn ∈ Distr(F) such that µ = η0
(τ)−−→

η1
(τ)−−→ . . .

(τ)−−→ ηn = ν . Clearly, it holds that µ ⇒n ν for some n ∈N in case µ ⇒ ν , because⇒ is the
transitive closure of (τ)−−→.

We have the following pendant of Lemma 14 for⇒n.
Lemma 15. Let (µi)

∞
i=0,(νi)

∞
i=0 ∈Distr(F)∞, lim i→∞ µi = µ and lim i→∞ νi = ν . If µi⇒n νi for all i∈N

then µ ⇒n ν .

Proof. By induction on n. Basis, n= 0: Trivial. Induction step, n+1: Given (µi)
∞
i=0,(νi)

∞
i=0 ∈Distr(F)∞,

µ = lim i→∞ µi, and ν = lim i→∞ νi, suppose µi⇒n+1 νi for all i ∈N. Let (ηi)
∞
i=0 ∈ Distr(F)∞ be such

that µi
(τ)−−→ ηi ⇒n νi for all i ∈ N. Since Distr(F) is sequentially compact, the sequence (ηi)

∞
i=0 has

a convergent subsequence (ηik)
∞
k=0; put η = limk→∞ ηik . Because µik

(τ)−−→ ηik for all k ∈ N, one has
µ

(τ)−−→ η by Lemma 14. Since ηik ⇒n νik for k ∈N, the induction hypothesis yields η ⇒n ν . It follows
that µ ⇒n+1 ν .

Van Glabbeek, Groote & De Vink 53

We adapt Lemma 15 to obtain a continuity result for weak transitions =⇒.

Lemma 16. Let (µi)
∞
i=0,(νi)

∞
i=0 ∈Distr(F)∞, lim i→∞ µi = µ and lim i→∞ νi = ν . If µi⇒ νi for all i∈N,

then µ ⇒ ν .

Proof. Since F contains only finitely many non-deterministic processes, which can do finitely many
τ-transitions only, a global upperbound N exists such that if µ ⇒ ν then µ ⇒k ν for some k 6 N.

Moreover, as each sequence µ = η0
(τ)−−→ η1

(τ)−−→ . . .
(τ)−−→ ηk = ν with k < N can be extended to a

sequence µ = η0
(τ)−−→ η1

(τ)−−→ . . .
(τ)−−→ ηN = ν , namely by taking ηi = ν for all k < i 6 N, on F the

relations⇒ and⇒N coincide. Consequently, Lemma 16 follows from Lemma 15.

The following theorem says that equivalence classes of branching probabilistic bisimilarity in Distr(F)
are closed sets of distributions.

Theorem 17. Let µ̂, ν̂ ∈ Distr(F) and (νi)
∞
i=0 ∈ Distr(F)∞ such that µ̂ ↔b νi for all i ∈N and ν̂ =

lim i→∞ νi. Then it holds that µ̂ ↔b ν̂ .

Proof. Define the relation R on Distr(F) by

µ R ν ⇐⇒ ∃(µi)
∞
i=0,(νi)

∞
i=0 ∈ Distr(F)∞ :

lim i→∞ µi = µ ∧ lim i→∞ νi = ν ∧∀i∈N : µi↔b νi

As µ̂ R ν̂ (taking µi := µ̂ for all i∈ I), it suffices to show that R is a branching probabilistic bisimulation.
Suppose µ R ν . Let (µi)

∞
i=0,(νi)

∞
i=0 ∈Distr(F)∞ be such that lim i→∞ µi = µ , lim i→∞ νi = ν , and

µi↔b νi for all i∈N. Since lim i→∞ µi =µ , there exist (µ ′i)
∞
i=0∈Distr(F)∞ and (ri)

∞
i=0 ∈R∞ such that

µi = (1− ri)µ⊕ ri µ
′
i for all i ∈N and lim i→∞ ri = 0.

(i) Towards weak decomposability of R for µ vs. ν , suppose µ =
⊕

j∈J q j · µ̄ j. So, for all i∈N, we
have that µi = (1− ri)

(⊕
j∈J q j · µ̄ j

)
⊕ ri µ

′
i . By weak decomposability of↔b, there exist ¯̄νi, ν ′i and νi j

for i∈N and j∈J such that νi =⇒ ¯̄νi, µi↔b ¯̄νi, ¯̄νi = (1−ri)
(⊕

j∈J q j ·νi j
)
⊕ riν

′
i , µ ′i ↔b ν ′i , and µ̄ j↔b νi j

for j∈ J.
The sequences (νi j)

∞
i=0 for j ∈ J may not converge. However, by sequential compactness of Distr(F)

(and successive sifting out for each j ∈ J) an index sequence (ik)∞
k=0 exists such that the sequences

(νik j)
∞
k=0 converge, say limk→∞ νik j = ν̄ j for j ∈ J. Put ν̄ =

⊕
j∈J q j · ν̄ j. Then it holds that

lim
k→∞

¯̄νik = lim
k→∞

(1− rik)
(⊕

j∈J q j ·νik j
)
⊕ rik ν ′ik = limk→∞

⊕
j∈J q j ·νik j =

⊕
j∈J q j · ν̄ j = ν̄

as limk→∞ rik = 0 and probabilistic composition is continuous. Since νik =⇒ ¯̄νik for all k ∈ N, one has
limk→∞ νik =⇒ limk→∞

¯̄νik , i.e. ν =⇒ ν̄ , by Lemma 16. Also, µik ↔b ¯̄νik for all k ∈ N. Therefore, by
definition of R, we obtain µ R ν̄ . Since µ̄ j ↔b νik j for all k ∈ N and j ∈ J, it follows that µ̄ j R ν̄ j

for j ∈ J. Thus, ν =⇒ ν̄ =
⊕

j∈J q j · ν̄ j, µ R ν̄ , and µ̄ j R ν̄ j for all j ∈ J, as was to be shown. Hence the
relation R is weakly decomposable.

(ii) For the transfer property, suppose µ
α−→ µ ′ for some α ∈A . Since, for each i∈N, µi↔b νi and

µi = (1− ri)µ⊕ ri µ
′
i , it follows from weak decomposability of↔b that distributions ν̄i, ν ′i and ν ′′i exist

such that νi =⇒ ν̄i, µi ↔b ν̄i, ν̄i = (1− ri)ν ′i ⊕ riν
′′
i and µ ↔b ν ′i . By the transfer property for ↔b, for

each i ∈N exist η̄i,η
′
i ∈ Distr(E) such that

ν
′
i =⇒ η̄i, η̄i

(α)−−→ η
′
i , µ ↔b η̄i, and µ

′↔b η
′
i .

We have ν̄ ′i ∈ Distr(F) for i ∈ N. Also, η̄i,η
′
i ∈ Distr(F) for i ∈ N, since F is assumed to be

transition closed. Therefore, by sequential compactness of Distr(F), the sequences (ν̄ ′i)
∞
i=0, (η̄i)

∞
i=0,

54 A Cancellation Law for Probabilistic Processes

(η̄ ′i)
∞
i=0 have converging subsequences (ν̄ ′ik)

∞
k=0, (η̄ik)

∞
k=0, and (η̄ ′ik)

∞
k=0, respectively. Put ν̄ = limk→∞ ν ′ik ,

η̄ = limk→∞ η̄ik , and η ′ = limk→∞ η ′ik . As limk→∞ rik = 0, one has limk→∞ ν̄ik = limk→∞ ν ′ik = ν̄ .
Since νik =⇒ ν̄ik for k ∈N, we obtain limk→∞ νik =⇒ limk→∞ ν̄ik by Lemma 16, thus ν =⇒ ν̄ . Likewise,

as ν ′ik =⇒ η̄ik for all k ∈ N, one has ν̄ =⇒ η̄ , and therefore ν =⇒ η̄ . Furthermore, because η̄ik
(α)−−→ η ′ik

for k ∈ N, it follows that η̄
(α)−−→ η ′, now by Lemma 14. From µ ↔b η̄ik for all k ∈ N, we obtain

µ R η̄ by definition of R. Finally, µ ′↔b η ′ik for all k ∈N yields µ ′R η ′. Thus ν =⇒ η̄
(α)−−→ η ′, µ R η̄ ,

and µ ′R η̄ ′, which was to be shown.

The following corollary of Theorem 17 will be used in the next section.

Corollary 18. For each µ ∈ Distr(E), the set Tµ = {ν ∈Distr(E) | ν ↔b µ ∧µ⇒ν } is a sequentially
compact set.

Proof. For µ =
⊕

i∈I pi ·Ei, the set of processes F = {E ∈ E | E occurs in Ei for some i ∈ I } is finite
and closed under transitions. Clearly, µ ∈ Distr(F). Moreover, Distr(F) is a sequentially compact
subset of Distr(E). Taking µi = µ for all i ∈ N in Lemma 16 yields that { ν | µ =⇒ ν } is a closed
subset of Distr(F). Similarly, the set { ν | ν ↔b µ } is a closed subset of Distr(F) by Theorem 17.
The statement then follows since the intersection of two closed subsets of Distr(F) is itself closed, and
hence sequentially compact.

6 Cancellativity for branching probabilistic bisimilarity

With the results of Section 5 in place, we turn to stable processes and cancellativity. In the introduction
we argued that in general it doesn’t need to be the case that two branching probabilistic bisimilar distri-
butions assign the same weight to equivalence classes. Here we show that this property does hold when
restricting to stable distributions. We continue to prove the announced unfolding result, that for every
distribution µ there exists a stable distribution σ such that µ⇒ σ and µ↔b σ . That result will be pivotal
in the proof of the cancellation theorem, Theorem 22.

Definition 19. A distribution µ ∈ Distr(E) is called stable if, for all µ̄ ∈ Distr(E), µ =⇒ µ̄ and µ ↔b µ̄

imply that µ̄ = µ .

Thus, a distribution µ is called stable if it cannot perform internal activity without leaving its branching
bisimulation equivalence class. By definition of (τ)−−→ it is immediate that if

⊕
i∈I pi·µi is a stable distri-

bution with pi > 0 for i ∈ I, then also each probabilistic component µi is stable. Also, because two stable
distributions µ and ν don’t have any non-trivial partial τ-transitions, weak decomposability between
them amounts to decomposability, i.e. if µ ↔b ν and µ =

⊕
i∈I piµi then distributions νi for i ∈ I exist

such that ν =
⊕

i∈I piνi and µi↔b νi for i ∈ I.

The next result states that, contrary to distributions in general, two stable distributions are branching
bisimilar precisely when they assign the same probability on all branching bisimilarity classes of E .

Lemma 20. Let µ,ν ∈ Distr(E) be two stable distributions. Then it holds that µ ↔b ν iff µ[C] = ν [C]
for each equivalence class C of branching probabilistic bisimilarity in E .

Proof. Suppose µ =
⊕

i∈I pi ·Ei, ν =
⊕

j∈J q j ·Fj, and µ ↔b ν . By weak decomposability, ν =⇒ ν̄ =⊕
i∈I pi·νi for suitable νi ∈ Distr(E) for i ∈ I with νi ↔b δ (Ei) and ν̄ ↔b µ . Hence, ν̄ ↔b µ ↔b ν .

Thus, by stability of ν , we have ν̄ = ν . Say, νi =
⊕

j∈J qi j ·Fj with qi j > 0, for i ∈ I, j ∈ J. Since
νi ↔b δ (Ei), we have by weak decomposability, δ (Ei) =⇒

⊕
j∈J qi j·µ ′i j such that δ (Ei)↔b

⊕
j∈J qi j·µ ′i j

Van Glabbeek, Groote & De Vink 55

and µ ′i j↔b δ (Fj) for suitable µ ′i j ∈Distr(E). Since µ is stable, so is δ (Ei). Hence δ (Ei) =
⊕

j∈J qi j·µ ′i j,
µ ′i j = δ (Ei), and Ei↔b Fj if qi j > 0. Put pi j = piqi j, Ei j = Ei if qi j > 0, and Ei j = 0 otherwise, Fi j = Fj

if qi j > 0, and Fi j = 0 otherwise, for i ∈ I, j ∈ J. Then it holds that

µ =
⊕

i∈I pi ·Ei =
⊕

i∈I pi·
(⊕

j∈J qi j ·Ei
)
=
⊕

i∈I
⊕

j∈J piqi j ·Ei =
⊕

i∈I
⊕

j∈J pi j ·Ei j

ν =
⊕

i∈I pi·νi =
⊕

i∈I pi·
(⊕

j∈J qi j ·Fj
)
=
⊕

i∈I
⊕

j∈J piqi j ·Fj =
⊕

i∈I
⊕

j∈J pi j ·Fi j .

Now, for any equivalence class C of E modulo ↔b, it holds that Ei j ∈ C ⇔ Fi j ∈ C for all indices
i ∈ I, j ∈ J. So, µ[C] = ∑i∈I, j∈J : Ei j∈C pi j = ∑i∈I, j∈J : Fi j∈C pi j = ν [C].

For the reverse direction, suppose µ =
⊕

i∈I pi ·Ei, ν =
⊕

j∈J q j ·Fj, with pi,q j > 0, and µ[C] = ν [C]
for each equivalence class C ∈ E /↔.

For i ∈ I and j ∈ J, let Ci and Dj be the equivalence class in E of Ei and Fj modulo ↔b. Define
ri j = δi j piq j/µ[Ci], for i ∈ I, j ∈ J, where δi j = 1 if Ei↔b Fj and δi j = 0 otherwise. Then it holds that

∑ j∈J ri j = ∑ j∈J
δi j piq j

µ[Ci]
=

pi

µ[Ci]
∑ j∈J δi j q j =

piν [Ci]

µ[Ci]
= pi.

Since δi j piq j/µ[Ci] = δi j piq j/ν [Dj] for i ∈ I, j ∈ J, we also have ∑ i∈I ri j = q j. Therefore, we can write
µ =

⊕
i∈I
⊕

j∈J ri j ·Ei j and ν =
⊕

i∈I
⊕

j∈J ri j ·Fi j for suitable Ei j and Fi j such that Ei j ↔b Fi j. Calling
Lemma 10 it follows that µ ↔b ν .

Next, in Lemma 21, we are about to prove a crucial property for our proof of cancellativity, the proof of
Theorem 22 below. Generally, a distribution may allow inert partial transitions. However, the distribution
can be unfolded to reach via inert partial transitions a stable distribution, which doesn’t have these by
definition. To obtain the result we will rely on the topological property of sequential compactness of the
set Tµ = {µ ′ | µ ′↔b µ ∧µ =⇒ µ ′ } introduced in the previous section.

Lemma 21. For all µ ∈ Distr(E) there is a stable distribution σ ∈ Distr(E) such that µ ⇒ σ .

Proof. Define the weight of a distribution by wgt(µ)=∑E∈E µ(E) · c(E), i.e., the weighted average of the
complexities of the states in its support. In view of these definitions, E α−→ µ implies wgt(µ)<wgt(δ (E))
and µ

α−→ µ ′ implies wgt(µ ′)< wgt(µ). In addition, µ =⇒ µ ′ implies wgt(µ ′)6wgt(µ).
For a distribution µ ∈Distr(E), the set Tµ is given by Tµ = {µ ′ | µ ′↔b µ ∧µ =⇒ µ ′ }. Consider the

value inf{wgt(µ ′) | µ ′ ∈ Tµ }. By Corollary 18, Tµ is a sequentially compact set. Since the infimum over
a sequentially compact set will be reached, there exists a distribution σ such that µ =⇒ σ , σ ↔b µ , and
wgt(σ) = inf{wgt(µ ′) | µ ′ ∈ Tµ }. By definition of Tµ , the distribution σ must be stable.

We have arrived at the main result of the paper, slightly more general formulated compared to the descrip-
tion in the introduction. The message remains the same: if two distributions are branching probabilistic
bisimilar and have components that are branching probabilistic bisimilar, then the components that re-
main after cancelling the earlier components are also branching probabilistic bisimilar. As we see, the
previous lemma is essential in the proof as given.

Theorem 22 (Cancellativity). Let µ,µ ′,ν ,ν ′ ∈Distr(E) and 0 < r 6 1 be such that µ r⊕ ν ↔b µ ′ r⊕ ν ′

and ν ↔b ν ′. Then it holds that µ ↔b µ ′.

Proof. Choose µ , µ ′, ν , ν ′, and r according to the premise of the theorem. By Lemma 21, a stable
distribution σ exists such that µ r⊕ ν =⇒ σ and σ ↔b µ r⊕ ν . By weak decomposability, we can find
distributions µ̄ and ν̄ such that σ =⇒ µ̄ r⊕ ν̄ , µ̄↔b µ , and ν̄↔b ν . By stability of σ we have σ = µ̄ r⊕ ν̄ .

56 A Cancellation Law for Probabilistic Processes

Thus µ̄ r⊕ ν̄ is stable. Symmetrically, there are distributions µ̄ ′ and ν̄ ′ such that µ̄ ′↔b µ ′, ν̄ ′↔b ν ′ and
such that µ̄ ′ r⊕ ν̄ ′ is stable. Note, µ̄ r⊕ ν̄ ↔b µ r⊕ ν ↔b µ ′ r⊕ ν ′↔b µ̄ ′ r⊕ ν̄ ′.

Let C ⊆ E be an equivalence class of E /↔b. The distributions µ̄ r⊕ ν̄ and µ̄ ′ r⊕ ν̄ ′ are stable and
µ̄ r⊕ ν̄↔b µ̄ ′ r⊕ ν̄ ′. From Lemma 20 we obtain that (µ̄ r⊕ ν̄)[C] = (µ̄ ′ r⊕ ν̄ ′)[C]. Since ν and ν̄ are stable
and ν̄ ↔b ν̄ ′, we have ν̄ [C] = ν̄ ′[C] for the same reason. Because (µ̄ r⊕ ν̄)[C] = r · µ̄[C]+ (1−r) · ν̄ [C]
and (µ̄ ′ r⊕ ν̄ ′)[C] = r · µ̄ ′[C]+ (1−r) · ν̄ ′[C], we calculate

r · µ̄[C] = (µ̄ r⊕ ν̄)[C]− (1−r) · ν̄ [C] = (µ̄ ′ r⊕ ν̄
′)[C]− (1−r) · ν̄ ′[C] = r · µ̄ ′[C].

Since r 6= 0, it follows µ̄[C] = µ̄ ′[C]. Since µ̄ and µ̄ ′ are stable it follows by Lemma 20 that µ̄ ↔b µ̄ ′.
Consequently, µ ↔b µ̄ ↔b µ̄ ′↔b µ ′. In particular µ ↔b µ ′, as was to be shown.

7 Concluding remarks

We have shown a cancellation law for distributions with respect to branching probabilistic bisimilarity.
The result rests on the notion of a stable distribution. Stable distributions enjoy two properties that have
been essential to our set-up. (i) Every distribution has a weak unfolding towards a stable distribution
that is branching probabilistic bisimilar. (ii) Branching probabilistic bisimilarity for stable distributions
is determined by their summed probability for equivalence classes of non-deterministic processes. Tech-
niques from metric topology have been used to establish the first result.

We used the cancellativity result in [16] in order to obtain a complete axiomatisation of branching
probabilistic bisimilarity. The technical report [15] contains a proof sketch in line with this paper. Yet,
as cancellativity is such a fundamental property, and the notion of branching probabilistic bisimulation
is mathematically quite involved, we regard it necessary to provide a full, detailed proof.

The continuity results of Section 5, as well as the argumentation from metric topology at other
places, are exploited to deal with the uncountable number of inert transitions that arise from combined
transitions. One may wonder if the main theorems of the paper can be achieved based on combinatorial
arguments. Intuitively, transitions span a convex polyhedron and the uncountability of the branching of
transitions may be reduced to the finiteness of the transitions spanning the polyhedron. Despite a number
of attempts, we have been forced to leave the question of a simpler combinatorial proof open.

We leave it as open question for future research weather cancellativity holds for larger classes of
probabilistic processes, as could be obtained, for instance, by adding recursion, uncountable choice
and/or parallel composition to the syntax. A further topic for future research is the study of cancellativity
for other weak variants of probabilistic bisimulation, in particular weak probabilistic bisimulation.

Other future work is to be devoted to the construction of an efficient decision algorithm for branching
probabilistic bisimilarity. A decision procedure for strong probabilistic bisimilarity based on so-called
extended ordered binary trees has been proposed in [4]. An improved algorithm based on partition
refinement is presented in [18]. Partition refinement algorithms for weak and branching probabilistic
bisimilarity on states are proposed in [29]. Reduction of weak probabilistic bisimilarity checking of the
state-based approach of [8] to linear programming is studied in [12]. Although it is currently not clear
how to construct an algorithm deciding branching probabilistic bisimilarity as put forward in this paper,
it is likely that the procedures of [17] and [29] can serve as a starting point.

Van Glabbeek, Groote & De Vink 57

References

[1] S. Andova, S. Georgievska & N. Trcka (2012): Branching bisimulation congruence for probabilistic systems.
Theoretical Computer Science 413, pp. 58–72, doi:10.1016/j.tcs.2011.07.020.

[2] S. Andova & T.A.C. Willemse (2006): Branching bisimulation for probabilistic systems: Characteristics and
decidability. Theoretical Computer Science 356, pp. 325–355, doi:10.1016/j.tcs.2006.02.010.

[3] C. Baier, P.R. D’Argenio & H. Hermanns (2020): On the probabilistic bisimulation spectrum with silent
moves. Acta Informatica 57, pp. 465–512, doi:10.1007/s00236-020-00379-2.

[4] C. Baier, B. Engelen & M.E. Majster-Cederbaum (2000): Deciding bisimilarity and similarity for probabilis-
tic processes. Journal of Computer Systems and Sciences 60(1), pp. 187–231, doi:10.1006/jcss.1999.1683.

[5] C. Baier & M.Z. Kwiatkowska (2000): Domain equations for probabilistic processes. Mathematical Struc-
tures in Computer Science 10(6), pp. 665–717, doi:10.1017/S0960129599002984.

[6] E. Bandini & R. Segala (2001): Axiomatizations for Probabilistic Bisimulation. In F. Orejas et al., editor:
Proc. ICALP 2001, LNCS 2076, pp. 370–381, doi:10.1007/3-540-48224-5_31.

[7] F. Breugel & J. Worrell (2005): A behavioural pseudometric for probabilistic transition systems. Theoretical
Computer Science 331(1), pp. 115–142, doi:10.1016/j.tcs.2004.09.035.

[8] S. Cattani & R. Segala (2002): Decision Algorithms for Probabilistic Bisimulation. In L. Brim et al., editor:
Proc. CONCUR 2002, LNCS 2421, pp. 371–385, doi:10.1007/3-540-45694-5_25.

[9] Y. Deng, R.J. van Glabbeek, M. Hennessy & C.C. Morgan (2009): Testing Finitary Probabilistic Processes
(extended abstract). In M. Bravetti & G. Zavattaro, editors: Proc. CONCUR’09, LNCS 5710, pp. 274–288,
doi:10.1007/978-3-642-04081-8_19.

[10] J. Desharnais, V. Gupta, R. Jagadeesan & P. Panangaden (1999): Metrics for Labeled Markov Systems. In
J.C.M. Baeten & S. Mauw, editors: Proc. CONCUR ’99, LNCS 1664, pp. 258–273, doi:10.1007/3-540-
48320-9_19.

[11] C. Eisentraut, H. Hermanns, J. Krämer, A. Turrini & L. Zhang (2013): Deciding Bisimilarities on Distribu-
tions. In K. Joshi et al., editor: Proc. QEST 2013, LNCS 8054, pp. 72–88, doi:10.1007/978-3-642-40196-1_6.

[12] L. Ferrer Fioriti, V. Hashemi, H. Hermanns & A. Turrini (2016): Deciding probabilistic automata weak
bisimulation: theory and practice. Formal Aspects of Computing 28(1), pp. 109–143, doi:10.1007/s00165-
016-0356-4.

[13] A. Giacalone, Chi-Chang Jou & S.A. Smolka (1990): Algebraic Reasoning for Probabilistic Concurrent
Systems. In M. Broy & C.B. Jones, editors: Programming concepts and methods, North-Holland, pp. 443–
458.

[14] M. Giry (1982): A Categorical Approach to Probability Theory. In B. Banaschewski, editor: Categorical
Aspects of Topology and Analysis, LNM 915, pp. 68–85, doi:10.1007/BFb0092872.

[15] R.J. van Glabbeek, J.F. Groote & E.P. de Vink (2019): A Complete Axiomatization of Branching Bisimilar-
ity for a Simple Process Language with Probabilistic Choice. Technical Report, Eindhoven University of
Technology. Available at http://rvg.web.cse.unsw.edu.au/pub/AxiomProbBranchingBis.pdf.

[16] R.J. van Glabbeek, J.F. Groote & E.P. de Vink (2019): A Complete Axiomatization of Branching Bisimilarity
for a Simple Process Language with Probabilistic Choice (extended abstract). In M.A. Alvim et al., editor:
The Art of Modelling Computational Systems: A Journey from Logic and Concurrency to Security and
Privacy, LNCS 11760, pp. 139–162, doi:10.1007/978-3-030-31175-9_9.

[17] J.F. Groote & F.W. Vaandrager (1990): An Efficient Algorithm for Branching Bisimulation and Stuttering
Equivalence. In M. Paterson, editor: Proc. ICALP ’90, LNCS 443, pp. 626–638, doi:10.1007/BFb0032063.

[18] J.F. Groote, H.J. Rivera Verduzco & E.P. de Vink (2018): An efficient algorithm to determine probabilistic
bisimulation. Algorithms 11(9), pp. 131,1–22, doi:10.3390/a11090131.

[19] J.F. Groote & E.P. de Vink (2019): An Axiomatization of Strong Distribution Bisimulation for a Language
with a Parallel Operator and Probabilistic Choice. In M.H. ter Beek, A. Fantechi & L. Semini, editors: From

https://doi.org/10.1016/j.tcs.2011.07.020
https://doi.org/10.1016/j.tcs.2006.02.010
https://doi.org/10.1007/s00236-020-00379-2
https://doi.org/10.1006/jcss.1999.1683
https://doi.org/10.1017/S0960129599002984
https://doi.org/10.1007/3-540-48224-5_31
https://doi.org/10.1016/j.tcs.2004.09.035
https://doi.org/10.1007/3-540-45694-5_25
https://doi.org/10.1007/978-3-642-04081-8_19
https://doi.org/10.1007/3-540-48320-9_19
https://doi.org/10.1007/3-540-48320-9_19
https://doi.org/10.1007/978-3-642-40196-1_6
https://doi.org/10.1007/s00165-016-0356-4
https://doi.org/10.1007/s00165-016-0356-4
https://doi.org/10.1007/BFb0092872
http://rvg.web.cse.unsw.edu.au/pub/AxiomProbBranchingBis.pdf
https://doi.org/10.1007/978-3-030-31175-9_9
https://doi.org/10.1007/BFb0032063
https://doi.org/10.3390/a11090131

58 A Cancellation Law for Probabilistic Processes

Software Engineering to Formal Methods and Tools, and Back, LNCS 11865, pp. 449–463, doi:10.1007/978-
3-030-30985-5_26.

[20] H. Hansson & B. Jonsson (1990): A Calculus for Communicating Systems with Time and Probabilities. In:
Proc. RTSS 1990, IEEE, pp. 278–287, doi:10.1109/REAL.1990.128759.

[21] J.I. den Hartog, E.P. de Vink & J.W. de Bakker (2000): Metric semantics and full abstractness for ac-
tion refinement and probabilistic choice. Electronic Notes in Theoretical Computer Science 40, pp. 72–99,
doi:10.1016/S1571-0661(05)80038-6.

[22] M. Hennessy (2012): Exploring probabilistic bisimulations, part I. Formal Aspects of Computing 24, pp.
749–768, doi:10.1007/s00165-012-0242-7.

[23] S. Lang (1997): Undergraduate Analysis (2nd ed.). Undergraduate Texts in Mathmatics, Springer,
doi:10.1007/978-1-4757-2698-5.

[24] M.D. Lee & E.P. de Vink (2016): Logical Characterization of Bisimulation for Transition Relations over
Probability Distributions with Internal Actions. In P. Faliszewski, A. Muscholl & R. Niedermeier, editors:
Proc. MFCS 2016, LIPIcs 58, pp. 29:1–29:14, doi:10.4230/LIPIcs.MFCS.2016.29.

[25] G.J. Norman (1997): Metric Semantics for Probabilistic Systems. Ph.D. thesis, Universith of Birmingham.
[26] R. Segala (1995): Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis,

MIT. Technical Report MIT/LCS/TR–676.
[27] R. Segala & N.A. Lynch (1994): Probabilistic simulations for probabilistic processes. In B. Jonsson &

J. Parrow, editors: Proc. CONCUR 94, LNCS 836, pp. 481–496, doi:10.1007/978-3-540-48654-1_35.
[28] M. Stoelinga (2002): Alea Jacta est: Verification of probabilistic, real-time and parametric systems. Ph.D.

thesis, Radboud Universiteit.
[29] A. Turrini & H. Hermanns (2015): Polynomial time decision algorithms for probabilistic automata. Infor-

mation and Computation 244, pp. 134–171, doi:10.1016/j.ic.2015.07.004.

https://doi.org/10.1007/978-3-030-30985-5_26
https://doi.org/10.1007/978-3-030-30985-5_26
https://doi.org/10.1109/REAL.1990.128759
https://doi.org/10.1016/S1571-0661(05)80038-6
https://doi.org/10.1007/s00165-012-0242-7
https://doi.org/10.1007/978-1-4757-2698-5
https://doi.org/10.4230/LIPIcs.MFCS.2016.29
https://doi.org/10.1007/978-3-540-48654-1_35
https://doi.org/10.1016/j.ic.2015.07.004

G. Caltais and C. A. Mezzina (Eds): Combined Workshop on
Expressiveness in Concurrency and Structural Operational Semantics
(EXPRESS/SOS 2023).
EPTCS 387, 2023, pp. 59–75, doi:10.4204/EPTCS.387.6

© R.J. van Glabbeek, P. Höfner & W. Wang
This work is licensed under the
Creative Commons Attribution License.

A Lean-Congruence Format for EP-Bisimilarity

Rob van Glabbeek*

School of Informatics
University of Edinburgh, UK

School of Computer Science and Engineering
University of New South Wales

Sydney, Australia
rvg@cs.stanford.edu

Peter Höfner Weiyou Wang
School of Computing

Australian National University
Canberra, Australia

peter.hoefner@anu.edu.au

weiyou.wang@anu.edu.au

Enabling preserving bisimilarity is a refinement of strong bisimilarity that preserves safety as well as
liveness properties. To define it properly, labelled transition systems needed to be upgraded with a
successor relation, capturing concurrency between transitions enabled in the same state. We enrich
the well-known De Simone format to handle inductive definitions of this successor relation. We
then establish that ep-bisimilarity is a congruence for the operators, as well as lean congruence for
recursion, for all (enriched) De Simone languages.

1 Introduction

Recently, we introduced a finer alternative to strong bisimilarity, called enabling preserving bisimilarity.
The motivation behind this concept was to preserve liveness properties, which are not always preserved
by classical semantic equivalences, including strong bisimilarity.

Example 1.1 ([13]) Consider the following two programs, and assume that all variables are initialised
to 0.

whi le (t r u e) do
choose

i f t r u e t h e n y := y +1;
i f x = 0 t h e n x := 1 ;

end
od y := y+1

x := 1

y := y+1

whi le (t r u e) do
y := y +1;

od ‖ x := 1 ;

The code on the left-hand side presents a non-terminating while-loop offering an internal nondetermin-
istic choice. The conditional if x = 0 then x := 1 describes an atomic read-modify-write operation.1

Since the non-deterministic choice does not guarantee to ever pick the second conditional, this example
should not satisfy the liveness property ‘eventually x=1’.

The example on the right-hand side is similar, but here two different components handle the variables
x and y separately. The two programs should be considered independent – by default we assume they are
executed on different cores. Hence the property ‘eventually x=1’ should hold.

The two programs behave differently with regards to (some) liveness properties. However, it is
easy to verify that they are strongly bisimilar, when considering the traditional modelling of such code
in terms of transition systems. In fact, their associated transition systems, also displayed above, are
identical. Hence, strong bisimilarity does not preserve all liveness properties.

Enabling preserving bisimilarity (ep-bisimilarity) – see next section for a formal definition – distin-
guishes these examples and preserves liveness. In contrast to classical bisimulations, which are relations
of type States×States, this equivalence is based on triples. An ep-bisimulation additionally maintains

*Supported by Royal Society Wolfson Fellowship RSWF\R1\221008
1https://en.wikipedia.org/wiki/Read-modify-write

http://dx.doi.org/10.4204/EPTCS.387.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4712-7423
https://orcid.org/0000-0002-2141-5868
https://en.wikipedia.org/wiki/Read-modify-write

60 A Lean-Congruence Format for EP-Bisimilarity

for each pair of related states p and q a relation R between the transitions enabled in p and q, and this
relation should be preserved when matching related transitions in the bisimulation game. When formal-
ising this, we need transition systems upgraded with a successor relation that matches each transition t
enabled in a state p to a transition t ′ enabled in p′, when performing a transition from p to p′ that does
not affect t. Intuitively, t ′ describes the same system behaviour as t, but the two transitions could be
formally different as they may have different sources. It is this successor relation that distinguishes the
transition systems in the example above.

In [13], we showed that ep-bisimilarity is a congruence for all operators of Milner’s Calculus of Com-
munication Systems (CCS), enriched with a successor relation. We extended this result to the Algebra of
Broadcast Communication with discards and Emissions (ABCdE), an extension of CCS with broadcast
communication, discard actions and signal emission. ABCdE subsumes many standard process algebras
found in the literature.

In this paper, we introduce a new congruence format for structural operational semantics, which is
based on the well-known De Simone Format and respects the successor relation. This format allows us
to generalise the results of [13] in two ways: first, we prove that ep-bisimilarity is a congruence for all
operators of any process algebras that can be formalised in the De Simone format with successors. Ap-
plicable languages include CCS and ABCdE. Second, we show that ep-bisimilarity is a lean congruence
for recursion [9]. Here, a lean congruence preserves equivalence when replacing closed subexpressions
of a process by equivalent alternatives.

2 Enabling Preserving Bisimilarity

To build our abstract theory of De Simone languages and De Simone formats, we briefly recapitulate the
definitions of labelled transition systems with successors, and ep-bisimulation. A detailed description
can be found in [13].

A labelled transition system (LTS) is a tuple (S,Tr,source, target, `) with S and Tr sets of states and
transitions, source, target : Tr→ S and ` : Tr→ L , for some set L of transition labels. A transition
t ∈ Tr of an LTS is enabled in a state p ∈ S if source(t) = p. The set of transitions enabled in p is en(p).
Definition 2.1 (LTSS [13]) A labelled transition system with successors (LTSS) is a tuple (S,Tr,source,
target, `,;) with (S,Tr,source, target, `) an LTS and ;⊆ Tr×Tr×Tr the successor relation such that
if (t,u,v) ∈; (also denoted by t ;u v) then source(t) = source(u) and source(v) = target(u).
Example 2.2 Remember that the ‘classical’ LTSs of Example 1.1 are identical. Let t1 and t2 be the two
transitions corresponding to y:=y+1 in the first and second state, respectively, and let u be the transition
for assignment x:=1. The assignments of x and y in the right-hand program are independent, hence
t1 ;u t2 and u ;t1 u. For the other program, the situation is different: as the instructions correspond to a
single component (program), all transitions affect each other, i.e. ;= /0.
Definition 2.3 (Ep-bisimilarity [13]) Let (S,Tr,source, target, `,;) be an LTSS. An enabling preserv-
ing bisimulation (ep-bisimulation) is a relation R ⊆ S×S×P(Tr×Tr) satisfying

1. if (p,q,R) ∈R then R⊆ en(p)× en(q) such that
a . ∀t ∈ en(p). ∃u ∈ en(q). t R u,
b . ∀u ∈ en(q). ∃ t ∈ en(p). t R u, and
c . if t R u then `(t) = `(u); and

2. if (p,q,R) ∈R and v R w, then (target(v), target(w),R′) ∈R for some R′ such that
a . if t R u and t ;v t ′ then ∃u′. u ;w u′∧ t ′ R′ u′, and
b . if t R u and u ;w u′ then ∃ t ′. t ;v t ′∧ t ′ R′ u′.

R.J. van Glabbeek, P. Höfner & W. Wang 61

Table 1: Structural operational semantics of CCS

α.x α−→ x
α→ x α−→ x′

x+ y α−→ x′
+L

y α−→ y′

x+ y α−→ y′
+R

x
η−→ x′

x|y η−→ x′|y
|L

x c−→ x′, y c̄−→ y′

x|y τ−→ x′|y′
|C

y
η−→ y′

x|y η−→ x|y′
|R

x `−→ x′ (` /∈ L ·∪L)

x\L `−→ x′\L
\L x `−→ x′

x[f]
f (`)−→ x′[f]

[f]
〈SX |S〉

α−→ y

〈X |S〉 α−→ y
recAct

Two states p and q in an LTSS are enabling preserving bisimilar (ep-bisimilar), denoted as p↔ep q, if
there is an enabling preserving bisimulation R such that (p,q,R)∈R for some R.

Without Items 2.a and 2.b, the above is nothing else than a reformulation of the classical definition of
strong bisimilarity. An ep-bisimulation additionally maintains for each pair of related states p and q a
relation R between the transitions enabled in p and q. Items 2.a and 2.b strengthen the condition on
related target states by requiring that the successors of related transitions are again related relative to
these target states. It is this requirement which distinguishes the transition systems for Example 1.1. [13]

Lemma 2.4 [Proposition 10 of [13]]↔ep is an equivalence relation.

3 An Introductory Example: CCS with Successors

Before starting to introduce the concepts formally, we want to present some motivation in the form
of the well-known Calculus of Communicating Systems (CCS) [17]. In this paper we use a proper
recursion construct instead of agent identifiers with defining equations. As in [3], we write 〈X |S〉 for the
X-component of a solution of the set of recursive equations S.

CCS is parametrised with set C of handshake communication names. C̄ := {c̄ | c ∈ C } is the set of
handshake communication co-names. ActCCS := C ·∪ C̄ ·∪ {τ} is the set of actions, where τ is a special
internal action. Complementation extends to C ·∪ C̄ by ¯̄c := c.

Below, c ranges over C ·∪ C̄ and α , `, η over ActCCS. A relabelling is a function f : C → C ; it
extends to ActCCS by f (c̄) = f (c), f (τ) := τ .

The process signature Σ of CCS features binary infix-written operators + and |, denoting choice
and parallel composition, a constant 0 denoting inaction, a unary action prefixing operator α. for each
action α ∈ ActCCS, a unary restriction operator \L for each set L⊆ C , and a unary relabelling operator
[f] for each relabelling f : C → C .

The semantics of CCS is given by the setR of transition rules, shown in Table 1. Here L := {c̄ | c ∈
L}. Each rule has a unique name, displayed in blue.2 The rules are displayed as templates, following the
standard convention of labelling transitions with label variables c, α , `, etc. and may be accompanied
by side conditions in green, so that each of those templates corresponds to a set of (concrete) transition
rules where label variables are “instantiated” to labels in certain ranges and all side conditions are met.
The rule names are also schematic and may contain variables. For example, all instances of the transition
rule template +L are named +L, whereas there is one rule name α→ for each action α ∈ ActCCS.

2Our colourings are for readability only.

62 A Lean-Congruence Format for EP-Bisimilarity

The transition system specification (Σ,R) is in De Simone format [22], a special rule format that
guarantees properties of the process algebra (for free), such as strong bisimulation being a congruence
for all operators. Following [13], we leave out the infinite sum ∑i∈I xi of CCS [17], as it is strictly
speaking not in De Simone format.

In this paper, we will extend the De Simone format to also guarantee properties for ep-bisimulation.
As seen, ep-bisimulation requires that the structural operational semantics is equipped with a successor
relation ;. The meaning of χ ;ζ χ ′ is that transition χ is unaffected by ζ – denoted χ •̂ ζ – and that
when doing ζ instead of χ , afterwards a variant χ ′ of χ is still enabled. Table 2 shows the successor rules
for CCS, which allow the relation ; to be derived inductively. It uses the following syntax for transitions
χ , which will be formally introduced in Section 6. The expression t+LQ refers to the transition that is
derived by rule +L of Table 1, with t referring to the transition used in the unique premise of this rule, and
Q referring to the process in the inactive argument of the +-operator. The syntax for the other transitions
is analogous. A small deviation of this scheme occurs for recursion: recAct(X ,S, t) refers to the transition
derived by rule recAct out of the premise t, when deriving a transition of a recursive call 〈X |S〉.

In Table 2 each rule is named, in orange, after the number of the clause of Definition 20 in [13], were
it was introduced.

The primary source of concurrency between transition χ and ζ is when they stem from opposite
sides of a parallel composition. This is expressed by Rules 7a and 7b. We require all obtained successor
statements χ ;ζ χ ′ to satisfy the conditions of Definition 2.1 – this yields Q′ = target(w) and P′ =
target(v); in [13] Q′ and P′ were written this way.

In all other cases, successors of χ are inherited from successors of their building blocks.
When ζ stems from the left side of a + via rule +L of Table 1, then any transition χ stemming from

the right is discarded by ζ , so χ 6̂ • ζ . Thus, if χ •̂ ζ then these transitions have the form χ = t+LQ and
ζ = v+LQ, and we must have t •̂ v. So t ;v t ′ for some transition t ′. As the execution of ζ discards the
summand Q, we also obtain χ ;ζ t ′. This motivates Rule 3a. Rule 4a follows by symmetry.

In a similar way, Rule 8a covers the case that χ and ζ both stem from the left component of a parallel
composition. It can also happen that χ stems form the left component, whereas ζ is a synchronisation,
involving both components. Thus χ = t|LQ and ζ = v|Cw. For χ •̂ ζ to hold, it must be that t •̂ v,
whereas the w-part of ζ cannot interfere with t. This yields the Rule 8b. Rule 8c is explained in a similar
vain from the possibility that ζ stems from the left while χ is a synchronisation of both components.
Rule 9 follows by symmetry. In case both χ and ζ are synchronisations involving both components, i.e.,
χ = t|Cu and ζ = v|Cw, it must be that t •̂ v and u •̂ w. Now the resulting variant χ ′ of χ after ζ is
simply t ′|u′, where t ;v t ′ and u ;w u′. This underpins Rule 10.

If the common source O of χ and ζ has the form P[f], χ and ζ must have the form t[f] and v[f].
Whether t and v are concurrent is not influenced by the renaming. So t •̂ v. The variant of t that remains
after doing v is also not affected by the renaming, so if t ;v t ′ then χ ;ζ t ′[f]. The case that O = P\L
is equally trivial. This yields Rules 11a and 11b.

In case O = 〈X |S〉, χ must have the form recAct(X ,S, t), and ζ has the form recAct(X ,S,v), where t
and v are enabled in 〈SX |S〉. Now χ •̂ζ only if t •̂ v, so t ;v t ′ for some transition t ′. The recursive call
disappears upon executing ζ , and we obtain χ ;ζ t ′. This yields Rule 11c.

Example 3.1 The programs from Example 1.1 could be represented in CCS as P := 〈X |S〉 where

S =

 X = a.X +b.Y
Y = a.Y

 and Q := 〈Z|{Z = a.Z}〉|b.0. Here a,b ∈ ActCCS are the atomic actions in-

crementing y and x. The relation matching P with Q and 〈Y,S〉 with 〈Z|{Z = a.Z}〉|0 is a strong bisim-
ulation. Yet, P and Q are not ep-bisimilar, as the rules of Table 2 derive u ;t1 u (cf. Example 2.2)

R.J. van Glabbeek, P. Höfner & W. Wang 63

Table 2: Successor rules for CCS

t ;v t ′

t+LQ ;v+LQ t ′
3a

u ;w u′

P+Ru ;P+Rw u′
4a

t|LQ ;P|Rw t|LQ′
7a

t ;v t ′ u ;w u′

t|Cu ;v|Cw t ′|Cu′
10

P|Ru ;v|LQ P′|Ru
7b

t ;v t ′

t|LQ ;v|LQ t ′|LQ
8a

t ;v t ′

t|LQ ;v|Cw t ′|LQ′
8b

t ;v t ′

t|Cu ;v|LQ t ′|Cu
8c

u ;w u′

P|Ru ;P|Rw P|Ru′
9a

u ;w u′

P|Ru ;v|Cw P′|Ru′
9b

u ;w u′

t|Cu ;P|Rw t|Cu′
9c

t ;v t ′

t\L ;v\L t ′\L
11a

t ;v t ′

t[f];v[f] t ′[f]
11b

t ;v t ′

recAct(X ,S, t);recAct(X ,S,v) t ′
11c

where u = 〈Z|{Z = a.Z}〉|R
b→0 and t1 = recAct(Z,{Z=a.Z}, a→Q)|Lb.0. This cannot be matched by P,

thus violating condition 2.b. of Definition 2.3.

In this paper we will introduce a new De Simone format for transition systems with successors (TSSS).
We will show that↔ep is a congruence for all operators (as well as a lean congruence for recursion) in
any language that fits this format. Since the rules of Table 2 fit this new De Simone format, it follows
that↔ep is a congruence for the operators of CCS.

Informally, the conclusion of a successor rule in this extension of the De Simone format must have the
form ζ ;ξ ζ ′ where ζ , ξ and ζ ′ are open transitions, denoted by transition expressions with variables,
formally introduced in Section 6. Both ζ and ξ must have a leading operator R and S of the same type,
and the same number of arguments. These leading operators must be rule names of the same type. Their
arguments are either process variables P,Q, ... or transition variables t,u, ..., as determined by the trigger
sets IR and IS of R and S. These are the sets of indices listing the arguments for which rules R and S have
a premise. If the ith arguments of R and S are both process variables, they must be the same, but for the
rest all these variables are different. For a subset I of IR ∩ IS, the rule has premises ti ;ui t ′i for i ∈ I,
where ti and ui are the ith arguments of R and S, and t ′i is a fresh variable. Finally, the right-hand side of
the conclusion may be an arbitrary univariate transition expression, containing no other variables than:

• the t ′i for i ∈ I,
• a ti occurring in ζ , with i /∈ IS,
• a fresh process variable P′i that must match the target of the transition ui for i ∈ IS\I,
• or a fresh transition variable whose source matches the target of ui for i ∈ IS\I, and
• any P occurring in both ζ and ξ , or any fresh transition variable whose source must be P.

The rules of Table 2 only feature the first three possibilities; the others occur in the successor relation of
ABCdE – see Section 8.

4 Structural Operational Semantics

Both the De Simone format and our forthcoming extension are based on the syntactic form of the op-
erational rules. In this section, we recapitulate foundational definitions needed later on. Let VP be an
infinite set of process variables, ranged over by X ,Y,x,y,xi, etc.

64 A Lean-Congruence Format for EP-Bisimilarity

Definition 4.1 (Process Expressions [8]) An operator declaration is a pair (Op,n) of an operator sym-
bol Op /∈ VP and an arity n ∈N. An operator declaration (c,0) is also called a constant declaration. A
process signature is a set of operator declarations. The set Pr(Σ) of process expressions over a process
signature Σ is defined inductively by:

• VP ⊆Pr(Σ),
• if (Op,n) ∈ Σ and p1, . . . , pn ∈Pr(Σ) then Op(p1, . . . , pn) ∈Pr(Σ), and
• if VS ⊆ VP , S : VS→Pr(Σ) and X ∈VS, then 〈X |S〉 ∈Pr(Σ).

A process expression c() is abbreviated as c and is also called a constant. An expression 〈X |S〉 as appears
in the last clause is called a recursive call, and the function S therein is called a recursive specification. It
is often displayed as {X = SX | X ∈VS}. Therefore, for a recursive specification S, VS denotes the domain
of S and SX represents S(X) when X ∈ VS. Each expression SY for Y ∈ VS counts as a subexpression of
〈X |S〉. An occurrence of a process variable y in an expression p is free if it does not occur in a subex-
pression of the form 〈X |S〉 with y ∈VS. For an expression p, var(p) denotes the set of process variables
having at least one free occurrence in p. An expression is closed if it contains no free occurrences of
variables. Let Pr(Σ) be the set of closed process expressions over Σ.

Definition 4.2 (Substitution) A Σ-substitution σ is a partial function from VP to Pr(Σ). It is closed if
it is a total function from VP to Pr(Σ).

If p ∈Pr(Σ) and σ a Σ-substitution, then p[σ] denotes the expression obtained from p by replacing,
for x in the domain of σ , every free occurrence of x in p by σ(x), while renaming bound process vari-
ables if necessary to prevent name-clashes. In that case p[σ] is called a substitution instance of p. A
substitution instance p[σ] where σ is given by σ(xi) = qi for i ∈ I is denoted as p[qi/xi]i∈I , and for S a
recursive specification 〈p|S〉 abbreviates p[〈Y |S〉/Y]Y∈VS .

These notions, including “free” and “closed”, extend to syntactic objects containing expressions, with
the understanding that such an object is a substitution instance of another one if the same substitution
has been applied to each of its constituent expressions.

We assume fixed but arbitrary sets L and N of transition labels and rule names.
Definition 4.3 (Transition System Specification [16]) Let Σ be a process signature. A Σ-(transition)
literal is an expression p a−→ q with p,q ∈ Pr(Σ) and a∈L . A transition rule over Σ is an expression
of the form H

λ
with H a finite list of Σ-literals (the premises of the transition rule) and λ a Σ-literal (the

conclusion). A transition system specification (TSS) is a tuple (Σ,R,N) with R a set of transition rules
over Σ, and N :R→N a (not necessarily injective) rule-naming function, that provides each rule r ∈R
with a name N(r).

Definition 4.4 (Proof) Assume literals, rules, substitution instances and rule-naming. A proof of a lit-
eral λ from a setR of rules is a well-founded, upwardly branching, ordered tree where nodes are labelled
by pairs (µ,R) of a literal µ and a rule name R, such that

• the root is labelled by a pair (λ , S), and
• if (µ,R) is the label of a node and (µ1,R1), . . . ,(µn,Rn) is the list of labels of this node’s children

then µ1,...,µn
µ

is a substitution instance of a rule inR with name R.

Definition 4.5 (Associated LTS [12]) The associated LTS of a TSS (Σ,R,N) is the LTS (S,Tr,source,
target, `) with S := Pr(Σ) and Tr the collection of proofs π of closed Σ-literals p a−→ q from R, where
source(π) = p, `(π) = a and target(π) = q.

Above we deviate from the standard treatment of structural operational semantics [16, 8] on four counts.
Here we employ CCS to motivate those design decisions.

R.J. van Glabbeek, P. Höfner & W. Wang 65

In Definition 4.5, the transitions Tr are taken to be proofs of closed literals p a−→ q rather than
such literals themselves. This is because there can be multiple a-transitions from p to q that need to be
distinguished when taking the concurrency relation between transitions into account. For example, if
p := 〈X |{X = a.X + c.X}〉 and q := 〈Y |{Y = a.Y}〉 then p|q has three outgoing transitions:

a.p a−→ p
a→

a.p+ c.p a−→ p
+L

p a−→ p
recAct

p|q a−→ p|q
|L

c.p c−→ p
c→

a.p+ c.p c−→ p
+R

p c−→ p
recAct

p|q c−→ p|q
|L

a.q a−→ q
a→

q a−→ q
recAct

p|q a−→ p|q
|R

The rightmost transition is concurrent with the middle one, whereas the leftmost one is not.
A similar example can be used to motivate why in Definition 4.4 the nodes are labelled not only by

the inferred literal, but also by the name of the applied rule.

a.p a−→ p
a→

a.p+ c.p a−→ p
+L

p a−→ p
recAct

p|p a−→ p|p
|L

c.p c−→ p
c→

a.p+ c.p c−→ p
+R

p c−→ p
recAct

p|p c−→ p|p
|L

a.p a−→ p
a→

a.p+ c.p a−→ p
+L

p a−→ p
recAct

p|p a−→ p|p
|R

The rightmost transition is concurrent with the middle one, but the leftmost one is not. If we were to
erase the rule names, the difference between these two transitions would disappear.

In Definition 4.3 we require the premises of rules to be lists rather than sets, and accordingly in
Definition 4.4 we require proof trees to be ordered. This is to distinguish transitions/proofs in which a
substitution instance of a rule has two identical premises (corresponding to different arguments of the
leading operator) with different proofs. This phenomenon does not occur in CCS, but we could have
illustrated it with CSP [5] or ABCdE [13].

Finally, suppose that in Definition 4.3 we had chosen the rule-naming function N to be the identity.
This is equivalent to not having a rule-naming function at all, instead labelling nodes in proofs with rules
rather than names of rules. Then in the transition

a.0 a−→ 0
a→

〈X |{X = a.0〉 a−→ 0
recAct

we should replace the generic name recAct of a recursion rule with the specific rule employed. This could

be the rule a.0 a−→ z

〈X |{X = a.0}〉 a−→ z
, but just as well the rule y a−→ z

〈X |{X = y}〉 a−→ z
, when employing a substitution that

sends y to a.0. To avoid the resulting unnecessary duplication of transitions, we give both recursion rules
the same name.

5 De Simone Languages

The syntax of a De Simone language is specified by a process signature, and its semantics is given as
a TSS over that process signature of a particular form [22], nowadays known as the De Simone format.
Here, we extend the De Simone format to support indicator transitions, as occur in [11, 10, 13]. These
are transitions p `−→ q for which it is essential that p = q. They are used to convey a property of the state
p rather than model an action of p. To accommodate them we need a variant of the recursion rule whose
conclusion again is of the form r `−→ r. This variant will be illustrated in Section 8.

As for L , we fix a set Act ⊆L of actions.

66 A Lean-Congruence Format for EP-Bisimilarity

Definition 5.1 (De Simone Format) A TSS (Σ,R,N) is in De Simone format if for every recursive call
〈X |S〉 and every α ∈ Act and ` ∈L \Act, it has transition rules

〈SX |S〉
α−→ y

〈X |S〉 α−→ y
recAct and

〈SX |S〉
`−→ y

〈X |S〉 `−→ 〈X |S〉
recIn for some y /∈ var(〈SX |S〉),

and each of its other transition rules (De Simone rules) has the form

{xi
ai−→ yi | i ∈ I}

Op(x1, . . . ,xn)
a−→ q

where (Op,n) ∈ Σ, I ⊆ {1, . . . ,n}, a,ai ∈ L , xi (for 1 ≤ i ≤ n) and yi (for i ∈ I) are pairwise distinct
process variables, and q is a univariate process expression containing no other free process variables than
xi (1≤ i≤ n∧ i /∈ I) and yi (i ∈ I), having the properties that

• each subexpression of the form 〈X |S〉 is closed, and
• if a ∈L \Act then ai ∈L \Act (i ∈ I) and q = Op(z1, . . . ,zn), where zi :=

{
yi if i ∈ I
xi otherwise.

Here univariate means that each variable has at most one free occurrence in it. The last clause above
guarantees that for any indicator transition t, one with `(t) ∈L \Act, we have target(t) = source(t). For
a De Simone rule of the above form, n is the arity, (Op,n) is the type, a is the label, q is the target, I is
the trigger set and the tuple (`i, . . . , `n) with `i = ai if i ∈ I and `i = ∗ otherwise, is the trigger. Transition
rules in the first two clauses are called recursion rules.

We also require that if N(r)= N(r′) for two different De Simone rules r,r′ ∈R, then r,r′ have the
same type, target and trigger set, but different triggers. The names of the recursion rules are as indicated
in blue above, and differ from the names of any De Simone rules.

Many process description languages encountered in the literature, including CCS [17] as presented in
Section 3, SCCS [18], ACP [3] and MEIJE [2], are De Simone languages.

6 Transition System Specifications with Successors

In Section 4, a process is denoted by a closed process expression; an open process expression may contain
variables, which stand for as-of-yet unspecified subprocesses. Here we will do the same for transition
expressions with variables. However, in this paper a transition is defined as a proof of a literal p a−→ q
from the operational rules of a language. Elsewhere, a transition is often defined as a provable literal
p a−→ q, but here we need to distinguish transitions based on these proofs, as this influences whether two
transitions are concurrent.

It turns out to be convenient to introduce an open proof of a literal as the semantic interpretation
of an open transition expression. It is simply a proof in which certain subproofs are replaced by proof
variables.

Definition 6.1 (Open Proof) Given definitions of literals, rules and substitution instances, and a rule-
naming function N, an open proof of a literal λ from a setR of rules using a set V of (proof) variables is
a well-founded, upwardly branching, ordered tree of which the nodes are labelled either by pairs (µ,R)
of a literal µ and a rule name R, or by pairs (µ,px) of a literal µ and a variable px ∈ V such that

• the root is labelled by a pair (λ ,χ),
• if (µ,px) is the label of a node then this node has no children,

R.J. van Glabbeek, P. Höfner & W. Wang 67

• if two nodes are labelled by (µ,px) and (µ ′,px) separately then µ = µ ′, and
• if (µ,R) is the label of a node and (µ1,χ1), . . . ,(µn,χn) is the list of labels of this node’s children

then µ1,...,µn
µ

is a substitution instance of a rule named R.

Let VT be an infinite set of transition variables, disjoint from VP . We will use tx,ux,vx, ty, txi, etc. to
range over VT .

Definition 6.2 (Open Transition) Fix a TSS (Σ,R,N). An open transition is an open proof of a Σ-literal
from R using VT . For an open transition t̊, varT (t̊) denotes the set of transition variables occurring in t̊;
if its root is labelled by (p a−→ q,χ) then src◦(t̊) = p, `◦(t̊) = a and tar◦(t̊) = q. The binding function βt̊
of t̊ from varT (t̊) to Σ-literals is defined by βt̊(tx) = µ if tx ∈ varT (t̊) and (µ, tx) is the label of a node
in t̊. Given an open transition, we refer to the subproofs obtained by deleting the root node as its direct
subtransitions.

All occurrences of transition variables are considered free. LetTr(Σ,R,N) be the set of open transi-
tions in the TSS (Σ,R,N) and Tr(Σ,R,N) the set of closed open transitions. We have Tr(Σ,R,N) = Tr.

Let en◦(p) denote {t̊ | src◦(t̊) = p}.
Definition 6.3 (Transition Expression) A transition declaration is a tuple (R,n, I) of a transition con-
structor R, an arity n ∈ N and a trigger set I ⊆ {1, . . . ,n}. A transition signature is a set of transition
declarations. The setTEr(ΣP ,ΣT) of transition expressions over a process signature ΣP and a transition
signature ΣT is defined inductively as follows.

• if tx ∈ VT and µ is a Σ-literal then (tx :: µ) ∈TEr(ΣP ,ΣT),
• if E ∈TEr(ΣP ,ΣT), S : VP ⇀P

r(ΣP) and X ∈ dom(S)
then recAct(X ,S,E),recIn(X ,S,E) ∈TEr(ΣP ,ΣT), and

• if (R,n, I) ∈ ΣT , Ei ∈TEr(ΣP ,ΣT) for each i ∈ I, and Ei ∈Pr(ΣP) for each i ∈ {1, . . . ,n}\ I, then
R(E1, . . . ,En) ∈TEr(ΣP ,ΣT).

Given a TSS (Σ,R,N) in De Simone format, each open transition t̊ ∈ Tr(Σ,R) is named by a unique
transition expression in TEr(Σ,ΣT); here ΣT = {(N(r),n, I) | r ∈ R is a De Simone rule, n is its arity
and I is its trigger set}:

• if the root of t̊ is labelled by (µ, tx) where tx ∈ VT then t̊ is named (tx :: µ),
• if the root of t̊ is labelled by (〈X |S〉 a−→ q,R) where a ∈ Act then t̊ is named recAct(X ,S,E) where

E is the name of the direct subtransition of t̊,
• if the root of t̊ is labelled by (〈X |S〉 `−→ 〈X |S〉,R) where ` ∈L \Act then t̊ is named recIn(X ,S,E)

where E is the name of the direct subtransition of t̊, and
• if the root of t̊ is labelled by (Op(p1, . . . , pn)

a−→ q,R) then t̊ is named R(E1, . . . ,En) where, letting
n and I be the arity and the trigger set of the rules named R, Ei for each i ∈ I is the name of the
direct subtransitions of t̊ corresponding to the index i, and Ei = pi for each i ∈ {1, . . . ,n}\ I.

We now see that the first requirement for the rule-naming function in Definition 5.1 ensures that every
open transition is uniquely identified by its name.

Definition 6.4 (Transition Substitution) Let (Σ,R,N) be a TSS. A (Σ,R)-substitution is a partial
function σT : (VP ⇀ P

r(Σ)) ∪ (VT ⇀ T
r(Σ,R)). It is closed if it is a total function σT : (VP →

Pr(Σ))∪(VT →Tr(Σ,R)). A (Σ,R)-substitution σT matches all process expressions. It matches an open
transition t̊ whose binding function is βt̊ if for all (tx,µ)∈βt̊ , σT (tx) being defined and µ = (p a−→ q)
implies `◦(σT (tx)) = a and src◦(σT (tx)), tar◦(σT (tx)) being the substitution instances of p,q respectively
by applying σT �VP .

If E ∈Pr(Σ)∪Tr(Σ,R) and σT is a (Σ,R)-substitution matching E, then E[σT] denotes the expres-
sion obtained from E by replacing, for tx ∈ VT in the domain of σT , every subexpression of the form

68 A Lean-Congruence Format for EP-Bisimilarity

(tx :: µ) in E by σT (tx), and for x ∈ VP in the domain of σT , every free occurrence of x in E by σT (x),
while renaming bound process variables if necessary to prevent name-clashes. In that case E[σT] is called
a substitution instance of E.

Note that a substitution instance of an open transition can be a transition expression not representing an
open transition. For example, applying a (Σ,R)-substitution σT given by σT (ty) := (tx :: y c̄−→ y′) to the
open transition (tx :: x c−→ x′) | (ty :: y c−→ y′) results in (tx :: x c−→ x′) | (tx :: y c−→ y′) which is not an
open transition because the transition variable tx is used for two different Σ-literals. This will not happen
if σT is closed.

Observation 6.5 Given a TSS (Σ,R,N), if t̊ ∈ en◦(p) is a open transition and σT is a closed (Σ,R)-
substitution which matches t̊ then t̊[σT] ∈ Tr, source(t̊[σT]) = src◦(t̊)[σT], `(t̊[σT]) = `◦(t̊) and
target(t̊[σT]) = tar◦(t̊)[σT].

Definition 6.6 (Transition System Specification with Successors) Let (Σ,R,N) be a TSS. A (Σ,R)-
(successor) literal is an expression t̊ ;ů v̊ with t̊, ů, v̊∈Tr(Σ,R), src◦(t̊) = src◦(ů) and src◦(v̊) = tar◦(ů).
A successor rule over (Σ,R) is an expression of the form H

λ
with H a finite list of (Σ,R)-literals (the

premises of the successor rule) and λ a (Σ,R)-literal (the conclusion). A transition system specification
with successors (TSSS) is a tuple (Σ,R,N,U) with (Σ,R,N) a TSS and U a set of successor rules over
(Σ,R).
Definition 6.7 (Associated LTSS) For a TSSS (Σ,R,N,U), the associated LTSS is the LTSS (S,Tr,
source, target, `,;) with S := Pr(Σ), Tr the collection of proofs π of closed Σ-literals p a−→ q from
R, where source(π) = p, `(π) = a and target(π) = q, and

; := {(t,u,v) | a proof of closed (Σ,R)-literal t ;u v from U exists}.

7 De Simone Languages with Successors

We have enriched standard definitions such as transitions systems and specifications with successors.
This allows up to add successors to the De Simone format to define a new congruence format.

Definition 7.1 (De Simone Format) A TSSS (Σ,R,N,U) is in De Simone format if (Σ,R,N) is in De
Simone format, for every recursive call 〈X |S〉 and xa,ya,za ∈L it has a successor rule

(tx :: SX
xa−→ x′);

(ty::SX
ya−→y′) (tz :: y′ za−→ z′)

recχ(X ,S, tx :: SX
xa−→ x′);recAct(X ,S,ty::SX

ya−→y′) ů

where ů= (tz :: y′ za−→ z′) if ya∈Act and ů= recχ(X ,S, tx :: SX
xa−→ x′) otherwise, recχ = recAct if xa∈Act

and recχ = recIn otherwise, x′,y′,z′ are pairwise distinct process variables not occurring in 〈X |S〉, and
tx, ty, tz are pairwise distinct transition variables. Moreover, each of its other successor rules has the form

{(txi :: xi
xai−→ x′i);(tyi::xi

yai−→y′i)
(tzi :: y′i

zai−→ z′i) | i ∈ I}

R(xe1, . . . ,xen);S(ye1,...,yen)
v̊

such that
• I ⊆ {1, . . . ,n},
• xi,x′i,y

′
i,z
′
i for all relevant i are pairwise distinct process variables,

• txi, tyi, tzi for all relevant i are pairwise distinct transition variables,

R.J. van Glabbeek, P. Höfner & W. Wang 69

• if i ∈ I then xei = (txi :: xi
xai−→ x′i) and yei = (tyi :: xi

yai−→ y′i),
• if i /∈ I then xei is either xi or (txi :: xi

xai−→ x′i), and yei is either xi or (tyi :: xi
yai−→ y′i),

• R and S are n-ary transition constructors such that the open transitions R(xe1, . . . ,xen),
S(ye1, . . . ,yen) and v̊ satisfy

src◦(R(xe1, . . . ,xen)) = src◦(S(ye1, . . . ,yen))

and src◦(v̊) = tar◦(S(ye1, . . . ,yen)),
• v̊ is univariate and contains no other variable expressions than

– xi or (tzi :: xi
zai−→ z′i) (1≤ i≤ n∧ xei = yei = xi),

– (txi :: xi
xai−→ x′i) (1≤ i≤ n∧ xei 6= xi∧ yei = xi),

– y′i or (tzi :: y′i
zai−→ z′i) (1≤ i≤ n∧ i /∈ I∧ yei 6= xi),

– (tzi :: y′i
zai−→ z′i) (i ∈ I), and

• if `◦(S(ye1, . . . ,yen)) ∈L \Act then for i ∈ I, yai ∈L \Act; for i /∈ I, either xei = xi or yei = xi; and
v̊ = R(ze1, . . . ,zen), where

zei :=

(tzi :: y′i
zai−→ z′i) if i ∈ I

xei if i /∈ I and yei = xi

y′i otherwise.

The last clause above is simply to ensure that if t ;u v for an indicator transition u, that is, with `(u) /∈Act,
then v = t.

The other conditions of Definition 7.1 are illustrated by the Venn diagram of Figure 1. The outer
circle depicts the indices 1, . . . ,n numbering the arguments of the operator Op that is the common type
of the De Simone rules named R and S; IR and IS are the trigger sets of R and S, respectively. In line
with Definition 6.3, xe = xi for i ∈ IR, and xe = (txi :: xi

xai−→ x′i) for i /∈ IR. Likewise, ye = xi for i ∈ IS,
and ye = (tyi :: xi

xai−→ y′i) for i /∈ IS. So the premises of any rule named S are {xi
xai−→ y′i | i ∈ IS}. By

Definition 5.1 the target of such a rule is a univariate process expression q with no other variables than
z1, . . . ,zn, where zi := xi for i ∈ IS and zi := y′i for i /∈ IS. Since src◦(v̊) = q, the transition expression v̊
must be univariate, and have no variables other than zei for i = 1, . . . ,n, where zei is either the process
variable zi or a transition variable expression (tzi :: zi

xai−→ z′i).

{1, ..,n} IG

IR

IS

I

IT

zei=xei

yei=xei

yei=xei

zei=yei=xei

8a2 9a1

2ab
7a1

7b2 8c2 9c1 1

7a2 7b1

8b2 9b1 1

52 61

3ab1 4ab2

8abc1 9abc2

101 102 11abd3a2

4a1

3b2 4b1 51 62

1

1

Figure 1: Inclusion between index sets I, IR, IS, IT, IG ⊆ {1, ..,n}. One has (IR ∩ IG)\IS ⊆ IT.
The annotations ni show the location of index i (suppressed for unary operators) of rule n.

70 A Lean-Congruence Format for EP-Bisimilarity

I is the set of indices i for which the above successor rule has a premise. Since this premise involves
the transition variables txi and tyi, necessarily I ⊆ IR∩ IS. Let IG be the set of indices for which zei occurs
in v̊, and IT ⊆ IG be the subset where zei is a transition variable. The conditions on v̊ in Definition 7.1
say that I ∩ IG ⊆ IT and (IR ∩ IG)\IS ⊆ IT. For i ∈ I ∩ IG, the transition variable tzi is inherited from the
premises of the rule, and for i ∈ (IR ∩ IG)\IS the transition variable tzi is inherited from its source.

In order to show that most classes of indices allowed by our format are indeed populated, we indicated
the positions of the indices of the rules of CCS and (the forthcoming) ABCdE from Tables 2 and 5.

Any De Simone language, including CCS, SCCS, ACP and MEIJE, can trivially be extended to a
language with successors, e.g. by setting U = /0. This would formalise the assumption that the parallel
composition operator of these languages is governed by a scheduler, scheduling actions from different
components in a nondeterministic way. The choice of U from Table 2 instead formalises the assumption
that parallel components act independently, up to synchronisations between them.

We now present the main theorem of this paper, namely that ep-bisimulation is a lean congruence for
all languages that can be presented in De Simone format with successors. A lean congruence preserves
equivalence when replacing closed subexpressions of a process by equivalent alternatives. Being a lean
congruence implies being a congruence for all operators of the language, but also covers the recursion
construct.

Theorem 7.2 (Lean Congruence) Ep-bisimulation is a lean congruence for all De Simone languages
with successors. Formally, fix a TSSS (Σ,R,N,U) in De Simone format. If p ∈Pr(Σ) and ρ,ν are two
closed Σ-substitutions with ∀x ∈ VP . ρ(x)↔ep ν(x) then p[ρ]↔ep p[ν].

The proof can be found in Appendix A of the full version of this paper [15].
In contrast to a lean congruence, a full congruence would also allow replacement within a recursive

specification of subexpressions that may contain recursion variables bound outside of these subexpres-
sions. As our proof is already sophisticated, we consider the proof of full congruence to be beyond the
scope of the paper. In fact we are only aware of two papers that provide a proof of full congruence via a
rule format [21, 9].

We carefully designed our De Simone format with successors and can state the following conjecture.
Conjecture 7.3 Ep-bisimulation is a full congruence for all De Simone languages with successors.

8 A Larger Case Study: The Process Algebra ABCdE

The Algebra of Broadcast Communication with discards and Emissions (ABCdE) stems from [13]. It
combines CCS [17], its extension with broadcast communication [20, 11, 10], and its extension with
signals [4, 6, 7, 10]. Here, we extend CCS as presented in Section 3.

ABCdE is parametrised with sets C of handshake communication names as used in CCS, B of
broadcast communication names and S of signals. S̄ := {s̄ | s ∈S } is the set of signal emissions. The
collections B!, B? and B: of broadcast, receive, and discard actions are given by B] := {b] | b ∈B}
for] ∈ {!,?, :}. Act := C ·∪ C̄ ·∪{τ} ·∪B! ·∪B? ·∪S is the set of actions, with τ the internal action, and
L := Act ·∪B: ·∪S̄ is the set of transition labels. Complementation extends to C ·∪ C̄ ·∪S ·∪S̄ by ¯̄c := c.

Below, c ranges over C ·∪ C̄ ·∪S ·∪ S̄ , η over C ·∪ C̄ ·∪{τ} ·∪S ·∪ S̄ , α over Act, ` over L , γ over
In := L \Act, b over B,],]1,]2 over {!,?, :}, s over S , S over recursive specifications and X over VS. A
relabelling is a function f : (C →C) ·∪(B→B) ·∪(S →S); it extends to L by f (c̄) = f (c), f (τ) := τ

and f (b]) = f (b)].
Next to the constant and operators of CCS, the process signature Σ of ABCdE features a unary

signalling operator ˆs for each signal s ∈S .

R.J. van Glabbeek, P. Höfner & W. Wang 71

Table 3: Structural operational semantics of ABCdE

0 b:−→ 0
b:0

α 6= b?

α.x b:−→ α.x
b:α.

x b:−→ x′, y b:−→ y′

x+ y b:−→ x′+ y′
+C

x
b]1−→ x′, y

b]2−→ y′ (]1 ◦]2 =] 6=)

x|y b]−→ x′|y′
|C with

◦ ! ? :

! ! !

? ! ? ?

: ! ? :

xˆs s̄−→ xˆs
(→s)

x s̄−→ x′

x+ y s̄−→ x′+ y
+e

L

y s̄−→ y′

x+ y s̄−→ x+ y′
+e

R

x α−→ x′

xˆs α−→ x′
ˆsAct

x
γ−→ x′

xˆs
γ−→ x′ ˆs

ˆsIn
〈SX |S〉

γ−→ y

〈X |S〉 γ−→ 〈X |S〉
recIn

The semantics of ABCdE is given by the transition rule templates displayed in Tables 1 and 3. The
latter augments CCS with mechanisms for broadcast communication and signalling. The rule |C presents
the core of broadcast communication [20], where any broadcast-action b! performed by a component in
a parallel composition needs to synchronise with either a receive action b? or a discard action b: of any
other component. In order to ensure associativity of the parallel composition, rule |C also allows receipt
actions of both components (]1 =]2 = ?), or a receipt and a discard, to be combined into a receipt action.

A transition p b:−→ q is derivable only if q = p. It indicates that the process p is unable to receive
a broadcast communication b! on channel b. The Rule b:0 allows the nil process (inaction) to discard
any incoming message; in the same spirit b:α. allows a message to be discarded by a process that cannot
receive it. A process offering a choice can only perform a discard-action if both choice-options can
discard the corresponding broadcast (Rule +C). Finally, by rule recIn, a recursively defined process 〈X |S〉
can discard a broadcast iff 〈SX |S〉 can discard it. The variant recIn of recAct is introduced to maintain the
property that target(θ) = source(θ) for any indicator transition θ .

A signalling process pˆs emits the signal s to be read by another process. A typically example is a
traffic light being red. Signal emission is modelled as an indicator transition, which does not change the
state of the emitting process. The first rule (→s) models the emission s̄ of signal s to the environment.
The environment (processes running in parallel) can read the signal by performing a read action s. This
action synchronises with the emission s̄, via rule |C of Table 1. Reading a signal does not change the state
of the emitter.

Rules +e
L and +e

R describe the interaction between signal emission and choice. Relabelling and restric-
tion are handled by rules \L and [f] of Table 1, respectively. These operators do not prevent the emission
of a signal, and emitting signals never changes the state of the emitting process. Signal emission p ŝ does
not block other transitions of p.

It is trivial to check that the TSS of ABCdE is in De Simone format.
The transition signature of ABCdE (Table 4) is completely determined by the set of transition rule

templates in Tables 1 and 3. We have united the rules for handshaking and broadcast communication by
assigning the same name |C to all their instances. When expressing transitions in ABCdE as expressions,
we use infix notation for the binary transition constructors, and prefix or postfix notation for unary ones.
For example, the transition b:0() is shortened to b:0, α→(p) to α→p, \L(t) to t\L, and |L(t, p) to t|L p.

72 A Lean-Congruence Format for EP-Bisimilarity

Table 4: Transition signature of ABCdE

Constructor α→ (→s) b:0 b:α. +L +R +C +e
L +e

R |L |C |R \L [f] ˆsAct ˆsIn

Arity 1 1 0 1 2 2 2 2 2 2 2 2 1 1 1 1

Trigger Set /0 /0 /0 /0 {1} {2} {1,2} {1} {2} {1} {1,2} {2} {1} {1} {1} {1}

Table 5: Successor rules for ABCdE

`(t) ∈ {b?,b:}
b?→P ; b?→P

t
2ab `(ζ) ∈B:∪ S̄

χ ;ζ χ
1

`(t) ∈ {b?,b:}
b:α.P ; α→P t

2bb

t ;v t ′

t+e
LQ ;v+LQ t ′

3a
t ;v t ′

t+Cu ;v+LQ t ′
3b

u ;w u′

P+e
R u ;P+Rw u′

4a
u ;w u′

t+Cu ;P+Rw u′
4b

`(t) = b? `(u′) ∈ {b?,b:}
t+LQ ;P+Rw u′

t+e
LQ ;P+Rw u′

5b `(u) = b? `(t ′) ∈ {b?,b:}
P+Ru ;v+LQ t ′

P+e
R u ;v+LQ t ′

6b

t ;v t ′

recIn(X ,S, t);recAct(X ,S,v) t ′
11c

t ;v t ′

t ˆsAct ;v̂sAct t ′

t ˆsIn ;v̂sAct t ′

11d

Meta Variable Expression
P x1
Q x2
P′ y′1
Q′ y′2
t (tx1 :: x1

xa1−→ x′1)
u (tx2 :: x2

xa2−→ x′2)
v (ty1 :: x1

ya1−→ y′1)
w (ty2 :: x2

ya2−→ y′2)
t ′ (tz1 :: y′1

za1−→ z′1)
u′ (tz2 :: y′2

za2−→ z′2)

Table 5 extends the successor relation of CCS (Table 2) to
ABCdE. P,Q are process variables, t,v transition variables enabled
at P, u,w transition variables enabled at Q, P′,Q′ the targets of v,w,
respectively and t ′,u′ transitions enabled at P′,Q′, respectively. To
express those rules in the same way as Definition 7.1, we replace
the metavariables P, Q, t, u, etc. with variable expressions as indi-
cated on the right. Here xai, yai, zai are label variables that should
be instantiated to match the trigger of the rules and side conditions.
As ABCdE does not feature operators of arity >2, the index i from
Definition 7.1 can be 1 or 2 only.

To save duplication of rules 8b, 8c, 9b, 9c and 10 we have as-
signed the same name |C to the rules for handshaking and broadcast
communication. The intuition of the rules of Table 5 is explained in detail in [13].

In the naming convention for transitions from [13] the sub- and superscripts of the transition con-
structors +, | and ˆs, and of the recursion construct, were suppressed. In most cases that yields no
ambiguity, as the difference between |L and |R, for instance, can be detected by checking which of its
two arguments are of type transition versus process. Moreover, it avoids the duplication in rules 3a, 4a,
5, 6, 11c and 11d. The ambiguity between +L and +e

L (or +R and +e
R) was in [13] resolved by adorning

rules 3–6 with a side condition `(v) /∈ S̄ or `(w) /∈ S̄ , and the ambiguity between recAct and recIn (or
ˆsAct and ˆsIn) by adorning rules 11c and 11d with a side condition `(v) ∈ Act; this is not needed here.

It is easy to check that all rules are in the newly introduced De Simone format, except Rule 1.
However, this rule can be converted in to a collection of De Simone rules by substituting R(xe1, . . . ,xen)

for χ and S(ye1, . . . ,yen) for ζ , adding a premise in the form of xei ;yei
(tzi :: y′i

zai−→ z′i)) if i ∈ IR ∩ IS,

R.J. van Glabbeek, P. Höfner & W. Wang 73

for each pair of rules of the same type named R and S.3 The various occurrences of 1 in Figure 1 refer to
these substitution instances. It follows that↔ep is a congruence for the operators of ABCdE, as well as
a lean congruence for recursion.

9 Related Work & Conclusion

In this paper we have added a successor relation to the well-known De Simone format. This has allowed
us to prove the general result that enabling preserving bisimilarity – a finer semantic equivalence relation
than strong bisimulation – is a lean congruence for all languages with a structural operational semantics
within this format. We do not cover full congruence yet, as proofs for general recursions are incredible
hard and usually excluded from work justifying semantic equivalences.

There is ample work on congruence formats in the literature. Good overview papers are [1, 19]. For
system description languages that do not capture time, probability or other useful extensions to standard
process algebras, all congruence formats target strong bisimilarity, or some semantic equivalence or
preorder that is strictly coarser than strong bisimilarity. As far as we know, the present paper is the first
to define a congruence format for a semantic equivalence that is finer than strong bisimilarity.

Our congruence format also ensures a lean congruence for recursion. So far, the only papers that
provide a rule format yielding a congruence property for recursion are [21] and [9], and both of them
target strong bisimilarity.

In Sections 3 and 8, we have applied our format to show lean congruence of ep-bisimilarity for the
process algebra CCS and ABCdE, respectively. This latter process algebra features broadcast communi-
cation and signalling. These two features are representative for issues that may arise elsewhere, and help
to ensure that our results are as general as possible. Our congruence format can effortlessly be applied to
other calculi like CSP [5] or ACP [3].

In order to evaluate ep-bisimilarity on process algebras like CCS, CSP, ACP or ABCdE, their seman-
tics needs to be given in terms of labelled transition systems extended with a successor relation ;. This
relation models concurrency between transitions enabled in the same state, and also tells what happens
to a transition if a concurrent transition is executed first. Without this extra component, labelled transi-
tion systems lack the necessary information to capture liveness properties in the sense explained in the
introduction.

In a previous paper [13] we already gave such a semantics to ABCdE. The rules for the successor
relation presented in [13], displayed in Tables 2 and 5, are now seen to fit our congruence format. We
can now also conclude that ep-bisimulation is a lean congruence for ABCdE. In [14, Appendix B] we
contemplate a very different approach for defining the relation ;. Following [10], we understand each
transition as the synchronisation of a number of elementary particles called synchrons. Then relations
on synchrons are proposed in terms of which the ;-relation is defined. It is shown that this leads to the
same ;-relation as the operational approach from [13] and Tables 2 and 5.

3This yields 12+2 ·1+5 ·3+3 ·2+2 ·1 = 26 rules of types (0,0), (α. ,1), (+,2), (ŝ,1) and 〈X |S〉 not included in Tables 2
and 5.

74 A Lean-Congruence Format for EP-Bisimilarity

References

[1] L. Aceto, W. Fokkink & C. Verhoef (2000): Structural Operational Semantics. In J. Bergstra, A. Ponse &
S. Smolka, editors: Handbook of Process Algebra, chapter 3, Springer, pp. 197–292.

[2] D. Austry & G. Boudol (1984): Algèbre de Processus et Synchronisation. Theoretical Computer Science 30,
pp. 91–131, doi:10.1016/0304-3975(84)90067-7.

[3] J.C.M. Baeten & W.P. Weijland (1990): Process Algebra. Cambridge Tracts in Theoretical Computer Science
18, Cambridge University Press, doi:10.1017/CBO9780511624193.

[4] J.A. Bergstra (1988): ACP with signals. In J. Grabowski, P. Lescanne & W. Wechler, editors: Proc. Interna-
tional Workshop on Algebraic and Logic Programming, LNCS 343, Springer, pp. 11–20, doi:10.1007/3-540-
50667-5 53.

[5] S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of communicating sequential processes. Jour-
nal of the ACM 31(3), pp. 560–599, doi:10.1145/828.833.

[6] F. Corradini, M.R. Di Berardini & W. Vogler (2009): Time and Fairness in a Process Algebra with Non-
blocking Reading. In M. Nielsen, A. Kucera, P.B. Miltersen, C. Palamidessi, P. Tuma & F.D. Valencia,
editors: Theory and Practice of Computer Science, SOFSEM’09, LNCS 5404, Springer, pp. 193–204,
doi:10.1007/978-3-540-95891-8 20.

[7] V. Dyseryn, R.J. van Glabbeek & P. Höfner (2017): Analysing Mutual Exclusion using Process Algebra
with Signals. In K. Peters & S. Tini, editors: Proceedings Combined 24th International Workshop on Ex-
pressiveness in Concurrency and 14th Workshop on Structural Operational Semantics, Berlin, Germany, 4th
September 2017, Electronic Proceedings in Theoretical Computer Science 255, Open Publishing Association,
pp. 18–34, doi:10.4204/EPTCS.255.2.

[8] R.J. van Glabbeek (1994): On the expressiveness of ACP (extended abstract). In A. Ponse, C. Ver-
hoef & S.F.M. van Vlijmen, editors: Proceedings First Workshop on the Algebra of Communicating Pro-
cesses, ACP’94, Utrecht, The Netherlands, May 1994, Workshops in Computing, Springer, pp. 188–217,
doi:10.1007/978-1-4471-2120-6 8.

[9] R.J. van Glabbeek (2017): Lean and Full Congruence Formats for Recursion. In: Proceedings 32nd An-
nual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, IEEE Computer Society Press,
doi:10.1109/LICS.2017.8005142.

[10] R.J. van Glabbeek (2019): Justness: A Completeness Criterion for Capturing Liveness Properties (extended
abstract). In M. Bojańczyk & A. Simpson, editors: Proceedings 22st International Conference on Foun-
dations of Software Science and Computation Structures (FoSSaCS’19); held as part of the European Joint
Conferences on Theory and Practice of Software (ETAPS’19), Prague, Czech Republic, April 2019, LNCS
11425, Springer, pp. 505–522, doi:10.1007/978-3-030-17127-8 29.

[11] R.J. van Glabbeek & P. Höfner (2015): Progress, Fairness and Justness in Process Algebra. Technical Report
8501, NICTA, Sydney, Australia. Available at http://arxiv.org/abs/1501.03268.

[12] R.J. van Glabbeek & P. Höfner (2019): Progress, Justness and Fairness. ACM Computing Surveys 52(4):69,
doi:10.1145/3329125.

[13] R.J. van Glabbeek, P. Höfner & W. Wang (2021): Enabling Preserving Bisimulation Equivalence. In
S. Haddad & D. Varacca, editors: Proceedings 32nd International Conference on Concurrency Theory, CON-
CUR’21, Leibniz International Proceedings in Informatics (LIPIcs) 203, Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, doi:10.4230/LIPIcs.CONCUR.2021.33.

[14] R.J. van Glabbeek, P. Höfner & W. Wang (2021): Enabling Preserving Bisimulation Equivalence. Available
at https://arxiv.org/abs/2108.00142. Full version of [13].

[15] R.J. van Glabbeek, P. Höfner & W. Wang (2023): A Lean-Congruence Format for EP-Bisimilarity.
arXiv:2308.16350. Full version of this paper.

[16] J.F. Groote & F.W. Vaandrager (1992): Structured Operational Semantics and Bisimulation as a Congruence.
Information and Computation 100(2), pp. 202–260, doi:10.1016/0890-5401(92)90013-6.

https://doi.org/10.1016/0304-3975(84)90067-7
https://doi.org/10.1017/CBO9780511624193
https://doi.org/10.1007/3-540-50667-5_53
https://doi.org/10.1007/3-540-50667-5_53
https://doi.org/10.1145/828.833
https://doi.org/10.1007/978-3-540-95891-8_20
https://doi.org/10.4204/EPTCS.255.2
https://doi.org/10.1007/978-1-4471-2120-6_8
https://doi.org/10.1109/LICS.2017.8005142
https://doi.org/10.1007/978-3-030-17127-8_29
http://arxiv.org/abs/1501.03268
https://doi.org/10.1145/3329125
https://doi.org/10.4230/LIPIcs.CONCUR.2021.33
https://arxiv.org/abs/2108.00142
https://arxiv.org/abs/2308.16350
https://doi.org/10.1016/0890-5401(92)90013-6

R.J. van Glabbeek, P. Höfner & W. Wang 75

[17] R. Milner (1990): Operational and algebraic semantics of concurrent processes. In J. van Leeuwen, editor:
Handbook of Theoretical Computer Science, chapter 19, Elsevier Science Publishers B.V. (North-Holland),
pp. 1201–1242. Alternatively see Communication and Concurrency, Prentice-Hall, Englewood Cliffs, 1989,
of which an earlier version appeared as A Calculus of Communicating Systems, LNCS 92, Springer, 1980,
doi:10.1007/3-540-10235-3.

[18] R. Milner (1983): Calculi for Synchrony and Asynchrony. Theoretical Computer Science 25, pp. 267–310,
doi:10.1016/0304-3975(83)90114-7.

[19] M.R. Mousavi, M.A. Reniers & J.F. Groote (2007): SOS formats and meta-theory: 20 years after. Theoretical
Computer Science 373(3), pp. 238–272, doi:10.1016/j.tcs.2006.12.019.

[20] K.V.S. Prasad (1991): A Calculus of Broadcasting Systems. In S. Abramsky & T.S.E. Maibaum, editors:
Proceedings of the International Joint Conference on Theory and Practice of Software Development, TAP-
SOFT’91, Volume 1: Colloquium on Trees in Algebra and Programming, CAAP’91, LNCS 493, Springer,
pp. 338–358, doi:10.1007/3-540-53982-4 19.

[21] A. Rensink (2000): Bisimilarity of Open Terms. Information and Computation 156(1-2), pp. 345–385,
doi:10.1006/inco.1999.2818.

[22] R. de Simone (1985): Higher-level synchronising devices in MEIJE-SCCS. Theoretical Computer Science
37, pp. 245–267, doi:10.1016/0304-3975(85)90093-3.

http:dx.doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0304-3975(83)90114-7
https://doi.org/10.1016/j.tcs.2006.12.019
https://doi.org/10.1007/3-540-53982-4_19
https://doi.org/10.1006/inco.1999.2818
https://doi.org/10.1016/0304-3975(85)90093-3

G. Caltais and C. A. Mezzina (Eds): Combined Workshop on

Expressiveness in Concurrency and Structural Operational Semantics

(EXPRESS/SOS 2023).

EPTCS 387, 2023, pp. 76–96, doi:10.4204/EPTCS.387.7

© D. Hirschkoff and E. Prebet

This work is licensed under the

Creative Commons Attribution License.

Using π-Calculus Names as Locks

Daniel Hirschkoff

ENS de Lyon

daniel.hirschkoff@ens-lyon.fr

Enguerrand Prebet

Karlsruhe Institute of Technology

enguerrand.prebet@kit.edu

Locks are a classic data structure for concurrent programming. We introduce a type system to ensure

that names of the asynchronous π-calculus are used as locks. Our calculus also features a construct

to deallocate a lock once we know that it will never be acquired again. Typability guarantees two

properties: deadlock-freedom, that is, no acquire operation on a lock waits forever; and leak-freedom,

that is, all locks are eventually deallocated.

We leverage the simplicity of our typing discipline to study the induced typed behavioural equiv-

alence. After defining barbed equivalence, we introduce a sound labelled bisimulation, which makes

it possible to establish equivalence between programs that manipulate and deallocate locks.

1 Introduction

The π-calculus is an expressive process calculus based on the notion of name, in which name-passing

is the primitive notion of interaction between processes. Processes of the π-calculus have been used

to represent several aspects of programming, like data structures, protocols, or constructs such as func-

tions, continuations, objects, and references. The π-calculus also comes with a well-developed theory

of behavioural equivalence. This theory can be exploited to reason about contextual equivalence in pro-

gramming languages, by translating programs as π-calculus processes.

In this work, we follow this path for locks, a basic data structure for concurrent programming. We

study how π-calculus names can be used to represent locks. We show that the corresponding program-

ming discipline in the π-calculus induces a notion of behavioural equivalence between processes, which

can be used to reason about processes manipulating locks. This approach has been followed to analyse

several disciplines for the usage of π-calculus names: linearity [15], receptiveness [25], locality [16],

internal mobility [24], functions [23, 5], references [7, 21].

It is natural to represent locks in Aπ , the asynchronous version of the π-calculus [1, 9]. A lock is

referred to using a π-calculus name. It is represented as an asynchronous output: the release of the lock.

Dually, an input represents the acquire operation on some lock.

In this paper, we introduce πℓw, a version of the asynchronous π-calculus with only lock names.

Two properties should be ensured for names to be used as locks: first, a lock can appear at most once

in released form. Second, acquiring a lock entails the obligation to release it. For instance, process

ℓ1(x).(ℓ1〈x〉 | ℓ2〈x〉) has these properties: the process acquires lock ℓ1, then releases it, together with

lock ℓ2. We remark that this this process owns lock ℓ2, which is released after ℓ1 is acquired. We show

that a simple type system can be defined to guarantee the two properties mentioned above.

When manipulating locks, it is essential to avoid the program from getting stuck in a state where a

lock needs to be acquired but cannot be released. Consider the following process:

Pdl
def
= ℓ1(x).(ℓ1〈x〉 | ℓ2〈x〉) | ℓ2(y).(ℓ1〈y〉 | ℓ2〈y〉).

http://dx.doi.org/10.4204/EPTCS.387.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

D. Hirschkoff and E. Prebet 77

The subprocess on the left needs to acquire lock ℓ1, which is owned by the other subprocess, and symmet-

rically: this is a deadlock. Our type system rules out processes that exhibit this kind of cyclic dependency

between locks. This is achieved by controlling parallel composition: two processes in parallel can share

at most one lock name. Process Pdl thus cannot be typed, because names ℓ1 and ℓ2 are shared between

the two subprocesses. The acyclicity property enjoyed by typable processes yields deadlock-freedom.

To avoid situations where a lock is in released state and cannot be accessed, πℓw also features a

construct to deallocate a lock, called wait, inspired from [12]. Process ℓ((x)).P waits until no acquire is

pending on lock ℓ, at which point it deallocates ℓ, reading the final value stored in ℓ as x. The reduction

rule for wait is

(νℓ)
(
ℓ〈v〉 | ℓ((x)).P

)
→ P{v/x} (1)

provided ℓ is not among the free names of P. In the reduction above, the restriction on ℓ disappears after

the last interaction involving ℓ has taken place.

The main contributions of this work are the following:

• We introduce πℓw, a π-calculus with higher-order locks (in the sense that locks can be stored in

locks) and lock deallocation. The type system for πℓw controls the usage and the sharing of lock

names between processes. We provide some examples to illustrate how locks can be manipulated

according to the programming discipline induced by types.

• We show that typable processes in πℓw enjoy deadlock- and leak-freedom. The proofs rely on

simple arguments involving the graph induced by the sharing of locks among processes.

• We analyse typed behavioural equivalence in πℓw. Types restrict the set of contexts that can

interact with processes, yielding a coarser behavioural equivalence than in the untyped case.

We first introduce typed barbed equivalence, written ≃w. Relation ≃w is defined by observing the

behaviour of processes when they are placed in typable contexts. We then express the interactions

between typed processes and typed context by means of a Labelled Transition System (LTS) that

takes into account typing constraints. This allows us to introduce typed bisimilarity, ≈w, the main

proof technique to establish barbed equivalence: we indeed prove soundness, that is, ≈w⊆≃w.

We discuss several examples that help to understand how we can reason about behavioural equiv-

alence in πℓw. We are not aware of existing labelled equivalences taking into account name

deallocation in the π-calculus.

Beyond πℓw, we believe that ≈w can be used as a building block when reasoning in the π-calculus about

programs that use various features, among which locks.

The aforementioned contributions are presented in two steps. We first introduce πℓ, an asynchronous

π-calculus with higher-order locks. πℓw is obtained by adding the wait construct to πℓ. Several important

ideas can be presented in πℓ, and we can build on the notions introduced for πℓ to extend them for πℓw.

We now highlight some of the technical aspects involved in our work.

The type system for πℓ guarantees deadlock-freedom, in the sense that for typable processes, an

acquire operation cannot be blocked forever. This holds for complete processes: a process is complete

if for every lock ℓ it uses, a release of ℓ is available. Availability need not be immediate, for instance

the release operation on lock ℓ may be blocked by an acquire on ℓ′. We prove progress based on the fact

that the type system guarantees acyclicity of the dependence relation between locks. Progress entails

deadlock-freedom.

When adding the wait construct, we rely on a similar reasoning to prove leak-freedom for πℓw, which

in our setting means that all locks are eventually deallocated. The type system for πℓw is richer than the

78 Using π-Calculus Names as Locks

one for πℓ not only because it takes wait into account, but also because it makes it possible to transmit

the obligation of releasing or deallocating a lock via another lock. For instance, it is possible, depending

on the type of ℓ, that in process ℓ(ℓ′).P, the continuation P has the obligation not only to release lock ℓ,
but also to deallocate ℓ′, or release ℓ′, or both.

To define typed barbed equivalence in πℓ, written ≃, we must take into account deadlock-freedom,

which has several consequences. First, we observe complete processes: intuitively, computations in πℓ
make sense only for such processes, and a context interacting with a process should not be able to block

a computation by never performing some release operation. Second, all barbs are always observable in

πℓ. In other words, if ℓ is a free name of a complete typable process P, then P can never loose the ability

to release ℓ. This is in contrast with barbed equivalence in the π-calculus, or in CCS, where the absence

of a barb can be used to observe behaviours. We therefore adopt a stronger notion of barb, where the

value stored in a lock, and not only the name of the lock, can be observed.

The ideas behind ≃ are used to define ≃w, typed barbed equivalence in πℓw. A challenge when

defining typed bisimilarity in πℓw is to come up with labelled transitions corresponding to the reduction

in (1). Intuitively, if P
ℓ((v))
−−−→ P′ (P deallocates ℓ and continues as P′), we must make sure that this

transition is the last interaction at ℓ. We define a typed LTS to handle name deallocation, and show that

bisimilarity is sound for barbed equivalence in πℓw.

Paper outline. We study πℓ in Section 2. We first expose the essential ideas of our deadlock-freedom

proof in CCSℓ, a simple version of the Calculus of Communicating Systems [18] with lock names. After

extending these results to πℓ, we define barbed equivalence for πℓ, written ≃. We provide a labelled

semantics that is sound for ≃, and present several examples of behavioural equivalences in πℓ. In

Section 3, we add the wait construct, yielding πℓw. We show how to derive leak-freedom, and define a

labelled semantics, building on the ideas of Section 2. We discuss related and future work in Section 4.

2 πℓ, a Deadlock-Free Asynchronous π-Calculus

We present deadlock-freedom in the simple setting of CCSℓ in Section 2.1. This approach is extended to

handle higher-order locks in πℓ (Section 2.2). We study behavioural equivalence in πℓ in Section 2.3.

2.1 CCSℓ: Ensuring Deadlock-Freedom using Composition

CCSℓ is a simplification of πℓ, to present the ideas underlying the type system and the proof of deadlock-

freedom. CCSℓ is defined as an asynchronous version of CCS with acquire and release operations. We

postulate the existence of an infinite set of lock names, written ℓ,ℓ′, ℓ1, . . . , which we often simply call

names. CCSℓ processes are defined by the following grammar:

P ::= ℓ.P
∣∣ ℓ

∣∣ (νℓ)P
∣∣ P1 | P2.

ℓ is the release of lock ℓ. Process ℓ.P acquires ℓ and then acts as P—we say that P performs an acquire

on ℓ. There is no 000 process in CCSℓ, intuitively because we do not take into consideration processes

with no lock at all. Restriction is a binder, and we write fln(P) for the set of free lock names in P. If

S= {ℓ1, . . . , ℓk} is a set of lock names, we write (νS)P for (νℓ1) . . . (νℓk)P.

The definition of structural congruence, written ≡, and reduction, written −→, are standard. They are

given in Appendix A.1. Relation =⇒ is the transitive reflexive closure of −→.

D. Hirschkoff and E. Prebet 79

Type System. To define the type system for CCSℓ, we introduce typing environments. We use γ to

range over sets of lock names. We write γ1#γ2 whenever γ1∩ γ2 = /0. We write γ , ℓ for the set γ ⊎{ℓ}: the

notation implicitly imposes ℓ /∈ γ .

Typing environments, written Γ, are sets of such sets, with the additional constraint that these should

be pairwise disjoint. We write Γ = γ1, . . . ,γk, for k ≥ 1, to mean that Γ is equal to {γ1, . . . ,γk}, with γi#γ j

whenever i 6= j. The γis are called the components of Γ in this case, and dom(Γ), the domain of Γ, is

defined as γ1∪ ·· ·∪ γk. We write Γ1#Γ2 whenever dom(Γ1)∩dom(Γ2) = /0.

As for components γ , the notation Γ,γ stands for a set (of sets) that can be written as Γ⊎{γ}. Using

these two notations together, we can write Γ,γ , ℓ to refer to a typing environment containing a component

that contains ℓ. We sometimes add parentheses, writing e.g. Γ,(γ , ℓ,ℓ′), to ease readability.

The typing judgement is of the form Γ;R ⊢ P, where R is a set of lock names. If Γ;R ⊢ P, then

R is the set of locks owned by P, that must be released. Moreover any component γ of Γ intuitively

corresponds to a subprocess of P that only accesses the names in γ . Here, accessing a lock name ℓ means

either releasing ℓ or performing an acquire on ℓ, or both. The typing rules are as follows:

ACQ-C

Γ,(γ , ℓ);R, ℓ ⊢ P

{flatten(Γ)⊎ (γ , ℓ)};R ⊢ ℓ.P

REL-C

Γ,(γ , ℓ);{ℓ} ⊢ ℓ

NEW-C

Γ,(γ , ℓ);R, ℓ ⊢ P

Γ,γ ;R ⊢ (νℓ)P

PAR-C

Γ1;R1 ⊢ P1 Γ2;R2 ⊢ P2

Γ1 •Γ2;R1⊎R2 ⊢ P1 | P2

In rule ACQ-C, operator flatten has the effect of mergining all components in a typing environment into

a single component. In particular, if Γ = {γ1, . . . ,γk}, then flatten(Γ) stands for γ1⊎ ·· ·⊎ γk. Intuitively,

the causal dependency introduced by the prefix ℓ.P induces a dependence between ℓ and all the locks in

P, forcing these locks to belong to the same component.

In the typing rules, we write R, ℓ for R⊎{ℓ}, i.e., we suppose ℓ /∈R, otherwise the typing rule cannot

be applied. Lock ℓ is added to R in rule ACQ-C, to ensure that it will be released in the continuation P,

and in rule NEW-C, to ensure that a newly created lock is initialised with a release. Correspondingly,

rule REL-C type-checks the release of lock ℓ by imposing R= {ℓ}.
To type-check parallel composition, we use an operation to compose typing environments, written

Γ1 •Γ2. For this, we set /0•Γ = Γ and (Γ,γ)•Γ′ = connect(γ ;Γ•Γ′), where connect(γ ;{γ1, . . . ,γk}) is

undefined as soon as there is i such that γ ∩ γi contains at least two distinct elements, and otherwise is

defined as

connect(γ ;{γ1, . . . ,γk}) = {γi : γi#γ} ⊎ {γ ∪flatten({γi : γi∩ γ 6= /0})}.

In rule PAR-C, we impose that R1 and R2 are disjoint: if lock ℓ must be released, then this is done either

by P1 or by P2. Together with rule REL-C, this guarantees that any ℓ ∈ R is released exactly once.

We present some examples to illustrate the type system.

Example 1. Processes ℓ1.(ℓ1 | ℓ1) and ℓ1.ℓ2.ℓ1 cannot be typed, because both violate linearity in the

usage of locks: the former releases lock ℓ1 twice, and the latter does not release ℓ2 after acquiring it.

Process P1
def
= ℓ1.(ℓ1 | ℓ2) acquires lock ℓ1, and then releases locks ℓ1 and ℓ2. Let γ12 = {ℓ1, ℓ2}; we

can derive {γ12};{ℓ2} ⊢ P1: locks ℓ1 and ℓ2 necessarily belong to the same component when typing P1.

Similarly, we have {γ12};{ℓ1} ⊢ P2 with P2
def
= ℓ2.(ℓ2 | ℓ1). The typing derivations for P1 and P2 cannot be

composed, because of the presence of γ12 in both, so P1 | P2 cannot be typed. This is appropriate, since

P1 | P2 presents a typical deadlock situation, where ℓ1 is needed to release ℓ2 and conversely.

On the other hand, process P3
def
= ℓ1.(ℓ1 | ℓ2) | ℓ2.ℓ2 | ℓ1.ℓ1 can be typed: we can derive {γ12};{ℓ2} ⊢

ℓ1.(ℓ1 | ℓ2) and {{ℓ1},{ℓ2}}; /0 ⊢ ℓ2.ℓ2 | ℓ1.ℓ1, and we can compose these typing derivations, yielding

80 Using π-Calculus Names as Locks

{γ12};{ℓ2} ⊢ P3. Crucially, components {ℓ1} and {ℓ2} are not merged in the second derivation for the

composition to be possible. Using similar ideas, we can define a typable process made of three parallel

components P1,P2,P3 sharing a single lock, say ℓ, as long as each of the Pi uses its own locks besides ℓ.

We can derive {γ12}; /0 ⊢ P4 with P4
def
= ℓ1.ℓ2.(ℓ2 | ℓ1). We observe that P4 | P4 cannot be typed,

although P4 | P4 is ‘no more deadlocked’ than P4 alone.

The typing rules enforce R⊆ dom(Γ) when deriving Γ;R ⊢ P. We say that ℓ is available in process

P if P contains a release of ℓ which is not under an acquire on ℓ in P. Intuitively, when Γ;R ⊢ P is

derivable, P is a well-typed process in which all lock names in R are available in P. The type system

thus guarantees a linearity property on the release of names in R. However, lock names are not linear

names in the sense of [15], since there can be arbitrarily many acquire operations on a given lock. When

all free lock names are available in P, i.e. Γ;fln(P) ⊢ P, we say that P is complete.

Lemma 2. The type system enjoys invariance under ≡ and subject reduction: (i) If Γ;R ⊢ P and P≡ P′,

then Γ;R ⊢ P′. (ii) If Γ;R ⊢ P and P−→ P′, then Γ;R ⊢ P′ and fln(P′) = fln(P).

Deadlock-Freedom. Intuitively, a deadlock in CCSℓ arises from an acquire operation that cannot be

performed. We say that a terminated process is a parallel composition of release operations possibly

under some restrictions. A process that contains at least an acquire and cannot reduce is a stuck process.

So in particular ℓ.ℓ is stuck; the context may provide a release of ℓ, triggering the acquire on ℓ. On the

other hand, if P is a stuck process and complete, then P is deadlocked: intuitively, the context cannot

interact with P in order to trigger an acquire operation of P. Process Pdl from Section 1 is an example of a

deadlock. We show that a complete process can only reduce to a terminated process, avoiding deadlocks.

The proof of deadlock-freedom for CCSℓ provides the structure of the proofs for deadlock-freedom in

πℓ and leak-freedom in πℓw. It relies on progress: any typable process can reduce to reach a terminated

process. We first present some lemmas related to the absence of cyclic structures in CCSℓ.

Lemma 3 (Lock-connected processes). We say that P is lock-connected if Γ;R ⊢ P implies Γ = Γ′,γ for

some Γ′,γ , with fln(P)⊆ γ . In this situation, we also have {γ};R ⊢ P. If P and Q are lock-connected and

fln(P)∩fln(Q) contains at least two distinct names, then P | Q cannot be typed.

The property in Lemma 3 does not hold if P and Q are not lock-connected: take for instance P = Q =
ℓ1.ℓ1 | ℓ2.ℓ2, then we can derive {{ℓ1},{ℓ2}}; /0 ⊢ P | Q. By the typing rule ACQ-C, any process of the

form ℓ.P is lock-connected. A typical example of a lock-connected process is ℓ1.(ℓ1 | ℓ2) | ℓ2.(ℓ2 | ℓ3):
here γ = {ℓ1, ℓ2, ℓ3}. Processes similar to this one are used in the following lemma.

Lemma 4 (No cycle). We write P
ℓ
←→ Q when ℓ ∈ fln(P)∩ fln(Q). Suppose there are k > 1 pairwise

distinct names ℓ1, . . . , ℓk, and processes P1, . . . ,Pk such that ℓi.Pi
ℓi←→ ℓ(i+1) mod k.P(i+1) mod k for 1≤ i≤

k. Then P1 | . . . | Pk is not typable.

We use notation ∏i Pi for the parallel composition of processes Pi.

Lemma 5 (Progress). If Γ;fln(P) ⊢ P, then either P−→ P′ for some P′, or P≡ (ν ℓ̃)∏i ℓi where the ℓis are

pairwise distinct.

Proof. Write P≡ (ν ℓ̃)P0 with P0 = ∏i ℓi | ∏ j ℓ j.Pj. We let Q j stand for ℓ j.Pj, and suppose that there is

at least one Q j. We show that under this hypothesis P0 can reduce.

If ℓi = ℓ j for some i, j, then P0 can reduce. We suppose in the following that this is not the case, and

consider one of the Q js. By typing, there exists a unique occurrence of ℓ j available in P0. By hypothesis,

this occurrence is not among the ℓis. Therefore, ℓ j is available in Q j′ for some unique j′ with j 6= j′.

D. Hirschkoff and E. Prebet 81

We construct a graph having one vertex for each of the Q js. We draw an edge between Q j and Q j′

when ℓ j is available in Q j′ . By the reasoning we just made, each vertex is related to at least one other

vertex. So the graph necessarily contains a cycle. We can apply Lemma 4 to derive a contradiction.

We make two remarks about the construction of the graph. First, two Q js may start with an acquire at

the same name. The corresponding vertices will have edges leading to the same Q j′ , and the construction

still works. Second, if there is only one Q j, then the available release of ℓ j can synchronise with Q j.

By Lemma 5, we have that any typable process is not deadlocked. Thus, by subject reduction, we

can prove deadlock-freedom.

Proposition 6 (Deadlock-freedom). If Γ;R ⊢ P and P =⇒ P′, then P′ is not deadlocked.

Remark 7. As CCSℓ is finite, deadlock-freedom ensures that no acquire operation waits forever in a

complete typable process, and every complete process reduces to a terminated process: if Γ;fln(P) ⊢ P,

then P =⇒ (ν ℓ̃)∏i ℓi where the ℓis are pairwise distinct.

2.2 πℓ: Deadlock-Freedom for Higher-Order Locks

Syntax and Operational Semantics of πℓ. πℓ extends CCSℓ with the possibility to store values, which

can be either booleans or locks, in locks. In this sense, πℓ features higher-order locks. Processes in πℓ
are defined as follows:

P ::= ℓ(ℓ′).P
∣∣ ℓ〈v〉

∣∣ (νℓ)P
∣∣ P1 | P2

∣∣ 000
∣∣ [v = v′]P1,P2.

v,v′ denote values, defined by v ::= ℓ
∣∣ b, where b ::= tt

∣∣ ff is a boolean value. In addition to ℓ,ℓ′ . . . ,
we sometimes use also x,y . . . to range over lock names, to suggest a specific usage, like, e.g. in ℓ(x).P.

Process ℓ〈ℓ′〉 is a release of ℓ, and ℓ(ℓ′).P is an acquire on ℓ; we say in both cases that ℓ is the

subject (or that ℓ occurs in subject position) and ℓ′ is the object. Restriction and the acquire prefix act as

binders, giving rise to the notion of bound and free names. As in CCSℓ, we write fln(P) for the set of

free lock names of P. P{v/ℓ} is the process obtained by replacing every free occurrence of ℓ with v in P.

We say that an occurrence of a process Q in P is guarded if the occurrence is under an acquire prefix,

otherwise it is said at top-level in P. Additional operators w.r.t. CCSℓ are the inactive process, 000, and

value comparison: [v = v′]P1,P2 behaves like P1 if values v and v′ are equal, and like P2 otherwise.

Structural congruence in πℓ is defined by adding the following axioms to ≡ in CCSℓ:

P | 000 ≡ P (νℓ)000 ≡ 000 [v = v]P1,P2 ≡ P1 [v = v′]P1,P2 ≡ P2 if v 6= v′

The last axiom above cannot be used under an acquire prefix: see Appendix A.3 for the definition of ≡.

Execution contexts, are defined by E ::= [·]
∣∣ E | P

∣∣ (νℓ)E . The axiom for reduction in πℓ is:

ℓ〈v〉 | ℓ(ℓ′).P → P{v/ℓ′}

=⇒ is the reflexive transitive closure of−→. Labelled transitions, written P
µ
−→ P′, use actions µ defined

by µ ::= ℓ(v)
∣∣ ℓ〈v〉

∣∣ ℓ(ℓ′)
∣∣ τ , and are standard [26]—we recall the definition in Appendix A.3.

82 Using π-Calculus Names as Locks

ACQ

Γ,(γ , ℓ,ℓ′);R, ℓ ⊢ P

{flatten(Γ)⊎ (γ , ℓ)};R ⊢ ℓ(ℓ′).P

REL

Γ,(γ , ℓ,v);{ℓ} ⊢ ℓ〈v〉

NEW

Γ,(γ , ℓ);R, ℓ ⊢ P

Γ,γ ;R ⊢ (νℓ)P

PAR

Γ1;R1 ⊢ P1 Γ2;R2 ⊢ P2

Γ1 •Γ2;R1⊎R2 ⊢ P1 | P2

MAT

Γ;R ⊢ P1 Γ;R ⊢ P2

Γ;R ⊢ [v = v′]P1,P2

Figure 1: Typing rules for πℓ

The type system. We enforce a sorting discipline for names [17], given by V ::= bool
∣∣ L and Σ(L)=V :

values, that are stored in locks, are either booleans or locks. We consider that all processes we write obey

this discipline, which is left implicit. This means for instance that when writing ℓ〈v〉, ℓ and v have

appropriate sorts; and similarly for ℓ(ℓ′).P. In [v = v′]P1,P2, we only compare values with the same sort.

The typing judgement is written Γ;R ⊢ P, where Γ and R are defined like for CCSℓ. We adopt the

convention that if v is a boolean value, then γ ,v is just γ , and similarly, γ , ℓ is just γ if the sort of ℓ is bool.

The operation Γ1 •Γ2 is the same as for CCSℓ.

The typing rules for πℓ are presented in Figure 1. Again, in rules ACQ and NEW, writing R, ℓ imposes

ℓ /∈ R, otherwise the rule cannot be applied. Similarly, the notation γ , ℓ,ℓ′ is only defined when γ#{ℓ,ℓ′}
and ℓ 6= ℓ′. Rule REL describes the release of a lock containing either a lock or a boolean value: in the

latter case, using the convention above, the conclusion of the rule is {{ℓ}};{ℓ} ⊢ ℓ〈b〉. In rules ACQ and

REL, the subject and the object of the operation should belong to the same component. In CCSℓ, only

prefixing yields such a constraint.

In rule MAT, we do not impose {v,v′} ∈ dom(Γ). A typical example of a process that uses name

comparison is [ℓ1 = ℓ2]ℓ〈tt〉, ℓ〈ff〉: in this process, ℓ1 and ℓ2 intuitively represent no threat of a deadlock.

Before presenting the properties of the type system, we make some comments on the discipline it

imposes on π-calculus names when they are used as locks.

Remark 8 (An acquired lock cannot be stored). In πℓ, the obligation to release a lock cannot be trans-

mitted. Accordingly, ℓ′ /∈R= {ℓ} in rule REL, and a process like ℓ(ℓ′).ℓ1〈ℓ〉 cannot be typed. We return

to this point after Proposition 11.

Remark 9 (Typability of higher-order locks). Locks are a particular kind of names of the asynchronous

π-calculus (Aπ). Acquiring a lock that has been stored in another lock boils down to performing a

communication in Aπ . We discuss how such communications can occur between typed processes.

In rule REL, ℓ and ℓ′ must belong to the same component of Γ. So intuitively, if a process contains

ℓ〈ℓ′〉, this release is the only place where these locks are used ‘together’. A reduction involving a well-

typed process containing this release therefore looks like

(ℓ〈ℓ′〉 | P) | (ℓ(x).Q | Q′) → P | Q{ℓ
′
/x} | Q′.

Parentheses are used to suggest an interaction between two processes; ℓ〈ℓ′〉 | P performs the release, and

ℓ(x).Q | Q′ performs the acquire. Process P, which intuitively is the continuation of the release, may use

locks ℓ and ℓ′, but not together, and similarly for Q′. For instance we may have P = Pℓ | Pℓ′, where ℓ′

does not occur in Pℓ, and vice-versa for Pℓ′ . Note also that ℓ′ is necessarily fresh for ℓ(x).Q′: otherwise,

D. Hirschkoff and E. Prebet 83

typability of ℓ(x).Q′ would impose ℓ and ℓ′ to be in the same component, which would forbid the parallel

composition with ℓ〈ℓ′〉.
Depending on how P,Q and Q′ are written, we can envisage several patterns of usages of locks ℓ and

ℓ′. A first example is ownership transfer (or delegation): ℓ′ /∈ fln(P), that is, P renounces usage of ℓ′. ℓ′

can be used in Q. Note that typing actually also allows ℓ′ ∈ fln(Q′), i.e., the recipient already knows ℓ′.
A second possibility could be that ℓ is used linearly, in the sense that there is exactly one acquire on

ℓ. In this case, we necessarily have ℓ /∈ fln(P)∪ fln(Q′)—note that a release of ℓ is available in Q, by

typing. Linearity of ℓ means here that exactly one interaction takes place at ℓ. After that interaction, the

release on ℓ contained in Q is inert, in the sense that no acquire can synchronise with it. We believe that

this form of linearity can be used to encode binary session types in an extended version of πℓ, including

variants and polyadicity, along the lines of [14, 3, 4].

The type system for πℓ satisfies the same properties as in CCSℓ (Lemma 2): invariance under struc-

tural congruence, merging components and subject reduction. We also have progress and deadlock-

freedom:

Lemma 10 (Progress). Suppose Γ;fln(P) ⊢ P, and P is not structurally equivalent to 000. Then

• either there exists P′ such that P→ P′,

• or P≡ (ν ℓ̃)(Πiℓivi) where the ℓis are pairwise distinct.

Like in CCSℓ, a deadlocked process in πℓ is defined as a complete process that is stuck.

Proposition 11 (Deadlock-freedom). If Γ;R ⊢ P and P =⇒ P′, then P′ is not deadlocked.

The proof of deadlock-freedom is basically the same as for CCSℓ. The reason for that is that al-

though the object part of releases plays a role in the typing rules, it is not relevant to establish progress

(Lemma 10). This is the case because in πℓ, it is not possible to store an acquired lock in another lock

(Remark 8).

It seems difficult to extend the type system in order to allow processes that transmit the release

obligation on a lock. This would make it possible to type-check, e.g., process ℓ(ℓ′).ℓ1〈ℓ〉, that does not

release lock ℓ but instead stores it in ℓ1. Symmetrically, a process accessing ℓ at ℓ1 would be in charge of

releasing both ℓ1 and ℓ. In such a framework, a process like (νℓ1)(ℓ1〈ℓ〉 | ℓ(x).ℓ〈x〉) would be deadlocked,

because the inert release ℓ1〈ℓ〉 contains the release obligation on ℓ1. The type system in Section 3 makes

it possible to transmit the obligation to perform a release (and similarly for a wait).

Remark 12. Similarly to Remark 7, we have that Γ;fln(P) ⊢ P implies P =⇒ (ν ℓ̃)(Πiℓivi) where the ℓis

are pairwise distinct. As a consequence, the following holds: if Γ;fln(P) ⊢ P, then for any ℓ ∈ fln(P),

P =⇒
µ
−→, where µ is a release of ℓ. This statement would be better suited if infinite computations were

possible in πℓ. We leave the investigation of such an extension of πℓ for future work.

2.3 Behavioural Equivalence in πℓ

We introduce typed barbed equivalence (≃) and typed bisimilarity (≈) for πℓ. We show that≈ is a sound

technique to establish ≃, and present several examples of (in)equivalences between πℓ processes.

2.3.1 Barbed Equivalence and Labelled Semantics for πℓ

A typed relation in πℓ is a set of quadruples of the form (Γ,R,P,Q) such that Γ;R ⊢ P and Γ;R ⊢ Q.

When a typed relation R contains (Γ,R,P,Q), we write Γ;R ⊢ PRQ. We say that a typed relation R is

symmetric if Γ;R ⊢ PRQ implies Γ;R ⊢ QRP.

84 Using π-Calculus Names as Locks

Deadlock-freedom has two consequences regarding the definition of barbed equivalence in πℓ, noted

≃. First, only complete processes should be observed, because intuitively a computation in πℓ should

not be blocked by an acquire operation that cannot be executed.

Second, Proposition 11 entails that all weak barbs in the sense of Aπ can always be observed in πℓ.
In Aπ , a weak barb at n corresponds to the possibility to reduce to a process in which an output at channel

n occurs at top-level. We need a stronger notion of barb, otherwise ≃ would be trivial. That behavioural

equivalence in πℓ is not trivial is shown for instance by the presence of non-determinism. Consider

indeed process Pc
def
= (νℓ)

(
ℓ(x).(c〈x〉 | ℓ〈x〉) | ℓ(y).ℓ〈ff〉 | ℓ〈tt〉

)
. Then Pc =⇒ c〈tt〉 and Pc =⇒ c〈ff〉 (up to

the cancellation of an inert process of the form (νℓ)ℓ〈b〉). We therefore include the object part of releases

in barbs. We write P ↓ℓ〈ℓ′〉 if P
ℓ〈ℓ′〉
−−→, and P ↓ℓ(ν) if P

ℓ(ℓ′)
−−→. We use η to range over barbs, writing P ↓η ;

the weak version of the predicate, defined as =⇒↓η , is written P ⇓η .

Definition 13 (Barbed equivalence in πℓ, ≃). A symmetric typed relation R is a typed barbed bisimula-

tion if Γ;R ⊢ PRQ implies the three following properties:

1. whenever P,Q are complete and P−→ P′, there is Q′ s.t. Q =⇒ Q′ and Γ;R ⊢ P′RQ′;

2. for any η , if P,Q are complete and P ↓η then Q ⇓η;

3. for any E,Γ′,R′ s.t. Γ′;R′ ⊢ E[P] and Γ′;R′ ⊢ E[Q], and E[P],E[Q] are complete, we have Γ′;R′ ⊢
E[P]R E[Q].

Typed barbed equivalence, written ≃, is the greatest typed barbed bisimulation.

Lemma 14 (Observing only booleans). We use o,o′, . . . for lock names that are used to store boolean

values. We define ≃o as the equivalence defined as in Definition 13, but restricting the second clause to

barbs of the form ↓o〈b〉 and ⇓o〈b〉. Relation ≃o coincides with ≃.

To define typed bisimilarity, we introduce type-allowed transitions. The terminology means that we

select among the untyped transitions those that are fireable given the constraints imposed by types.

Definition 15 (Type-allowed transitions). When Γ;R ⊢ P, we write [Γ;R;P]
µ
−→ [Γ′;R′;P′] if P

µ
−→ P′ and

one of the following holds:

1. µ = τ , in which case R
′ = R and Γ′ = Γ;

2. µ = ℓ〈v〉, in which case (γ , ℓ,v) ∈ Γ for some γ , and R
′, ℓ= R, Γ′ = Γ;

3. µ = ℓ(ℓ′), in which case Γ = Γ0,(γ , ℓ) for some Γ0,γ , Γ′ = Γ0,(γ , ℓ,ℓ
′), and we have R

′, ℓ=R, ℓ′;

4. µ = ℓ(v), in which case there are Γ0,R0 s.t. Γ0;R0 ⊢ P | ℓ〈v〉, and Γ′ = Γ0,R
′ = R0.

In item 3, ℓ is removed from the R component, and ℓ′ is added: it is P′’s duty to perform the release

of ℓ′, the obligation is not transmitted. An acquire transition involving a higher-order lock merges two

distinct components in the typing environment: if [Γ0,(γ , ℓ),(γ
′, ℓ′);R;P]

ℓ(ℓ′)
−−→ [Γ′;R′;P′] (item 4 above),

then Γ′ = Γ0,(γ ⊎ γ ′⊎{ℓ,ℓ′}) and R
′ = R, ℓ (and in particular ℓ /∈ R).

Lemma 16 (Subject Reduction for type-allowed transitions). If [Γ;R;P]
µ
−→ [Γ′;R′;P′], then Γ′;R′ ⊢ P′.

Definition 17 (Typed bisimilarity, ≈). A typed relation R is a typed bisimulation if Γ;R ⊢ PRQ implies

that whenever [Γ;R;P]
µ
−→ [Γ′;R′;P′], we have

1. either Q
µ̂
=⇒Q′ and Γ′;R′ ⊢ P′RQ′ for some Q′

D. Hirschkoff and E. Prebet 85

2. or µ is an acquire ℓ(v), Q | ℓ〈v〉=⇒ Q′ and Γ′;R′ ⊢ P′RQ′ for some Q′,

and symmetrically for the type-allowed transitions of Q.

Typed bisimilarity, written ≈, is the largest typed bisimulation.

We write Γ;R ⊢ P≈Q when (Γ;R,P,Q)∈≈. If Γ;R ⊢ P≈Q does not hold, we write Γ;R ⊢ P 6≈Q,

and similarly for Γ;R ⊢ P 6≃ Q.

Proposition 18 below states that relation ≈ provides a sound proof technique for ≃. The main

property to establish this result is that ≈ is preserved by parallel composition: Γ0;R0 ⊢ P ≈ Q implies

that for all T , whenever Γ;R ⊢ P | T and Γ;R ⊢ Q | T , we have Γ;R ⊢ P | T ≈ Q | T .

Proposition 18 (Soundness). For any Γ,R,P,Q, if Γ;R ⊢ P≈ Q, then Γ;R ⊢ P≃ Q.

The main advantage in using ≈ to establish equivalences for ≃ is that we can reason directly on

processes, even if they are not complete.

2.3.2 Examples of Behavioural Equivalence in πℓ

Example 19. We discuss some equivalences for ≃.

The equivalence {{ℓ}}; /0 ⊢ ℓ(x).ℓ〈x〉 ≃ 000, which is typical of Aπ , holds in πℓ. This follows directly

from the definition of typed bisimilarity, and soundness (Proposition 18).

We now let P
def
= ℓ(x).(ℓ0〈tt〉 | ℓ〈x〉) and Q

def
= ℓ0〈tt〉, and consider whether we can detect the presence

of a ‘forwarder’ at ℓ when its behaviour is interleaved with another process. P and Q have different

barbs—they are obviously not complete. It turns out that {{ℓ,ℓ0}};{ℓ0} ⊢ ℓ(x).(ℓ0〈tt〉 | ℓ〈x〉) 6≃ ℓ0〈tt〉.
Indeed, let us consider the context

E
def
= [·] | ℓ0(y).w().(w〈tt〉 | ℓ0〈y〉) | w′().(w′〈tt〉 | ℓ〈v〉) | w〈ff〉 | w′〈ff〉,

where w,w′ are fresh names and v is a value of the appropriate sort. We have E[Q] =⇒ Q′ with Q′ 6↓w〈ff〉

and Q′ ↓w′〈ff〉. On the other hand, for any P′ s.t. E[P] =⇒ P′, if P′ 6↓w〈ff〉, then P′ 6↓w′〈ff〉.

Contexts like E above make it possible to detect when the process in the hole has some interaction

(here, with locks ℓ and ℓ0).

Using similar ideas, we can prove that

Γ;R ⊢ ℓ1(x).ℓ2(y).P 6≃ ℓ2(y).ℓ1(x).P for appropriate Γ and R.

Indeed, let us define Ew
def
= w〈ff〉 | w().([·] | w〈tt〉), where stands for an arbitrary lock name, that is

not used. We can use the context [·] | Ew2
[ℓ2〈v2〉] | ℓ1〈v1〉 | ℓ1(z).Ew1

[ℓ1〈z〉], for fresh names w1,w2

and appropriate values v1,v2, to detect the order in which acquires on ℓ1 and ℓ2 are made.

In the next two examples, we show equivalences that hold because we work in a typed setting.

Example 20. Suppose Γ;R, ℓ ⊢ ℓ(x).P | ℓ′(y).(ℓ〈v〉 | Q). Then we have

Γ;R, ℓ ⊢ ℓ(x).P | ℓ′(y).(ℓ〈v〉 | Q) ≈ ℓ′(y).(ℓ〈v〉 | Q | ℓ(x).P),

because intuitively the acquire on ℓ cannot be triggered by the context, due to the presence of a re-

lease at ℓ in the process. (We remark in passing that Γ;R, ℓ ⊢ ℓ(x).P | ℓ′(y).(ℓ〈v〉 | Q) iff Γ;R, ℓ ⊢
ℓ′(y).(ℓ〈v〉 | Q | ℓ(x).P), and in this case Γ contains a component of the form (γ , ℓ,ℓ′,v).)

This law can be generalised as follows. We say that ℓ is available in a context C if the hole does not

occur in C neither under a binder for ℓ, nor under an acquire on ℓ. So for instance ℓ is not available in

(νℓ)[·], in ℓ0(ℓ). [·] or in ℓ(x). [·], and ℓ is available in ℓ(x).ℓ〈x〉 | ℓ〈v〉 | [·]. If ℓ is available in C, then

Γ;R ⊢ ℓ(x).P | C[ℓ〈v〉]≈C[ℓ〈v〉 | ℓ(x).P] for appropriate Γ and R.

86 Using π-Calculus Names as Locks

Example 21. Consider the following processes:

P1 = (νℓ1)
(
ℓ1.ℓ2.(ℓ1 | ℓ2) | ℓ(x).ℓ1.x.(ℓ1 | x | ℓ〈x〉) | ℓ1 | ℓ2

)

P2 = (νℓ1)
(
ℓ1.ℓ2.(ℓ1 | ℓ2) | ℓ(x).x.ℓ1.(ℓ1 | x | ℓ〈x〉) | ℓ1 | ℓ2

)

Here we use a CCS-like syntax, to ease readability. This notation means that acquire operations are used

as forwarders, i.e., the first component of P1 and P2 should be read as ℓ1(y1).ℓ2(y2).(ℓ1〈y1〉 | ℓ2〈y2〉).
Moreover, the two releases available at top-level are ℓ1〈tt〉 | ℓ2〈tt〉, and similarly for x〈tt〉 (the reasoning

also holds if ℓ1 and ℓ2 are higher-order locks).

In the pure π-calculus, P1 and P2 are not equivalent, because ℓ2 can instantiate x in the acquire on ℓ.

We can show {{ℓ2, ℓ}};{ℓ2} ⊢ P1 ≈ P2 in πℓ, because the transition
ℓ(ℓ2)
−−→ is ruled out by the type system.

3 πℓw, a Leak-Free Asynchronous π-Calculus

3.1 Adding Lock Deallocation

πℓw is obtained from πℓ by adding the wait construct ℓ((ℓ′)).P to the grammar of πℓ. As announced in

Section 1, the following reduction rule describes how wait interacts with a release:

(νℓ)(ℓ〈v〉 | ℓ((ℓ′)).P) → P{v/ℓ′}
ℓ /∈ fln(P)

The wait instruction deallocates the lock. The continuation may use ℓ′, the final value of the lock. We

say that ℓ((ℓ′)) is a wait on ℓ, and ℓ′ is bound in ℓ((ℓ′)).P.

Types in πℓw, written T,T′, . . . , are defined by T ::= bool
∣∣ 〈T〉rw, and typing hypotheses are written

ℓ : T. In ℓ : 〈T〉rw, rw is called the usage of ℓ, and r,w ∈ {0,1} are the release and wait obligations,

respectively, on lock ℓ. So for instance a typing hypothesis of the form ℓ : 〈T〉10 means that ℓ must be

used to perform a release and cannot be used to perform a wait. An hypothesis ℓ : 〈T〉00 means that ℓ
can only be used to perform acquire operations. This structure for types makes it possible to transmit the

wait and release obligations on a given lock name via higher-order locks.

Our type system ensures that locks are properly deallocated. In contrast to πℓ, this allows acquired

locks to be stored without creating deadlocks. For example, a process like (νℓ1)(ℓ1〈ℓ〉 | ℓ(x).ℓ〈x〉) is

deadlocked if ℓ1 stores the release obligation of ℓ; however, it cannot be typed as it lacks the wait on ℓ1.

Adding a wait, e.g. ℓ1((ℓ)).ℓ〈v〉 removes the deadlock.

Typing environments have the same structure as in Section 2, except that components γ are sets of

typing hypotheses instead of simply sets of lock names. dom(Γ) is defined as the set of lock names for

which Γ contains a typing hypothesis. We write Γ(ℓ) = T if the typing hypothesis ℓ : T occurs in Γ.

We reuse the notation for composition of typing environments. Γ1 •Γ2 is defined like in Section 2.1,

using the connect operator, to avoid cyclic structures in the sharing of lock names. Additionally, when

merging components, we compose typing hypotheses. For any ℓ, if ℓ : 〈T1〉r1w1
∈ dom(Γ1) and ℓ :

〈T2〉r2w2
∈ dom(Γ2), the typing hypothesis for ℓ in Γ1 •Γ2 is ℓ : 〈T〉(r1+r2)(w1+w2), and is defined only if

T= T1 = T2, r1 + r2 ≤ 1 and w1 +w2 ≤ 1.

The typing rules are given in Figure 2. The rules build on the rules for πℓ, and rely on usages to

control the release and wait obligations. In particular, the set R in Figure 1 corresponds to the set of

locks whose usage is of the form 1w in this system. To type-check an acquire, we can have usage 00, but

also 01, as in, e.g., ℓ(ℓ′).(ℓ〈ℓ′〉 | ℓ((x)).P). In rule REL-W, we impose that all typing hypotheses in Γ00

(resp. γ00) have the form ℓ : 〈T〉00.

D. Hirschkoff and E. Prebet 87

ACQ-W

Γ,(γ , ℓ : 〈T〉1w, ℓ
′ : T) ⊢ P

{flatten(Γ)⊎ (γ , ℓ : 〈T〉0w)} ⊢ ℓ(ℓ
′).P

REL-W

Γ00,(γ00, ℓ : 〈T〉10,v : T) ⊢ ℓ〈v〉

WAIT-W

{γ , ℓ′ : T} ⊢ P

{γ , ℓ : 〈T〉01} ⊢ ℓ((ℓ
′)).P

NEW-W

Γ,(γ , ℓ : 〈T〉11) ⊢ P

Γ,γ ⊢ (νℓ)P

PAR-W

Γ1 ⊢ P1 Γ2 ⊢ P2

Γ1 •Γ2 ⊢ P1 | P2

NIL-W

/0 ⊢ 000

MAT-W

Γ ⊢ P1 Γ ⊢ P2

Γ ⊢ [v = v′]P1,P2

Figure 2: Typing rules for πℓw

Several notions introduced for the type system of Section 2 have to be adapted in the setting of πℓw.

While in Section 2 we simply say that a lock ℓ is available, here we distinguish whether a release of ℓ or

a wait on ℓ is available. If P has a subterm of the form ℓ((x)).Q that does not occur under a binder for ℓ,
we say that a wait on ℓ is available in P. If ℓ〈v〉 occurs in some process P and this occurrence is neither

under a binder for ℓ nor under an acquire on ℓ, we say that a release of ℓ is available in P. In addition, a

release of ℓ (resp. wait on ℓ) is available in P also if P contains a release of the form ℓ0〈ℓ〉, which does

not occur under a binder for ℓ, and if ℓ’s type is of the form 〈T〉1w (resp. 〈T〉r1).

Like in πℓ, a deadlocked process in πℓw is a complete process that is stuck. The notion of complete

process has to be adapted in order to take into account the specificities of πℓw. First, the process should

not be stuck just because a restriction is missing in order to trigger a name deallocation. Second, we must

consider the fact that release and wait obligations can be stored in locks in πℓw. As a consequence, when

defining complete processes in πℓw, we impose some constraints on the free lock names of processes.

In πℓw, we say that Γ is complete if for any ℓ ∈ dom(Γ), either Γ(ℓ) = 〈bool〉10 or Γ(ℓ) = 〈〈T〉00〉10

for some T. To understand this definition, suppose Γ ⊢ P with Γ complete. Then we have, for any free

lock name ℓ of P: (i) the release of ℓ is available in P; (ii) this release does not carry any obligation; (iii)
the wait on ℓ is not available in P. The latter constraint means that if a P contains a wait on some lock,

then this lock should be restricted.

The notion of leak-freedom we use is inspired from [12]. In our setting, a situation where some lock

ℓ is released and will never be acquired again can be seen as a form of memory leak. We say that P leaks

ℓ if P≡ (νℓ)(P′ | ℓ〈v〉) with ℓ /∈ fln(P′). P has a leak if P leaks ℓ for some ℓ, and is leak-free otherwise.

Lemma 22 (Progress). If Γ ⊢ P and Γ is complete, then either P −→ P′ for some P′, or P≡ (ν ℓ̃)(Πiℓivi)
where the ℓis are pairwise distinct.

For lack of space, the proof is presented in Appendix B. Again, it follows the lines of the proof of

Lemma 5. To construct a graph containing necessarily a cycle, we associate to every acquire of the form

ℓ(x).Q an available release of ℓ, which might occur in a release of the form ℓ′〈ℓ〉, if ℓ′ carries the release

obligation. Similarly, to every wait ℓ((x)).Q, we associate an available release, or, if a release ℓ〈v〉 occurs

at top-level, an acquire on ℓ, that necessarily exists otherwise a reduction could be fired. Finally, using a

similar reasoning, to every release of ℓ at top-level, we associate a wait on ℓ, or an acquire on ℓ.

A consequence of Lemma 22 is that P⇒ 000 when /0 ⊢ P.

88 Using π-Calculus Names as Locks

Proposition 23 (Deadlock- and Leak-freedom). Γ ⊢ P and P =⇒ P′, then P′ neither is deadlocked, nor

has a leak.

Corollary 24. Suppose Γ,γ , ℓ : 〈bool〉10 ⊢ P, and suppose that the usage of all names in S = dom(Γ,γ)
is 11. Then (νS)P ⇓ℓ〈b〉 for some b.

Proof. Immediate by Lemma 22 and subject reduction.

This property is used to define barbed equivalence below. It does not hold for higher-order locks:

simply discarding x, the lock stored in ℓ, might break typability if ℓ carries an obligation.

3.2 Typed Behavioural Equivalence in πℓw

3.2.1 Barbed Equivalence

In barbed equivalence in πℓ (Definition 13), we compare complete πℓ processes, intuitively to prevent

blocked acquire operations from making certain observations impossible. Similarly, in πℓw, we must

also make sure that all wait operations in the processes being observed will eventually be fired. For this,

we need to make the process complete (in the sense of Lemma 22), and to add restrictions so that wait

transitions are fireable.

However, in order to be able to observe some barbs and discriminate processes, we rely on Corol-

lary 24, and allow names to be unrestricted as long as their type is of the form 〈bool〉10. This type means

that the lock is first order, and that the context has the wait obligation. In such a situation, interactions at

ℓ will never be blocked, the whole process is deadlock-free, and eventually reduces to a parallel compo-

sition of releases typed with 〈bool〉10. Accordingly, we say that a πℓw process P is wait-closed if Γ ⊢ P

and for any ℓ ∈ dom(Γ), Γ(ℓ) = 〈bool〉10.

A typed relation in πℓw is a set of triples (Γ,P,Q) such that Γ ⊢ P and Γ ⊢Q, and we write Γ ⊢ PRQ

for (Γ,P,Q) ∈R. Barbed equivalence in πℓw is defined like ≃ (Definition 13), restricting observations

to wait-closed processes.

Definition 25 (Barbed equivalence in πℓw, ≃w). A symmetric typed relation R is a typed barbed bisim-

ulation if Γ ⊢ PRQ implies the three following properties:

1. whenever P,Q are wait-closed and P−→ P′, there is Q′ s.t. Q =⇒ Q′ and Γ ⊢ P′RQ′;

2. if P,Q are wait-closed and P ↓η then Q ⇓η ;

3. for any E,Γ′ s.t. Γ′ ⊢E[P] and Γ′ ⊢E[Q], and E[P],E[Q] are wait-closed, we have Γ′ ⊢E[P]R E[Q].

Typed barbed equivalence in πℓw, written ≃w, is the greatest typed barbed bisimulation.

In the second clause above, η can only be of the form ℓ〈b〉, for some boolean value b. Lemma 14

tells us that we could proceed in the same way when defining ≃.

3.2.2 Typed Transitions for πℓw, and Bisimilarity

We now define a LTS for πℓw. Transitions for name deallocation are not standard in the π-calculus. To

understand how we deal with these, consider ℓ((ℓ′)).P | Q: this process can do
ℓ((v))
−−−→ only if Q does not

use ℓ. Similarly, in ℓ((ℓ′)).P | ℓ(x).Q | ℓ〈v〉, the acquire can be fired, and the wait cannot.

Instead of selecting type-allowed transitions among the untyped transitions like in Section 2.3, we

give an inductive definition of typed transitions, written [Γ;P]
µ
−→ [Γ′;P′]. This allows us to use the rules

D. Hirschkoff and E. Prebet 89

TR

[{ℓ : 〈T〉01,v : T};ℓ〈v〉]
ℓ〈v〉
−−→ [/0;000]

TA

[{γ , ℓ : 〈T〉0w};ℓ(ℓ
′).P]

ℓ(v)
−−→ [{γ{v/ℓ′}, ℓ : 〈T〉1w};P{v/ℓ′}]

TW

[{γ , ℓ : 〈T〉10};ℓ((ℓ
′)).P]

ℓ((v))
−−−→ [{γ{v/ℓ′}};P{v/ℓ′}]

TN

[Γ,γ , ℓ : 〈T〉11;P]
µ
−→ [P′;Γ′,γ ′, ℓ : 〈T〉11]

[Γ,γ ;(νℓ)P]
µ
−→ [Γ′,γ ′;(νℓ)P′]

ℓ /∈ fln(µ)

TO

[Γ,γ , ℓ′ : T;P]
ℓ〈ℓ′〉
−−→ [P′;Γ′,γ , ℓ′ : T′]

[Γ,γ ;(νℓ′)P]
ℓ(ℓ′)
−−→ [P′;Γ′,γ , ℓ′ : T′]

TT

[Γ,γ , ℓ : 〈T〉11;P]
τ/ℓ
−−→ [Γ′,γ ;P′]

[Γ,γ ;(νℓ)P]
τ
−→ [Γ,γ ;P′]

TPC

[Γ1;P]
ℓ(v)
−−→ [Γ′1;P′] [Γ2;Q]

ℓ〈v〉
−−→ [Γ′2;Q′]

[Γ1 •Γ2;P | Q]
τ
−→ [Γ′1 •Γ′2;P′ | Q′]

TPB

[Γ1;P]
ℓ(ℓ′)
−−→ [Γ′1;P′] [Γ2;Q]

ℓ(ℓ′)
−−→ [Γ′2;Q′]

[Γ1 •Γ2;P | Q]
τ
−→ [Γ′1 •Γ′2;(νℓ′)(P′ | Q′)]

TPP

[Γ1;P]
µ
−→ [Γ′1;P′] Γ2 ⊢Q

[Γ1 •Γ2;P | Q]
µ
−→ [Γ′1 •µ Γ2;P′ | Q]

TPT

[Γ1;P]
ℓ((v))
−−−→ [Γ′1;P′] [Γ2;Q]

ℓ〈v〉
−−→ [Γ′2;Q′]

[Γ1 •Γ2;P | Q]
τ/ℓ
−−→ [Γ′1 •τ/ℓ Γ′2;P′ | Q′]

TPTB

[Γ1;P]
ℓ((v))
−−−→ [Γ′1;P′] [Γ2;Q]

ℓ(ℓ′)
−−→ [Γ′2;Q′]

[Γ1 •Γ2;P | Q]
τ/ℓ
−−→ [Γ′1 •τ/ℓ Γ′2;(νℓ′)(P′ | Q′)]

Figure 3: πℓw, Typed LTS. We omit symmetric versions of rules involving parallel compositions

for parallel composition in order to control the absence of a lock, when a lock deallocation is involved.

Technically, this is done by refining the definition of the operator to compose typing contexts.

Actions of the LTS are defined as follows: µ ::= ℓ(v)
∣∣ ℓ〈v〉

∣∣ ℓ(ℓ′)
∣∣ τ

∣∣ ℓ((v))
∣∣ τ/ℓ. Name ℓ

plays a particular role in transitions along wait actions ℓ((v)) and wait synchronisations τ/ℓ: since ℓ
is deallocated, we must make sure that it is not used elsewhere in the process. We define Γ1 •µ Γ2 as

being equal to Γ1 •Γ2, with the additional constraint that ℓ /∈ dom(Γ1)∪ dom(Γ2) when µ = ℓ((v)) or

µ = τ/ℓ, otherwise Γ1 •µ Γ2 is not defined. The rules defining the LTS are given on Figure 3. We

define fln(ℓ(ℓ′)) = fln(τ/ℓ) = {ℓ}, and fln(ℓ(v)) = fln(ℓ((v))) = fln(ℓ〈v〉) = {ℓ,v} (with the convention

that {ℓ,v} = {ℓ} if v is a boolean value).

We comment on the transition rules. Rules TR, TA and TW express the meaning of usages (respec-

tively, 01, 0w and 10). In rule TT, ℓ is deallocated, and the restriction on ℓ is removed. In rules TPT,

TPTB we rely on operation Γ1 •µ Γ2 to make sure that ℓ does not appear in both parallel components of

the continuation process, and similarly for TPP in the case where µ involves deallocation of ℓ.

Typability is preserved by typed transitions: if Γ ⊢ P and [Γ;P]
µ
−→ [Γ′;P′], then Γ′ ⊢ P′.

Bisimilarity in πℓw takes into account the additional transitions w.r.t. πℓ, and is sound for ≃w.

Definition 26 (Typed Bisimilarity in πℓw, ≈w). A typed relation R is a typed bisimulation if Γ ⊢ PRQ

90 Using π-Calculus Names as Locks

implies that whenever [Γ;P]
µ
−→ [Γ′;P′], we have

1. either Q
µ̂
=⇒Q′ and Γ′ ⊢ P′RQ′ for some Q′

2. or µ is an acquire ℓ(v), Q | ℓ〈v〉=⇒ Q′ and Γ′ ⊢ P′RQ′ for some Q′,

3. or µ is a wait ℓ((v)), (νℓ)(Q | ℓ〈v〉) =⇒ Q′ and Γ′ ⊢ P′RQ′ for some Q′,

4. or µ = τ/ℓ, (νℓ)Q =⇒ Q′ and Γ′ ⊢ P′RQ′ for some Q′,

and symmetrically for the typed transitions of Q. Typed bisimilarity in πℓw, written ≈w, is the largest

typed bisimulation.

Proposition 27 (Soundness). For any Γ,P,Q, if Γ ⊢ P≈w Q, then Γ ⊢ P≃w Q.

Example 28. The law ℓ(x).ℓ〈x〉 = 000 holds in πℓw, at type ℓ : 〈T〉00, for any T.

Suppose Γ ⊢ ℓ(x).P | ℓ((y)).Q. Then we can prove Γ ⊢ ℓ(x).P | ℓ((y)).Q ≈w ℓ(x).(P | ℓ((y)).Q).
Using this equivalence and the law of asynchrony, we can deduce ℓ((x)).P ≃w ℓ(x).(ℓ〈x〉 | ℓ((x)).P).

An equivalence between πℓ processes is also valid in πℓw. To state this property, given P in πℓ,
we introduce [[P]]w, its translation in πℓw. The definition of [[P]]w is simple, as we just need to add wait

constructs under restrictions for [[P]]w to be typable.

Lemma 29. Suppose Γ;R ⊢ P≈ Q. Then Γw ⊢ [[P]]w ≈w [[Q]]w for some πℓw typing environment Γw.

This result shows that the addition of wait does not increase the discriminating power of contexts.

We refer to Appendix B for the definition of [[P]]w and a discussion of the proof of Lemma 29.

4 Related and Future Work

The basic type discipline for lock names that imposes a safe usage of locks by always releasing a lock

after acquiring it is discussed in [13]. This is specified using channel usages (not to be confused with

the usages of Section 3.1). Channel usages in [13] are processes in a subset of CCS, and can be defined

in sophisticated ways to control the behaviour of π-calculus processes. The encoding of references in

the asynchronous π-calculus studied in [7] is also close to how locks are used in πℓw. A reference

is indeed a lock that must be released immediately after the acquire. The typed equivalence to reason

about reference names in [7] has important differences w.r.t. ≃w, notably because the deadlock- and

leak-freedom properties are not taken into consideration in that work.

The type system for πℓw has several ideas in common with [12]. That paper studies λlock, a functional

language with higher-order locks and thread spawning. The type system for λlock guarantees leak- and

deadlock-freedom by relying on duality and linearity properties, which entail the absence of cycles. In

turn, this approach originates in work on binary session types, and in particular on concurrent versions

of the Curry-Howard correspondence [10, 6, 28, 2, 27, 22].

πℓw allows a less controlled form of interaction than functional languages or binary sessions. Impor-

tant differences are: names do not have to be used linearly; there is no explicit notion of thread, neither

a fork instruction, in πℓw; reduction is not deterministic. The type system for πℓw controls parallel

composition to rule out cyclic structures among interacting processes.

The simplicity of the typing rules, and of the proofs of deadlock- and leak-freedom, can be leveraged

to develop a theory of typed behavioural equivalence for πℓ and πℓw. Soundness of bisimilarity provides

a useful tool to establish equivalence results. Proving completeness is not obvious, intuitively because

D. Hirschkoff and E. Prebet 91

the constraints imposed by typing prevent us from adapting standard approaches. The way ≈w is defined

should allow us to combine locks with other programming constructs in order to reason about programs

featuring locks and, e.g., functions, continuations, and references. Work in this direction will build

on [19, 23, 5, 8, 21].

Our proofs of deadlock- and leak-freedom suggest that there is room for a finer analysis of how lock

names are used. It is natural to try and extend our type system in order to accept more processes, while

keeping the induced behavioural equivalence tractable. A possibility for this is to add lock groups [12],

with the aim of reaching an expressiveness comparable to the system in [12]. In a given lock group, locks

are ordered, which makes it possible to analyse systems having a cyclic topology.

Relying on orders to program with locks is a natural approach, that has been used to define expressive

type systems for lock freedom in the π-calculus [11, 13, 20]. In these works, some labelling is associated

to channels or to actions on channels, and the typing rules guarantee that it is always possible to define an

order, yielding lock-freedom. We plan to study how our type system can be extended with lock groups

or ideas from type systems based on orders.

Rule (1) from Section 1 explains in a concise way how the wait operation behaves. Part of the

difficulty in Section 3 is in defining a labelled semantics that is compatible with the ‘magic’ of executing

a wait on ℓ only when the restriction can be put on top of the final release of ℓ. We plan to provide a more

operational description of deallocation, using, e.g., reference counting as in [12]. πℓw could then be seen

as a language to describe at high-level what happens at a lower level when using and deallocating locks.

Acknowledgement. We are grateful to Jules Jacobs for an interesting discussion about this work, and

for suggesting the reduction rule (1) from Section 1. We also thank the anonymous referees for their

helpful remarks and advices.

References

[1] Roberto M. Amadio, Ilaria Castellani & Davide Sangiorgi (1998): On Bisimulations for the Asynchronous

pi-Calculus. Theor. Comput. Sci. 195(2), pp. 291–324, doi:10.1016/S0304-3975(97)00223-5.

[2] Luı́s Caires & Frank Pfenning (2010): Session Types as Intuitionistic Linear Propositions. In Paul Gastin &

François Laroussinie, editors: CONCUR 2010 - Concurrency Theory, 21th International Conference, CON-

CUR 2010, Paris, France, August 31-September 3, 2010. Proceedings, Lecture Notes in Computer Science

6269, Springer, pp. 222–236, doi:10.1007/978-3-642-15375-4 16.

[3] Ornela Dardha, Elena Giachino & Davide Sangiorgi (2017): Session types revisited. Inf. Comput. 256, pp.

253–286, doi:10.1016/j.ic.2017.06.002.

[4] Ornela Dardha, Elena Giachino & Davide Sangiorgi (2022): Session Types Revisited: A Decade Later. In:

PPDP 2022: 24th International Symposium on Principles and Practice of Declarative Programming, Tbilisi,

Georgia, September 20 - 22, 2022, ACM, pp. 12:1–12:4, doi:10.1145/3551357.3556676.

[5] Adrien Durier, Daniel Hirschkoff & Davide Sangiorgi (2018): Eager Functions as Processes. In Anuj Dawar

& Erich Grädel, editors: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer

Science, LICS 2018, Oxford, UK, July 09-12, 2018, ACM, pp. 364–373, doi:10.1145/3209108.3209152.

[6] Simon J. Gay & Vasco Thudichum Vasconcelos (2010): Linear type theory for asynchronous session types.

J. Funct. Program. 20(1), pp. 19–50, doi:10.1017/S0956796809990268.

[7] Daniel Hirschkoff, Enguerrand Prebet & Davide Sangiorgi (2020): On the Representation of References in

the Pi-Calculus. In Igor Konnov & Laura Kovács, editors: 31st International Conference on Concurrency

Theory, CONCUR 2020, LIPIcs 171, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 34:1–34:20,

doi:10.4230/LIPIcs.CONCUR.2020.34.

https://doi.org/10.1016/S0304-3975(97)00223-5
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1145/3551357.3556676
https://doi.org/10.1145/3209108.3209152
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.4230/LIPIcs.CONCUR.2020.34

92 Using π-Calculus Names as Locks

[8] Daniel Hirschkoff, Enguerrand Prebet & Davide Sangiorgi (2021): On sequentiality and well-bracketing in

the π-calculus. In: 36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome,

Italy, June 29 - July 2, 2021, IEEE, pp. 1–13, doi:10.1109/LICS52264.2021.9470559.

[9] Kohei Honda & Mario Tokoro (1991): An Object Calculus for Asynchronous Communication. In Pierre

America, editor: ECOOP’91 European Conference on Object-Oriented Programming, Geneva, Switzer-

land, July 15-19, 1991, Proceedings, Lecture Notes in Computer Science 512, Springer, pp. 133–147,

doi:10.1007/BFb0057019.

[10] Kohei Honda, Vasco Thudichum Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Disci-

pline for Structured Communication-Based Programming. In Chris Hankin, editor: Programming Languages

and Systems - ESOP’98, 7th European Symposium on Programming, Held as Part of the European Joint

Conferences on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998,

Proceedings, Lecture Notes in Computer Science 1381, Springer, pp. 122–138, doi:10.1007/BFb0053567.

[11] Atsushi Igarashi & Naoki Kobayashi (2001): A generic type system for the Pi-calculus. In Chris Hankin

& Dave Schmidt, editors: Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, London, UK, January 17-19, 2001, ACM, pp. 128–141,

doi:10.1145/360204.360215.

[12] Jules Jacobs & Stephanie Balzer (2023): Higher-Order Leak and Deadlock Free Locks. Proc. ACM Program.

Lang. 7(POPL), pp. 1027–1057, doi:10.1145/3571229.

[13] Naoki Kobayashi (2002): Type Systems for Concurrent Programs. In Bernhard K. Aichernig & T. S. E.

Maibaum, editors: Formal Methods at the Crossroads. From Panacea to Foundational Support, 10th Anniver-

sary Colloquium of UNU/IIST, the International Institute for Software Technology of The United Nations

University, Lisbon, Portugal, March 18-20, 2002, Revised Papers, Lecture Notes in Computer Science 2757,

Springer, pp. 439–453, doi:10.1007/978-3-540-40007-3 26.

[14] Naoki Kobayashi (2007): Type Systems for Concurrent Programs. Extended version of [13].

[15] Naoki Kobayashi, Benjamin C. Pierce & David N. Turner (1999): Linearity and the pi-calculus. ACM Trans.

Program. Lang. Syst. 21(5), pp. 914–947, doi:10.1145/330249.330251.

[16] Massimo Merro & Davide Sangiorgi (2004): On asynchrony in name-passing calculi. Math. Struct. Comput.

Sci. 14(5), pp. 715–767, doi:10.1017/S0960129504004323.

[17] R. Milner (1991): The polyadic π-calculus: a tutorial. Technical Report ECS–LFCS–91–180, LFCS. Also

in Logic and Algebra of Specification, ed. F.L. Bauer, W. Brauer and H. Schwichtenberg, Springer Verlag,

1993.

[18] Robin Milner (1980): A Calculus of Communicating Systems. Lecture Notes in Computer Science 92,

Springer, doi:10.1007/3-540-10235-3.

[19] Robin Milner (1992): Functions as Processes. Math. Struct. Comput. Sci. 2(2), pp. 119–141,

doi:10.1017/S0960129500001407.

[20] Luca Padovani (2014): Deadlock and lock freedom in the linear π-calculus. In Thomas A. Henzinger &

Dale Miller, editors: Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science

Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),

CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, ACM, pp. 72:1–72:10, doi:10.1145/2603088.2603116.

[21] Enguerrand Prebet (2022): Functions and References in the Pi-Calculus: Full Abstraction and Proof Tech-

niques. In Mikolaj Bojanczyk, Emanuela Merelli & David P. Woodruff, editors: 49th International Collo-

quium on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France, LIPIcs 229,

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 130:1–130:19, doi:10.4230/LIPIcs.ICALP.2022.130.

[22] Pedro Rocha & Luı́s Caires (2023): Safe Session-Based Concurrency with Shared Linear State. In Thomas

Wies, editor: Programming Languages and Systems - 32nd European Symposium on Programming, ESOP

2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023,

Paris, France, April 22-27, 2023, Proceedings, Lecture Notes in Computer Science 13990, Springer, pp.

421–450, doi:10.1007/978-3-031-30044-8 16.

https://doi.org/10.1109/LICS52264.2021.9470559
https://doi.org/10.1007/BFb0057019
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/360204.360215
https://doi.org/10.1145/3571229
https://doi.org/10.1007/978-3-540-40007-3_26
https://doi.org/10.1145/330249.330251
https://doi.org/10.1017/S0960129504004323
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.4230/LIPIcs.ICALP.2022.130
https://doi.org/10.1007/978-3-031-30044-8_16

D. Hirschkoff and E. Prebet 93

[23] Davide Sangiorgi (1994): The Lazy Lambda Calculus in a Concurrency Scenario. Inf. Comput. 111(1), pp.

120–153, doi:10.1006/inco.1994.1042.

[24] Davide Sangiorgi (1996): pi-Calculus, Internal Mobility, and Agent-Passing Calculi. Theor. Comput. Sci.

167(1&2), pp. 235–274, doi:10.1016/0304-3975(96)00075-8.

[25] Davide Sangiorgi (1997): The Name Discipline of Uniform Receptiveness (Extended Abstract). In Pierpaolo

Degano, Roberto Gorrieri & Alberto Marchetti-Spaccamela, editors: Automata, Languages and Program-

ming, 24th International Colloquium, ICALP’97, Bologna, Italy, 7-11 July 1997, Proceedings, Lecture Notes

in Computer Science 1256, Springer, pp. 303–313, doi:10.1007/3-540-63165-8 187.

[26] Davide Sangiorgi & David Walker (2001): The Pi-Calculus - a theory of mobile processes. Cambridge

University Press.

[27] Bernardo Toninho, Luı́s Caires & Frank Pfenning (2013): Higher-Order Processes, Functions, and Sessions:

A Monadic Integration. In Matthias Felleisen & Philippa Gardner, editors: Programming Languages and

Systems - 22nd European Symposium on Programming, ESOP 2013, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceed-

ings, Lecture Notes in Computer Science 7792, Springer, pp. 350–369, doi:10.1007/978-3-642-37036-6 20.

[28] Philip Wadler (2014): Propositions as sessions. J. Funct. Program. 24(2-3), pp. 384–418,

doi:10.1017/S095679681400001X.

A Additional Material for Section 2

A.1 CCSℓ, Operational Semantics

Structural congruence is the least congruence satisfying the following axioms:

P | Q≡ Q | P P | (Q | R)≡ (P | Q) | R

P | (νℓ)Q≡ (νℓ)(P | Q)
if ℓ /∈ fln(P)

(νℓ)(νℓ′)P≡ (νℓ′)(νℓ)P

To define reduction, we introduce execution contexts, E , given by E ::= [·]
∣∣ E | P

∣∣ (νℓ)E , where

[·] is the hole. E[P] is the process obtained by replacing the hole in E with P.

Reduction is defined by the following rules:

ℓ | ℓ.P→ P

P→ P′

E[P]→ E[P′]

Q≡ P P→ P′ P′ ≡ Q′

Q→ Q′

A.2 CCSℓ, Properties of the Type System

of Lemma 4. We show by induction on k that ℓ1.P1 | . . . | ℓk−1.Pk−1 is lock-connected: this holds because

for every i, ℓi.Pi is lock-connected, and because ℓi.Pi
ℓi←→ ℓi+1.Pi+1 for all i < k.

Moreover, we know ℓk−1.Pk−1
ℓk−1
←→ ℓk.Pk and ℓk.Pk

ℓk←→ ℓ1.P1. So names ℓk−1 and ℓk belong to the

free names both of ℓ1.P1 | . . . | ℓk−1.Pk−1 and of ℓk.Pk. By Lemma 3, this prevents ℓ1.P1 | . . . | ℓk.Pk from

being typable.

https://doi.org/10.1006/inco.1994.1042
https://doi.org/10.1016/0304-3975(96)00075-8
https://doi.org/10.1007/3-540-63165-8_187
https://doi.org/10.1007/978-3-642-37036-6_20
https://doi.org/10.1017/S095679681400001X

94 Using π-Calculus Names as Locks

A.3 πℓ, Operational Semantics

Structural congruence in πℓ, written ≡, is standard, except for the treatment of mismatch. Indeed, the

corresponding axiom cannot be used under an acquire prefix.

To handle this, we introduce an auxiliary structural congruence relation, written ≡r. Relation ≡ is

the smallest equivalence relation that satisfies the axioms for ≡ in CCSℓ, plus the following ones

PNIL

P | 000≡ P

RNIL

(νℓ)000≡ 000

MAT

[v = v]P1,P2 ≡ P1

MIS

[v = v′]P1,P2 ≡ P2

if v 6= v′

and also the contextual axioms

CPAR

P≡ Q

P | T ≡ Q | T

CRES

P≡ Q

(νℓ)P≡ (νℓ)Q

CACQ

P≡r Q

ℓ(ℓ′).P≡ ℓ(ℓ′).Q

The last axiom refers to≡r, which is defined like ≡, except that MIS is omitted and CACQ is replaced by

CACQr

P≡r Q

ℓ(ℓ′).P≡r ℓ(ℓ
′).Q

Labelled Semantics for πℓ. Actions of the LTS are defined by µ ::= ℓ(v)
∣∣ ℓ〈v〉

∣∣ ℓ(ℓ′)
∣∣ τ .

The set of free names of µ is defined by fln(ℓ〈v〉) = fln(ℓ(v)) = {ℓ,v}, fln(τ)= /0 and fln(ℓ(ℓ′))= {ℓ}.

The set of bound names of µ is defined by bln(µ) = /0, except for bln(ℓ(ℓ′)) = {ℓ′}.

The transition rules are the following:

ℓ〈v〉
ℓ〈v〉
−−→ 000 ℓ(ℓ′).P

ℓ(v)
−−→ P{v/ℓ′}

P
ℓ〈ℓ′〉
−−→ P′

(νℓ′)P
ℓ(ℓ′)
−−→ P′

P
µ
−→ P′

(νℓ)P
µ
−→ (νℓ)P′

ℓ /∈ fln(µ)

P
µ
−→ P′

P | Q
µ
−→ P′ | Q

fln(Q)∩bln(µ) = /0
P

ℓ〈v〉
−−→ P′ Q

ℓ(v)
−−→ Q′

P | Q
τ
−→ P′ | Q′

P
ℓ(ℓ′)
−−→ P′ Q

ℓ(ℓ′)
−−→ Q′

P | Q
τ
−→ (νℓ′)(P′ | Q′)

P1
µ
−→ P′1

[v = v]P1,P2
µ
−→ P′1

P2
µ
−→ P′2

[v = v′]P1,P2
µ
−→ P′2

v 6= v′

B Additional Material from Section 3

B.1 Leak-Freedom in πℓw

The proof of Lemma 22 follows the approach of the proof of Lemma 5. An additional difficulty with

respect to the latter proof is that release and wait obligations on a given lock need not be explicit in the

process, in the sense that they can be stored in another lock.

D. Hirschkoff and E. Prebet 95

Proof. We first consider the situation where Γ ⊢ P0, Γ is complete, and we can write

P0 ≡ (νS)(∏
i

ℓi〈vi〉 | ∏
j

ℓ j(x j).Pj | ∏
k

ℓk((yk)).Qk).

We let P = ∏i ℓi〈vi〉 | ∏ j ℓ j(x j).Pj | ∏k ℓk((yk)).Qk.

We introduce some terminology to reason about this decomposition. A prime process is a process

of the form ℓ〈v〉, ℓ(x).P′ or ℓ((y)).P′. Here “prime” refers to the fact that such processes cannot be

decomposed modulo ≡. We call subject of a prime process the name that occurs in subject position in

the topmost prefix of that process: these are the ℓis, the ℓ js and the ℓks in the decomposition above.

We make the two following observations. First, for any ℓ ∈ fln(P), either ℓ ∈ fln(P0), or a release of

ℓ and a wait on ℓ must be available, by typing. Second, none of the ℓi is equal to one of the ℓ j, since

otherwise P0 could reduce. Moreover, if some ℓi is equal to one of the ℓks, then P necessarily contains

an acquire on ℓi, since otherwise P0 could reduce by performing a wait transition. In the following, we

do not consider the prime processes whose subject is in Γ. Recall that these processes are outputs ℓi〈vi〉
with vi being either of type bool or 〈T〉00.

To derive a contradiction, we show that the subject of every prime process occurs free in another

prime process having a different subject. We examine the three forms of prime processes.

• Consider first ℓ j(x j).Pj. The available release of ℓ j cannot occur at top-level, since otherwise P

could reduce. The release cannot be available under an acquire or wait prefix on ℓ j, by typing and

by definition of being available.

The release of ℓ j may be available in one of the Pj′s, or in one of the Pks occurring under a prefix

at some lock name different from ℓ j. In both cases, ℓ j occurs in another prime process having a

different subject.

If the release on ℓ j is available neither in the Pjs nor in the Pks, then there exists another release of

the form ℓ〈ℓ j〉 for some ℓ, that does not occur under an acquire on ℓ j. We remark that ℓ’s usage is

of the form 1w, and that ℓ 6= ℓ j.

Thus, the release of ℓ necessarily occurs in a prime process whose subject is different from ℓ j.

• Consider now ℓk((yk)).Pk. As above, we reason about the release of ℓk. The only difference is that

the release of ℓk may occur at top-level. If this is the case, then there is necessarily an acquire

on ℓk, otherwise P could reduce. This acquire cannot occur at top-level, since otherwise P could

reduce, by performing a wait transition. Hence, there is a prime process whose subject is different

from ℓk that contains an acquire on ℓk.

• Consider ℓi〈vi〉. We reason about the wait on ℓi. If the wait on ℓi occurs at top-level, then, as above,

an acquire on ℓi must occur in P, since otherwise P0 could reduce. That acquire on ℓi cannot occur

at top-level, since otherwise P could reduce. So in this case ℓi occurs in a prime process whose

subject is different from ℓi.

If the wait on ℓi does not occur at top-level, then it can occur in a prime process whose subject is

different from ℓi: that process cannot start with an acquire on ℓi since otherwise P could reduce.

The last possibility is that a subterm of the form ℓ〈ℓi〉 occurs in some other prime process, and ℓ
carries the wait obligation. Reasoning as above, the subject of the prime process cannot be ℓi.

We have shown that every prime process in the decomposition above whose subject is ℓ can be connected

with a different prime process. Like in the proofs of deadlock-freedom, we obtain a cycle, which is

impossible by (the counterpart of) Lemma 4.

96 Using π-Calculus Names as Locks

B.2 Translating a πℓ Process in πℓw

If P is a πℓ process, [[P]]w is its translation into πℓw, defined as follows:

[[(νℓ)P]]w = (νℓ)([[P]]w | ℓ((x)). 000) [[ℓ(ℓ′).P]]w = ℓ(ℓ′). [[P]]w [[ℓ〈v〉]]w = ℓ〈v〉

[[P1 | P2]]w = [[P1]]w | [[P2]]w [[[v = v′]P1,P2]]w = [v = v′][[P1]]w, [[P2]]w

To prove Lemma 29, we establish a correspondence between typing in πℓ and in πℓw. If Γ;R ⊢ P,

the typing environment to type P seen as a πℓw process is constructed by making sorts explicit, and by

assigning usage 10 for name ℓ if ℓ ∈ R, and 00 otherwise. Conversely, if P ∈ πℓ can be typed as a πℓw
process with Γw ⊢ P, then we can suppose that Γw does not contain any usage of the form r1. We recover

a πℓ typing for P by collecting all names having type usage 10 in R, and erasing type information in the

components of Γw, yielding Γ, so that Γ;R ⊢ P.

This correspondence is extended to a correspondence between transitions, so that a bisimulation

relation in πℓ is also a bisimulation in πℓw, via the aforementioned translation. To prove the latter

property, we rely on the equivalence {{v}} ⊢ (νℓ)(ℓ〈v〉 | ℓ((x)). 000)≈w 000 in πℓw.

G. Caltais and C. A. Mezzina (Eds): Combined Workshop on

Expressiveness in Concurrency and Structural Operational Semantics

(EXPRESS/SOS 2023).

EPTCS 387, 2023, pp. 97–113, doi:10.4204/EPTCS.387.8

Deriving Abstract Interpreters from Skeletal Semantics

Thomas Jensen

INRIA, Rennes

thomas.jensen@inria.fr

Vincent Rébiscoul

Université de Rennes, Rennes

vincent.rebiscoul@inria.fr

Alan Schmitt

INRIA, Rennes

alan.schmitt@inria.fr

This paper describes a methodology for defining an executable abstract interpreter from a formal de-

scription of the semantics of a programming language. Our approach is based on Skeletal Semantics

and an abstract interpretation of its semantic meta-language. The correctness of the derived abstract

interpretation can be established by compositionality provided that correctness properties of the core

language-specific constructs are established. We illustrate the genericness of our method by defining

a Value Analysis for a small imperative language based on its skeletal semantics.

1 Introduction

The derivation of provably correct static analyses from a formal specification of the semantics of a pro-

gramming language is a long-standing challenge. The recent advances in the mechanisation of semantics

has opened up novel perspectives for providing tool support for this task, thereby enabling the scaling

of this approach to larger programming languages. This paper presents one such approach for mechan-

ically constructing semantics-based program analysers from a formal description of the semantics of a

programming language. We aim to provide methodologies which not only can prove the correctness of

program abstractions but also lead to executable analysis techniques. Abstract Interpretation [4] has set

out a methodology for defining an abstract semantics from an operational semantics and for proving a

correctness relation between abstract and concrete semantics using Galois connections. The principle of

abstract interpretation has been applied to a variety of semantic frameworks, including small-step and

big-step (natural) operational semantics, and denotational semantics. An example of this methodology

is to build an abstract semantics from a natural semantics [20]. Another example is Nielson’s theory of

abstract interpretation of two-level semantics [14] in which a semantic meta-language is equipped with

binding-time annotations so that types and terms can be given a static and dynamic interpretation, leading

to different but (logically) related interpretations.

In order for semantics-based program analysis to handle the complexity of today’s programming

languages, it is necessary to conceive a methodology that is built using some form of mechanised se-

mantics. Examples of this include Verasco [8], a formally verified static analyser for the C programming

language. It uses abstract interpretation techniques to perform value analyses, relational analyses. . . Ve-

rasco is written in Coq and the soundness of the analysis is guaranteed by a theorem: a program where

the analysis does not raise an alarm is free of errors. Reasoning about program behaviours is possi-

ble as Verasco reuses the formalisation of the C semantics in Coq that was written for CompCert [11].

CompCert is a proved semantic preserving C compiler written in Coq.

Another example is the K [18] framework for writing semantics using rewriting rules. Rewriting

rules make the formal definition of a semantics both flexible and relatively simple to write, and allows

to mechanically derive objects from the semantics like an interpreter. However, this mechanization can

be complex: K-Java [2] is a formalization of Java in K, with close to four hundred rewriting rules. It is

unclear if it is possible to derive an analysis from a mechanization in K.

http://dx.doi.org/10.4204/EPTCS.387.8

98 Deriving Abstract Interpreters from Skeletal Semantics

The key idea that we will pursue in this paper is that an abstract interpreter for a semantic meta-

language combined with language-specific abstractions for a particular property yield a correct-by-

construction abstract interpreter for the specific language and property. We describe how to obtain a

correct program analyser for a programming language from its skeletal semantics. Skeletal Semantics [1]

is a proposal for machine-representable semantics of programming languages.

The skeletal semantics of a language L is a partial description of the semantics of L . Typically, a

skeletal semantics will contain definitions of the constructs of the language and functions of evaluation of

these constructs. A skeletal semantics is written in the meta-language Skel [17], a minimalist functional

language. It is a meta language to describe the semantics of object languages. Skel has several semantics,

called interpretations, (small step, big step [10], abstract interpretation), giving different semantics for

the object languages.

Contributions

• We propose new interpretations of the semantic meta-language Skel that integrates the notion of

program point in a systematic way.

• We define an abstract interpretation for Skel. The abstract interpretation of Skel combined with

language-specific abstractions define an analyzer for the object language.

• We prove that the abstract interpretation of Skel is a sound approximation of the big-step interpre-

tation of Skel, provided that some small language-dependent properties hold.

• We implement a program which, given a Skeletal Semantics, generates an executable abstract

interpreter, and we test it on toy languages. We define a basic value analyzer for a small imperative

language. A Control Flow Analysis for a λ -calculus is also presented in the long version of this

paper [7].

2 Skeletal Semantics

Skeletal Semantics offers a framework to mechanise semantics of programming languages [1]. It uses

a minimalist, functional, and strongly typed semantic meta-language called Skel [17], whose syntax is

presented in Figure 1. The actual semantics of a language described in Skel is expressed by providing a

(meta-)interpretation of the Skel language itself. In this paper, we will present two such interpretations:

a big-step (or concrete) semantics and an abstract interpretation.

We illustrate Skel through the definition of the skeletal semantics of a toy imperative language called

While. A Skeletal Semantics is a formal description of a language and consists of declarations. We start

with some type declarations (production rτ in Figure 1).

type ident

type lit

type store

type int

type expr =

| Const lit

| Var ident

| Plus (expr, expr)

| Leq(expr, expr)

| Rand (lit, lit)

type stmt =

| Skip

| Assign (ident, expr)

| Seq (stmt, stmt)

| If (expr, stmt, stmt)

| While (expr, stmt)

For While, there are four unspecified types (identifiers, literals, stores, integers) and two specified types

(expressions and statements). Unspecified types is an useful trait of Skel, their definitions are uncon-

strained and they can be instantiated depending on the semantics of the object language being defined.

T. Jensen, V. Rébiscoul & A. Schmitt 99

TERM t ::= x |C t | (t, .., t) | λ p : τ → S

SKELETON S ::= t | t0 t1..tn | let p = S in S | branch Sor ..orS end |

match t with p→ S..p→ S end

PATTERN p ::= x | |C p | (p, .., p)

TYPE τ ::= b | τ → τ | (τ , ..,τ)

TERM DECL rt ::= val x : τ | val x : τ = t

TYPE DECL rτ ::= type b | type b = "|" C1 τ1.."|" Cn τn

SKELETAL SEMANTICS S ::= (rt |rτ)
∗

Figure 1: The Syntax of Skeletal Semantics

The specification of the integer type can be different for a big-step semantics or for an abstract interpre-

tation. The expr and stmt types define expressions and statements of While programs. An expression

can be a constant, a variable, an addition, a comparison, or a random integer. A statement can be a skip

(an instruction that does nothing), an assignment, a sequence, a condition, or a loop. In addition to these

declared types, one may build arrow types and tuple types.

We now turn to Skel’s term declarations (production rt of Figure 1), which may also be unspecified

or specified. Unspecified terms are typically used for operations on values of unspecified types. For our

While language, they are as follows.

val litToInt : lit → int

val add : (int, int) → int

val lt: (int, int) → int

val rand : (lit, lit) → int

val isZero: int → ()

val isNotZero: int → ()

val read : (ident, store) → int

val write : (ident, store, int) → store

The types for isZero and isNotZero may be surprising. These partial functions act as filters when

used in branches, as detailed below.

Specified terms, on the other hand, are signatures associated with a term. A term is either a skeletal

variable, a constructor applied to a term, a tuple, or an abstraction. The body of an abstraction is a

skeleton, described below. Consider the declaration of term eval_expr.

val eval_expr ((s, e): (store, expr)): int =

match e with

| Const i → litToInt i

| Var x → read (x, s)

| Plus (e1, e2) →
let v1 = eval_expr (s, e1) in

let v2 = eval_expr (s, e2) in

add (v1, v2)

| Leq (e1, e2) →
let v1 = eval_expr (s, e1) in

let v2 = eval_expr (s, e2) in

lt (v1, v2)

| Rand (i1, i2) → rand (i1, i2)

end

The first line is syntactic sugar for

val eval_expr: (store, expr) -> int = λ (s, e): (store, expr) ->

where the remainder of the description is the body of the abstraction. This body is a skeleton. A skeleton

may be a term, an n-ary application, a let binding, a branching (detailed below), or a match. Here the

100 Deriving Abstract Interpreters from Skeletal Semantics

skeleton is a match, distinguishing between the different expressions which may be evaluated. For a

constant expression, we call the unspecified term litToInt to convert the literal to an integer. For a

variable, we read its value in the store. For an addition, we sequence the recursive evaluation of each

subterm using a let binding, and we then apply the unspecified add term to perform the actual addition.

Note that specified term and type declarations are all mutually recursive. The rest of the code does not

use any additional feature.

We now turn to the second specified term declaration, to evaluate statements.

val eval_stmt ((s, t): (store, stmt)): store =

match t with

| Skip → s

| Assign (x, e) →
let w = eval_expr (s, e) in

write (x, s, w)

| Seq (t1, t2) →
let s' = eval_stmt (s, t1) in

eval_stmt (s', t2)

| If (cond, true, false) →
let i = eval_expr (s, cond) in

branch

let () = isNotZero i in

eval_stmt (s, true)

or

let () = isZero i in

eval_stmt (s, false)

end

| While (cond, t') →
let i = eval_expr (s, cond) in

branch

let () = isNotZero i in

let s' = eval_stmt (s, t') in

eval_stmt (s', t)

or

let () = isZero i in s

end

end

The code for the conditional and the loop illustrates the last feature of the language, branching. Branches

are introduced with the branch keyword and are separated with the or keyword. They correspond to a

form of a non-deterministic choice. Intuitively, in a big-step interpretation, any branch that succeeds

may be taken. Branches may fail if a pattern matching in a let binding fails, or if the application of a

term fails. For instance, the instantiation of the term isNotZero will not be defined on 0, making the

whole branch fail when given 0 as argument. This is how we decide which branch to execute next for the

conditional, and whether to loop in the While case.

3 Big-step Semantics of Skel

We give meaning to a Skeletal Semantics by providing interpretations of Skel. We first define the con-

crete, big-step semantics of Skel. Let S be an arbitrary Skeletal Semantics. We write Funs(S) for

the set of pairs (Γ,λ p : τ1→ S0) such that λ p : τ1→ S0 appears in Skeletal Semantics S . The typing

environment Γ gives types to the free variables of λ p : τ1→ S0. Full formal details are available in [7].

3.1 From Types to Concrete Values

The definitions of the sets of semantic values are presented on Figure 2a. They are defined by induction

on the type. For each type τ , we write V(τ) the set of values of type τ .

A value with tuple type is a tuple of concrete values. A value of a specified type is a constructor

applied to a value. A value with arrow type is a function that can either be a named closure or an anony-

mous closure. The set of named closure NC(τ1→ τ2) and the set of anonymous closures AC(τ1→ τ2)
are defined on Figure 2b. A named closure denotes a function that is specified in the Skeletal Semantics

T. Jensen, V. Rébiscoul & A. Schmitt 101

V(τ1× ..× τn) =V(τ1)× ..×V(τn)

V(τ2) = {C v |C : (τ1,τ2) ∧ v ∈V(τ1) }

V(τ1→ τ2) = NC(τ1→ τ2)∪AC(τ1→ τ2)

(a) Concrete values associated to each type

NC(τ1→ τ2) =

{

(f ,n)

∣

∣

∣

∣

∣

val f : τ1→ τ2[= t] ∈S

arity(f) = n

}

AC(τ1→ τ2) =

(Γ, p,S,E)

∣

∣

∣

∣

∣

∣

∣

(Γ,λ p : τ1→ S) ∈ Funs(S)

Γ ⊢ E

Γ+ p← τ1 ⊢ S : τ2

(b) Named Closures and Anonymous Closures

Figure 2: Definition of Concrete Values

S , it is a pair of the name of the function and its arity. An anonymous closure is a tuple of a typing

environment Γ, a pattern p to bind the argument upon application, a skeleton S which is the body of

the function, and an environment E captured at the creation of the closure. An environment is a partial

function mapping skeletal variable to concrete values. It is said to be consistent with typing environment

Γ, written Γ ⊢ E , if they have the same domain and if, for every x ∈ dom(Γ), we have E(x) ∈V ♯(Γ(x)).

The unspecified types of a skeletal semantics must be instantiated to obtain an interpretation. In the

case of While, the unspecified types are ident, lit, int, and store. They are instantiated as follows.

V(store) = {s |s ∈X →֒ Z } V(ident) = {x |x ∈X } with X = {x,y,z, ..}

V(lit) = { l | l ∈ Z } V(int) = { i | i ∈ Z }

Identifiers are taken from a countable set X , literals and integers are relative integers, and stores are

partial maps from identifiers to integers.

3.2 Interpretation of Unspecified Terms

In the following, we write na(τ) when τ is not an arrow type. Take an unspecified term val t : τ1→ ..→
τn→ τ such that na(τ), then an instantiation of t, written JtK, is a function such that JtK ∈ (V(τ1)× ..×
V(τn))→P f in(V(τ)), where P f in(X) is the set of finite subsets of X . In particular, if val t : τ and na(τ),
then JtK ⊆V(τ). Allowing the specification of a term to be a function returning a set is useful to model

non-determinism.

We instantiate the unspecified functions of our While language. The expression (b) ? e1 : e2 evaluates

102 Deriving Abstract Interpreters from Skeletal Semantics

E,S1 ⇓ v ⊢ E + p← v E ′ E ′,S2 ⇓ w

E, let p = S1 inS2 ⇓ w
LETIN

E,Si ⇓ v

E,(S1, ..,Sn) ⇓ v
BRANCH

Figure 3: Examples of Rules of the Big-Step Semantics

⊢ E + ← v E
WILD

⊢ E + x← v {x 7→ v}E
VAR

⊢ E + p← v E ′

⊢ E +C p←C v E ′
CONST

⊢ E + p1← v1 E2 .. ⊢ En + pn← vn E ′

⊢ E +(p1, .., pn)← (v1, ..,vn) E ′
TUPLE

Figure 4: Rule of Extension of Environment using Pattern Matching

to e1 is the condition b is true. Otherwise, it evaluates to e2.

JlitToIntK(n) = {n} JaddK(n1,n2) = {n1 +n2 }

JltK(n1,n2) = (n1 < n2) ? {1} : {0} JrandK(n1,n2) = {n |n1 ≤ n≤ n2 }

JisZeroK(n) = (n = 0) ? {()} : { } JisNotZeroK(n) = (n 6= 0) ? {()} : { }

JreadK(x,s) = {s(x)} JwriteK(x,s,n) = {s{x 7→ n}}

The rand instantiation returns a set of values to capture the non-determinism of the instruction. The

isZero function is defined only on input 0, whereas isNotZero is defined for all inputs except 0.

3.3 Big-step Semantics

We briefly present the big-step semantics of Skel: E,S ⇓ v is a relation from a skeletal environment E ,

mapping skeletal variables to values, and a skeleton S to a value v. The relation is defined by induction

on S and is very similar to the natural semantics of λ -calculus with environment. We focus on two of

the most important rules on Figure 3. The LETIN rule evaluates a let-binding by first evaluating S1, next

binding the result to the pattern in the current environment, then finally evaluating S2 in the extended

environment. The BRANCH rule describes how to evaluate a branching: any branch that successfully

reduces to a value may be taken. Finally, the pattern matching rules for environment extension are given

in Figure 4. The whole set of rules is given in [7].

The big-step semantics of a branching explains the types of some unspecified terms seen earlier. The

partiality of the instantiations of isZero and isNotZero functions are used in the semantics of While to

prevent some branches to be taken. They act as filters: if a branch does not have a derivation because its

filter is undefined on the input, the alternative is to take another branch.

4 Big-step Semantics with Program Points

In this section, we introduce our first contribution, which is the integration of the notion of program

point into the framework of Skeletal Semantics. A program point maps-to a precise fragment of a given

T. Jensen, V. Rébiscoul & A. Schmitt 103

program. They play an important role in semantics-based program analysis, to indicate places where

information about the execution is collected. Program points are essential to abstract interpretation as

an abstract interpretation usually computes an abstraction of the state of the execution of the analysed

program for each program point. Our formalisation of program points for Skeletal Semantics is modular

and works for the big-step semantics of Skel, but also for the abstract interpretation of Skel, presented in

Section 5.

In Skel, programs are values of an algebraic data type (ADT), such as stmt or expr in the While

example. For instance, the skeletal term Seq(Assign(x, Const 0), Assign(y, Const 1)) is a While

program of type stmt. A program point is a path in the ADT of the program, encoded as a list of integers

(underlined to distinguish them from natural numbers).

Seq

Assign

x Const 0

Assign

y Const 1

0

0 1

1

0 1

For example, ε is the empty path, it corresponds to the whole pro-

gram. The path 01 corresponds to Const 0. The set of program points

is thus ppt= N
∗.

Let prg be a term of an ADT and pp a program point. We note

prg@pp the subterm of prg at program point pp. Formally, it is defined

as follows.

v@ε = v C(v0, ..,vn−1)@(ipp) = vi@pp when 0≤ i≤ n−1

4.1 Building Values with Program Points

Our approach is to replace the values that correspond to programs with program points. These pro-

gram points correspond to a sub-program of a main program that is a parameter of the interpretation.

The values that ought to be replaced by program points should be values representing fragments of

the program being executed. Therefore, we call T the set of program types, i.e., types representing

programs. For instance, for the While language, T = {stmt,expr}. Moreover, the interpretation is

parametrised by a program prg, which is a value of a type τ ∈ T . For the While language, that could

be prg = Seq(Assign(x, Const 0), Assign(y, Const 1)). Therefore, the rules to build values are

unchanged except for the values with program types. Values with program types are defined by the

following equation, where V(τ) is defined in Figure 2a.

τ ∈ T =⇒ V
ppt

prg (τ) = {pp ∈ ppt |prg@pp ∈V(τ) }

Therefore in our example, ε is now a value of type stmt denoting the value prg, and 0 denotes the value

Assign(x, Const 0).

For each unspecified term x, we assume given an interpretation JxKppt, which is identical to the

concrete interpretation JxK where program terms are replaced by program points. The full definition of

this interpretation can be found in the long version of this paper [7].

4.2 Pattern-matching of Program Points

Replacing some values with program points does not change the interpretation of Skel, except when

matching a program point with a pattern. Indeed, a program point pp corresponds to the sub-program

prg@pp if it exists, and it might be matched against a pattern C p. To handle this case, the program point

is unfolded, meaning the constructor at prg@pp is revealed, and the parameters of the constructor are

replaced with program points if their type is a program type. To give an example, given prg as before,

unfolding ε gives Seq(0,1): the constructor is revealed and the parameters are program points because

104 Deriving Abstract Interpreters from Skeletal Semantics

they both have type stmt ∈ T . On the other hand, unfolding 00 directly returns x, as identifiers are not

program types in this example. This unfolding mechanism is added to pattern matching via the following

rule:

prg@pp = C(v′0, ..,v
′
n−1) C : (τ0× ..× τn−1,τ)

v j = if τ j ∈T then pp j else v′j T ,prg ⊢ E + p← (v0, ..,vn−1) E ′

T ,prg ⊢ E + C p← pp E ′
UNFOLD

Note that the pattern matching is now parametrised with T and prg. To perform the pattern-matching of

pp with C p, the value prg@pp must have constructor C at the root. The parameters that have a program

type are replaced by their program point and the pattern-matching is performed recursively.

5 Abstract Interpretation of Skel

We present our main contribution in this paper, which is the definition of an abstract interpreter of Skel

that is sound with respect to the big-step semantics of Section 4. This abstract interpreter will serve

as the foundations of a methodology for building abstract interpreters for object languages from their

skeletal semantics. In this methodology, several ingredients must be provided to generate such an abstract

interpreter.

• An abstract instantiation of unspecified types to sets of abstract values, each of which comes

with a concretisation function, a partial order, and an abstract union operator. Our framework

automatically extends these definitions to all types.

• A state of the abstract interpretation (AI-state in the following) used to carry additional informa-

tion during the abstract evaluation. For instance, in our While language, the AI-state records the

current approximation of the store for each program point.

• The user may give functions to update the AI-state at the start and end of a call to a specified

function. This is typically used for evaluation functions, such as eval_stmt, to record information

right before and right after executing a sub-program.

• An instantiation of the unspecified terms, based on the definition of the abstract instantiation of

types and the AI-state.

Our framework provides an abstract meta-semantics of Skel that threads the AI-state through the evalua-

tion, including calls to unspecified terms. As the foundational correctness property of the methodology,

we prove that if the abstract instantiation of types and terms provided by the user satisfy some correctness

criteria, then the whole abstract interpreter that is generated is also correct.

5.1 Abstract Values

Abstract values are built similarly to concrete ones, based on their types, and we write V ♯(τ) for the set

of abstract values of type τ . We first define the sets of abstract (named) closures at the top of Figure 5.

Abstract named closures are identical to concrete named closures: they are pairs of a name of a function

defined in the skeletal semantics and its arity. Abstract closures consist of a typing environment, a

pattern, a skeleton, and an abstract environment that is consistent with the typing environment. An

abstract environment E♯ is a mapping from skeletal variables to abstract values. It is said to be consistent

with typing environment Γ, written Γ ⊢ E♯, if they have the same domain and if, for every x ∈ dom(Γ),
we have E♯(x) ∈V ♯(Γ(x)).

T. Jensen, V. Rébiscoul & A. Schmitt 105

NC(τ1→ τ2) =

{

(f ,n)

∣

∣

∣

∣

∣

val f : τ1→ τ2[= t] ∈S

arity(f) = n

}

AC(τ1→ τ2) =

(Γ, p,S,E♯)

∣

∣

∣

∣

∣

∣

∣

(Γ,λ p : τ1→ S) ∈ Funs(S)

Γ ⊢ E♯

Γ+ p← τ1 ⊢ S : τ2

V ♯(τ1× ..× τn) = P f in(V
♯⋆(τ1)× ..×V ♯⋆(τn))

V ♯(τ2) = {C v♯ |C : (τ1,τ2)∧ v♯ ∈V ♯⋆(τ1)}∪{⊥τ2
,⊤τ2
}

V ♯(τ1→ τ2) = P(NC(τ1→ τ2))∪P(AC(τ1→ τ2))

Figure 5: Abstract Values for Specified Types

We assume that a partial order on V ♯(τ) is provided for each unspecified type τ , and that it includes

a smallest value, denoted by ⊥τ , and a largest value, denoted by ⊤τ . In the case of While, we instantiate

ident with the flat lattice of X , lit with the flat lattice of integers, int with closed intervals of Z∪
{−∞,+∞}, and store with a partial mapping from identifiers to non-empty intervals.

We define abstract values for specified types in Figure 5, writing V ♯⋆(τ) for V ♯(τ)\{⊥τ}. Abstract

tuples are finite sets of tuples of (non-bottom) abstract values, with ⊥τ1×..×τn
being the empty set. We

use sets to retain some precision in the analysis. Abstract values of an algebraic data type are simply

constructors applied to an abstract value of the correct type. Finally, functional abstract values are sets

of abstract closures of this type, with ⊥τ1→τ2
being the empty set.

The AI-state A contains information collected throughout the abstract interpretation. It is depen-

dent on the analysis and the language, and therefore must be provided, similarly to unspecified values.

Moreover, a partial order and a union must be given for abstract states. In the case of while, the AI-

state records information about the abstract store before (In) and after (Out) every program point. We

write Pos for either In or Out. We then define A as a mapping from program points and a Pos to

abstract while stores. We have A1 ⊑
♯ A2 if dom(A1)⊆ dom(A2) and for any (pp,Pos) ∈ dom(A1), we

have A1(pp,Pos)⊑♯
store A2(pp,Pos). We define A1⊔

♯A2 as the mapping from dom(A1)∪dom(A2) that

relates (pp,Pos) to A1(pp,Pos)⊔♯intA2(pp,Pos).

5.2 Operations on Abstract Values

Each abstract domain has a partial order and an associated join operator. In addition, a concretisation

function that returns a set of concrete values defines the meaning of each abstract value. All of these

functions are indexed by types (or type environments when they deal with environments). We assume

they are provided for non-specified types, and show in this section how to extend them to all types.

A concretisation function for type τ maps an abstraction state and an abstract value in V ♯(τ) to

P(V(τ)), a set of concrete values. We also define a function of concretisation γΓ which maps abstract

106 Deriving Abstract Interpreters from Skeletal Semantics

skeletal environments to sets of concrete skeletal environments.

γτ1×..×τn
(A , t♯) =

⋃

(v♯1,..,v
♯
n)∈t♯

γτ1
(A ,v♯1)× ..× γτn

(A ,v♯n)

γτ2
(A ,C v♯) =

{

C v |C : (τ1,τ2), v ∈ γτ2
(A ,v♯)

}

γτ1→τ2
(A ,F) ={(f ,n) | (f ,n) ∈ F }∪

{

(Γ, p,S,E)
∣

∣ (Γ, p,S,E♯) ∈ F ∧ E ∈ γΓ(A ,E♯)
}

γΓ(A ,E♯) =
{

E
∣

∣Γ ⊢ E ∧Γ ⊢ E♯∧∀x ∈ dom(Γ),E(x) ∈ γΓ(x)(A ,E♯(x))
}

γ(A ,⊥τ) = /0 γ(A ,⊤τ) =V ♯(τ)

In the case of While, the concretisation function for ident and lit are immediate as they are flat lattices.

The concretisation function for an interval i is the set of integers it contains: γint(i)= {n |n ∈ i }. Finally,

the concretisation of an abstract store σ ♯ is

γstore(σ
♯) =

{

σ
∣

∣dom(σ) = dom(σ ♯)∧∀x ∈ dom(σ),σ(x) ∈ γint(σ
♯(x))

}

To compare abstract values, we define partial orders that are relations, but we call them functions as

they can be viewed as boolean functions. For every unspecified type τ , we assume a comparison function

⊑♯
τ which is a partial order between abstract values. It must satisfy the following property: for any value

v♯ ∈V ♯(τ), we have⊥τ ⊑
♯
τ v♯ and v♯ ⊑♯

τ ⊤τ . For every other type, the comparison function is the smallest

partial order that satisfies the following equations.

C v♯ ⊑♯
τa

C w♯ ⇐⇒ v♯ ⊑♯
τ w♯ with C : (τ ,τa)

v♯ ⊑♯
τ1×..×τn

w♯ ⇐⇒ ∀(v♯1, ..,v
♯
n) ∈ v♯, ∃(w♯

1, ..,w
♯
n) ∈ w♯ such that ∀i ∈ [1..n], v

♯
i ⊑

♯
τi

w
♯
i

F1 ⊑
♯
τ1→τ2

F2 ⇐⇒

{

(f ,n) ∈ F1 =⇒ (f ,n) ∈ F2

(Γ, p,S,E♯
1) ∈ F1 =⇒ ∃(Γ, p,S,E♯

2) ∈ F2, E
♯
1 ⊑

♯
Γ E

♯
2

E
♯
1 ⊑

♯
Γ E

♯
2 ⇐⇒ Γ ⊢ E

♯
1 ∧ Γ ⊢ E

♯
2 ∧ ∀x ∈ dom(E♯

1), E
♯
1(x)⊑

♯
Γ(x) E

♯
2(x)

v♯ ⊑♯
τ ⊤τ ⊥τ ⊑

♯
τ v♯

Most rules are straightforward. To compare two functions, all named closures of the left function must

be in the right function. Moreover, for all closures in the left function, there must be a closure in the

right function with the same pattern and skeleton, but with a bigger abstract environment. Abstract

environments are compared using point-wise lifting. For our While language, we have i1 ⊑
♯
int i2 if the

interval i1 is included in i2, and σ ♯
1 ⊑

♯
store σ ♯

2 if for all x in dom(σ ♯
1), we have σ ♯

1(x)⊑
♯
int σ ♯

2(x).

Definition 1 A concretion function γτ is monotonic iff for any v
♯
1⊑

♯
τ v

♯
2 and A1⊑

♯ A2. we have γτ(A1,v
♯
1)⊆

γτ(A2,v
♯
2).

Lemma 1 γident, γlit, γint and γstore are monotonic.

For each type, an upper bound (or join) is defined. For every non-specified type τ , we assume an

upper bound ⊔♯τ . The definition of ⊔♯ident and ⊔♯lit have the usual definition for flat lattices. ⊔♯int
is the convex hull of two intervals and ⊔♯store is the usual point-wise lifting of the abstract union of

T. Jensen, V. Rébiscoul & A. Schmitt 107

integers. Moreover, we note ∇♯
int the widening on intervals (define below) and ∇♯

store the point-wise

lifting of the widening of intervals.

[n1,n2]∇
♯
int[m1,m2] =

[{

n1 if n1 ≤ m1

−∞ otherwise
,

{

n2 if m2 ≤ n2

+∞ otherwise

]

We extend it for every other type.

(C v♯)⊔♯τ2
(C w♯) =C (v♯⊔♯τ1

w♯) with C : (τ1,τ2) E
♯
1⊔

♯
ΓE

♯
2 =

{

x ∈ dom(Γ) 7→ E
♯
1(x)⊔

♯
Γ(x)E

♯
2(x)

}

(C v♯)⊔♯τ2
(D w♯) =⊤τ2

with C : (τ1,τ2) ∧ D : (τ ′1,τ2) v♯⊔♯τ⊤τ =⊤τ⊔
♯
τ v♯ =⊤τ

v♯⊔♯τ1×..×τn
w♯ = v♯∪w♯ v♯⊔♯τ⊥τ =⊥τ⊔

♯
τ v♯ = v♯

F1⊔
♯
τ1→τ2

F2 = F1∪F2

Joining two algebraic values with the same constructor is joining their parameters, and joining algebraic

values with different constructors yields top. The join of abstract tuples or abstract functions is their

union. Joining abstract environments is done by point-wise lifting. For each type, top is an absorbing

element, and bottom is the neutral element.

Lemma 2 ⊑♯
ident, ⊑♯

lit, ⊑♯
int, ⊑♯

store are orders. ⊔♯ident, ⊔♯lit, ⊔♯int, ⊔♯store give an upper bound.

Lemma 3 If for all unspecified types τu, γτu
is monotonic, then for all τ , γτ is also monotonic.

Lemma 4 If for every unspecified type τu, ⊑♯
τu

is an order and ⊔♯τu
gives an upper bound, then for all τ ,

⊑♯
τ is an order and ⊔♯τ gives an upper bound.

Finally, we give an abstract specification of unspecified terms. As an illustration, here are a few

specifications from our running example.

JlitToIntK♯(n) = [n,n] JaddK♯([n1,n2], [m1,m2]) = [n1 +m1,n2 +m2]

JreadK♯(x,s♯) = s♯(x) JwriteK♯(x,s, [n1,n2]) = s♯{x 7→ [n1,n2]}

Definition 2 Let x be an unspecified term of type τ , such that na(τ). We say that JxK♯ is a sound approx-

imation of JxKppt if and only if:

∀A , JxKppt ⊆ γ(A ,JxK♯)

Definition 3 Let f be an unspecified term of type τ1→ ..→ τn→ τ where na(τ). We say that J f K♯ is a

sound approximation of J f Kppt iff ∀vi ∈V
ppt

prg (τi), ∀v
♯
i ∈V ♯(τi), and for all abstract state A , if

vi ∈ γτi
(A ,v♯i)

J f K♯(A ,v♯1, ..,v
♯
n) = A

′,w♯

}

=⇒ J f Kppt(v1, ..,vn)⊆ γτ(A
′,w♯)

Lemma 5 The abstract instantiations of the unspecified terms for While are sound approximation of the

concrete instantiations of the unspecified terms.

108 Deriving Abstract Interpreters from Skeletal Semantics

E♯(x) = v♯

E♯,x ⇓ v♯
VAR

val f : τ1→ ..→ τn→ τ [= t] ∈S na(τ)

E♯, f ⇓ {(f ,n)}
TERMCLOS

val x : τ = t ∈S /0, t ⇓ v♯ na(τ)

E♯,x ⇓ v♯
TERMSPEC

val x : τ ∈S na(τ)

E♯,x ⇓ JxK♯
TERMUNSPEC

E♯, t ⇓ v♯

E♯,C t ⇓ Cv♯
CONST

E♯, t1 ⇓ v
♯
1 .. E♯, tn ⇓ v♯n

E♯,(t1, .., tn) ⇓
{

(v♯1, ..,v
♯
n)
} TUPLE

π,E♯,λ p : τ ·S ⇓♯
{

(p,S,E♯)
} CLOS π,A ,E♯,Si ⇓

♯ v
♯
i ,Ai

π,A ,E♯,(S1..Sn) ⇓
♯ ⊔♯v♯i ,⊔

♯
Ai

BRANCH

π,A ,E♯,S1 ⇓
♯ v♯,A ′

T ,prg ⊢
{

E♯
}

+ p← v♯
{

E
♯
1, ..,E

♯
n

}

π,A ′,E♯
i ,S2 ⇓

♯ w
♯
i ,Ai

π,A ,E♯, let p = S1 inS2 ⇓
♯ ⊔♯w♯

i ,⊔
♯
Ai

LETIN

E♯, ti ⇓ v
♯
i π,A ,v♯0 v

♯
1..v

♯
n ⇓app v♯,A ′

π,A ,E♯, t0 t1..tn ⇓
♯ v♯,A ′

APP

Figure 6: Abstract Interpretation of Skeletons and Terms

5.3 Abstract Interpretation of Skel

The abstract interpretation of skeletons is given on Figure 6. It maintains a callstack of specified function

calls which is used to prevent infinite computations by detecting identical nested calls. A callstack is an

ordered list of frames. The set of callstacks Π is defined as:

emp ∈Π

A an AI-state val f : τ1→ ..→ τn→ τ = t ∈S na(τ) vi ∈V ♯(τi) π ∈Π

(f ,A , [v1, ..,vn]) :: π ∈Π

The abstract interpretation of skeletons is similar to the big-step interpretation: the evaluation of

terms is almost unchanged except that evaluating a closure or a tuple returns a singleton. When evaluating

a skeleton (branch, let-binding, or application), a state of the abstract interpretation is carried through the

computations.

In the BRANCH rule, all branches are evaluated and joined instead of only one branch being eval-

uated. Pattern matching now returns set of environments rather than a single one (explained later). As

a consequence, the LETIN rule may evaluate S2 in several abstract environments. This flexibility in the

control-flow of the abstract interpreter allows us to do control flow analysis for λ -calculus. The APP rule

evaluates all terms and pass a list of values to the application relation, defined in Figure 7.

Because the abstraction of a function is a set of closures and named closures, the APP-SET rule eval-

uates each one individually. The BASE rule returns the remaining value when all arguments have been

T. Jensen, V. Rébiscoul & A. Schmitt 109

val f : τ1→ ..→ τn→ τ = t ∈S

na(τ) /0, t ⇓ v♯ updatein
f (A , [v♯1, ..,v

♯
n]) = A1, [v

′♯
1 , ..,v

′♯
n] (f ,A1, [v

′♯
1 , ..,v

′♯
n]) /∈ π

(f , [v′♯1 , ..,v
′♯
n]) :: π,A1,v

♯ v
′♯
1 ..v

′♯
n ⇓app w♯,A2 updateout

f (A2, [v
′♯
1 , ..,v

′♯
n],w

♯) = A3,w
′♯

π,A ,(f ,n) v
♯
1..v

♯
n ⇓app w′♯,A3

SPEC

val f : τ1→ ..→ τn→ τ = t ∈S na(τ)

/0, t ⇓ v♯ updatein
f (A , [v♯1, ..,v

♯
n]) = A1, [v

′♯
1 , ..,v

′♯
n] (f ,A1, [v

′♯
1 , ..,v

′♯
n]) ∈ π

π,A ,(f ,n) v
♯
1..v

♯
n ⇓app ⊥,A1

SPEC-LOOP

val f : τ1→ ..→ τn→ τ ∈S na(τ) J f K♯(A ,v♯1, ..,v
♯
n) = w♯,A ′

π,A ,(f ,n) v
♯
1..v

♯
n ⇓app w♯,A ′

UNSPEC

Figure 7: Abstract Interpretation: Application

processed. The CLOS rule evaluates the body of the function S in all abstract environments returned by

the matching of the pattern against the argument. The SPEC rule evaluates the call to a specified func-

tion and maintains invariants. Invariants depend on the analysis and the AI-state, therefore, language-

dependent update functions can be provided to to maintain invariants before and after a call. The update

functions must respect the following monotonicity constraints in order to ensure soundness:

Definition 4 The update functions are said to be monotonic if and only if:

updatein
f (A , [v♯1, ..,v

♯
k]) = A

′, [v′♯1 , ..,v
′♯
k] =⇒ A ⊑♯

A
′ ∧ (v♯1, ..,v

♯
k)⊑

♯ (v′♯1 , ..,v
′♯
k)

updateout
f (A , [v♯1, ..,v

♯
k],v

♯) = A
′,v′♯ =⇒ A ⊑♯

A
′ ∧ v♯ ⊑♯ v′♯

The update functions of While are defined as:

updatein
eval stmt(A , [s♯i ,pp]) = A {(pp,In) 7→ s♯}, [s♯,pp] s♯ = s

♯
i ∇

♯
A (pp,In)

updateout
eval stmt(A , [s♯i ,pp],s♯o) = A {(pp,Out) 7→ s♯}, [s♯,pp] s♯ = s♯o⊔

♯
A (pp,Out)

The update functions maintain the AI-state which holds an input and an output abstract store for each

program point. updatein
eval stmt(A , [s♯i ,pp]) updates the input abstract store at program point pp for a

greater abstract store, obtained by widening to ensure termination (discussed later), that contains s
♯
i ,

and the call to eval stmt is done with this new abstract store. updateout
eval stmt(A , [s♯i ,pp],s♯o) makes a

similar change to the AI-state for the output store. The update functions for eval expr (not presented

here) do not change the argument, the result or the AI-state.

Lemma 6 The update functions for While previously defined are monotonic.

The extension of environments, or pattern matching, is presented in [7] and now returns a set ξ
of abstract environments as the abstraction of tuples is a finite set of tuples of abstract values. We thus

return one abstract environment per tuple of abstract values in our abstract tuple.

The termination of our analysis is not formally proven. Our intuition is that an infinite derivation is

necessarily caused by an infinity of calls to a specified function. Given a program point, widening the

stores in the input update function for eval st should ensure that the input store converges and that the

SPEC-LOOP rule of the abstract interpretation ends the computation, as we have reached a local fixpoint

for the program point.

110 Deriving Abstract Interpreters from Skeletal Semantics

5.4 Correctness of the Abstract Interpretation

Our methodology aims at defining mathematically correct abstract interpreters from Skeletal Semantics.

In this section, we present a theorem stating that the abstract interpreter of Skel computes a correct

approximation of the big-step semantics of Skel.

We state the following theorem of correctness that states that the abstract interpretation of Skel com-

putes a sound approximation of the big-step interpretation of Skel.

Theorem 1 Let S be a Skeletal Semantics with unspecified terms Te and unspecified types Ty, and let

E and E♯ be a concrete and abstract environment, respectively. Suppose

• ∀x ∈ Te, JxK♯ is a sound approximation of JxKppt.

• ∀τ ∈ Ty, γτ is monotonic.

• updatein and updateout are monotonic.

Then:
E ∈ γΓ(A0,E

♯)
E,S ⇓ v

emp,A0,E
♯,S ⇓♯ v♯,A

=⇒ v ∈ γ(A ,v♯)

Therefore, to prove the soundness of the analysis, it is sufficient to prove that the abstract instantiation

of terms are sound approximation of the concrete ones, and that the update functions and concretisation

functions are monotonic.

Let σ0 ∈ V ppt(store) and σ ♯
0 ∈ V ♯(store) be the concrete and abstract stores with empty domain.

Let E0 = {s 7→ σ0, t 7→ ε } and E
♯
0 =

{

s 7→ σ ♯
0, t 7→ ε

}

be a concrete and an abstract Skel environments.

We recall that ε is the program point of the root of prg, the analysed program. Let A0 be the empty

mapping from program points and flow tags (In or Out) to abstract stores.

Lemma 7 σ0 ∈ γstore(A0,σ
♯
0)

Lemma 8 Let Γ = {s 7→ store, t 7→ stmt}, E0 ∈ γΓ(A ,E♯
0).

The abstract interpreter computes an abstract store that is a correct approximation of the concrete

store returned by the big-step semantics.

Theorem 2
E0,eval stmt (s, t) ⇓PP σ

emp,A0,E
♯
0,eval stmt (s, t) ⇓♯ σ ♯,A

}

=⇒ σ ∈ γ(A ,σ ♯)

As an example, take prg ≡ x := 0; while (x < 3) x := x + 1. The concrete and abstract

interpretations will find that

E0,eval stmt (s, t) ⇓PP {x 7→ 3}

emp,A0,E
♯
0,eval stmt (s, t) ⇓♯ {x 7→ [0,+∞]} ,A

In accordance with Theorem 2, we observe that {x 7→ 3} ∈ γ(A ,{x 7→ [0,+∞]})
The abstract interpreter returns an imprecise result. Currently, our method fails to properly take into

account the guards: the conditions of loops or conditional branchings are not used to refine the abstract

values. In the previous While program, the guard of the loop is not used to get a precise abstract store in

or after the loop. The skeletal semantics of the While language makes it unclear how to use the guards

to modify the store, as it is syntactically the same before and after the evaluation of the condition.

T. Jensen, V. Rébiscoul & A. Schmitt 111

The precision of the analysis also depends on the skeletal semantics of the language. An easy fix for

our precision issue would be to modify the type of isZero and isNotZero functions such that they have

type (store×int)→ store. The abstract instantiations of these functions could then be used to refine

the abstract stores.

6 Related Work

Our work is part of a large research effort to define sound analyses and build correct abstract interpreters

from semantic description of languages. At its core, our approach is the Abstract Interpretation [4, 5] of

a semantic meta-language. Abstract Interpretation is a method designed by Cousot and Cousot to define

sound static analyses from a concrete semantics. In his Marktoberdorf lectures [3], Cousot describes a

systematic way to derive an abstract interpretation of an imperative language from a concrete semantics

and mathematically proved sound. We chose to define the Abstract Interpretation of Skel, as it is designed

to mechanise semantics of languages. The benefit of analysing a meta-language is that a large part of the

work to define and prove the correctness of the analysis is done once for every semantics mechanised with

Skel. However, it is often less precise than defining a language specific abstract interpretation. Moreover,

there have been several papers describing methods to derive abstract interpretation from different types

of concrete semantics [4, 20, 13], we chose to derive abstract interpreters from a big-step semantics of

Skel.

Schmidt [20] shows how to define an abstract interpretation for λ -calculus from a big-step semantics

defined co-inductively. The abstract interpretation of Skel and its correctness proof follow the methods

described in the paper. However Skel has more complex constructs than λ -calculus, especially branches.

Moreover, the big-step of Skel is defined inductively, thus reasoning about non-terminating program is

not possible. Also, to prove the correctness of the abstract interpretation of Skel, we relate the big-step

derivation tree to the abstract derivation tree, similarly to Schmidt, but a key difference is that our proof

is inductive when Schmidt’s proof is co-inductive.

Lim and Reps propose the TSL system [12]: a tool to define machine-code instruction set and abstract

interpretations. The specification of an instruction set in TSL is compiled into a Common Intermediate

Representation (CIR). An abstract interpretation is defined on the CIR, therefore an abstract interpreter

is derivable from any instruction set description. However, the TSL system is aimed at specifying and

analysing machine code, and not languages in general. Moreover, it is unclear how it would be possible

to define analyses on languages with more complex control-flow, like λ -calculus.

In the paper on Skeletal semantics, Bodin et al. [1] used skeletal semantics to relate concrete and

abstract interpretations in order to prove correctness. An important difference between that work and the

present is that their resulting abstract semantics is not computable, whereas our abstract interpretation

can be executed as an analysis, as demonstrated by our implementation [19]. Moreover, our method

computes an AI-state that collects information throughout the interpretation and allows to use widening

using the update functions, rather than computing an Input/Output relation.

The idea of defining an abstract interpreter of a meta-language to define analyses for languages has

been explored, for example by Keidel, Poulsen and Erdweg [9]. They use arrows [6] as meta-language

to describe interpreters. The concrete and abstract interpreters share code using the unified interface

of arrows. By instantiating language-dependent parts for the concrete interpretation and the abstract

interpretation, they obtain two interpreters that can be proven sound compositionally by proving that the

abstract language-dependent parts are sound approximation of the concrete language-dependent parts,

similarly to Skel. However, we chose to use a dedicated meta-language, Skel, as its library [16] makes

112 Deriving Abstract Interpreters from Skeletal Semantics

defining interpreters for Skel convenient and one objective is to use the NecroCoq tool [15] to generate

mechanised proofs that our derived abstract interpreters are correct.

7 Conclusion

In this paper, we propose a methodology for mechanically deriving correct abstract interpreters from

mechanised semantics. Our approach is based on Skeletal Semantics and its meta-language Skel, used

to write a semantic description of a language. It consists of two independent parts. First, we define

an abstract interpreter for Skel which is target language-agnostic and is the core of all derived abstract

interpreters from Skeletal Semantics. The abstract interpreter of Skel is proved correct with respect to

the operational semantics of Skel. Second, for a given target language to analyse, abstractions must be

defined. The abstract domains are defined by instantiating the unspecified types and providing compar-

isons and abstract unions of abstract values. The semantics of the language-specific parts are defined by

instantiating the unspecified terms. By combining the abstract interpreter of Skel and the abstractions of

the target language, we derive a working abstract interpreter specialised for the target language, obtained

by meta-interpretation of Skel. We prove a theorem which states that the abstract interpreter of the target

language is correct if the abstract instantiation of the unspecified terms are sound approximation of the

concrete instantiation of the unspecified terms. We illustrate our method to build abstract interpreters on

two examples: a value analysis for a small imperative language, and a CFA for λ -calculus (in the long

version [7]).

The approach has been evaluated by an implementation of a tool [19] to generate abstract interpreters

from any skeletal semantics. It was tested on While and λ -calculus and resulted in executable, sound

analyses validating the feasibility of the approach.

The current abstract interpreters that we obtain have limitations to their precision. Part of this impre-

cision stems from the fact that we generate abstract interpreters for any language based on an abstract

interpreter for the Skel meta-language skeletal semantics. An interesting feature of the approach is that

some precision can be gained in a generic fashion by improving the underlying abstract interpretation of

Skel. For example, our interval analysis for While does not refine the abstract values when entering a

part of the program guarded by a condition. Take If(Equal(x, 0), Skip, Assign(x, 0)), evaluated

in store where {x 7→ ⊤}. Our abstract interpreter returns state {x 7→ ⊤}. Indeed, the condition can be

true or false thus both branches of the if construct are evaluated but each one is computed in the store

{x 7→ ⊤} because the condition is not used to refine the abstract values. This issue can be addressed,

e.g., by keeping a trace of the execution in order to know if we are computing a statement guarded by

a condition. Dealing with this issue at the level of the meta-language analysis benefits all generated

analyses.

References

[1] Martin Bodin, Philippa Gardner, Thomas Jensen & Alan Schmitt (2019): Skeletal semantics and their in-

terpretations. Proceedings of the ACM on Programming Languages 3(POPL), pp. 1–31, doi:10.1145/

3291651.

[2] Denis Bogdanas & Grigore Roşu (2015): K-Java: A complete semantics of Java. In: Proceedings of the

42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 445–

456, doi:10.1145/2676726.2676982.

https://doi.org/10.1145/3291651
https://doi.org/10.1145/3291651
https://doi.org/10.1145/2676726.2676982

T. Jensen, V. Rébiscoul & A. Schmitt 113

[3] Patrick Cousot (1998): The Calculational Design of a Generic Abstract Interpreter. Marktoberdorf Course

Notes.

[4] Patrick Cousot & Radhia Cousot (1977): Abstract Interpretation: A Unified Lattice Model for Static Analysis

of Programs by Construction or Approximation of Fixpoints. In Robert M. Graham, Michael A. Harrison &

Ravi Sethi, editors: Conference Record of the Fourth ACM Symposium on Principles of Programming Lan-

guages, Los Angeles, California, USA, January 1977, ACM, pp. 238–252, doi:10.1145/512950.512973.

[5] Patrick Cousot & Radhia Cousot (1979): Systematic Design of Program Analysis Frameworks. In Alfred V.

Aho, Stephen N. Zilles & Barry K. Rosen, editors: Conference Record of the Sixth Annual ACM Symposium

on Principles of Programming Languages, San Antonio, Texas, USA, January 1979, ACM Press, pp. 269–

282, doi:10.1145/567752.567778.

[6] John Hughes (2000): Generalising monads to arrows. Science of computer programming 37(1-3), pp. 67–

111, doi:10.1016/S0167-6423(99)00023-4.

[7] Thomas Jensen, Vincent Rébiscoul & Alan Schmitt (2023): Deriving Abstract Interpreters from Skeletal Se-

mantics (Long Version). Available at https://skeletons.inria.fr/cfa/express-sos-2023-long.

pdf.

[8] Jacques-Henri Jourdan (2016): Verasco: a formally verified C static analyzer. Ph.D. thesis, Universite Paris

Diderot-Paris VII.

[9] Sven Keidel, Casper Bach Poulsen & Sebastian Erdweg (2018): Compositional soundness proofs of ab-

stract interpreters. Proceedings of the ACM on Programming Languages 2(ICFP), pp. 1–26, doi:10.1145/

3235031.

[10] Adam Khayam, Louis Noizet & Alan Schmitt (2022): A Faithful Description of ECMAScript Algorithms.

In: Proceedings of the 24th International Symposium on Principles and Practice of Declarative Program-

ming, PPDP ’22, Association for Computing Machinery, New York, NY, USA, pp. 8:1–8:14, doi:10.1145/

3551357.3551381.

[11] Xavier Leroy (2009): Formal verification of a realistic compiler. Communications of the ACM 52(7), pp.

107–115, doi:10.1145/1538788.1538814.

[12] Junghee Lim & Thomas Reps (2013): TSL: A system for generating abstract interpreters and its application

to machine-code analysis. ACM Transactions on Programming Languages and Systems (TOPLAS) 35(1),

pp. 1–59, doi:10.1145/2450136.2450139.

[13] Flemming Nielson (1982): A denotational framework for data flow analysis. Acta Informatica 18(3), pp.

265–287, doi:10.1007/BF00263194.

[14] Flemming Nielson (1989): Two-level semantics and abstract interpretation. Theoretical Computer Science

69(2), pp. 117–242, doi:10.1016/0304-3975(89)90091-1.

[15] Louis Noizet: Necro Gallina Generator, https://gitlab.inria.fr/skeletons/necro-coq. Available at https://

gitlab.inria.fr/skeletons/necro-coq.

[16] Louis Noizet: Necro Library, https://gitlab.inria.fr/skeletons/necro. Available at https://gitlab.inria.

fr/skeletons/necro.

[17] Louis Noizet & Alan Schmitt (2022): Semantics in Skel and Necro. In: ICTCS 2022 - Italian Conference

on Theoretical Computer Science, CEUR Workshop Proceedings 3284, CEUR-WS.org, Rome, Italy, pp.

99–115.

[18] Grigore Ros, u & Traian Florin S, erbănută (2010): An overview of the K semantic framework. The Journal of

Logic and Algebraic Programming 79(6), pp. 397–434, doi:10.1016/j.jlap.2010.03.012.

[19] Vincent Rébiscoul: Abstract Interpreter Generator, https://gitlab.inria.fr/skeletons/abstract-interpreter-

generator. Available at https://gitlab.inria.fr/skeletons/abstract-interpreter-generator.

[20] David A Schmidt (1995): Natural-semantics-based abstract interpretation (preliminary version). In: Inter-

national Static Analysis Symposium, Springer, pp. 1–18, doi:10.1007/3-540-60360-3_28.

https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1016/S0167-6423(99)00023-4
https://skeletons.inria.fr/cfa/express-sos-2023-long.pdf
https://skeletons.inria.fr/cfa/express-sos-2023-long.pdf
https://doi.org/10.1145/3235031
https://doi.org/10.1145/3235031
https://doi.org/10.1145/3551357.3551381
https://doi.org/10.1145/3551357.3551381
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/2450136.2450139
https://doi.org/10.1007/BF00263194
https://doi.org/10.1016/0304-3975(89)90091-1
https://gitlab.inria.fr/skeletons/necro-coq
https://gitlab.inria.fr/skeletons/necro-coq
https://gitlab.inria.fr/skeletons/necro
https://gitlab.inria.fr/skeletons/necro
https://doi.org/10.1016/j.jlap.2010.03.012
https://gitlab.inria.fr/skeletons/abstract-interpreter-generator
https://doi.org/10.1007/3-540-60360-3_28

G. Caltais and C. A. Mezzina (Eds): Combined Workshop on
Expressiveness in Concurrency and Structural Operational Semantics
(EXPRESS/SOS 2023).
EPTCS 387, 2023, pp. 114–131, doi:10.4204/EPTCS.387.9

© J. C. M. Baeten & B. Luttik
This work is licensed under the
Creative Commons Attribution License.

Parallel Pushdown Automata and Commutative Context-Free
Grammars in Bisimulation Semantics (Extended Abstract)

Jos C. M. Baeten
CWI

Amsterdam, The Netherlands
Jos.Baeten@cwi.nl

Bas Luttik
Eindhoven University of Technology

Eindhoven, The Netherlands
s.p.luttik@tue.nl

A classical theorem states that the set of languages given by a pushdown automaton coincides with
the set of languages given by a context-free grammar. In previous work, we proved the pendant of this
theorem in a setting with interaction: the set of processes given by a pushdown automaton coincides
with the set of processes given by a finite guarded recursive specification over a process algebra with
actions, choice, sequencing and guarded recursion, if and only if we add sequential value passing. In
this paper, we look what happens if we consider parallel pushdown automata instead of pushdown
automata, and a process algebra with parallelism instead of sequencing.

1 Introduction

This paper contributes to our ongoing project to integrate the theory of automata and formal languages
on the one hand and concurrency theory on the other hand. The integration requires a more refined
view on the semantics of automata, grammars and expressions. Instead of treating automata as language
acceptors, and grammars and expressions as syntactic means to specify languages, we propose to view
them both as defining process graphs. The great benefit of this approach is that process graphs can
be considered modulo a plethora of behavioural equivalences [18]. One can still consider language
equivalence and recover the classical theory of automata and formal languages. But one can also consider
finer notions such as bisimilarity, which is better suited for interacting processes.

The project started with a structural characterisation of the class of finite automata of which the pro-
cesses are denoted by regular expressions up to bisimilarity [5]. The investigation of the expressiveness
of regular expressions in bisimulation semantics was continued in [9]. In [10], we replaced the Turing
machine as an abstract model of a computer by the Reactive Turing Machine, which has interaction as
an essential ingredient. Transitions have labels to give a notion of interactivity, and we consider the
resulting process graphs modulo bisimilarity rather than language equivalence. Thus a Reactive Turing
Machine defines an executable interactive process, refining the notion of computable function.

In the same way as classical automata theory defines a hierarchy of formal languages, we obtain
a hierarchy of processes. In [4], we proved that the set of processes given by a pushdown automaton
coincides with the set of processes given by a finite guarded recursive specification over a process algebra
with actions, choice, sequencing and guarded recursion, if and only if we add sequential value passing.
Pushdown automata provide an abstract model of a computer with a memory in the form of a stack. In this
paper, we consider the abstract model of a computer with a memory in the form of a bag. We consider
the correspondence between parallel pushdown automata and commutative context-free grammars. In
the process setting, a commutative context-free grammar is a process algebra comprising actions, choice,
parallelism and recursion. We start out from the process algebra BPP , extended with constants for
acceptance and non-acceptance (deadlock).

http://dx.doi.org/10.4204/EPTCS.387.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

J. C. M. Baeten & B. Luttik 115

Then we find that in one direction, every process of a finite guarded recursive specification over this
process algebra is the process of a parallel pushdown automaton, but not the other way around: there
are parallel pushdown automata with a process that is not the process of any finite guarded recursive
specification. This is even the case for the one-state parallel pushdown automaton of the bag itself,
there is no finite guarded BPP -specification for it. If we do want to get a recursive specification for
the bag, we need to give some actions priority over others, and can find a satisfactory specification over
BPP θ , BPPextended with the priority operator. Indeed, we can obtain a finite guarded specification over
BPP θ for every one-state parallel pushdown automaton. On the other hand, there is a parallel pushdown
automaton with two states that does not have a finite guarded specification over BPP θ .

If we add communication with value passing to this algebra, resulting in BCPθ , we do get a complete
correspondence: a process is the process of a parallel pushdown automaton if and only if it is the process
of a finite guarded recursive specification. We can also get this result in a setting without the priority
operator, so over BCP , but then we need that the set of values can be countable, and we have also
countable summation.

To conclude, we provide a characterisation of parallel pushdown processes as a regular process com-
municating with a bag. In the case without priority operator, we need a form of asymmetric communica-
tion.

2 Preliminaries

As a common semantic framework we use the notion of a labelled transition system.

Definition 1. A labelled transition system is a quadruple (S ,A ,−→,↓), where

1. S is a set of states;

2. A is a set of actions, τ 6∈A is the unobservable or silent action;

3. −→⊆S ×A ∪{τ}×S is an A ∪{τ}-labelled transition relation; and

4. ↓ ⊆S is the set of final or accepting states.

A process graph is a labelled transition system with a special designated root state ↑, i.e., it is a quintuple
(S ,A ,→,↑,↓) such that (S ,A ,→,↓) is a labelled transition system, and ↑ ∈S . We write s a−→ s′ for
(s,a,s′) ∈→ and s↓ for s ∈ ↓.

For w ∈ A ∗ we define s w→−→ t inductively, for all states s, t,u: first, s ε→−→ s, and then, for a ∈ A , if
s a−→ t and t w→−→ u, then s aw→−→ u, and if s τ−→ t and t w→−→ u, then s w→−→ u.

We see that τ-steps do not contribute to the string w. We write s −→ t for there exists a ∈A ∪{τ}
such that s a−→ t. Similarly, we write s →−→ t for “there exists w ∈A ∗ such that s w→−→ t” and say that t is
reachable from s. If s w→−→ t takes at least one step, we write s w→−→

+
t. We write s 6 a−→ if there is no t ∈S

with s a−→ t. Finally, we write s
(a)−→ t for “s a−→ t or a = τ and s = t”.

By considering language equivalence classes of process graphs, we recover language equivalence as
a semantics, but we can also consider other equivalence relations. Notable among these is bisimilarity.

Definition 2. Let (S ,A ,→ ,↓) be a labelled transition system. A symmetric binary relation R on S is
a strong bisimulation if it satisfies the following conditions for every s, t ∈S such that s R t and for all
a ∈A ∪{τ}:

1. if s a−→ s′ for some s′ ∈S , then there is a t ′ ∈S such that t a−→ t ′ and s′ R t ′; and

116 Parallel PDA and Commutative CFG in Bisimulation Semantics

2. if s↓, then t↓.
If there is a strong bisimulation relating s and t we write s↔ t.

Sometimes we can use the strong version of bisimilarity defined above, which does not give special
treatment to τ-labelled transitions. In general, when we do give special treatment to τ-labeled transitions,
we use some form of branching bisimulation [21].

Definition 3. Let (S ,A ,→ ,↓) be a labelled transition system. A symmetric binary relation R on S is
a branching bisimulation if it satisfies the following conditions for every s, t ∈S such that s R t and for
all a ∈A ∪{τ}:

1. if s a−→ s′ for some s′ ∈S , then there are states t ′, t ′′ ∈S such that t ε→−→ t ′′
(a)−→ t ′, s R t ′′ and s′ R t ′;

and

2. if s↓, then there is a state t ′ ∈S such that t ε→−→ t ′ and t ′↓.
If there is a branching bisimulation relating s and t, we write s↔b t.

In this article, we use the finest branching bisimilarity called divergence-preserving branching bisim-
ilarity, which was introduced in [21] (see also [20] and [23] for an overview of recent results).

Definition 4. A branching bisimulation R is divergence-preserving if for all s, t ∈S , whenever there is
a infinite sequence of states s0,s1, . . . such that s = s0, si

τ−→ si+1 and si R t for all i ≥ 0, then there is
a state t ′ with t ε→−→

+
t ′ and si R t ′ for some i ≥ 0. We write s↔∆

b t if there is a divergence-preserving
branching bisimulation relating s and t.

Theorem 1. Strong bisimilarity, branching bisimilarity and divergence-preserving branching bisimilar-
ity are equivalence relations on labeled transition systems.

Proof. See [12] and [20].

A process is a divergence-preserving branching bisimilarity equivalence class of process graphs.

3 Parallel Pushdown Automata

We consider an abstract model of a computer with a memory in the form of a bag: the bag is an unordered
multiset, an element can be removed from the bag (get), or an element can be added to it (put). Moreover,
we can see when an element does not occur in the bag (a failed get). This is somewhat different than the
definition in [24], who defined parallel pushdown automata by means of rewrite systems.

We claim our definition is a more natural one, when we compare with the definition of a pushdown
automaton. In a pushdown automaton, we can pop the top element of the stack, or we can observe there is
no top element (i.e., the stack is empty). In a bag, on the other hand, all elements are directly accessible.
We can pop (remove) any element, or observe this element does not occur. Just observing that the bag is
empty, does not lead to a satisfactory theory (see [25]).

We use notation D*+ for the set of bags with elements from D . We use two disjoint copies of D ,
D+ = {(d,+) | d ∈ D} and D− = {(d,−) | d ∈ D}. We write +d instead of (d,+) and −d instead of
(d,−). We denote D± = D+∪D−.

Definition 5 (parallel pushdown automaton). A parallel pushdown automaton M is a sextuple
(S ,A ,D ,→,↑,↓) where:

1. S is a finite set of states,

J. C. M. Baeten & B. Luttik 117

2. A is a finite input alphabet, τ 6∈A is the unobservable step,

3. D is a finite data alphabet,

4. →⊆S × (A ∪{τ})×D±×D*+×S is a finite set of transitions or steps,

5. ↑ ∈S is the initial state, in the initial state the bag is empty,

6. ↓ ⊆S is the set of final or accepting states.

If (s,a,+d,x, t) ∈→ with d ∈D , we write s
a[+d/x]−−−−→ t, and this means that the machine, when it is in

state s and d is an element of the bag, can consume input symbol a, replace d by the bag x and thereby

move to state t. On the other hand, we write s
a[−d/x]−−−−→ t, and this means that the machine, when it is in

state s and the bag does not contain a d, can consume input symbol a, put x in the bag and thereby move

to state t. In steps s
τ[+d/x]−−−−→ t and s

τ[−d/x]−−−−→ t, no input symbol is consumed, only the bag is modified.
Notice that we defined a parallel pushdown automaton in such a way that it can be detected whether

or not an element occurs in the bag.

↑
a[−1/ *1+]

a[+1/ *1,1+]
b[+1/ /0]

Figure 1: Parallel pushdown automaton of a counter.

For example, consider the parallel pushdown automaton depicted in Figure 1. It represents the pro-
cess that can start to read an a, and after it has read at least one a, can read additional a’s but can also
read b’s. Upon acceptance, it will have read up to as many b’s as it has read a’s. Interpreting symbol a
as an increment and b as a decrement, we can see this process as a counter.

We do not consider the language of a parallel pushdown automaton, but rather consider the process,
i.e., the divergence-preserving branching bisimilarity equivalence class of the process graph of a parallel
pushdown automaton. A state of this process graph is a pair (s,x), where s ∈S is the current state and
x ∈D*+ is the current contents of the bag. In the initial state, the bag is empty. In a final state, acceptance
can take place irrespective of the contents of the bag. The transitions in the process graph are labeled by
the inputs of the pushdown automaton or τ .

Definition 6. Let M = (S ,A ,D ,→,↑,↓) be a parallel pushdown automaton. The process graph
P(M) = (SP(M),A ,−→P(M),↑P(M),↓P(M)) associated with M is defined as follows:

1. SP(M) = {(s,x) | s ∈S & x ∈D*+};

2. −→P(M)⊆SP(M)×A ∪{τ}×SP(M) is the least relation such that for all s,s′ ∈S , a∈A ∪{τ},
d ∈D and x,x′ ∈D*+ we have

(s,*d+∪ x) a−→P(M) (s
′,x′∪ x) if, and only if, s

a[+d/x′]−−−−→ s′ ;

(s,x) a−→P(M) (s
′,x′∪ x) if, and only if, there exists d 6∈ x such that s

a[−d/x′]−−−−→ s′ ;

3. ↑P(M)= (↑, /0);

118 Parallel PDA and Commutative CFG in Bisimulation Semantics

4. ↓P(M) = {(s,x) | s ∈ ↓ & x ∈D*+}.
To distinguish, in the definition above, the set of states, the transition relation, the initial state and the

set of accepting states of the parallel pushdown automaton from similar components of the associated
process graph, we have attached a subscript P(M) to the latter. In the remainder of this paper, we will
suppress the subscript whenever it is already clear from the context whether a component of the parallel
pushdown automaton or its associated process graph is meant.

(↑, /0) (↑,*1+) (↑,*1,1+) . . .

a a a

bbb

Figure 2: The process graph of the counter.

Figure 2 depicts the process graph associated with the pushdown automaton depicted in Figure 1.
In language equivalence, the definition of acceptance in parallel pushdown automata leads to the same

set of languages when we define acceptance by final state (as we do here) and when we define acceptance
by empty bag (not considering final states). In bisimilarity, these notions are different: acceptance by
empty bag yields a smaller set of processes than acceptance by final state. Note that the process graph in
Figure 2 has infinitely many non-bisimilar final states. It is, therefore, not bisimilar to the process graph
of a parallel pushdown automaton that accepts by empty bag. For details, see [6, 25].

In order to illustrate that we can realise acceptance by empty bag also if we define acceptance by final
state, consider the parallel pushdown automaton of the counter that only accepts when empty in Figure 3.
We need three states to realise a process graph that is divergence-preserving branching bisimilar to the
process graph in Figure 2, but with only the initial state accepting.

/0 {1}
a[−1/ *1+]

b[+1/ /0]

a[+1/ *1,1+]

τ[−1/ /0]

τ[+1/ *1+]

Figure 3: Counter only accepting when empty.

An important example of a parallel pushdown automaton is the bag process itself. We consider the
bag that is always accepting in Figure 4. For a given data set D , it has actions ins(d) (insert), rem(d)
(remove) and show(−d) (show there is no d). For each d ∈D , there are the transitions shown. We need
the show(−d) transitions later, to indicate that no (further) remove transitions are possible. We use this
in Section 7.

A parallel pushdown automaton has only finitely many transitions, so there is a maximum number of
transitions from a given state, called its branching degree. Then, also the associated process graph has a

J. C. M. Baeten & B. Luttik 119

ins(d)[−d/ *d+]
ins(d)[+d/ *d,d+]

rem(d)[+d/ /0]
show(−d)[−d/ /0]

Figure 4: Parallel pushdown automaton of an always accepting bag.

branching degree, that cannot be larger than the branching degree of the underlying parallel pushdown
automaton. Thus, in a process graph associated with a parallel pushdown automaton, the branching is al-
ways bounded. However, it is possible that its divergence-preserving branching bisimilarity equivalence
class contains a process graph that is infinitely branching. Consider the following example.

τ[−1/ *1+]
τ[+1/ *1,1+]

τ[+1/ /0]

a[+1/ /0]
a[+1/ /0]

Figure 5: Parallel pushdown automaton with a divergence.

Example 1. Consider the parallel pushdown automaton in Figure 5. It has a process graph consisting
of two infinite rows of nodes. The nodes in the top row all have a divergence, and modulo a divergence-
preserving branching bisimilarity can collaps into one node, as shown in the process graph in Figure 6.
This top node still needs a divergent τ loop.

τ

a a a a

aaa

a

a

Figure 6: Process graph divergence-preserving branching bisimilar to the parallel pushdown automaton
with divergence.

4 Parallel Processes

In the process setting, a commutative context-free grammar is a process algebra comprising actions,
choice, parallelism and recursion. We start out from the process algebra PA of [14], but with sequential
composition restricted to action prefixing, and then extended with constants 0 and 1 to denote deadlock
and acceptance. We call this process algebra BPP 01, for Basic Parallel Processes with 0 and 1.

120 Parallel PDA and Commutative CFG in Bisimulation Semantics

Let A be a set of actions and τ 6∈ A the silent action, symbols denoting atomic events, and let P
be a finite set of process identifiers. The sets A and P serve as parameters of the process theory that
we shall introduce below. We use symbols a,b, . . ., possibly indexed, to range over A ∪{τ}, symbols
X ,Y, . . . , possibly indexed, to range over P . The set of parallel process expressions is generated by the
following grammar (a ∈A ∪{τ}, X ∈P):

p ::= 0 | 1 | a.p | p+ p | p ‖ p | X .

The constants 0 and 1 respectively denote the deadlocked (i.e., inactive but not accepting) process and
the accepting process. For each a ∈A ∪{τ} there is a unary action prefix operator a._. We fix a finite
data set D , and actions can be parametrised with a data element. The binary operators + and ‖ denote
alternative composition and parallel composition, respectively. We adopt the convention that a._ binds
strongest and + binds weakest.

For a (possibly empty) sequence p1, . . . , pn we inductively define ∑
n
i=1 pi = 0 if n = 0 and ∑

n
i=1 pi =

(∑n−1
i=1 pi)+ pn if n > 0. Likewise, for a sequence p1, . . . , pn we inductively define ‖n

i=1 pi = 1 if n = 0
and ‖n

i=1 pi = (‖n−1
i=1 pi) ‖ pn if n > 0.

A recursive specification over parallel process expressions is a mapping Γ from P to the set of
parallel process expressions. The idea is that the process expression p associated with a process identifier
X ∈P by Γ defines the behaviour of X . We prefer to think of Γ as a collection of defining equations
X def
= p, exactly one for every X ∈P . We shall, throughout the paper, presuppose a recursive specification

Γ defining the process identifiers in P , and we shall usually simply write X def
= p for Γ(X) = p. Note

that, by our assumption that P is finite, Γ is finite too.

1 ↓ a.p a−→ p

p ↓
(p+q) ↓

q ↓
(p+q) ↓

p a−→ p′

p+q a−→ p′
q a−→ q′

p+q a−→ q′

p ↓ q ↓
p ‖ q ↓

p a−→ p′

p ‖ q a−→ p′ ‖ q

q a−→ q′

p ‖ q a−→ p ‖ q′

p a−→ p′ X def
= p

X a−→ p′
p↓ X def

= p
X↓

Figure 7: Operational semantics for parallel process expressions.

We associate behaviour with process expressions by defining, on the set of process expressions, a
unary acceptance predicate ↓ (written postfix) and, for every a ∈ A ∪{τ}, a binary transition relation

a−→ (written infix), by means of the transition system specification presented in Figure 7.
By means of these rules, the set of parallel process expressions turns into a labelled transition system,

so we have strong bisimilarity, branching bisimilarity and divergence-preserving branching bisimilarity
on parallel process expressions.

The operational rules presented in Fig 7 are in the so-called path format from which it immediately
follows that strong bisimilarity is a congruence [11]. (Divergence-preserving) branching bisimilarity,
however, is not a congruence, but by adding a rootedness condition we get rooted (divergence-preserving)

J. C. M. Baeten & B. Luttik 121

branching bisimilarity which is a congruence [21]. As we will not use equational reasoning in this paper,
we will not use the rootedness condition.

Some recursive specifications over BPP 01 will give processes that cannot be the process of a com-
mutative pushdown automaton.

Example 2. Consider the recursive equation

X
def
= a.1+X ‖ b.1 .

We show the process graph generated by the operational rules in Figure 8. As X a−→ 1, we get X ‖
b.1 a−→ 1 ‖ b.1 = b.1 and so X a−→ b.1. Continuing like this we get X a−→ bn1 for each n. Note we also

have X b−→ X.

X

1 b.1 b.b.1 b.b.b.1

b

a a a a

bbb

a

b

Figure 8: Process graph of the recursive specification of Example 2.

Theorem 2. The process graph of Figure 8 is not divergence-preserving branching bisimilar to the
process graph of any parallel pushdown automaton.

To exclude recursive specifications over BPP 01 that give rise to process graphs with states that neces-
sarily have infinitely many outgoing transitions, it suffices to formulate a standard guardedness condition
for recursive specifications.

Definition 7. We say a recursive specification is weakly guarded if every occurrence of a process iden-
tifier in the definition of some (possibly different) process identifier occurs within the scope of an action
prefix from A ∪{τ}, and strongly guarded if every occurrence of a process identifier in the definition of
some process identifier occurs within the scope of an action prefix from A .

We will show that every finite weakly guarded recursive specification over BPP 01 yields a parallel
pushdown automaton. We first consider a couple of examples.

Example 3. Consider the recursive specification

AC
def
= 1+a.(AC ‖ (1+b.1)) .

By following the operational rules, we obtain a process graph that is bisimilar to the one shown in
Figure 2, and thus we obtain the parallel pushdown automaton in Figure 1. This is the always accepting
counter.

If, instead, we use the equation

EC
def
= 1+a.(EC ‖ b.1) .

122 Parallel PDA and Commutative CFG in Bisimulation Semantics

we get the counter that only accepts when it is empty, see the parallel pushdown automaton in Figure 3.
Now we can generalize the equation of AC to the following

AB
def
= 1+ ∑

d∈D
ins(d).(AB ‖ (1+ rem(d).1)) .

We see that this is a specification of the bag. However, this bag does not have the show(−d) actions to
signal that a d does not occur in the bag. In fact, we will show that there is no finite weakly guarded
specification over BPP 01 that gives rise to the parallel pushdown automaton in Figure 4. For now, we
first look at the other direction, to show that a finite weakly guarded specification over BPP 01 yields the
process of a parallel pushdown automaton.

Since we have weakly guarded recursion, we can bring every BPP 01-term into head normal form.
The following result uses strong bisimulation, not branching bisimulation.

Theorem 3. Let Γ be a weakly guarded BPP 01-specification. Every process expression p can be brought
into head normal form, i.e. there are ai ∈A ∪{τ} and process expressions pi such that

p↔ (1+)
n

∑
i=1

ai.pi

where the 1 summand may or may not occur.

As a result, we can bring every guarded recursive specification into Greibach Normal Form.

Definition 8. A recursive specification Γ is in Greibach Normal Form if every equation has the form

X
def
= (1+)∑

n
i=1 ai.ξi for actions ai ∈A ∪{τ}, where each ξi is a parallel composition of identifiers of Γ,

and n≥ 0.

Theorem 4. Let Γ be a weakly guarded BPP 01-specification over identifiers P . Then there is a finite set
of identifiers Q with P ⊆Q and a recursive specification in Greibach Normal Form ∆ over identifiers
Q such that for all X ,Y ∈P we have X↔Y with respect to Γ if, and only if, X↔Y with respect to ∆.

Now we are ready to prove the main result of this section.

Theorem 5. Every weakly guarded recursive specification over BPP 01 has a process graph that is
divergence-preserving branching bisimilar to the process graph of a parallel pushdown automaton.

Proof. Without loss of generality, we can assume the specification is in Greibach Normal Form. Then, all
states in the generated process graph are given by a parallel composition of identifiers of the specification.
Divide the identifiers of the specification into the accepting identifiers A (that have a 1 summand) and
the non-accepting identifiers N that do not have a 1 summand. A state in the generated process graph is
accepting iff all identifiers in the parallel composition are from A. In the parallel pushdown automaton
to be constructed, we need to keep track when the last element of N is removed, in order to switch to an
accepting state.

We take the data set D to be the set of identifiers of the specification. S is the initial identifier. In
the states of the parallel pushdown automaton, we will encode whether or not there is an element of
N, so there is a state for each subset (not multiset) of N. As inspiration, we use the parallel pushdown
automaton of the counter that only accepts when empty in Figure 3.

The states of the parallel pushdown automaton are as follows:

• N, for N ⊆ N (a subset, not a submultiset). The bisimulation will relate state (N,x∪ y) for any
multiset x ∈ A*+ to the parallel composition of the elements of x∪ y, if y contains all elements of
N and no other non-accepting identifiers.

J. C. M. Baeten & B. Luttik 123

• There is an auxiliary state NX , for each N ⊆ N and X ∈ N.

The initial state is /0. /0 is the only accepting state.
Now the steps:

1. /0
a[−S/ξ]−−−−→ /0, whenever S has a summand a.ξ and ξ has only accepting identifiers.

2. /0
a[−S/ξ]−−−−→ N whenever S has a summand a.ξ and ξ has at least one non-accepting identifier. N

collects the non-accepting identifiers of ξ .

3. N
a[+X/ξ]−−−−−→ N′, whenever X 6∈ N is accepting, X has a summand a.ξ and N′ unites N with the

non-accepting identifiers of ξ .

4. N
a[+X/ξ]−−−−−→N′, whenever X ∈N has a summand a.ξ , ξ has at least one non-accepting identifier and

N′ unites N with the non-accepting identifiers of ξ .

5. if X ∈ N ⊆ N, X has a summand a.ξ with all identifiers in ξ accepting, add three transitions

N
a[+X/ξ]−−−−−→ NX

τ[+X/*X+]−−−−−−→ N.

and

NX
τ[−X/ /0]−−−−→ N−{X}.

Notice that all the added τ-steps in the transition system are inert, as from the added NX states exactly
one transition can be taken, depending on whether or not X occurs in the parallel composition.

/0 {B}
c[−S/ *S,D+]
c[+S/ *S,D+]
d[+D/ /0]

a[+S/ *S,B+]
a[−S/ *S,B+] a[+S/ *S,B+]

c[+S/ *S,D+]
d[+D/ /0]

b[+B/ /0]

τ[−B/ /0]

τ[+B/ *B+]

Figure 9: Parallel pushdown automaton of Example 4.

Example 4. Let the guarded recursive specification Γ be given as follows. Notice it is in Greibach
Normal Form, and N= {B},A= {S,D}.

S
def
= 1+a.(S ‖ B)+ c.(S ‖ D) B

def
= b.1 D

def
= 1+d.1

Following the proof of Theorem 5 results in the parallel pushdown automaton shown in Figure 9. Notice
the similarity with the parallel pushdown automaton shown in Figure 3.

124 Parallel PDA and Commutative CFG in Bisimulation Semantics

↑
c[−1/ *1+]

a[+1/ *1,1+]
b[+1/ /0]

Figure 10: Parallel pushdown automaton of a counter with a change.

As we stated, the other direction does not work: we cannot find a finite weakly guarded BPP 01-
specification for the one-state parallel pushdown automaton of the always accepting bag in Figure 4.
It is technically somewhat simpler to prove such a negative result for the one-state parallel pushdown
automaton shown in Figure 10.

Theorem 6. For the one-state parallel pushdown automaton in Figure 10 there is no finite weakly
guarded BPP 01 specification such that their process graphs are divergence-preserving branching bisim-
ilar.

Now let us reconsider the parallel pushdown automaton of the bag. The problem is, that a show(−d)-
action can only occur if no rem(d)-action can occur. Thus, in a sum context, the show(−d) action should
have lower priority than the rem(d) action. In general, we assume we have a partial ordering < on
A ∪{τ}, where a < b means that a has lower priority than b, satisfying that τ < a never holds, and
whenever a < b then also a < τ . The priority operator θ will implement the priorities, and is given by
the operational rules in Figure 11, see [3, 1]. Notice that the second rule for the priority operator uses
a negative premise. Transition system specifications with negative premises may, in general, not define
a unique transition relation that agrees with provability from the transition system specification, but our
restriction to weakly guarded specifications eliminates this problem [22, 15, 19]. Also, note that (rooted)
branching bisimilarity is not compatible with the priority operator, but divergence-preserving branching
bisimilarity is [17].

p ↓
θ(p) ↓

p a−→ p′ ∀b > a p 6 b−→
θ(p) a−→ θ(p′)

p a−→ p′

ρ f (p)
f (a)−→ ρ f (p′)

p↓
ρ f (p)↓

Figure 11: Operational semantics for priorities and renaming.

With the help of this operator, we can give the following specification of the always accepting bag,
assuming show(−d)< rem(d).

ABag def
= 1+ ∑

d∈D
ins(d).θ(ABag ‖ (1+ rem(d).1))+ ∑

d∈D
show(−d).ABag .

For the parallel pushdown automaton in Figure 10, it is enough to take c < b. In general, we need to put
a priority ordering on the labels of a parallel pushdown automaton. This may not be possible if some
labels are the same, or if a τ occurs as a label. Therefore, we need to ensure all the labels in the parallel
pushdown automaton are distinct and from A , in order to be able to impose a priority ordering.

J. C. M. Baeten & B. Luttik 125

Thus, given a parallel pushdown automaton, we consider another parallel pushdown automaton with
distinct labels, solve the problem for that automaton, and then rename the labels again to their original
values. This renaming is done by a renaming operator ρ f , where f is any function on A ∪{τ} satisfying
f (τ) = τ . The renaming operator has the operational rules shown in Figure 11, see [2, 1].

Now we extend BPP 01 to include the priority operator and renaming operators. We call this extended
algebra BPP 01

θ
. Theorem 5 can be extended to BPP 01

θ
.

Theorem 7. Every weakly guarded recursive specification over BPP 01
θ

has a process graph that is
divergence-preserving branching bisimilar to the process graph of a parallel pushdown automaton.

In the other direction, it works for every one-state parallel pushdown automaton.

Theorem 8. For every one-state parallel pushdown automaton there is a finite weakly guarded BPP 01
θ

specification such that their process graphs are divergence-preserving branching bisimilar.

Thus, for all one-state parallel pushdown automata we can find a specification in BPP 01
θ

. This result
does not extend to parallel pushdown automata with more than one state.

a[−1/ *1+]
a[+1/ *1,1+]

b[+1/ /0]

c[+1/ /0]
d[+1/ /0]

Figure 12: Parallel pushdown automaton that cannot be specified in BPP 01
θ

.

Theorem 9. There is a parallel pushdown automaton with two states, such that there is no weakly
guarded BPP 01

θ
specification with the same process.

In order to recover the correspondence between parallel pushdown automata and parallel process
algebra, we need to add communication with value passing.

5 Communicating processes

We extend the basic parallel processes BPP 01 by adding a communication mechanism. We assume
we have a finite set of communication ports C , and that each parametrised action c(d) is the result of
the communication of the send action c!d and the receive action c?d. The data set D is finite. Define
COMC = {c!d,c?d | c ∈ C,d ∈ D} for a set of ports C ⊆ C . The encapsulation operator ∂C() will
block the send and receive actions from the set of ports C. The abstraction operator τC will hide all
parametrised actions from the set of ports C.

The process algebra BCP 01 extends BPP 01 with communication, encapsulation and abstraction;
likewise, BCP 01

θ
extends BPP 01

θ
. Using communication, we can specify communicating bags: ABagio

defines the always accepting bag with input port i and output port o, while EBagio defines the bag with
input port i and output port o that is only accepting when it is empty. We see both the rem(d) actions and
the show(−d) actions as outputs.

ABagio def
= 1+ ∑

d∈D
i?d.θ(ABagio ‖ (1+o!(+d).1))+ ∑

d∈D
o!(−d).ABagio

126 Parallel PDA and Commutative CFG in Bisimulation Semantics

p c!d−→ p′ q c?d−→ q′

p ‖ q
c(d)−→ p′ ‖ q′ q ‖ p

c(d)−→ q′ ‖ p′

p ↓
∂C(p) ↓

p a−→ p′ a 6∈ COMC

∂C(p) a−→ ∂C(p′)

p ↓
τC(p) ↓

p
c(d)−→ p′ c ∈C

τC(p) τ−→ τC(p′)

p a−→ p′ a 6= c(d) for c ∈C

τC(p) a−→ τC(p′)

Figure 13: Operational semantics for communication, encapsulation and abstraction.

EBagio def
= 1+ ∑

d∈D
i?d.θ(EBagio ‖ o!(+d).1)+ ∑

d∈D
o!(−d).EBagio .

In Section 7, we will use the communicating always accepting bag to make the communication
between a finite control and a memory in the form of a bag explicit. Here, we restate a classical result:
putting two bags with unrestricted capacity in series will again be a bag with unrestricted capacity.

ABagio↔∆
b τ{`}(∂{`}(ABagi` ‖ ABag`o)) EBagio↔∆

b τ{`}(∂{`}(EBagi` ‖ EBag`o))

Again, we can bring every BCP 01
θ

-term into head normal form.

Theorem 10. Let Γ be a weakly guarded BCP 01
θ

-specification. Every process expression p can be
brought into head normal form, i.e. there are ai ∈A ∪{τ} and process expressions pi such that

p↔ (1+)
n

∑
i=1

ai.pi

where the 1 summand may or may not occur.

Proof. By induction on the structure of p (see [1]). We use Milner’s Expansion Law, now with commu-
nication.

As a result, we can bring every guarded recursive specification into Greibach Normal Form.

Definition 9. A recursive specification Γ over BCP 01
θ

is in Greibach Normal Form if every equation has
the form

X
def
= (1+)

n

∑
i=1

ai.τC(∂C(θ(ξi))).

for actions ai ∈A ∪{τ}, where each ξi is a parallel composition of identifiers of Γ, and n≥ 0.

Theorem 11. Let Γ be a weakly guarded BCP 01
θ

-specification over identifiers P . Then there is a finite
set of identifiers Q with P ⊆Q and a recursive specification in Greibach Normal Form ∆ over identifiers
Q such that for all X ,Y ∈P we have X↔Y with respect to Γ if, and only if, X↔Y with respect to ∆.

J. C. M. Baeten & B. Luttik 127

6 The full correspondence

With the help of value-passing communication, we can now establish our main result: for every parallel
pushdown automaton we can find a specification in BCP 01

θ
. The communication actions will pass on the

information of the current state of the parallel pushdown automaton. Let us look at the parallel pushdown
automaton in Figure 12, that did not have a finite specification in BCP 01

θ
.

Example 5. Consider the parallel pushdown automaton in Figure 12, with initial state s and accepting
state t. We need to distinguish between the two a-actions on state s, let us call them a− and a+. Action
a− has lower priority than a+. We just need to communicate in which of the states we are, so we use
actions p!s, p!t, p?s and p?t for some communication port p. Actions p(s), p(t) have the highest priority.
As all components in a parallel composition need the state information, we need to communicate the
state information repeatedly, until all components are brought into the right position. After this, we

need to exit the communication process. Define Ps
def
= 1+ p!s.Ps + exit.1 and Pt

def
= 1+ p!t.Pt + exit.1 and

p(s)> exit, p(t)> exit and exit > e for e ∈ {a+,a−,b,c,d}.

S
def
= a−.τp(∂p(θ(Ps ‖ X0 ‖ X1)))

X1
def
= p?s.(a+.(Ps ‖ X1 ‖ X1)+b.Ps + c.Pt)+ p?t.(1+d.Pt)

X0
def
= p?s.a−.(Ps ‖ X1)+ p?t.1

Theorem 12. For every parallel pushdown automaton there is a finite weakly guarded specification over
BCP 01

θ
such that their process graphs are divergence-preserving branching bisimilar.

Theorem 13. For every finite weakly guarded BCP01
θ

-specification there is a parallel pushdown automa-
ton such that their process graphs are divergence-preserving branching bisimilar.

Proof. As again, we can bring a finite weakly guarded BCP 01
θ

-specification into Greibach Normal Form,
this proof goes along the lines of the proof of Theorem 5. The only difference is, is that because of a
communication action, two non-accepting identifiers can be removed from a parallel composition at the
same time.

To conclude this section, we consider how far we can go with communication, but without priorities.
In the bag, not using priorities, it is required to count the number of remove transitions, in order to know
when a show absence transition is enabled. We can do this counting in the communication actions, but
then the parametrising data set D becomes infinite, and the specification uses countable sums. This is a
drawback, in our opinion.
Theorem 14. For every parallel pushdown automaton there is a finite weakly guarded specification over
BCP01 extended with infinite choice, such that their process graphs are divergence-preserving branching
bisimilar.
Example 6. Consider the parallel pushdown automaton in Figure 10, with state s. As the data set is a
singleton, we just need to count the number of 1’s, and we use natural numbers as parameters.

S
def
= 1+ c.τs(∂s(s!1.1 ‖ X{1}))

X{1}
def
= s?1.(1+(a.s!2.1 ‖ X{1} ‖ X{1})+(b.s!0.1 ‖ X/0))+

+ ∑
n≥2

s?n.(1+(a.s!(n+1).1 ‖ X{1} ‖ X{1})+b.s!(n−1).1)

X/0
def
= s?0.(1+(c.s!1.1 ‖ X{1})).

128 Parallel PDA and Commutative CFG in Bisimulation Semantics

7 A characterisation

A computer shows interaction between a finite control and the memory. The finite control can be repre-
sented by a regular process (a finite automaton). In [7], we considered a memory in the form of a stack,
and we established that a pushdown process can be characterised as a regular process communicating
with a stack. Here, we have a memory in the form of a bag, and we can establish a similar result.

Theorem 15. A process p is a parallel push-down process, if and only there is a regular process q such
that p↔∆

b τ{i,o}(∂{i,o}(q ‖ ABagio)).

In [8], it was established that every parallel process expression is rooted branching bisimilar to a
regular process communicating with a process that is defined as follows:

ABio def
= 1+ ∑

d∈D
i?d.ABio ‖ (1+o!d.1).

By Theorem 5, every parallel process expression denotes a parallel pushdown process, and so Theo-
rem 15 can be applied to get a characterisation in terms of a regular process that communicates with
ABagio, the aways accepting bag. Note, however, that ABagio uses the priority operator to facilitate the
show absence actions. With the process ABio from [8] we can establish a similar result, but we have to re-
place receiving an element from a bag by getting an element from a bag, where failure to get a particular
element can be detected (see [13, 1]. Thus, for d ∈D , we add elements c??+d (a get) and c??−d (a failed
get) to COMC with c ∈C, and add c×d for a failed communication that will also be hidden by τC with
c ∈C. We add the operational rules in Figure 14. Notice the second rule uses a negative premise. Still,
as we use weakly guarded recursion, and the rules are in so-called panth format, we obtain a labelled
transition system, see [26].

p c??+d−→ p′ q c!d−→ q′

p ‖ q
c(d)−→ p′ ‖ q′ q ‖ p

c(d)−→ q′ ‖ p′

p c??−d−→ p′ q c!d9

p ‖ q c×d−→ p′ ‖ q q ‖ p c×d−→ q ‖ p′

Figure 14: Operational semantics for get communication.

Theorem 16. A process p is a parallel push-down process, if and only there is a regular process q such
that p↔∆

b τ{i,o}(∂{i,o}(q ‖ ABio)).

We see the bag is the prototypical parallel pushdown process, as all parallel pushdown processes can
be realised as a regular process communicating with a bag. A bag is not a pushdown process. Likewise,
the stack is the prototypical pushdown process, but not a parallel pushdown process. The counter is not
a regular process, but it is both a pushdown process and a parallel pushdown process. Figure 15 provides
a complete picture. The queue is not a pushdown process and also not a parallel pushdown process. It is
the prototypical executable process, as every executable process can be characterized as a regular process
communicating with an always accepting queue. By using a queue, the Turing tape can be defined.

8 Conclusion

In language theory, the set of languages given by a parallel pushdown automaton coincides with the
set of languages given by a commutative context-free grammar. A language is an equivalence class

J. C. M. Baeten & B. Luttik 129

Executable

Regular

Parallel PushdownPushdown

Counter BagStack

Queue

Figure 15: Classification of Executable, Pushdown, Parallel Pushdown, and Regular processes and the
prototypical processes Queue, Bag, Stack and Counter.

of process graphs modulo language equivalence. A process is an equivalence class of process graphs
modulo divergence-preserving branching bisimulation.

This paper solves the question how we can characterize the set of processes given by a parallel
pushdown automaton. In the process setting, a commutative context-free grammar is a process algebra
with actions, choice, parallel composition and finite recursion. We need to limit to weakly guarded
recursion in the process setting. Starting out from the seminal process algebra PA of [14] with sequential
composition restricted to action prefixing, we need to add constants for the inactive and accepting process
and for the inactive non-accepting (deadlock) process. Thus, we arrive at the process algebra BPP 01 of
the basic parallel processes. We extend this algebra with the priority operator θ , in order to give some
actions priority over others.

Then, every finite weakly guarded BPP 01
θ

specification yields the process of a parallel pushdown
automaton, but not the other way around, there are processes of parallel pushdown automata that cannot
be given by a finite weakly guarded BPP 01

θ
specification. For parallel pushdown automata with just one

state, such a specification can be found.
We obtain a complete correspondence by adding value passing communication.

The set of processes given by a parallel pushdown automaton coincides with the set of pro-
cesses given by a finite weakly guarded recursive specification over a process algebra with
actions, choice, priorities, and parallel composition with value passing communication.

We also provide another characterisation of parallel pushdown processes: a process is a parallel
pushdown process if and only if there is a regular process such that the process is divergence-preserving
branching bisimilar to the regular process communicating with an always accepting bag.

This paper contributes to our ongoing project to integrate automata theory and process theory. As
a result, we can present the foundations of computer science using a computer model with interaction.
Such a computer model relates more closely to the computers we see all around us.

As future work, we need to compare the algebra used here with Petri nets, see e.g. [16].

130 Parallel PDA and Commutative CFG in Bisimulation Semantics

References
[1] J. C. M. Baeten, T. Basten & M. A. Reniers (2009): Process Algebra: Equational Theories of Com-

municating Processes. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press,
doi:10.1017/CBO9781139195003.

[2] Jos C. M. Baeten & Jan A. Bergstra (1988): Global Renaming Operators in Concrete Process Algebra. Inf.
Comput. 78(3), pp. 205–245, doi:10.1016/0890-5401(88)90027-2.

[3] Jos C. M. Baeten, Jan A. Bergstra & Jan Willem Klop (1986): Syntax and Defining Equations for an Interrupt
Mechanism in Process Algebra. Fundamenta Informaticae 9, pp. 127–168, doi:10.3233/FI-1986-9202.

[4] Jos C. M. Baeten, Cesare Carissimo & Bas Luttik (2023): Pushdown Automata and Context-Free Grammars
in Bisimulation Semantics. Logical Methods in Computer Science 19, pp. 15:1–15.32, doi:10.46298/LMCS-
19(1:15)2023.

[5] Jos C. M. Baeten, Flavio Corradini & Clemens Grabmayer (2007): A characterization of regular expressions
under bisimulation. J. ACM 54(2), p. 6, doi:10.1145/1219092.1219094.

[6] Jos C. M. Baeten, Pieter Cuijpers, Bas Luttik & Paul van Tilburg (2009): A Process-Theoretic Look at
Automata. In Farhad Arbab & Marjan Sirjani, editors: Fundamentals of Software Engineering, Third IPM
International Conference, FSEN 2009, Kish Island, Iran, April 15-17, 2009, Revised Selected Papers, Lecture
Notes in Computer Science 5961, Springer, pp. 1–33, doi:10.1007/978-3-642-11623-0_1.

[7] Jos C. M. Baeten, Pieter J. L. Cuijpers & P. J. A. van Tilburg (2008): A Context-Free Process as a Pushdown
Automaton. In Franck van Breugel & Marsha Chechik, editors: CONCUR 2008 - Concurrency Theory,
19th International Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008. Proceedings, Lecture
Notes in Computer Science 5201, Springer, pp. 98–113, doi:10.1007/978-3-540-85361-9_11.

[8] Jos C. M. Baeten, Pieter J. L. Cuijpers & Paul J. A. van Tilburg (2008): A Basic Parallel Process as a
Parallel Pushdown Automaton. In Thomas T. Hildebrandt & Daniele Gorla, editors: Proceedings of the
15th Workshop on Expressiveness in Concurrency, EXPRESS 2008, Toronto, ON, Canada, August 23, 2008,
Electronic Notes in Theoretical Computer Science 242, Elsevier, pp. 35–48, doi:10.1016/j.entcs.2009.06.012.

[9] Jos C. M. Baeten, Bas Luttik, Tim Muller & Paul J. A. van Tilburg (2016): Expressiveness modulo Bisimi-
larity of Regular Expressions with Parallel Composition. Mathematical Structures in Computer Science 26,
pp. 933–968, doi:10.1017/S0960129514000309.

[10] Jos C. M. Baeten, Bas Luttik & Paul van Tilburg (2013): Reactive Turing machines. Inf. Comput. 231, pp.
143–166, doi:10.1016/j.ic.2013.08.010.

[11] Jos C. M. Baeten & Chris Verhoef (1993): A Congruence Theorem for Structured Operational Semantics
with Predicates. In Eike Best, editor: CONCUR ’93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings, Lecture Notes in Computer Science 715, Springer,
pp. 477–492, doi:10.1007/3-540-57208-2_33.

[12] Twan Basten (1996): Branching Bisimilarity is an Equivalence Indeed! Inf. Process. Lett. 58(3), pp. 141–
147, doi:10.1016/0020-0190(96)00034-8.

[13] Jan A. Bergstra (1985): Put and get, primitives for synchronous unreliable message passing. Logic group
preprint series 3, pp. 1–14.

[14] Jan A. Bergstra & Jan Willem Klop (1984): Process Algebra for Synchronous Communication. Information
and Control 60(1-3), pp. 109–137, doi:10.1016/S0019-9958(84)80025-X.

[15] Roland N. Bol & Jan Friso Groote (1996): The Meaning of Negative Premises in Transition System Specifi-
cations. J. ACM 43(5), pp. 863–914, doi:10.1145/234752.234756.

[16] Jürgen Dassow, Gairatzhan Mavlankulov, Mohamed Othman, Sherzod Turaev, Mohd Selamat & R Stiebe
(2012): Grammars Controlled by Petri Nets. In Pawel Pawlewski, editor: Petri Nets, chapter 15, IntechOpen,
Rijeka, pp. 337–358, doi:10.5772/50637.

[17] Wan Fokkink, Rob van Glabbeek & Bas Luttik (2019): Divide and congruence III: From decomposition of
modal formulas to preservation of stability and divergence. Inf. Comput. 268, doi:10.1016/j.ic.2019.104435.

https://doi.org/10.1017/CBO9781139195003
https://doi.org/10.1016/0890-5401(88)90027-2
https://doi.org/10.3233/FI-1986-9202
https://doi.org/10.46298/LMCS-19(1:15)2023
https://doi.org/10.46298/LMCS-19(1:15)2023
https://doi.org/10.1145/1219092.1219094
https://doi.org/10.1007/978-3-642-11623-0_1
https://doi.org/10.1007/978-3-540-85361-9_11
https://doi.org/10.1016/j.entcs.2009.06.012
https://doi.org/10.1017/S0960129514000309
https://doi.org/10.1016/j.ic.2013.08.010
https://doi.org/10.1007/3-540-57208-2_33
https://doi.org/10.1016/0020-0190(96)00034-8
https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1145/234752.234756
https://doi.org/10.5772/50637
https://doi.org/10.1016/j.ic.2019.104435

J. C. M. Baeten & B. Luttik 131

[18] Rob J. van Glabbeek (1993): The Linear Time - Branching Time Spectrum II. In Eike Best, editor: CON-
CUR ’93, 4th International Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings, Lecture Notes in Computer Science 715, Springer, pp. 66–81, doi:10.1007/3-540-57208-2_6.

[19] Rob van Glabbeek (2004): The meaning of negative premises in transition system specifications II. J. Log.
Algebr. Program. 60-61, pp. 229–258, doi:10.1016/j.jlap.2004.03.007.

[20] Rob van Glabbeek, Bas Luttik & Nikola Trcka (2009): Branching Bisimilarity with Explicit Divergence.
Fundamenta Informaticae 93(4), pp. 371–392, doi:10.3233/FI-2009-109.

[21] Rob van Glabbeek & Peter Weijland (1996): Branching time and abstraction in bisimulation semantics.
Journal of the ACM 43(3), pp. 555–600, doi:10.1145/233551.233556.

[22] Jan Friso Groote (1993): Transition System Specifications with Negative Premises. Theor. Comput. Sci.
118(2), pp. 263–299, doi:10.1016/0304-3975(93)90111-6.

[23] Bas Luttik (2020): Divergence-Preserving Branching Bisimilarity. In Ornela Dardha & Jurriaan Rot, editors:
Proceedings Combined 27th International Workshop on Expressiveness in Concurrency and 17th Workshop
on Structural Operational Semantics, EXPRESS/SOS 2020, and 17th Workshop on Structural Operational
Semantics, Online, 31 August 2020, EPTCS 322, pp. 3–11, doi:10.4204/EPTCS.322.2.

[24] Faron Moller (1996): Infinite Results. In Ugo Montanari & Vladimiro Sassone, editors: CONCUR ’96,
Concurrency Theory, 7th International Conference, Pisa, Italy, August 26-29, 1996, Proceedings, Lecture
Notes in Computer Science 1119, Springer, pp. 195–216, doi:10.1007/3-540-61604-7_56.

[25] Paul J. A. van Tilburg (2011): From computability to executability : a process-theoretic view on automata
theory. Ph.D. thesis, Mathematics and Computer Science, doi:10.6100/IR716374.

[26] Chris Verhoef (1995): A Congruence Theorem for Structured Operational Semantics with Predicates and
Negative Premises. Nord. J. Comput. 2(2), pp. 274–302.

https://doi.org/10.1007/3-540-57208-2_6
https://doi.org/10.1016/j.jlap.2004.03.007
https://doi.org/10.3233/FI-2009-109
https://doi.org/10.1145/233551.233556
https://doi.org/10.1016/0304-3975(93)90111-6
https://doi.org/10.4204/EPTCS.322.2
https://doi.org/10.1007/3-540-61604-7_56
https://doi.org/10.6100/IR716374

G. Caltais and C. A. Mezzina (Eds): Combined Workshop on

Expressiveness in Concurrency and Structural Operational Semantics

(EXPRESS/SOS 2023).

EPTCS 387, 2023, pp. 132–148, doi:10.4204/EPTCS.387.10

© Castro, D’Argenio, Demasi & Putruele

This work is licensed under the

Creative Commons Attribution License.

Quantifying Masking Fault-Tolerance

via Fair Stochastic Games*

Pablo F. Castro

Departamento de Computación, FCEFQyN, Universidad Nacional de Rı́o Cuarto, Rı́o Cuarto, Argentina

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina

pcastro@dc.exa.unrc.edu.ar

Pedro R. D’Argenio

FAMAF, Universidad Nacional de Córdoba, Córdoba, Argentina

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina

pedro.dargenio@unc.edu.ar

Ramiro Demasi

FAMAF, Universidad Nacional de Córdoba, Córdoba, Argentina

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina

rdemasi@unc.edu.ar

Luciano Putruele

Departamento de Computación, FCEFQyN, Universidad Nacional de Rı́o Cuarto, Rı́o Cuarto, Argentina

Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina

lputruele@dc.exa.unrc.edu.ar

We introduce a formal notion of masking fault-tolerance between probabilistic transition systems

using stochastic games. These games are inspired in bisimulation games, but they also take into

account the possible faulty behavior of systems. When no faults are present, these games boil down

to probabilistic bisimulation games. Since these games could be infinite, we propose a symbolic way

of representing them so that they can be solved in polynomial time. In particular, we use this notion

of masking to quantify the level of masking fault-tolerance exhibited by almost-sure failing systems,

i.e., those systems that eventually fail with probability 1. The level of masking fault-tolerance of

almost-sure failing systems can be calculated by solving a collection of functional equations. We

produce this metric in a setting in which one of the player behaves in a strong fair way (mimicking

the idea of fair environments).

1 Introduction

Fault-tolerance [20] is an important aspect of critical systems, in which a fault may lead to important eco-

nomic, or human life, losses. Examples are ubiquitous: banking systems, automotive software, communi-

cation protocols, etc. Fault-tolerant systems typically use some kind of mechanism based on redundancy

such as data replication, duplicated messages and voting. However, these techniques do not consistently

enhance the ability of systems to effectively tolerate faults as one could expect. Hence, quantifying the

*This work was supported by ANPCyT PICT-2017-3894 (RAFTSys), ANPCyT PICT 2019-3134, SeCyT-UNC

33620180100354CB (ARES), and EU Horizon 2020 MSCA grant agreement 101008233 (MISSION).

http://dx.doi.org/10.4204/EPTCS.387.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Castro, D’Argenio, Demasi & Putruele 133

effectiveness of fault-tolerance mechanisms is an important issue when developing critical software. Ad-

ditionally, in most cases, faults have a probabilistic nature, thus any technique designed for measuring

system fault-tolerance should be able to cope with stochastic phenomena.

In this paper we provide a framework aimed at quantifying the fault-tolerance exhibited by concur-

rent probabilistic systems. This encompasses the probability of occurrence of faults as well as the use of

randomized algorithms. Particularly, we focus on the so-called masking fault-tolerance, in which both

the safety and liveness properties are preserved by the system under the occurrence of faults [20]. Intu-

itively, faults are masked in such a way that their occurrence cannot be observed by the users. This is

often acknowledged as the most desirable kind of fault-tolerance. The aim of this paper is to provide a

framework for selecting a fault-tolerance mechanism over others as well as for balancing multiple mech-

anisms (e.g., to ponder on cost efficient hardware redundancies vs. time demanding software artifacts).

In the last years, significant progress has been made towards defining suitable metrics or distances

for diverse types of quantitative models including real-time systems [23], probabilistic models [21, 15,

6, 18, 7, 2, 32, 3], and metrics for linear and branching systems [1, 34, 27, 10, 22]. Some authors have

already pointed out that these metrics can be useful to reason about the robustness and correctness of

a system, notions related to fault-tolerance. Here we follow the ideas introduced in [8] where masking

fault-tolerance is captured by means of a tailored bisimulation game with quantitative objectives. We

extend these ideas to a probabilistic setting and define a probabilistic version of this characterization of

masking fault-tolerance which, in turn, we use to define a metric to compare the “degree” of masking

fault tolerance provided by different mechanisms.

More specifically, we characterize probabilistic masking fault-tolerance via a tailored variant of prob-

abilistic bisimulation (named masking simulation). Roughly speaking, masking simulation relates two

probabilistic transition systems. One of them acts as a system specification (i.e., a nominal model), while

the other one can be thought of as a fault-tolerant implementation that takes into account possible faulty

behavior. The existence of a masking simulation implies that the implementation masks all faults. This

relation admits a simple game characterization via a Boolean reachability game played on a stochastic

game graph.

Since in practice masking fault tolerance cannot be achieved in full, the reliability of a fault tolerance

mechanism can only be measured quantitatively. Thus, we reinterpret the same game with quantitative ob-

jectives. While previously we dealt with a Boolean reachability objective, here we introduce milestones

indicating successful progress of the model and change the objective of the game to be the expected total

collected milestones. Therefore, we transform the game into an expected total reward game. We then

take the measure of the fault-tolerant mechanism to be the solution of this expected total reward game.

In order to prove our results we have addressed several technical issues. First, the games rely on the

notion of couplings between probabilistic distributions and, as a consequence, the number of vertices

of their game graphs is infinite. To be able to deal with these infinite games, we introduce a symbolic

representation for them where couplings are captured by means of equation systems. The size of these

symbolic graphs is polynomial in the size of the input systems, which enables us to solve the (Boolean)

simulation game in polynomial time.

Besides, stochastic games with expected total reward objectives are required to be almost surely

stopping [19] or, more generally, almost surely stopping under fairness [9]. In our terms, this means that

the game needs to be almost surely failing under fairness. Intuitively, these games model systems that

will eventually fail with probability 1. This generalizes the idea that faults with some positive probability

of occurrence will eventually occur during a long enough system execution.

As our game is of infinite nature, the results in [9] cannot be applied directly. Therefore we devise a

finite discretization that allows us to partly reuse [9] and show that the value of the game is determined

134 Quantifying Masking Fault-Tolerance via ...

and that it can be computed by solving a collection of functional equations via an adapted value iteration

algorithm [13, 14, 11, 24]. Besides, as the game can only be solved if the game is almost surely failing

under fairness we also provide a polynomial solution to solve this problem. We remark that both checking

almost surely stopping under fairness and solving the game are calculated through the symbolic graph.

Summarizing, we define the notion of probabilistic masking simulation and provide its game charac-

terization which we show decidable in polynomial time (Sec. 3). In Sec. 4 we define an extension of the

games by considering rewards and provide a payoff function that collects the “milestones” achieved by

the implementation. We show that these games are determined provided they are almost-surely failing

under fairness, and give an algorithm to calculate the value of these games. We also give a polynomial

time algorithm to decide if a game is almost-surely failing under fairness.

2 Preliminaries

A (discrete) probability distribution µ over a denumerable set S is a function µ : S → [0,1] such that

µ(S) , ∑s∈S µ(s) = 1. Let D(S) denote the set of all probability distributions on S. ∆s ∈ D(S) denotes

the Dirac distribution for s, i.e., ∆s(s) = 1 and ∆s(s
′) = 0 whenever s′ 6= s. The support set of µ is defined

by Supp (µ) = {s | µ(s)> 0}.

A Probabilistic Transition System (PTS) [30] is a structure A = (S,Σ,→,s0) where (i) S is a denumer-

able set of states containing the initial state s0 ∈ S, (ii) Σ is a set of actions, and (iii) →⊆ S×Σ×D(S) is

the (probabilistic) transition relation. We assume that there is always some transition leaving from every

state. Here, we only consider finite PTSs, i.e., those in which the set of states S, the set of actions Σ and

the transition relation → are finite.

A distribution w ∈D(S×S′) is a coupling for (µ ,µ ′), with µ ∈ D(S) and µ ′ ∈D(S′), if w(S, ·) = µ ′

and w(·,S′) = µ . C(µ ,µ ′) denotes the set of all couplings for (µ ,µ ′). It is worth noting that this defines

a (two-way transport) polytope (i.e., a particular kind of bounded polyhedron). V(C(µ ,µ ′)) denotes the

set of all vertices of the corresponding polytope. This set is finite if S and S′ are finite. For R ⊆ S× S′,

we say that a coupling w for (µ ,µ ′) respects R if Supp (w) ⊆ R (i.e., w(s,s′) > 0 ⇒ s R s′). We define

R# ⊆ D(S)×D(S′) by µ R# µ ′ if and only if there is an R-respecting coupling for (µ ,µ ′).

A stochastic game graph [12] is a tuple G = (V,E,V1,V2,VP,v0,δ), where V is a set of vertices with

V1,V2,VP ⊆ V being a partition of V , v0 ∈ V is the initial vertex, E ⊆ V ×V , and δ : VP → D(V) is a

probabilistic transition function such that, for all v ∈ VP and v′ ∈ V : (v,v′) ∈ E iff v′ ∈ Supp (δ (v)). V1

and V2 are the set of vertices where Players 1 and 2 are respectively allowed to play. If VP = /0, then G

is called a 2-player game graph. Moreover, if V1 = /0 or V2 = /0, then G is a Markov Decision Process

(or MDP). Finally, in case that V1 = /0 and V2 = /0, G is a Markov chain (or MC). For all states v ∈V we

define Post(v) = {v′ ∈V | (v,v′) ∈ E}, the set of successors of v. Similarly, we define Pre(v′) = {v ∈V |
(v,v′) ∈ E} as the set of predecessors of v′. We assume that Post(v) 6= /0 for every v ∈V1 ∪V2.

Given a game as defined above, a play is an infinite sequence ρ = ρ0,ρ1, . . . such that (ρk,ρk+1) ∈ E

for every k ∈N. The set of all plays is denoted by Ω, and the set of plays starting at vertex v is written Ωv.

A strategy (or policy) for Player i ∈ {1,2} is a function πi : V ∗ ·Vi → D(V) that assigns a probabilistic

distribution to each finite sequence of states such that Supp (πi(ρ · v))⊆ Post(v) for all ρ ∈V ∗ and v ∈Vi.

The set of all the strategies for Player i is named Πi. A strategy πi is said to be pure (or deterministic) if,

for every ρ ∈V ∗ and v∈Vi, πi(ρ ·v) is a Dirac distribution, and it is called memoryless if πi(ρ ·v) = πi(v),
for every ρ ∈V ∗ and v ∈Vi. Given two strategies π1 ∈ Π1, π2 ∈ Π2 and a starting state v, the result of the

game is a Markov chain, denoted by G
π1,π2
v . As any Markov chain, G

π1,π2
v defines a probability measure

Prob
π1,π2

G ,v on the Borel σ -algebra generated by the cylinders of Ω. If A is a measurable set in such

Castro, D’Argenio, Demasi & Putruele 135

Borel σ -algebra, Prob
π1,π2

G ,v (A) is the probability that strategies π1 and π2 generate a play belonging to

A from state v. It would normally be convenient to use LTL notation to define events. For instance,

3V ′ = {ρ = ρ0,ρ1, · · · ∈ Ω | ∃i : ρi ∈ V ′} defines the event in which some state in V ′ is reached. The

outcome of the game, denoted by outv(π1,π2) is the set of possible paths of G
π1,π2
v starting at vertex v

(i.e., the possible plays when strategies π1 and π2 are used). When the initial state v is fixed, we write

out(π1,π2) instead of outv(π1,π2).

A Boolean objective for G is a set Φ ⊆ Ω. A play ρ is winning for Player 1 at vertex v if ρ ∈ Φ,

otherwise it is winning for Player 2 (i.e., we consider zero-sum games). A strategy π1 is a sure winning

strategy for Player 1 from vertex v if, for every strategy π2 for Player 2, outv(π1,π2) ⊆ Φ. π1 is said

to be almost-sure winning if for every strategy π2 for Player 2, we have Prob
π1,π2

G ,v (Φ) = 1. Sure and

almost-sure winning strategies for Player 2 are defined in a similar way. Reachability games are games

with Boolean objectives of the style: 3V ′, for some set V ′ ⊆V . A standard result is that, if a reachability

game has a sure winning strategy, then it has a pure memoryless sure winning strategy [12].

A quantitative objective is a measurable function f : Ω →R. Given a measurable function we define

Eπ1,π2

G ,v [f] as the expectation of function f under probability Prob
π1,π2

G ,v . The goal of Player 1 is to maximize

the expected value of f , whereas the goal of Player 2 is to minimize it. Usually, quantitative objective

functions are defined via a reward function r : V → R. The value of the game for Player 1 for strategy

π1 at vertex v, denoted val1(π1)(v), is defined as: val1(π1)(v) = infπ2∈Π2
Eπ1,π2

G ,v [f]. Furthermore, the

value of the game for Player 1 from vertex v is defined as: supπ1∈Π1
val1(π1)(v). Analogously, the

value of the game for a Player 2 strategy π2 and the value of the game for Player 2 are defined as

val2(π2)(v) = supπ1∈Π1
Eπ1,π2

G ,v [f] and infπ2∈Π2
val2(π2)(v), respectively. We say that a game is determined

if both values are equal, that is, supπ1∈Π1
val1(π1)(v) = infπ2∈Π2

val2(π2)(v), for every vertex v.

3 Probabilistic Masking Simulation

We start this section by defining a probabilistic extension of the strong masking simulation introduced

in [8]. Roughly speaking, this is a variation of probabilistic bisimulation that takes into account the

occurrence of faults (named masking simulation), and captures masking behavior. This relation serves

as a starting point for defining our masking games. We prove that in the Boolean case, our games

allows us to decide masking simulation. Since these games are infinite we provide a finite symbolic

characterization of them. In Section 4, we extend these games with quantitative objectives, which allows

us to quantify the level of fault-tolerance offered by an implementation.

The relation. In simple terms, a probabilistic masking simulation is a relation between PTSs that extends

probabilistic bisimulation [28, 30] in order to account for fault masking. One of the PTSs acts as the nom-

inal model (or specification), i.e., it describes the behavior of the system when no faults are considered,

and the other one represents a possible fault-tolerant implementation of the specification, in which the

occurrence of faults are taken into account via a fault tolerance mechanism acting upon them.

Probabilistic masking simulation allows one to analyze whether the implementation is able to mask

the faults while preserving the behavior of the specification. More specifically, for non-faulty transitions,

the relation behaves as probabilistic bisimulation, which is captured by means of couplings and relations

respecting these couplings. The novel part is given by the occurrence of faults: if the implementation

performs a fault, the nominal model matches it by an idle step (this represents internal fault masking

mechanisms).

In the following, given a set of actions Σ, and a (finite) set of fault labels F , with F ∩ Σ = /0,

we define ΣF = Σ∪F . Intuitively, the elements of F indicate the occurrence of a fault in a faulty

136 Quantifying Masking Fault-Tolerance via ...

module NOMINAL

b : [0..1] init 0;
m : [0..1] init 0; // 0 = normal,

// 1 = refreshing

[w0] (m=0) -> (b’= 0);
[w1] (m=0) -> (b’= 1);
[r0] (m=0) & (b=0) -> true;
[r1] (m=0) & (b=1) -> true;
[tick] (m=0) -> p: (m’= 1) +

(1-p): true;
[rfsh] (m=1) -> (m’= 0);

endmodule

Figure 1: Memory cell: nominal model

module FAULTY

v : [0..3] init 0;
s : [0..2] init 0; // 0 = normal, 1 = faulty,

// 2 = refreshing
f : [0..1] init 0; // fault limiting artifact

[w0] (s!=2) -> (v’= 0) & (s’= 0);
[w1] (s!=2) -> (v’= 3) & (s’= 0);
[r0] (s!=2) & (v<=1) -> true;
[r1] (s!=2) & (v>=2) -> true;
[tick] (s!=2) -> p: (s’= 2) + q: (s’= 1)

+ (1-p-q): true;
[rfsh] (s=2) -> (s’=0)

& (v’= (v<=1) ? 0 : 3);
[fault] (s=1) & (f<1) -> (v’= (v<3) ? (v+1) : 2)

& (s’= 0) & (f’= f+1);
[fault] (s=1) & (f<1) -> (v’= (v>0) ? (v-1) : 1)

& (s’= 0) & (f’= f+1);

endmodule

Figure 2: Memory cell: fault-tolerant implementation.

implementation.

Definition 1. Let A = (S,Σ,→,s0) and A′ = (S′,ΣF ,→′,s′0) be two PTSs representing the nominal and

the implementation model, respectively. A′ is (strong) probabilistic masking fault-tolerant with respect to

A iff there exists a relation M ⊆ S×S′ such that: (a) s0 M s′0, and (b) for all s ∈ S,s′ ∈ S′ with s M s′ and

all e ∈ Σ and F ∈ F the following holds:

(1) if s
e
−→ µ , then s′

e
−→′ µ ′ and µ M# µ ′ for some µ ′;

(2) if s′
e
−→′ µ ′, then s

e
−→ µ and µ M# µ ′ for some µ;

(3) if s′
F
−→′ µ ′, then ∆s M# µ ′.

If such a relation exists we say that A′ is a (strong) probabilistic masking fault-tolerant implementation

of A, denoted A �m A′.

Note that the relation can be encoded in terms of traditional probabilistic bisimulation as follows:

saturate PTSs A and A′ by adding self-loops s
F
−→ ∆s and s′

F
−→′ ∆s′ , respectively, for every s ∈ S, s′ ∈ S′

and F ∈F . It follows from the definitions that these two new PTSs are probabilistic bisimilar iff A�m A′.

As a consequence, checking A �m A′ is decidable in polynomial time.

Example 1. Consider a memory cell storing one bit of information that periodically refreshes its value.

The memory supports both write and read operations, and when it refreshes, it performs a read operation

and overwrites the memory with the read value. This behaviour is captured by the nominal model of Fig. 1

using PRISM notation [25]. In this model, ri and wi (for i= 0,1) represent the actions of reading and

writing value i. The bit stored in the memory is saved in variable b. Action tick marks that one time

unit has passed and, with probability p, it enables the refresh action (rfsh). Variable m indicates whether

the system is in write/read mode, or producing a refresh.

A potential fault in this scenario occurs when a cell unexpectedly changes its value. In practice, the

occurrence of such an error has a certain probability. A typical technique to deal with this situation

is redundancy, e.g., using three memory bits instead of one. Then, writing operations are performed

simultaneously on the three bits while reading returns the value read by majority (or voting). Fig. 2

shows this implementation with the occurrence of the fault implicitly modeled (ignore, for the time being,

the red part). Variable v counts the votes for the value 1. In addition to enabling the refresh action, a

Castro, D’Argenio, Demasi & Putruele 137

tick may also enable the occurrence of a fault with probability q, with p+q ≤ 1. Variable s indicates

whether the system is in normal mode (s = 0), in a state where a fault may occur (s = 1), or producing

a refresh (s = 2). The red coloured text in Fig. 2 is an artifact to limit the number of faults to 1. Under

this condition, relation M = {〈(b,m),(v,s, f)〉 | 2b ≤ v ≤ 2b+1∧ (m = 1 ⇔ s = 2)} is a probabilistic

masking simulation (b, m, v, s, and f represent the values of variables b, m, v, s, and f, respectively.)

It should be evident that, when the red coloured text is removed, FAULTY is not a masking fault-tolerant

implementation of NOMINAL.

A characterization in terms of stochastic games. We define a stochastic masking simulation game for

any given nominal model A = (S,Σ,→,s0) and implementation model A′ = (S′,ΣF ,→′,s′0). The game is

similar to a bisimulation game [31], and it is played by two players, named for convenience the Refuter

(R) and the Verifier (V). The Verifier wants to prove that s ∈ S and s′ ∈ S′ are probabilistic masking

similar, and the Refuter intends to disprove that. The game starts from the pair of states (s,s′) and the

following steps are repeated:

1) R chooses either a transition s
a
−→ µ from the nominal model or a transition s′

a
−→′ µ ′ from the

implementation;

2a) If a /∈ F , V chooses a transition matching action a from the opposite model, i.e., a transition

s′
a
−→′ µ ′ if R’s choice was from the nominal model, or a transition s

a
−→ µ otherwise. In addition, V

chooses a coupling w for (µ ,µ ′);

2b) If a ∈ F , V can only select the Dirac distribution ∆s and the only possible coupling w for (∆s,µ
′);

3) The successor pair of states (t, t ′) is chosen probabilistically according to w.

If the play continues forever, then the Verifier wins; otherwise, the Refuter wins. (Notice, in particular,

that the Verifier loses if she cannot match a transition label, since choosing an arbitrary coupling is

always possible.) Step 2b is the only one that seems to differ from the usual bisimulation game. This

is needed because of the asymmetry produced by the transitions labeled with faults. Intuitively, if the

Refuter chooses to play a fault in the implementation, then the Verifier ought to mask the fault, thus she

cannot freely move in the nominal model. Summing up, the probabilistic step of a fault can only be

matched by a Dirac distribution on the corresponding state of the specification.

In the following we define the stochastic masking game graph that formalizes this idea. For this,

define Σi = {ei | e ∈ Σ} containing all elements of Σ indexed with superscript i.

Definition 2. Let A = (S,Σ,→,s0) and A′ = (S′,ΣF ,→′,s′0) be two PTSs. The 2-player stochastic mask-

ing game graph GA,A′ = (V G ,EG ,V G
R
,V G

V
,V G

P
,vG

0 ,δ
G), is defined as follows:

V G = V G
R ∪V G

V ∪V G
P ,where:

V G
R = {(s, -,s′, -, -, -,R) | s ∈ S∧ s′ ∈ S′}∪{verr}

V G
V

= {(s,σ 1,s′,µ , -, -,V) | s ∈ S∧ s′ ∈ S′∧σ ∈ Σ∧ s
σ
−→ µ}∪

{(s,σ 2,s′, -,µ ′, -,V) | s ∈ S∧ s′ ∈ S′∧σ ∈ ΣF ∧ s′
σ
−→′ µ ′}

V G
P = {(s, -,s′,µ ,µ ′,w,P) | s ∈ S∧ s′ ∈ S′∧w ∈ C(µ ,µ ′)∧

∃σ∈ΣF : (s
σ
−→ µ ∨ (σ∈F ∧µ = ∆s))∧ s′

σ
−→′ µ ′}

vG
0 = (s0, -,s

′
0, -, -, -,R) (the Refuter starts playing)

δG : V G
P → D(V G

R), defined by δG ((s, -,s′,µ ,µ ′,w,P))((t, -, t ′, -, -, -,R)) = w(t, t ′),

138 Quantifying Masking Fault-Tolerance via ...

where “-” fills an unused place, and EG is the minimal set satisfying the following rules:

s
σ
−→ µ ⇒ 〈(s, -,s′, -, -, -,R),(s,σ 1,s′,µ , -, -,V)〉 ∈ EG (11)

s′
σ
−→′ µ ′ ⇒ 〈(s, -,s′, -, -, -,R),(s,σ 2,s′, -,µ ′, -,V)〉 ∈ EG (12)

s′
σ
−→′ µ ′∧w ∈C(µ ,µ ′)⇒ 〈(s,σ 1,s′,µ , -, -,V),(s, -,s′ ,µ ,µ ′,w,P)〉 ∈ EG (2a1)

σ /∈ F ∧ s
σ
−→ µ ∧w ∈C(µ ,µ ′)⇒ 〈(s,σ 2,s′, -,µ ′, -,V),(s, -,s′,µ ,µ ′,w,P)〉 ∈ EG (2a2)

F ∈ F ∧w ∈ C(∆s,µ
′)⇒ 〈(s,F2,s′, -,µ ′, -,V),(s, -,s′ ,∆s,µ

′,w,P)〉 ∈ EG (2b)

(s, -,s′,µ ,µ ′,w,P) ∈V G
P ∧ (t, t ′) ∈ Supp (w)⇒ 〈(s, -,s′,µ ,µ ′,w,P),(t, -, t ′, -, -, -,R)〉 ∈ EG (3)

v ∈ (V G
V ∪{verr})∧ (∄v′ 6= verr : 〈v,v′〉 ∈ EG)⇒ 〈v,verr〉 ∈ EG (err)

Some words about this definition are useful, it mainly follows the idea of the game previously de-

scribed. A round of the game starts in the Refuter’s state vG
0 . Notice that, at this point, only the current

states of the nominal and implementation models are relevant (all other information is not yet defined in

this round and hence marked with “-”). Step 1 of the game is encoded in rules (11) and (12), where the

Refuter chooses a transition, thus defining the action and distribution that need to be matched, this moves

the game to a Verifier’s state. A Verifier’s state in V G
V

is a tuple containing which action and distribution

need to be matched, and which model the Refuter has played. Step 2a of the game is given by rules (2a1)

and (2a2) in which the Verifier chooses a matching move from the opposite model (hence defining the

other distribution) and an appropriate coupling, moving to a probabilistic state. Step 2b of the game is

encoded in rule (2b). Here the Verifier has no choice since she is obliged to choose the Dirac distribution

∆s and the only available coupling in C(∆s,µ
′). A probabilistic state in V G

P
contains the information

needed to probabilistically resolve the next step through function δG (rule (3)). Finally, rule (err) states

that, if a player has no move, then she reaches an error state (verr). Note that this can only happen in a

Verifier’s state or in verr.

The notion of probabilistic masking simulation can be captured by the corresponding stochastic

masking game with the appropriate Boolean objective.

Theorem 1. Let A=(S,Σ,→,s0) and A′ =(S′,ΣF ,→′,s′0) be two PTSs. Then, A�m A′ iff the Verifier has

a sure (or almost-sure) winning strategy for the stochastic masking game graph GA,A′ with the Boolean

objective ¬3verr.

Note that this theorem holds for both sure and almost-sure strategies of the Verifier, this follows from

the fact that for stochastic reachability objectives the two kinds of strategies are equivalent.

Example 2. Consider the graph in Fig. 3 (ignoring the blue shading for now). It represents a frag-

ment of the masking game graph between NOMINAL and FAULTY of Example 1. The vertices repre-

sent the variable values in the following order: ((b,m), ,(v,s,f), , , ,). First, consider the graph

disregarding the red highlighted numbers. For example, ((0,0), -,(0,0,0), -, -, -,R) should be read as

((0,0), -,(0,0), -, -, -,R). In this case we obtain the masking game graph when the red part in FAULTY

is removed. Notice that, in the majority of the vertices, many outgoing edges are omitted. In particular,

the Verifier vertex
(

(0,0),tick1,(0,0),µ , -, -,V
)

has infinitely many outgoing edges leading to proba-

bilistic vertices of the form
(

(0,0),tick1,(0,0),µ ,µ ′,w,P
)

, where w is a coupling for (µ ,µ ′). In the

graph, we have chosen to distinguish coupling w0 which is optimal for the Verifier (similarly later for

w2). We highlighted the path leading to error state verr. Notice that this occurs as a consequence of

the Refuter choosing to do a second fault in vertex ((0,0), -,(1,1), -, -, -,R) steering the game to the

red shadowed part of the graph. Later, the Refuter chooses to read 0 in the NOMINAL model (at vertex

((0,0), -,(2,0), -, -, -,R)) which the Verifier cannot match.

Castro, D’Argenio, Demasi & Putruele 139

((0,0),-,(0,0,0),-,-,-,R)

(

(0,0),tick1,(0,0,0),µ ,-,-,V
)

(

(0,0),tick1,(0,0,0),µ ,µ ′,w0,P
)

((0,0),-,(0,1,0),-,-,-,R)((0,1),-,(0,2,0),-,-,-,R)

(

(0,0),fault2,(0,1,0),-,∆(1,0,1),-,V
)

(

(0,0),fault2,(0,1,0),∆(0,0),∆(1,0,1),w1,P
)

((0,0),-,(1,0,1),-,-,-,R)

(

(0,0),tick1,(1,0,1),µ ,-,-,V
)

(

(0,0),tick1,(1,0,1),µ ,µ ′′,w2,P
)

((0,0),-,(1,1,1),-,-,-,R)((0,1),-,(1,2,1),-,-,-,R)

(

(0,0),fault2,(1,1),-,∆(2,0) ,-,V
)

(

(0,0),fault2,(2,1),∆(0,0) ,∆(2,0),w3,P
)

((0,0),-,(2,0),-,-,-,R)

(

(0,0),r01,(2,0),∆(0,0) ,-,-,V
)

verr

qp
1−p−q

qp
1−p−q

µ = p · (0,1)+ (1−p) · (0,0)

µ ′ =

{

p · (0,2,0)+q · (0,1,0)+

(1−p−q) · (0,0,0)

µ ′′ =

{

p · (1,2,1)+q · (1,1,1)+

(1−p−q) · (1,0,1)

w0 =

{

p · ((0,1),(0,2,0))+q · ((0,0),(0,1,0))+

(1−p−q) · ((0,0),(0,0,0))

w1 = ∆((0,0),(1,0,1))

w2 =

{

p · ((0,1),(1,2,1))+q · ((0,0),(1,1,1))+

(1−p−q) · ((0,0),(1,0,1))

w3 = ∆((0,0),(2,0))

Figure 3: A fragment of a masking game graph

Now, consider the masking game graph between NOMINAL and fault-limited FAULTY model (i.e., take

now into account the red part). This graph includes the red values corresponding to variable f. Notice

that here, the Refuter cannot produce a fault transition from vertex ((0,0), -,(1,1,1), -, -, -,R). Thus, in

this case, the Verifier manages to avoid reaching the error state verr.

A symbolic game graph. The graph for a stochastic masking game could be infinite since each proba-

bilistic node includes a coupling between the two contending distributions, and there can be uncountably

many of them. In the following, we introduce a finite description of stochastic masking games through a

symbolic representation that omits explicit reference to couplings. The definition of the symbolic game

graph is twofold. The first part captures the non-stochastic behaviour of the game by removing the

stochastic choice (δG) of the graph as well as the couplings on the vertices. The second part appends an

equation system to each probabilistic vertex whose solution space is the polytope defined by the set of

all couplings for the contending distributions.

Definition 3. Let A = (S,Σ,→,s0) and A′ = (S′,ΣF ,→′,s′0) be two PTSs. The symbolic game graph for

the stochastic masking game GA,A′ is defined by S G A,A′ = (V S G ,ES G ,V S G
R

,V S G
V

,V S G
P

,vS G
0), where:

V S G = V S G
R ∪VS G

V ∪V S G
P , where:

140 Quantifying Masking Fault-Tolerance via ...

V S G
R = {(s, -,s′, -, -,R) | s ∈ S∧ s′ ∈ S′}∪{verr}

V S G
V = {(s,σ 1,s′,µ , -,V) | s ∈ S∧ s′ ∈ S′∧σ ∈ Σ∧ s

σ
−→ µ}∪

{(s,σ 2,s′, -,µ ′,V) | s ∈ S∧ s′ ∈ S′∧σ ∈ ΣF ∧ s′
σ
−→′ µ ′}

V S G
P = {(s, -,s′,µ ,µ ′,P) | s ∈ S∧ s′ ∈ S′∧∃σ∈ΣF : (s

σ
−→ µ ∧ (σ∈F ∨µ = ∆s))∧ s′

σ
−→′ µ ′}

vS G
0 = (s0, -,s

′
0, -, -,R),

and ES G is the minimal set satisfying the following rules:

s
σ
−→ µ ⇒ 〈(s, -,s′, -, -,R),(s,σ 1,s′,µ , -,V)〉 ∈ ES G

s′
σ
−→′ µ ′ ⇒ 〈(s, -,s′, -, -,R),(s,σ 2,s′, -,µ ′,V)〉 ∈ ES G

s′
σ
−→′ µ ′ ⇒ 〈(s,σ 1,s′,µ , -,V),(s, -,s′ ,µ ,µ ′,P)〉 ∈ ES G

σ /∈ F ∧ s
σ
−→ µ ⇒ 〈(s,σ 2,s′, -,µ ′,V),(s, -,s′,µ ,µ ′,P)〉 ∈ ES G

F ∈ F ⇒ 〈(s,F2,s′, -,µ ′,V),(s, -,s′,∆s,µ
′,P)〉 ∈ ES G

(s, -,s′,µ ,µ ′,P) ∈V S G
P ∧ t ∈ Supp(µ)∧ t ′ ∈ Supp

(

µ ′
)

⇒ 〈(s, -,s′,µ ,µ ′,P),(t, -, t ′, -, -,R)〉 ∈ ES G

v ∈ (V S G
V ∪{verr})∧ (∄v′ 6= verr : 〈v,v′〉 ∈ ES G)⇒ 〈v,verr〉 ∈ ES G

In addition, for each v = (s, -,s′,µ ,µ ′,P) ∈ V S G
P

, consider the set of variables X(v) = {xsi,s j
| si ∈

Supp(µ)∧ s j ∈ Supp(µ ′)}, and the system of equations

Eq(v) =
{

∑s j∈Supp(µ ′) xsk ,s j
= µ(sk) | sk ∈ Supp (µ)

}

∪
{

∑sk∈Supp(µ) xsk,s j
= µ ′(s j) | s j ∈ Supp (µ ′)

}

∪
{

xsk,s j
≥ 0 | sk ∈ Supp (µ)∧ s j ∈ Supp (µ ′)

}

Notice that {x̄sk ,s j
}sk,s j

is a solution of Eq(v) if and only if there is a coupling w ∈ C(µ ,µ ′) such that

w(sk,s j) = x̄sk ,s j
for all sk ∈ Supp (µ) and s j ∈ Supp (µ ′).

Furthermore, given a set of game vertices V ′ ⊆V S G
R

, we define Eq(v,V ′) by extending Eq(v) with an

equation limiting the couplings in such a way that vertices in V ′ are not reached. Formally, Eq(v,V ′) =
Eq(v)∪

{

∑(s,-,s′,-,-,R)∈V ′ xs,s′ = 0
}

. By properly defining a family of sets V ′, we will show that the stochas-

tic masking game can be solved in polynomial time through the symbolic game graph.

Example 3. The fragment of the symbolic game graph of Example 1 in Fig. 3 is the same as de-

picted there only that all blue shaded components should be removed. (We also have the two vari-

ants here: one with the red values and the other one without them.) In the symbolic graph, ver-

tex v = ((0,0),tick,(0,0,0),µ , -,V), for example, has only one successor, in contraposition to vertex

((0,0),tick,(0,0,0),µ , -, -,V) that has uncountably many in the original game graph. Instead, v has

associated the set Eq(v) containing the following equations

x(0,1),(0,2,0)+ x(0,1),(0,1,0)+ x(0,1),(0,0,0) = p x(0,1),(0,2,0)+ x(0,0),(0,2,0) = p

x(0,0),(0,2,0)+ x(0,0),(0,1,0)+ x(0,0),(0,0,0) = 1−p x(0,1),(0,0,0)+ x(0,0),(0,0,0) = 1−p−q

x(0,1),(0,2,0) ≥ 0 x(0,1),(0,1,0) ≥ 0 x(0,1),(0,0,0) ≥ 0 x(0,1),(0,1,0)+ x(0,0),(0,1,0) = q

x(0,0),(0,2,0) ≥ 0 x(0,0),(0,1,0) ≥ 0 x(0,0),(0,0,0) ≥ 0

In particular, notice that, if w0 is as defined in Example 2, x̄s,s′ = w0(s,s
′) is a solution for this set of

equations.

Castro, D’Argenio, Demasi & Putruele 141

In the following we propose to use the symbolic game graph to solve the infinite game. By doing so,

we obtain a polynomial time procedure. We provide an inductive construction of vertex regions U i (for

i ∈ N) containing the collection of vertices from which the Refuter has a strategy for reaching the error

state with probability greater than 0 in at most i steps.

Let S G A,A′ = (V S G ,ES G ,V S G
R

,V S G
V

,V S G
P

,vS G
0) be a symbolic game graph for PTSs A and A′.

Define U =
⋃

i≥0U i where, for all i ≥ 0,

U0 = {verr} U i+1 = {v′ | v′ ∈V S G
R

∧PostS G (v′)∩ (
⋃

j≤iU
j) 6= /0}∪ (1)

{v′ | v′ ∈V S G
V

∧PostS G (v′)⊆
⋃

j≤iU
j}∪

{v′ | v′ ∈V S G
P

∧Eq(v′,PostS G (v′)∩ (
⋃

j≤iU
j)) has no solution}

The first line in U i+1 corresponds to the Refuter and adds a vertex if some successor is in some previous

level U j. The second line corresponds to the Verifier and adds a vertex if all its successors lie in some

previous U j. The last line corresponds to the probabilistic player. Notice that, if Eq(v′,Post(v′)∩U i) has

no solution, then every possible coupling will inevitably lead with some probability to a “losing” state of

a smaller level since, in particular, equation ∑(s,-,s′,-,-,R)∈(Post(v′)∩U i) xs,s′ = 0 cannot be satisfied.

The following theorem provides an algorithm to decide the stochastic masking game.

Theorem 2. Let GA,A′ be a stochastic game graph for PTSs A and A′, and let S G A,A′ be the correspond-

ing symbolic game graph. Then, the Verifier has a sure (or almost-sure) winning strategy in GA,A′ for

¬3verr if and only if vS G
0 /∈U.

Theorems 1 and 2 provide an alternative algorithm to decide whether there is a probabilistic masking

simulation between A and A′. This can be done in polynomial time, since Eq(v,C) can be solved in

polynomial time (e.g, using linear programming) and the number of iterations to construct U is bounded

by |V S G |. Since V S G linearly depends on the transitions of the involved PTSs, the complexity is in

O(Poly(|−→| · |−→′|)).

4 Quantifying Fault Tolerance

Probabilistic masking simulation determines whether a fault-tolerant implementation is able to com-

pletely mask faults. However, in practice, this kind of masking fault-tolerance is uncommon. Usually,

fault-tolerant systems are able to mask a number of faults before exhibiting a failure. In this section we

extend the game theory presented above to provide a measure for the system effectiveness on masking

faults. To do this, we extend the stochastic masking game with a quantitative objective function. The ex-

pected value of this function collects the (weighted) “milestones” that the fault-tolerant implementation

is expected to cross before failing. A milestone is any interesting event that may occur during a system

execution. For instance, a milestone may be the successful masking of a fault. In this case, the measure

will reflect the number of faults that are tolerated by the system before crashing. Another milestone

may be successful acknowledgments in a transmission protocol. This measures the expected number of

chunks that the protocol is able to transfer before failing. Thus, milestones are some designated action

labels on the implementation model and, as they may reflect different events, their value may depend on

the importance of such events.

Definition 4. Let A′ = (S′,ΣF ,→′,s′0) be a PTS modeling an implementation. A milestone is a function

m : ΣF → N0.

142 Quantifying Masking Fault-Tolerance via ...

Given a milestone m for A′, the reward rG
m on GA,A′ = (V G ,EG ,V G

R
,V G

V
,V G

P
,vG

0 ,δ
G) is defined by

rG
m(v) = m(σ) if v ∈ V G

V
and v[1] ∈ {σ 1,σ 2}; otherwise, rG

m(v) = 0. Function rG
m collects milestones

(when available) only once for each round of the game. This can be done only at Verifier’s vertices

since they are the only ones that save the label that it is being played in the round. The masking payoff

function is then defined by fm(ρ) = limn→∞(∑
n
i=0 rG

m(ρi)). Therefore, the payoff function fm represents

the total of weighted milestones that a fault-tolerant implementation is able to achieve until an error state

is reached. This type of payoff functions are usually called total rewards in the literature. One may

think of this as a game played by the fault-tolerance built-in mechanism and a (malicious) player that

chooses the way in which faults occur. In this game, the Verifier is the maximizer (she intends to obtain

as many milestones as possible) and the Refuter is the minimizer (she intends to prevent the Verifier from

collecting milestones).

Thus, the game aims to optimize EπV,πR

G ,vG
0

[fm], i.e., the expected value of random variable fm. One

technical issue with total rewards objectives is that the game value may be not well-defined in R. For

instance, there could be plays not reaching an end state wherein the players collect an infinite amount

of rewards. A usual condition for ensuring that the game value is well-defined is that of almost-surely

stopping, i.e., the game has to reach a sink vertex with probability 1, for every pair of strategies [19].

In [9], we have generalized this condition to that of almost-surely stopping under fairness, that is, the

error state verr is reached with probability 1 provided the Refuter plays fair. In this case the games are

well-defined in R and determined. In simple words, determination means that the knowledge of the

opponent’s strategy gives no benefit for the players.

It is worth noting that fairness is necessary to prevent the Refuter from stalling the game. For instance,

consider Example 1 and the stochastic masking game between the nominal and faulty models of Figs. 1

and 2 (omitting the red part). One would expect that the game leads to a failure with probability 1.

However, the Refuter has strategies to avoid verr with positive probability. For instance, the Refuter may

always play the reading action forcing the Verifier to mimic it forever and hence making the probability

of reaching the error equals 0. By doing this, the Refuter stalls the game, forbidding progress and hence

avoiding the occurrence of the fault. Clearly, this is against the intuitive behavior of faults which one

expects will eventually occur if waiting long enough. The assumption of fairness over Refuter plays rules

out this counter-intuitive behavior of the Refuter. Roughly speaking, a Refuter’s fair play is one in which

the Refuter commits to follow a strong fair pattern, i.e., that includes infinitely often any transition that is

enabled infinitely often. Then, a fair strategy for the Refuter is a strategy that always measures 1 on the

set of all the Refuter’s fair plays, regardless of the strategy of the Verifier. The definitions below follow

the style in [5, 4, 9].

Definition 5. Given a masking game GA,A′ = (V G ,EG ,V G
R
,V G

V
,V G

P
,vG

0 ,δ
G), the set of all Refuter’s fair

plays is defined by RFP = {ρ ∈ Ω | v ∈ inf(ρ)∩V G
R

⇒ Post(v) ⊆ inf(ρ)}. A Refuter strategy πR is said

to be almost-sure fair iff, for every Verifier’s strategy πV, Prob
πR,πV

G ,vG
0

(RFP) = 1. We let Πf
R

denote the set

of all fair strategies for the Refuter.

Under this concept, the stochastic masking game is almost-sure failing under fairness if for every

Verifier’s strategy and every Refuter’s fair strategy, the game leads to an error with probability 1. This is

formally defined as follows.

Definition 6. Let A and A′ be two PTSs. We say that the stochastic masking game GA,A′ is almost-sure

failing under fairness iff, for every strategy πV ∈ΠV and any fair strategy πR ∈ Πf
R

, Prob
πV,πR

G ,vG
0

(3verr) = 1.

Interestingly, under the strong fairness assumption, the determinacy of games is preserved for finite

stochastic games [9]. The rest of the section is precisely devoted to bring our setting to the framework

of [9] and thus provide an algorithmic solution.

Castro, D’Argenio, Demasi & Putruele 143

A strategy πi, i ∈ {R,V}, is semi-Markov if for every ρ̂, ρ̂ ′ ∈ (V G)∗ and v ∈ V G
i , |ρ̂ | = |ρ̂ ′| implies

πi(ρ̂v) = πi(ρ̂
′v), that is, the decisions of πi depend only on the length of the run and its last state. Thus,

we write πi(n,v) instead of πi(ρ̂v) if |ρ̂ | = n. Let ΠS
i denote the set of all semi-Markov strategies for

Player i and ΠSf
i the set of all its fair semi-Markov strategies.

The next lemma states that, if the Refuter plays a semi-Markov strategy, the Verifier achieves equal

results regardless whether she plays an arbitrary strategy or limits to playing only semi-Markov strategies.

The proof resembles that of [9, Lemma 2] taking care of the fact that the set of vertices of the stochastic

masking game is uncountable. Since probabilities are anyway discrete, this is not a major technical issue,

but it deserves attention in the proof.

Lemma 1. Let GA,A′ be a stochastic masking game graph and let πR ∈ ΠS
R

be a semi-Markov strategy.

Then, for any πV ∈ ΠV, there is a semi-Markov strategy π∗
V
∈ ΠS

V
such that EπV,πR

G ,v [fm] = E
π∗
V
,πR

G ,v [fm].

A Verifyier strategy π∗
V
∈ΠV is extreme if it only moves to probabilistic vertices containing couplings

that are on the polytope vertices, that is, if for all ρ̂ ∈ (V G)∗×V G
V

, π∗
V
(ρ̂)((s, -,s′,µ ,µ ′,w,P))> 0 implies

that w ∈ V(C(µ ,µ ′)). Let ΠXS
V

be the set of all extreme semi-Markov strategies for the Verifier.

Lemma 1 can be strengthened. Thus, if the Refuter plays a semi-Markov strategy, the Verifier can

achieve the same result as the general case by restricting herself to play only extreme semi-Markov

strategies.

Lemma 2. Let GA,A′ be a stochastic masking game graph and let πR ∈ ΠS
R

be a semi-Markov strategy.

Then, for any πV ∈ ΠS
V

, there is an extreme semi-Markov strategy π∗
V
∈ ΠXS

V
such that for all v ∈ V G

R
,

EπV,πR

G ,v [fm] = E
π∗
V
,πR

G ,v [fm].

The key of the proof of Lemma 2 lies on the construction of π∗
V

which is defined so that, for every

n ∈N and v1 ∈V G
V

, the probabilistic decision made by π∗
V
(n,v1) corresponds to a proper composition of

the probabilistic decisions of πV(n,v1), and each convex combination of vertex couplings that define the

coupling within each probabilistic successor v2 ∈ Supp(πV(n,v1)).
Notice that, by traveling only through probabilistic vertices on GA,A′ that are defined by vertex cou-

plings, only a finite number of the game vertices are touched when the Verifier uses extreme strategies.

Thus, we let the stochastic game graph HA,A′ be the vertex snippet of GA,A′ and define it to be the same

as GA,A′ only that probabilistic vertices are limited to those that contain couplings in the vertices of the

polytope, that is,

V H
P = {(s, -,s′,µ ,µ ′,w,P) | s ∈ S∧ s′ ∈ S′∧w ∈ V(C(µ ,µ ′))∧

∃σ∈ΣF : (s
σ
−→ µ ∨ (σ∈F ∧µ = ∆s))∧ s′

σ
−→′ µ ′}.

The rest of the elements of HA,A′ are defined by properly restricting the domain of the respective compo-

nents in GA,A′ . Notice that HA,A′ is finite.

Now observe that, if the Verifier semi-Markov strategies are considered as functions with domain

in (N×V G
V
), then the set of all extreme semi-Markov strategies in GA,A′ corresponds to the set of all

semi-Markov strategies of HA,A′ . That is: ΠXS
V,G = ΠS

V,H , where subscripts G and H indicate whether

the strategies belong to GA,A′ or HA,A′ , respectively. Similarly, the same holds for the set of all extreme

deterministic memoryless strategies, that is: ΠXMD
V,G = ΠMD

V,H . Given the fact that V G
R

= V H
R

and V G
V

=

V H
V

, the set of all Refuter’s deterministic memoryless fair strategies are the same in both game graphs,

i.e., ΠMDf
R,G = ΠMDf

R,H . The following proposition follows directly from these observations.

Proposition 1. Let GA,A′ be a stochastic game graph and HA,A′ its vertex snippet. Then, for all v ∈V G
R

(=
V H
R

), we have:

144 Quantifying Masking Fault-Tolerance via ...

1. for all πR ∈ ΠMDf
R,G ,(= ΠMDf

R,H), supπV∈ΠXS
V,G

EπV,πR

G ,v [fm] = supπV∈ΠS
V,H

EπV,πR

H ,v [fm]; and

2. for all πV ∈ ΠXMD
V,G (= ΠMD

V,H), infπR∈Πf
R,G

EπV,πR

G ,v [fm] = infπR∈Πf
R,H

EπV,πR

H ,v [fm].

The following theorem not only states that the game for optimizing the expected value of the masking

payoff function is determined, but it also guarantees that it can be solved using the finite vertex snippet

of the stochastic game subgraph.

Theorem 3. Let GA,A′ be a stochastic game graph whose vertex snippet HA,A′ is almost-sure failing

under fairness. Then, for all v ∈V G
R

(=V H
R

),

inf
πR∈Πf

R,G

sup
πV∈ΠV,G

EπV,πR

G ,v [fm] = inf
πR∈ΠMDf

R,H

sup
πV∈ΠMD

V,H

EπV ,πR

H ,v [fm]

= sup
πV∈ΠMD

V,H

inf
πR∈ΠMDf

R,H

EπV,πR

H ,v [fm] = sup
πV∈ΠV,G

inf
πR∈Πf

R,G

EπV,πR

G ,v [fm].

Proof. We first recall that the almost-sure failing under fairness property is equivalent to the stopping

under fairness property in [9]. That is why we can safely apply the results from [9] on HA,A′ in the

calculations below.

infπR∈Πf
R,G

supπV∈ΠV,G
EπV,πR

G ,v [fm]≤ infπR∈ΠMDf
R,G

supπV∈ΠV,G
EπV,πR

G ,v [fm] (ΠMDf
R,G ⊆ Πf

R,G) (⋆)

= infπR∈ΠMDf
R,G

supπV∈ΠS
V,G

EπV,πR

G ,v [fm] (by Lemma 1)

= infπR∈ΠMDf
R,G

supπV∈ΠXS
V,G

EπV,πR

G ,v [fm] (by Lemma 2)

= infπR∈ΠMDf
R,H

supπV∈ΠS
V,H

EπV,πR

H ,v [fm] (by Prop. 1.1)

≤ infπR∈ΠMDf
R,H

supπV∈ΠMD
V,H

EπV,πR

H ,v [fm] (by [9, Thm. 5]) (⋆)

= supπV∈ΠMD
V,H

infπR∈ΠMDf
R,H

EπV,πR

H ,v [fm] (by [9, Thm. 5]) (⋆)

= supπV∈ΠMD
V,H

infπR∈Πf
R,H

EπV,πR

H ,v [fm] (by [9, Lemma 6])

= supπV∈ΠXMD
V,G

infπR∈Πf
R,G

EπV,πR

G ,v [fm] (by Prop. 1.2)

≤ supπV∈ΠV,G
infπR∈Πf

R,G
EπV,πR

G ,v [fm] (ΠXMD
V,G ⊆ ΠV,G) (⋆)

≤ infπR∈Πf
R,G

supπV∈ΠV,G
EπV,πR

G ,v [fm] (prop. inf/sup)

Formulas marked with (⋆) are those in the statement of the theorem and, because the first and last formu-

las are the same, all of them are equal.

Theorem 3 guarantees that the stochastic masking game can be solved through its finite vertex snippet

using the algorithm proposed in [9]. The next theorem uses this fact to provide a set of Bellman equa-

tions based on the symbolic game graph whose greatest fixpoint solution is the solution of the original

stochastic masking game.

Theorem 4. Let GA,A′ be a stochastic masking game graph whose vertex snippet is almost-sure failing
under fairness and let m be a milestone for A′. Let S G A,A′ be the corresponding symbolic game graph.

Let νΓ be the greatest fixpoint of the functional Γ defined, for all v ∈V S G , as follows:

Γ(f)(v) =

min
(

U,maxw∈V(C(v[3],v[4])) ∑v′∈Post(v) w(v′[0],v′[2]) f (v′)
)

if v ∈VS G
P

min
(

U,rS G
m (v)+max{ f (v′) | v′ ∈ Post(v)}

)

if v ∈VS G
V

min(U,min{ f (v′) | v′ ∈ Post(v))} if v ∈VS G
R

\{verr}

0 if v = verr

Castro, D’Argenio, Demasi & Putruele 145

where v[i] is the i-th coordinate of v (i ≥ 0), rS G
m (v[0],v[1],v[2],v[3],v[4],v[6]) = rG

m(v) for every v ∈V G ,

and U ∈R such that U ≥ infπR∈ΠMDf
R

supπV∈ΠMD
V

EπV,πR

GA,A′ ,v
[fm], for every v ∈V G . Then, the value of the game

GA,A′ at its initial state is equal to νΓ(vS G
0).

Constant U is an upper bound needed so Knaster-Tarski applies on the complete lattice [0,U]V [9].

Notice that Theorems 3 and 4 only require HA,A′ to be almost-sure failing under fairness,

and if GA,A′ is almost-sure failing under fairness, necessarily so is HA,A′ , which makes the theo-

rems stronger. Nonetheless, one would expect that also if HA,A′ is almost-sure failing under fair-

ness, so is GA,A′ . That is, we would like that infπV∈ΠV,πR∈Πf
R

Prob
πV,πR

G ,vG
0

(3verr) = 1 if and only if

infπV∈ΠV,πR∈Πf
R

Prob
πV ,πR

H ,vH
0

(3verr) = 1. Unfortunately we were not able to prove this equivalence, and

the most we know (thanks to variants of Lemmas 1 and 2) is that infπV∈ΠV ,πR∈Πf
R

Prob
πV ,πR

H ,vH
0

(3verr) = 1

implies both infπV∈ΠV ,πR∈ΠSf
R

Prob
πV,πR

G ,vG
0

(3verr) = 1 and infπV∈ΠS
V
,πR∈Πf

R

Prob
πV ,πR

G ,vG
0

(3verr) = 1, that is, at

least one of the set of strategies needs to be restricted to the semi-Markov ones.
Since HA,A′ is finite, it can be checked whether it is almost-sure failing under fairness by using

directly the algorithm proposed in [9, Theorem 3]. However, we could alternatively check it avoiding
the explosion introduced by the vertex couplings through the symbolic game graph. Thus, we define the
predecessor sets in S G A,A′ for a given set C of symbolic vertices, as follows:

∃PreS G
f (C) = {v ∈V S G | Post(v)∩C 6= /0}

∀PreS G
f (C) = {v ∈V S G

V
| Post(v)⊆C}∪{v ∈VS G

R
| Post(v)∩C 6= /0}

∪{v ∈VS G
P

| Eq(v,C) has no solution }

∃PreS G
f (C) collects all vertices v for which there is a coupling that leads to a vertex v′ in C, and do

so by simply using the edge ES G (through Post) even for the probabilistic vertices. The definition of

∀PreS G
f (C) is more assorted. The first set collects all the Verifier vertices v that inevitably lead to C.

The second set collects all Refuter vertices v that leads to some state in C (since the Refuter is fair, any

successor of v will eventually be taken). The last set collects all probabilistic vertices v for which there is

no coupling “avoiding” C. This is encoded by checking that Eq(v,C) cannot be solved, since a coupling

solving Eq(v,C) defines a probabilistic transition that avoids C with probability 1.

The next theorem provides an algorithm to check whether a vertex snippet is almost-sure failing

under fairness using ∃PreS G
f and ∀PreS G

f .

Theorem 5. The vertex snippet HA,A′ of the stochastic masking game GA,A′ is almost-sure failing under

fairness if and only if vS G
0 ∈V S G \∃PreS G

f

∗
(V S G \∀PreS G

f

∗
({verr})), where vS G

0 is the initial state

of S G A,A′ (the symbolic version of GA,A′) and V S G is the sets of vertices of S G A,A′ .

As Eq(v,C) can be computed in polynomial time, so do ∃PreS G
f (C) and ∀PreS G

f (C). As a conse-

quence, the problem of deciding whether a vertex snippet HA,A′ is almost-sure failing under fairness is

polynomial on the sizes of A and A′.

5 Related Work

Since our metric is a bisimulation-based notion aimed at quantifying how robust a masking fault tolerant

algorithm is, the idea of approximate bisimulation immediately shows up. In this category it is worth

mentioning ε-bisimulations [21, 16], in which related states that imitate each other do not differ more

than an ε ∈ [0,1] on the probabilistic value. Therefore ε-bisimulations are not able to accumulate the

difference produced in each step. So, these relations cannot measure to what extent faults can be tolerated

146 Quantifying Masking Fault-Tolerance via ...

over time. The principle of (1-bounded) bisimulation metrics [17, 7] is different as they aim to quantify

the similarity of whole models rather than single steps. Nonetheless, if the models inevitably differ (as

it is the case of almost-sure failing systems) the metric always equals 1 (maximum difference), which

again cannot measure how long faults are tolerated. Instead, bisimulation metrics with discount [17, 7]

do give an idea of robustness since the discount factor inversely weights how distant in a trace the

difference between the models is eventually witnessed. However, these metrics only provide a relative

value (smaller values mean more robust) and cannot focus on particular events as our metric does. In

any case, all these notions have been characterized by games which served as a base for algorithmic

solutions [16, 7, 3, 33]. In [16] a non-stochastic game for ε-bisimulation is provided where each round

is divided in five steps in which both Refuter and Verifier alternate twice. Therein the difference is

quantified independently in each step, so it is easy to avoid the use of couplings. Instead, the stochastic

games for bisimulation metrics [7] are very much similar to ours with the difference that the Verifier

only chooses a vertex coupling instead of any possible coupling as we do here, and it considers only

deterministic memoryless strategies.

In [26] a weak simulation quasimetric is introduced and used to reason about the evolution of gossip

protocols to compare protocols with similar behavior up to a certain tolerance. Though its purpose

is close to ours, the quasimetric suffers the same problem as bisimulation metrics returning 1 when

comparing protocols with almost-sure failing implementations.

Metrics like Mean-Time To Failure (MTTF) [29] are normally used. However, our framework is

more general than such metrics since it is not limited to count time units as other events may be set as

milestones. In addition, the computation of MTTF would normally require the identification of failure

states in an ad hoc manner while we do this at a higher level of abstraction.

6 Concluding remarks

We presented a relation of masking fault-tolerance between probabilistic transition systems and a corre-

sponding stochastic game characterization. As the game could be infinite, we proposed an alternative

finite symbolic representation by means of which the game can be solved in polynomial time. We ex-

tended the game with quantitative objectives based on collecting “milestones” thus providing a way

to quantify how good an implementation is for masking faults. We proved that the resulting game is

determined and can be computed by solving a collection of functional equations. We also provided a

polynomial technique to decide whether a game is almost-sure failing under fairness. In this article we

focused on the theoretical contribution. We leave as further work the description of the implementation

of this idea.

Though it does not affect our result of determinacy nor the algorithmic solution proposed here, it

remains open to show whether it holds that whenever the vertex snippet is almost-sure failing under

fairness so is the general stochastic masking game. Also, notice that our solution is based on a strong

version of bisimulation. A characterization based on probabilistic weak bisimulation would facilitate the

application of our approach to complex systems.

References

[1] Luca de Alfaro, Marco Faella & Mariëlle Stoelinga (2009): Linear and Branching System Metrics. IEEE

Trans. Software Eng. 35(2), pp. 258–273, doi:10.1109/TSE.2008.106.

https://doi.org/10.1109/TSE.2008.106

Castro, D’Argenio, Demasi & Putruele 147

[2] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen & Radu Mardare (2017): On-the-Fly Computation of Bisimi-

larity Distances. Log. Methods Comput. Sci. 13(2), doi:10.23638/LMCS-13(2:13)2017.

[3] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare, Qiyi Tang & Franck van Breugel (2019):

Computing Probabilistic Bisimilarity Distances for Probabilistic Automata. In Wan J. Fokkink & Rob van

Glabbeek, editors: 30th International Conference on Concurrency Theory, CONCUR 2019, LIPIcs 140,

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 9:1–9:17, doi:10.4230/LIPIcs.CONCUR.2019.9.

[4] Christel Baier & Joost-Pieter Katoen (2008): Principles of model checking. MIT Press.

[5] Christel Baier & Marta Z. Kwiatkowska (1998): Model Checking for a Probabilistic Branching Time Logic

with Fairness. Distributed Comput. 11(3), pp. 125–155, doi:10.1007/s004460050046.

[6] Franck van Breugel & James Worrell (2006): Approximating and computing behavioural distances in prob-

abilistic transition systems. Theor. Comput. Sci. 360(1-3), pp. 373–385, doi:10.1016/j.tcs.2006.05.

021.

[7] Franck van Breugel & James Worrell (2014): The Complexity of Computing a Bisimilarity Pseudometric on

Probabilistic Automata. In Franck van Breugel, Elham Kashefi, Catuscia Palamidessi & Jan Rutten, editors:

Horizons of the Mind. A Tribute to Prakash Panangaden - Essays Dedicated to Prakash Panangaden on the

Occasion of His 60th Birthday, Lecture Notes in Computer Science 8464, Springer, pp. 191–213, doi:10.

1007/978-3-319-06880-0_10.

[8] Pablo F. Castro, Pedro R. D’Argenio, Ramiro Demasi & Luciano Putruele (2019): Measuring Masking Fault-

Tolerance. In Tomás Vojnar & Lijun Zhang, editors: Tools and Algorithms for the Construction and Analysis

of Systems - 25th International Conference, TACAS 2019, Part II, Lecture Notes in Computer Science 11428,

Springer, pp. 375–392, doi:10.1007/978-3-030-17465-1_21.

[9] Pablo F. Castro, Pedro R. D’Argenio, Ramiro Demasi & Luciano Putruele (2022): Playing Against Fair

Adversaries in Stochastic Games with Total Rewards. In Sharon Shoham & Yakir Vizel, editors: Computer

Aided Verification - 34th International Conference, CAV 2022, Part II, Lecture Notes in Computer Science

13372, Springer, pp. 48–69, doi:10.1007/978-3-031-13188-2_3.

[10] Pavol Cerný, Thomas A. Henzinger & Arjun Radhakrishna (2012): Simulation distances. Theor. Comput.

Sci. 413(1), pp. 21–35, doi:10.1016/j.tcs.2011.08.002.

[11] Krishnendu Chatterjee & Thomas A. Henzinger (2008): Value Iteration. In Orna Grumberg & Helmut Veith,

editors: 25 Years of Model Checking - History, Achievements, Perspectives, Lecture Notes in Computer

Science 5000, Springer, pp. 107–138, doi:10.1007/978-3-540-69850-0_7.

[12] Krishnendu Chatterjee & Thomas A. Henzinger (2012): A survey of stochastic ω-regular games. J. Comput.

Syst. Sci. 78(2), pp. 394–413, doi:10.1016/j.jcss.2011.05.002.

[13] Anne Condon (1990): On Algorithms for Simple Stochastic Games. In Jin-Yi Cai, editor: Advances In Com-

putational Complexity Theory, Proceedings of a DIMACS Workshop, DIMACS Series in Discrete Mathe-

matics and Theoretical Computer Science 13, DIMACS/AMS, pp. 51–71, doi:10.1090/dimacs/013/04.

[14] Anne Condon (1992): The Complexity of Stochastic Games. Inf. Comput. 96(2), pp. 203–224, doi:10.1016/

0890-5401(92)90048-K.

[15] Josée Desharnais, Vineet Gupta, Radha Jagadeesan & Prakash Panangaden (2004): Metrics for labelled

Markov processes. Theor. Comput. Sci. 318(3), pp. 323–354, doi:10.1016/j.tcs.2003.09.013.

[16] Josée Desharnais, Radha Jagadeesan, Vineet Gupta & Prakash Panangaden (2002): The Metric Analogue of

Weak Bisimulation for Probabilistic Processes. In: 17th IEEE Symposium on Logic in Computer Science

(LICS 2002), 22-25 July 2002, Copenhagen, Denmark, Proceedings, IEEE Computer Society, pp. 413–422,

doi:10.1109/LICS.2002.1029849.

[17] Josée Desharnais, François Laviolette & Mathieu Tracol (2008): Approximate Analysis of Probabilistic Pro-

cesses: Logic, Simulation and Games. In: Fifth International Conference on the Quantitative Evaluaiton of

Systems (QEST 2008), 14-17 September 2008, Saint-Malo, France, IEEE Computer Society, pp. 264–273,

doi:10.1109/QEST.2008.42.

https://doi.org/10.23638/LMCS-13(2:13)2017
https://doi.org/10.4230/LIPIcs.CONCUR.2019.9
https://doi.org/10.1007/s004460050046
https://doi.org/10.1016/j.tcs.2006.05.021
https://doi.org/10.1016/j.tcs.2006.05.021
https://doi.org/10.1007/978-3-319-06880-0_10
https://doi.org/10.1007/978-3-319-06880-0_10
https://doi.org/10.1007/978-3-030-17465-1_21
https://doi.org/10.1007/978-3-031-13188-2_3
https://doi.org/10.1016/j.tcs.2011.08.002
https://doi.org/10.1007/978-3-540-69850-0_7
https://doi.org/10.1016/j.jcss.2011.05.002
https://doi.org/10.1090/dimacs/013/04
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1109/LICS.2002.1029849
https://doi.org/10.1109/QEST.2008.42

148 Quantifying Masking Fault-Tolerance via ...

[18] Josée Desharnais, François Laviolette & Amélie Turgeon (2011): A logical duality for underspecified proba-

bilistic systems. Inf. Comput. 209(5), pp. 850–871, doi:10.1016/j.ic.2010.12.005.

[19] Jerzy Filar & Koos Vrieze (1996): Competitive Markov Decision Processes. Springer-Verlag, Berlin, Heidel-

berg, doi:10.1007/978-1-4612-4054-9.

[20] Felix C. Gärtner (1999): Fundamentals of Fault-Tolerant Distributed Computing in Asynchronous Environ-

ments. ACM Comput. Surv. 31(1), pp. 1–26, doi:10.1145/311531.311532.

[21] Alessandro Giacalone, Chi-Chang Jou & Scott A. Smolka (1990): Algebraic Reasoning for Probabilistic

Concurrent Systems. In Manfred Broy & Cliff B. Jones, editors: Programming concepts and methods: Pro-

ceedings of the IFIP Working Group 2.2, 2.3 Working Conference on Programming Concepts and Methods,

Sea of Galilee, Israel, 2-5 April, 1990, North-Holland, pp. 443–458.

[22] Thomas A. Henzinger (2013): Quantitative reactive modeling and verification. Comput. Sci. Res. Dev. 28(4),

pp. 331–344, doi:10.1007/s00450-013-0251-7.

[23] Thomas A. Henzinger, Rupak Majumdar & Vinayak S. Prabhu (2005): Quantifying Similarities Between

Timed Systems. In Paul Pettersson & Wang Yi, editors: Formal Modeling and Analysis of Timed Systems,

Third International Conference, FORMATS 2005, Lecture Notes in Computer Science 3829, Springer, pp.

226–241, doi:10.1007/11603009_18.

[24] Edon Kelmendi, Julia Krämer, Jan Kretı́nský & Maximilian Weininger (2018): Value Iteration for Simple

Stochastic Games: Stopping Criterion and Learning Algorithm. In Hana Chockler & Georg Weissenbacher,

editors: Computer Aided Verification - 30th International Conference, CAV 2018, Proceedings, Part I, Lec-

ture Notes in Computer Science 10981, Springer, pp. 623–642, doi:10.1007/978-3-319-96145-3_36.

[25] Marta Z. Kwiatkowska, Gethin Norman & David Parker (2011): PRISM 4.0: Verification of Probabilis-

tic Real-Time Systems. In Ganesh Gopalakrishnan & Shaz Qadeer, editors: Computer Aided Verification -

23rd International Conference, CAV 2011, Lecture Notes in Computer Science 6806, Springer, pp. 585–591,

doi:10.1007/978-3-642-22110-1_47.

[26] Ruggero Lanotte, Massimo Merro & Simone Tini (2017): Weak Simulation Quasimetric in a Gossip Scenario.

In Ahmed Bouajjani & Alexandra Silva, editors: Formal Techniques for Distributed Objects, Components,

and Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Lecture Notes in Computer Science

10321, Springer, pp. 139–155, doi:10.1007/978-3-319-60225-7_10.

[27] Kim G. Larsen, Uli Fahrenberg & Claus R. Thrane (2011): Metrics for weighted transition systems: Ax-

iomatization and complexity. Theor. Comput. Sci. 412(28), pp. 3358–3369, doi:10.1016/j.tcs.2011.04.

003.

[28] Kim G. Larsen & Arne Skou (1991): Bisimulation through Probabilistic Testing. Inf. Comput. 94(1), pp.

1–28, doi:10.1016/0890-5401(91)90030-6.

[29] Jens Lienig & Hans Bruemmer (2017): Fundamentals of Electronic Systems Design, chapter Reliability

Analysis. Springer International Publishing, doi:10.1007/978-3-319-55840-0.

[30] Roberto Segala (1995): Modeling and verification of randomized distributed real-time systems. Ph.D. thesis,

Massachusetts Institute of Technology, Cambridge, MA, USA.

[31] Colin Stirling (1998): The Joys of Bisimulation. In Lubos Brim, Jozef Gruska & Jirı́ Zlatuska, editors:

Mathematical Foundations of Computer Science 1998, 23rd International Symposium, MFCS’98, Lecture

Notes in Computer Science 1450, Springer, pp. 142–151, doi:10.1007/BFb0055763.

[32] Qiyi Tang & Franck van Breugel (2018): Deciding Probabilistic Bisimilarity Distance One for Labelled

Markov Chains. In Hana Chockler & Georg Weissenbacher, editors: Computer Aided Verification - 30th

International Conference, CAV 2018, Part I, Lecture Notes in Computer Science 10981, Springer, pp. 681–

699, doi:10.1007/978-3-319-96145-3_39.

[33] Qiyi Tang & Franck van Breugel (2020): Deciding probabilistic bisimilarity distance one for probabilistic

automata. J. Comput. Syst. Sci. 111, pp. 57–84, doi:10.1016/j.jcss.2020.02.003.

[34] Claus R. Thrane, Uli Fahrenberg & Kim G. Larsen (2010): Quantitative analysis of weighted transition

systems. J. Log. Algebraic Methods Program. 79(7), pp. 689–703, doi:10.1016/j.jlap.2010.07.010.

https://doi.org/10.1016/j.ic.2010.12.005
https://doi.org/10.1007/978-1-4612-4054-9
https://doi.org/10.1145/311531.311532
https://doi.org/10.1007/s00450-013-0251-7
https://doi.org/10.1007/11603009_18
https://doi.org/10.1007/978-3-319-96145-3_36
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-60225-7_10
https://doi.org/10.1016/j.tcs.2011.04.003
https://doi.org/10.1016/j.tcs.2011.04.003
https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1007/978-3-319-55840-0
https://doi.org/10.1007/BFb0055763
https://doi.org/10.1007/978-3-319-96145-3_39
https://doi.org/10.1016/j.jcss.2020.02.003
https://doi.org/10.1016/j.jlap.2010.07.010

G. Caltais and C. A. Mezzina (Eds): Combined Workshop on
Expressiveness in Concurrency and Structural Operational Semantics
(EXPRESS/SOS 2023).
EPTCS 387, 2023, pp. 149–167, doi:10.4204/EPTCS.387.11

© S. Oguchi & S. Yuen
This work is licensed under the
Creative Commons Attribution License.

CRIL: A Concurrent Reversible Intermediate Language

Shunya Oguchi Shoji Yuen
Graduate School of Informatics, Nagoya University

Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
{oguchi321,yuen}@sqlab.jp

We present a reversible intermediate language with concurrency for translating a high-level con-
current programming language to another lower-level concurrent programming language, keeping
reversibility. Intermediate languages are commonly used in compiling a source program to an ob-
ject code program closer to the machine code, where an intermediate language enables behavioral
analysis and optimization to be decomposed in steps. We propose CRIL (Concurrent Reversible In-
termediate Language) as an extension of RIL used by Mogensen for a functional reversible language,
incorporating a multi-thread process invocation and the synchronization primitives based on the P-V
operations. We show that the operational semantics of CRIL enjoy the properties of reversibility,
including the causal safety and causal liveness proposed by Lanese et al., checking the axiomatic
properties. The operational semantics is defined by composing the bidirectional control flow with the
dependency information on updating the memory, called annotation DAG. We show a simple exam-
ple of ‘airline ticketing’ to illustrate how CRIL preserves the causality for reversibility in imperative
programs with concurrency.

1 Introduction

Reversible programming languages have been proposed to describe reversible computation where the
control flows both forward and backward [24, 4, 23, 6]. They directly describe reversible computation
and develop new aspects of software development since reversibility holds all information at any point
of execution. In forward-only execution, the computation can overwrite the part of its intermediate
history unless it is used in the following computation for efficiency. In analyzing the behavior, such as
debugging, it is common to replay the execution to the point in focus to recreate the lost part of history.
For a concurrent program, replaying the execution is usually difficult since updating shared resources
among multiple control threads depends on the runtime environment.

Intermediate languages mediate the translation from the source language to a low-level machine
language for execution. Step-by-step translation via intermediate languages is a common technique for
optimization in compilers. The intermediate language in LLVM [14] is often used as a behavioral model
for program analysis.

Mogensen uses RIL [16] as an intermediate language with reversibility for a functional reversible
language in the memory usage analysis. RSSA [17] based on RIL is used for compiling and optimizing
Janus programs [9, 3]. Reversibility with concurrency has been studied in process calculi [2, 20, 11, 10],
in event structures [18, 19, 21, 15] and recently in programming languages such as Erlang [12] and a
simple imperative programming language [6, 8].

We propose a reversible intermediate language CRIL by extending RIL. CRIL extends RIL by allow-
ing multiple blocks to run concurrently and the synchronization primitive based on the P-V operations.
In CRIL, concurrent blocks interact with each other via shared variables. To establish the reversibility
for concurrent programs, the causality among shared variables has to be preserved. Unlike sequential

http://dx.doi.org/10.4204/EPTCS.387.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

150 CRIL: A Concurrent Reversible Intermediate Language

reversible programs, even if one step of a program is reversible, the whole program is not reversible in
general since shared variables may not be reversed correctly.

To make a program of CRIL reversible, we give the operational semantics as the labeled transition
system, LTSICRIL, as the composition of the operational semantics with one-step reversibility and a data
structure called ‘annotation DAG’. An annotation DAG accumulates the causality of updating memory in
a forward execution and rolls back the causality to control the reversed flow in the backward execution.
We show that LTSICRIL has the basic properties for reversibility proposed in [13]. Using the approach of
[13], it is shown that LTSICRIL enjoys the Causal Safety and the Causal Liveness, which are important in
analyzing CRIL programs compositionally.

By translating a high-level programming language to CRIL, LTSICRIL works as a virtual machine,
and its behavior is guaranteed to be reversible. CRIL enables fine-grained behavioral analysis such as
optimization and reversible debugging. In section 4, we present a simple example of airline ticketing
given in [5] to enable reversible debugging.

The paper is organized as follows. Section 2 presents the syntax of CRIL and the operational seman-
tics for control flow. Section 3 introduces annotation DAG as a data structure to store the causality of
updating memory. We define LTSICRIL as the operational semantics for CRIL and show the reversibility
of LTSICRIL, which is followed by the airline ticketing example in section 4. Section 5 presents conclud-
ing remarks.

2 CRIL

Pg ::= b∗

b ::= instb | callb
instb ::= entry inst exit
entry ::= l <- | l;l <- e | begin l
exit ::= -> l | e -> l;l | end l
inst ::= left ⊕= e | left <-> left

| V x | P x | assert e | skip
callb ::= l <- call l(, l)∗ -> l

e ::= right⊙ right | !right
left ::= x | M[x]

right ::= k | left
⊕ ::= + | - | ^
⊙ ::= ⊕ | == | != | < | <= | >

| >= | && | ||

Figure 1: The syntax of CRIL

The syntax of CRIL is defined in figure 1. Following RIL
[16], a CRIL program consists of an unordered set of basic
blocks. Given a set of labels L , a block has an entry point
followed by a block body and an exit point with labels. A
block body is either a basic instruction or a call statement.

2.1 Basic block

We assume all references to variables have a global scope
and there exists a heap memory M indexed by integers,
where M[x] denotes the x-th element in M. An expression
e is either an arithmetic expression or a boolean expression
with the usual operators +,-,^,==,!=,<,<=,>,>=,&&,||,!
of the C language, where ^ is the bitwise exclusive OR op-
eration. The boolean operators and logical connectives treat
0 as false and any non-0 value as true. An expression can contain integer constants, which are denoted
by k.

Entry/exit point An entry/exit point of a basic block is the following forms:

Entry point Exit point
(1) l <- (1’) -> l
(2) l1;l2 <- e (2’) e -> l1;l2
(3) begin l (3’) end l

S. Oguchi & S. Yuen 151

where l, l1, l2 ∈L . We write entry(b) for the entry point of a basic block b, and exit(b) for the exit point
of a basic block b.

The informal meaning of each item is explained as follows:

(1) and (1’): l <- receives the control at l unconditionally in a forward execution. In a backward execu-
tion, it sends the control to the block that receives the control at l. -> l dually works in the reversed way
of l <-.

(2) and (2’): l1; l2 <- e receives the control at l1 when e is evaluated to a non-0 value and at l2 otherwise in
a forward execution. In a backward execution, it returns the control to the block that receives the control
at l1 when e is evaluated to non-0 and at l2 otherwise. e -> l1;l2 dually works in the reversed way of
l1; l2 <- e.

(3) and (3’): begin l receives the control from the call statement labeled by l in a forward execution. In
a backward execution, it returns the control to the statement labeled by l. end l dually works in the
reversed way of end l.

A basic block is either an instruction block or a call statement.

Instruction block Basic instruction is in the forms:
(1) left⊕= e (3) V x (5) assert e
(2) left1 <-> left2 (4) P x (6) skip

We write inst(b) for the basic instruction in b. The informal semantics is explained as follows:

(1): left⊕= e is an update statement where left is a left-value, and ⊕ ∈ {+,-,^}. left is relatively updated
by e in that +=, -=, and ^= with the same semantics as in the C language. If left = x, x must not appear
in e. If left = M[x], heap references must not appear in e.

(2): left1 <-> left2 is an exchange where left1 and left2 are left-values. It swaps the values specified by
left1 and left2. The same variable must not appear on both sides of <->.

(3) and (4): V x and P x are the P and V operations for synchronization, which correspond to those com-
monly used in operating systems. We assume variables in P and V instruction only appear as the param-
eters of P and V. In a forward execution, V x is defined when x is 0 and terminates when x is 1 and P x is
defined when x is 1 and terminates when x is 0. In a backward execution, V x and P x work as P x and V x
of the forward execution respectively.

(5): assert e aborts the execution if e evaluates to 0, and does nothing otherwise.
(6): skip does nothing in either direction.

We call R = Vars ∪ {M} memory resources. Let Var(E) be the set of memory resource refer-
ences appearing in E, where E is one of entry, exit, or inst in the grammar of figure 1. For example,
Var(z-=M[x]+y) = {M,x,y,z}. read(b) is the memory resources that b uses, and write(b) is the memory
resources that b updates.

read(b) = Var(entry(b))
∪ Var(inst(b))
∪ Var(exit(b))

write(b) =

{x} If inst(b) = x⊕= e
{M} If inst(b) = M[x]⊕= e
{x,y} If inst(b) = x <-> y
{x,M} If inst(b) ∈ {x <-> M[y],M[y] <-> x}
{M} If inst(b) = M[x] <-> M[y]
{x} If inst(b) ∈ {P x,V x}
∅ Otherwise.

152 CRIL: A Concurrent Reversible Intermediate Language

Call statement A call statement is a basic block in the following form:

l <- call l1, · · ·,ln -> l′ (n≥ 1)

When n = 1, it behaves as a subroutine call in RIL. If n ≥ 2, the controls are simultaneously sent
to all basic blocks with begin li in the forward execution, and to all basic blocks with end li in the
backward execution. In a forward execution, call l1, · · ·,ln terminates when all controls are returned to
this block. In a backward execution, it sends the controls to the blocks whose exit points are end li.

As in RIL, call appears only in a basic block whose entry and exit parts are unconditional, and not
in any begin and end blocks. CRIL does not have uncall for a call statement since uncall makes
the semantics more complex in that an uncall nested in multiple calls causes the mixture of forward and
backward execution for process blocks. An uncall can be implemented as a symmetrical call.

2.2 Process

For a basic block b, in(b),out(b)⊆L are defined as follows:

in(b) =

{l} if entry(b) = l <-
{l1, l2} if entry(b) = l1; l2 <- e
∅ if entry(b) = begin l

out(b) =

{l} if exit(b) = -> l
{l1, l2} if exit(b) = e -> l1; l2
∅ if exit(b) = end l

Basic blocks b1 and b2 are connected, written as b1 ./ b2, if out(b1)∩ in(b2) 6=∅ or in(b1)∩out(b2) 6=
∅. A process block of b is PB(b,Pg) = {b′ ∈ Pg | b′ ./∗ b}, where ∗ stands for reflexive and transitive
closure. No basic block is shared among process blocks since they are the equivalence classes of ./∗,
which is an equivalence relation on basic blocks.

Let L1(B) =
⋃

b∈B(in(b)∪out(b)) and L2(B) = {l | ∃b ∈ B. entry(b) = begin l ∨ exit(b) = end l}.
A CRIL program Pg is well-formed when it satisfies the following conditions:

(1): For all l ∈ L1(Pg), there exists a unique pair (b1,b2) such that in(b1)∩out(b2) = {l};
(2): For all l ∈ L2(Pg), there exists a unique pair (b1,b2) such that entry(b1) = begin l and exit(b2) =
end l;

(3): L1(Pg)∩L2(Pg) =∅

(4): For all b ∈ Pg, |L2(PB(b,Pg))|= 1; and

(5): There is a special label main ∈ L2(Pg).

The well-formedness ensures that once a control enters into a process block at begin l, the control
may reach only the matching end l in the forward execution and vice versa in the backward execution.
A process block PB(b,Pg) is labeled by l when it contains the basic block with begin l.

A call statement call l1, · · ·,ln sends controls to process blocks labeled by l1, · · · , ln. A process
block with control is called a process. A process is executed by passing the control among the basic
blocks in its process block. Since call can be recursive, a process may have some subprocesses.

In a forward execution, l <- call l1, · · ·,ln -> l′ receives a control at l, forks n processes, and sends
the control to l′ after merging the processes. In the backward execution, it works in a reversed manner.
In the following, we assume a CRIL program is well-formed.

S. Oguchi & S. Yuen 153

2.3 Basic operational semantics

The set of process identifiers PID is (N+)
∗ where N+ is the set of positive integers. p ∈ PID denotes

an identifier uniquely assigned to a process. When p executes a process block PB(b,Pg), we also write
PB(p). If p is labeled by l, PB(p) = PB(b,Pg) where entry(b) = begin l. A special root process has
the identifier of ε . The runtime invokes the root process and sends the control to a process block labeled
by main to start an execution of a CRIL program. For a process p, p · i is assigned to the i-th subprocess
invoked by a call statement of process p. � is the prefix relation. A process set PS is a set of process
identifiers satisfying (1) ε ∈ PS; (2) p ∈ PS implies p′ ∈ PS for p′ � p; and (3) p · i implies p · j ∈ PS for
j < i. For a process set PS and a process id p, isleaf(PS, p) holds if for all p′ ∈ PS, p� p′ imples p = p′.

A process configuration is (l,stage), where l ∈L and stage ∈ {begin,run,end} are the location of
the control in a process block. If stage = begin, it is before executing the process block, if stage = run,
it is executing the process block, and if stage = end it terminated the process block. PC is the set of
process configurations.

A program configuration is (Pg,ρ,σ ,Pr), where Pg is the program (which never changes), ρ :
Vars→ Z maps a variable to its value, σ : N→ Z maps a heap memory address to its value. A pro-
cess map Pr : PID→ PC∪{⊥} maps a process to a process configuration. We assume Pract is a process
set where Pract = {p ∈ PID|Pr(p) ∈ PC}. C is the set of all program configurations.

A transition relation over program configurations

(Pg,ρ,σ ,Pr)
p,Rd,Wt−−−−⇀↽−−−−

prog
(Pg,ρ ′,σ ′,Pr′)

is defined in figure 2. (Pg,ρ,σ ,Pr) steps forward to (Pg,ρ ′,σ ′,Pr′) by the process p with reading mem-
ory resource Rd and updating memory resource Wt. And (Pg,ρ ′,σ ′,Pr′) steps backward to (Pg,ρ,σ ,Pr)
in the same way.

We explain the SOS rules in figure 2. AssVar and AssArr present the update behavior. The exchange
behavior is presented by SwapVarVar, SwapVarArr, SwapArrVar, and SwapArrArr. SwapVarArr
and SwapArrVar are reversible since y is evaluated to the same value on both sides of ↽⇀. SwapVarVar
and SwapArrArr are clearly reversible. Skip presents the skip behavior. Assert presents the assertion
behavior, which stops when e is evaluated to 0.

V-op and P-op present the behavior of V x and P x for synchronization by x shared among concurrent
processes. In forward execution, V x sets x = 1 when x = 0, and waits otherwise. In backward execution,
V x sets x = 0 when x = 1, and waits otherwise. P behaves in a symmetrical fashion. By the pair of V x
and P x, x can be used as a semaphore to implement the mutual exclusion for both directions of execution.

Inst presents the one-step behavior of a basic block. The instruction updates ρ and σ and the entry
and exit points give the status of the process. The process is running if stage is run. the process is at the
initial block or at the final block, if stage is begin or end. The transition label Rd is read(b) and the
transition label Wt is write(b).

CallFork presents that a call statement forks subprocesses. When p executes a call statement
call l1, · · ·,ln forwards, it forks subprocesses labeled by l1, · · · , ln and p stores the label for return-
ing the controls in Pr. Note that the process map is changed to Pr′ with subprocesses after forking
subprocesses. Since isleaf(Pr′act , p) does not hold, p does not pass the control to the next block until all
the subprocesses are merged. CallMerge works dually to CallFork. In a forward execution, when all
subprocesses reach the end stage, all subprocesses are set to inactive and p resumes to pass the control
to the next basic block. In a backward execution, CallFork behaves as CallMerge of forward execution
and vice versa for CallMerge.

154 CRIL: A Concurrent Reversible Intermediate Language

Expressions:

k is a constant
Con

(ρ, σ) ▷ k ; k
Var

(ρ[x 7→ m], σ) ▷ x ; m Mem
(ρ[x 7→ m1], σ[m1 7→ m2]) ▷ M [x] ; m2

(ρ, σ) ▷ right1 ; m1 (ρ, σ) ▷ right2 ; m2 m3 = m1 �m2
Exp1

(ρ, σ) ▷ right1 � right2 ; m3

(ρ, σ) ▷ right ; 0
Exp2

(ρ, σ) ▷ !right ; 1

(ρ, σ) ▷ right ; m m 6= 0
Exp3

(ρ, σ) ▷ !right ; 0

Instructions:

(ρ, σ) ▷ e ; m3 m2 = m1 ⊕m3
AssVar

x⊕= e ▷ (ρ[x 7→ m1], σ) ↽⇀ (ρ[x 7→ m2], σ)

(ρ, σ) ▷ e ; m3 m2 = m1 ⊕m3
AssArr

M[x]⊕= e ▷ (ρ[x 7→ m4], σ[m4 7→ m1]) ↽⇀ (ρ[x 7→ m4], σ[m4 7→ m2])

SwapVarVar
x <-> y ▷ (ρ[x, y 7→ m1,m2], σ) ↽⇀ (ρ[x, y 7→ m2,m1], σ)

SwapVarArr
x <-> M[y] ▷ (ρ[x, y 7→ m1,m3], σ[m3 7→ m2]) ↽⇀ (ρ[x, y 7→ m2,m3], σ[m3 7→ m1])

SwapArrVar
M[y] <-> x ▷ (ρ[x, y 7→ m1,m3], σ[m3 7→ m2]) ↽⇀ (ρ[x, y 7→ m2,m3], σ[m3 7→ m1])

SwapArrArr
M[x] <-> M[y] ▷ (ρ[x, y 7→ m3,m4], σ[m3,m4 7→ m1,m2]) ↽⇀ (ρ[x, y 7→ m3,m4], σ[m3,m4 7→ m2,m1])

V-op
V x ▷ (ρ[x 7→ 0], σ) ↽⇀ (ρ[x 7→ 1], σ)

P-op
P x ▷ (ρ[x 7→ 1], σ) ↽⇀ (ρ[x 7→ 0], σ)

Skip
skip ▷ (ρ, σ) ↽⇀ (ρ, σ)

(ρ, σ) ▷ e ; m m 6= 0
Assert

assert e ▷ (ρ, σ) ↽⇀ (ρ, σ)

Entry and exit points:

begin l ` (ρ, σ, l, begin)

end l a (ρ, σ, l, end)

l <- ` (ρ, σ, l, run)

-> l a (ρ, σ, l, run)

ρ σ ▷ e ; 0

l1;l2 <- e ` (ρ, σ, l2, run)

ρ σ ▷ e ; 0

e -> l1;l2 a (ρ, σ, l2, run)

ρ σ ▷ e ; m m 6= 0

l1;l2 <- e ` (ρ, σ, l1, run)

ρ σ ▷ e ; m m 6= 0

e -> l1;l2 a (ρ, σ, l1, run)

Basic Blocks:

isleaf(Pract, p) b ∈ Pg entry(b) ` (ρ, σ, l, stage) inst(b) ▷ (ρ, σ) ↽⇀ (ρ′, σ′) exit(b) a (ρ′, σ′, l′, stage′)
Inst

(Pg, ρ, σ, Pr[p 7→ (l, stage)])
p,read(b),write(b)−−−−−−−−−−⇀↽−−−−−−−−−−

prog
(Pg, ρ′, σ′, P r[p 7→ (l′, stage′)])

isleaf(Pract, p) (l′ <-, call l1, · · · ,ln, -> l′′) ∈ Pg
CallFork

(Pg, ρ, σ, Pr[p 7→ (l′, run)])
p,∅,∅−−−−⇀↽−−−−

prog
(Pg, ρ, σ, Pr[p 7→ (l′′, run), p · 1 7→ (l1, begin), · · · , p · n 7→ (ln, begin)])

isleaf(Pract, p) (l′ <-, call l1, · · · ,ln, -> l′′) ∈ Pg
CallMerge

(Pg, ρ, σ, Pr[p 7→ (l′′, run), p · 1 7→ (l1, end), · · · , p · n 7→ (ln, end)])
p,∅,∅−−−−⇀↽−−−−

prog
(Pg, ρ, σ, Pr[p 7→ (l′′, run)])

Figure 2: The basic operational semantics

S. Oguchi & S. Yuen 155

In a program configuration of CRIL, there is no stack as in RIL to store the return label for subroutine
calls. The process map stores the return label, which is not available until isleaf(Pract , p) holds, where it
checks if the label is on the stack.

Figure3 shows an example of CRIL program Pg. There are four process blocks {b1,b2,b3},{b4,b5},
{b6}, and {b7}. A process map assigns ε to {b1,b2,b3}. In the following execution, it assigns 1 to
{b4,b5}, 2 to {b6}, and 3 to {b7}.

An example of the transitions for Pg is as follows:
b1

b2

b3

b4

b5

b6

b7

begin main

skip

-> l1

l1 <-

call sub0 , sub1 , sub2

-> l2

l2 <-

skip

end main

begin sub0

x += 1

-> l3

l3 <-

x += 1

end sub0

begin sub1

y += x

end sub1

begin sub2

z += x

end sub2

Figure 3: A CRIL program Pg

(Pg,ρ0,σ0, [ε 7→ (main,begin)])
ε,∅,∅−−−⇀↽−−−

prog
(Pg,ρ0,σ0, [ε 7→ (l1,run)])

ε,∅,∅−−−⇀↽−−−
prog

(Pg,ρ0,σ0,
[ε 7→ (l2,run),1 7→ (begin,sub0),
2 7→ (sub1,begin),3 7→ (sub2,begin)]

)

1,{x},{x}−−−−−⇀↽−−−−−
prog

(Pg,ρ1,σ0,
[ε 7→ (l2,run),1 7→ (l3,run),
2 7→ (sub1,begin),3 7→ (sub2,begin)]

)

where ρ1 = ρ0[x 7→ 1]
2,{x,y},{x}−−−−−−⇀↽−−−−−−

prog
(Pg,ρ2,σ0,

[ε 7→ (l2,run),1 7→ (l3,run),
2 7→ (sub1,end),3 7→ (sub2,begin)]

)

where ρ2 = ρ2[y 7→ 1]
3,{x,z},{z}−−−−−−⇀↽−−−−−−

prog
(Pg,ρ3,σ0,

[ε 7→ (l2,run),1 7→ (l3,run),
2 7→ (sub1,end),3 7→ (sub2,end)]

)

where ρ3 = ρ1[z 7→ 1]
1,{x},{x}−−−−−⇀↽−−−−−

prog
(Pg,ρ4,σ0,

[ε 7→ (l2,run),1 7→ (sub0,end),
2 7→ (sub1,end),3 7→ (sub2,end)]

)

where ρ4 = ρ3[x 7→ 2]
ε,∅,∅−−−⇀↽−−−

prog
(Pg,ρ4,σ0, [ε 7→ (l2,run)])

ε,∅,∅−−−⇀↽−−−
prog

(Pg,ρ4,σ0, [ε 7→ (main,end)])

This forward execution ends with x = 2,y = 1,z = 1.
The operational semantics show that the computation may
be reversed to (Pg,ρ0,σ0, [ε 7→ (main,begin)]). However,
it is possible to reverse to a different configuration such as x = 0,y = −1,z = −1 if the call statement
is reversed in a different order. Thus, this operational semantics is not reversible. In the next section,
we will combine an annotation for the dependency information as DAG to make the basic properties for
reversibility as well as Causal Safety and Causal Liveness.

3 Reversibility of CRIL

Table 1 (a) shows the transitions of store ρ by the sequence of basic blocks in the forward computation

of the example in the previous section. Process p makes the forward (left-to-right) transition of
p,Rd,Wt−−−−⇀↽−−−−

prog
.

The program configuration at the end is (Pg, [x 7→ 2,y 7→ 1,z 7→ 1],σ0, [ε 7→ (main,end)]. The con-

figuration may lead to a different store by the backward (right-to-left) transitions of
p,Rd,Wt−−−−⇀↽−−−−

prog
as shown

in table 1 (b). Although each step of the operational semantics keeps the local reversibility, it does not

preserve the causality of shared memory. The forward step of
p,Rd,Wt−−−−⇀↽−−−−

prog
updates Wt reading Rd making

the causality from Rd to Wt. Our idea is to control processes to keep the causality by observing Rd and
Wt being combined with the operational semantics.

156 CRIL: A Concurrent Reversible Intermediate Language

x y z

0 0 0
b1 ∈ PB(ε)

0 0 0
b2 ∈ PB(ε)

0 0 0
b4 ∈ PB(1)

1 0 0
b6 ∈ PB(2)

1 1 0
b7 ∈ PB(3)

1 1 1
b5 ∈ PB(1)

2 1 1
b2 ∈ PB(ε)

2 1 1
b3 ∈ PB(ε)

2 1 1

(a) A forward Execution

x y z

2 1 1
b3 ∈ PB(ε)

2 1 1
b2 ∈ PB(ε)

2 1 1
b7 ∈ PB(3)

2 −1 1
b6 ∈ PB(2)

2 −1 −1
b5 ∈ PB(1)

1 −1 −1
b4 ∈ PB(1)

0 −1 −1
b2 ∈ PB(ε)

0 −1 −1
b1 ∈ PB(ε)

0 −1 −1

(b) The corresponding backward ex-
ecution

Table 1: Store changes in executions

read write

b1 ∅ ∅
b2 ∅ ∅
b3 ∅ ∅
b4 {x} {x}
b5 {x} {x}
b6 {x,y} {y}
b7 {x,z} {z}

Table 2: read and write for basic blocks

Table 2 presents read and write for each
basic block. In the backward execution,
after reversing b3b2, CallMerge works as
a forking of three processes in backward.
At this point, b5, b6, and b7 are possi-
ble by using the rule backward. Since
write(b5) = {x} and both read(b6) and
read(b7) contain x, the order between b5

and b6, and the order between b5 and b6 affect the causality. We say bi conflicts with b j where i 6= j if
read(bi)∩write(b j) 6= ∅ or read(b j)∩write(bi) 6= ∅. Since b6 and b7 do not conflict with each other,
the order between b6 and b7 does not affect the causality. Thus, for the forward execution in table 1 (a),
the reversed execution b3b2b3b6b7b4b2b1 reaches ρ0 as a legitimate reversed computation.

3.1 Annotation DAG

We shall present a data structure called ‘annotation DAG’ (Directed Acyclic Graph) that keeps the con-
flicting information in forward execution and controls the backward execution by matching the causality,
observing the memory Wt updated by reading the memory Rd.

Definition 1. An annotation DAG is A = (V,ER,EW) satisfying the following conditions:

1. V ⊆ (PID×N)∪{⊥} where N is the set of natural numbers, ⊥ ∈V , and if (p,n) ∈V then for all
n′ ≤ n, (p,n′) ∈V ;

2. ER,EW ⊆V ×R×V where (v′,r,v),(v′′,r,v) ∈ ER∪EW implies v′ = v′′;

3. ER∩EW =∅ and (V,ER]EW) is a DAG with the finite set of nodes V ;

4. (v′,r,v) ∈ EW and v′ 6=⊥ imply (v′′,r,v′) ∈ EW ; and

5. (v,r,v′),(v,r,v′′) ∈ EW implies v′ = v′′

A is the set of all annotation DAGs, and Ainit is ({⊥},∅,∅).

We write v r→ v′ for (v,r,v′) ∈ EW and v
r

99K v′ for (v,r,v′) ∈ ER. Condition 5 with conditions 3
and 2 ensures that when v′ r→ v, there is a unique sequence of EW with the label of r from ⊥ to v:
⊥ r→ v1

r→ ··· r→ vn = v. last(r,EW) denotes the last node v of such sequence. When last(r,EW) = v 6=⊥,

v′ r→ v for a unique v′ and v
r
6→ v′′ for all v′′. last(r,∅) =⊥ for all r ∈R. Since V is finite, for (p,n) ∈V

S. Oguchi & S. Yuen 157

there is the maximum number for process p if such (p,n) exists. Given V ⊆ PID×N∪{⊥}, we write
maxp(V) for max(p,n)∈V n for some (p,n) ∈V . maxp(V) =−1 when (p,n) /∈V for all n.

Definition 2. For A1,A2 ∈A , A1 = (V1,ER1,EW 1)
p,Rd,Wt−−−−⇀↽−−−−

ann
A2 = (V2,ER2,EW 2) if

1. V2 =V1∪{v};
2. ER2 = ER1∪{newedge(r,EW 1,v) | r ∈ Rd−Wt};and

3. EW 2 = EW 1∪{newedge(r,EW 1,v) | r ∈Wt}
where v = (p,maxp(V1)+1) and newedge(r,EW ,v) = (last(r,EW),r,v).

Given O⊆ PID×2R×2R , A
O−⇀↽−

+

ann
A′ when for some (pi,Rdi,Wti) ∈ O, there exists a sequence of Ai

such that A0
p1,Rd1,Wt1−−−−−−⇀↽−−−−−−

ann
A1 · · ·

pn,Rdn,Wtn−−−−−−⇀↽−−−−−−
ann

An = A′. We write A
O−⇀↽−
∗

ann
A′ if A = A′ or A

O−⇀↽−
+

ann
A′.

Intuitively, the forward (left-to-right) relation of A1 = (V1,ER1,EW 1)
p,Rd,Wt−−−−⇀↽−−−−

ann
A2 is to add a fresh node

v and edges newedge(r,EW 1,v) for r ∈ Rd ∪Wt to A1 for process p to execute forwards a basic block
b ∈ PB(p) with read(b) = Rd and write(b) = Wt. v presents the new causality created by executing
process p in the forward direction. The new node has the causality to update Wt from (p,maxp(V1)) that
presents the newest causality in A1 by p in forward. To update the causality, the edges newedge(r,EW 1,v)
for r ∈Wt are added to EW 1. The edges newedge(r,EW 1,v) for r ∈ Rd−Wt from the newest causality
for r at that moment are added to ER1 to show that the update for v depends on such r.

The backward (right-to-left) relation is to remove a node and edges from A2. The node v to be
removed has to be the newest causality of a process and does not depend on other causalities. It is shown

that such a node always exists in an annotation DAG in {A | Ainit
O−⇀↽−

+

ann
A} as below.

Proposition 1. For (V,ER,EW) ∈ {A | Ainit −−⇀↽−−+

ann
A}, there exists a node v ∈V such that v′

r
99K v implies

v′ = last(r,EW); and no outgoing edge from v.

Moreover, A O
comp = {A | Ainit

O−⇀↽−
∗

ann
A} is closed by

p,Rd,Wt−−−−⇀↽−−−−
ann

where (p,Rd,Wt) ∈ O. Obviously, A ∈

Acomp implies A′ ∈A O
comp when A

p,Rd,Wt−−−−⇀↽−−−−
ann

A′ for some (p,Rd,Wt) ∈ O by definition.

Proposition 2. For A∈{A′ |Ainit
O−⇀↽−

+

ann
A′}, there exists A′′ ∈A O

comp such that A′′
p,Rd,Wt−−−−⇀↽−−−−

ann
A with (p,Rd,Wt)

∈ O.

3.2 Operational semantics controlled by Annotation DAG

Definition 3. The operational semantics controlled by annotation DAG over program configurations

(C,A)
p,Rd,Wt−−−−⇀↽−−−− (C′,A′) is defined by:

C
p,Rd,Wt−−−−⇀↽−−−−

prog
C′ A

p,Rd,Wt−−−−⇀↽−−−−
ann

A′

ProgAnn
(C,A)

p,Rd,Wt−−−−⇀↽−−−− (C′,A′)

where p ∈ PID and Rd,Wt ⊆R.

The program computation with annotation is a sequence of (Ci,Ai)
pi,Rdi,Wti−−−−−⇀↽−−−−− (Ci+1,Ai+1) (i ≥ 0)

beginning with (C0,A0) = (Cinit ,Ainit).

158 CRIL: A Concurrent Reversible Intermediate Language

We illustrate the behavior controlled by the annotation DAG for the simple example of the previous
section. Starting from the initial configuration,(C0,A0) = ((Pg,ρ0,σ0, [(ε 7→ (main,begin))]),({⊥},∅,
∅)), it ends up with (C8,A8) = (Pg, [x,y,z 7→ 2,1,1],σ0, [ε 7→ (main,end)]).

Forward accumulation of causality We present the construction of annotation DAGs as follows:

(F1) After process ε executes b1 and b2, A2 = ({⊥,(ε,0),(ε,1)},∅,∅);
(F2) The call statement in b2 forks three subprocesses. Then, process 1 executes b4, (1,0) is added to
V and ⊥ x→ (1,0) is added since read(b4) = write(b4) = {x} to make A3, meaning x is updated by the
initial x, and the store is updated as [x,y,z 7→ 1,0,0].

(F3) Next, process 2 executes b6 where read(b6) = {x,y} and write(b6) = {y}.
2,{x,y},{y}−−−−−−⇀↽−−−−−−

ann
adds a fresh

node (2,0), ⊥ y→ (2,0), and (1,0)
x

99K (2,0). The causality of (2,0) means y is updated by the initial y
and x of (1,0) to make A4.

(F4) Then, process 3 executes b7 where read(b7) = {x,z} and write(b7) = {z}.
3,{x,z},{z}−−−−−−⇀↽−−−−−−

ann
adds (3,0),

⊥ z→ (3,0), and (1,0)
x

99K (3,0), to make A5 shown in figure 4 (a), meaning the causality at (3,0) to
update the initial z using the initial z and x of (1,0).

(F5) At last, process 1 executes b5 where read(b5) = write(b5) = {x}.
1,{x},{x}−−−−−⇀↽−−−−−

ann
just adds (1,1) and

(1,0) x→ (1,1) to form A6 shown in figure 4 (b), meaning x is updated by x of (1,0).
(F6) No more causality is created after merging the subprocesses. Just the relation adds (ε,2) and (ε,3)
with no edges to form A8 shown in figure 4 (c).

⊥

(ε, 0)

(ε, 1)

(1, 0)

)

x

(a) A3

⊥

(ε, 0)

(ε, 1)

(1, 0)

(2, 0)

x

x
y

)

(b) A4

⊥

(ε, 0)

(ε, 1)

(1, 0)

(2, 0)

(3, 0)

x

x
y

xz

(c) A5

⊥

(ε, 0)

(ε, 1)

(1, 0)

(2, 0)

(3, 0)

(1, 1)
x

x
y

xz

x

(d) A6

(ε, 0)

(ε, 1)

(ε, 2)

(ε, 3)

⊥ (1, 0)

(2, 0)

(3, 0)

(1, 1)
x

x
y

xz

x

(e) A8

Figure 4: Annotation DAGs along with forward execution

Backward rollback of causality The following is the summary of the corresponding backward exe-
cution.

(B1) The removable nodes of A8 are {(ε,3),(1,1)}. Here, C8 specifies ε to remove (ε,3) followed by re-
moving (ε,2) back to (C6,A6), where C6 = (Pg, [x,y,z 7→ 2,1,1],σ0, [ε 7→ (l2,run),1 7→ (sub0,end),2
7→ (sub1,end),3 7→ (sub2,end)])

(B2) C6 may reverse any subprocess, but A6 allows only to remove (1,1) by
p,Rd,Wt−−−−⇀↽−−−−

ann
to obtain A5.

(B3) After removing (1,1) and (1,0) x→ (1,1) from A6, we obtain A5 whose removable nodes are (2,0)
and (3,0). (1,0) is not removable since (1,0) has two outgoing edges, although (1,0) = last(x,EW).

S. Oguchi & S. Yuen 159

(B4) C5 may reverse either process 2 or process 3, and let process 2 reverse to become C′4. Then, remove
⊥ y→ (2,0) and (1,0)

x
99K (2,0) to obtain A′4 and [x,y,z 7→ 1,0,1] as the store ρ . Note that (C′4,A

′
4) did

not appear in the forward execution.

(B5) From (C′4,A
′
4), process 3 is reversed to remove (3,0), ⊥ z→ (3,0), and (1,0)

x
99K (3,0) to obtain A3

and [x,y,z 7→ 1,0,0].

(B6) Then, process 1 is reversed by removing (1,0) and⊥ x→ (1,0) to obtain A2 = ({⊥,(ε,0),(ε,1)},∅,
∅).

(B7) At last, process ε reverses b2 and b1 to obtain (Cinit ,Ainit).

⊥

A3

(ε, 0)

(ε, 1)

(1, 0)
x

⊥

A4

(ε, 0)

(ε, 1)

(2, 0)

(1, 0)

y

x

x

⊥

A′
4

(ε, 0)

(ε, 1) (3, 0)

(1, 0)

z

x

x

⊥

A5

(ε, 0)

(ε, 1)

(2, 0)

(3, 0)

(1, 0)

y

z

x

x

x

2,{x,y},{y}−−−−−−−⇀↽−−−−−−−
ann

3,{x,z},{z}−−−−−−−⇀↽−−−−−−−
ann

3,{x,z},{z}−−−−−−−⇀↽−−−−−−−
ann

2,{x,y},{y}−−−−−−−⇀↽−−−−−−−
ann

Figure 5: Annotation DAGs in backward execution

In (B4) step, there are two possi-
bilities of reversing process 3 or pro-
cess 2. In the above, A5 is reversed
by process 2 to A′4 followed by pro-
cess 3.

For a CRIL program Pg, let B
be the basic blocks in Pg. Let O =
PID×

⋃
b∈B read(b)×

⋃
b∈B write(b).

Proposition 2 ensures there is always
a removable node along with remov-
able edges.

3.3 Properties for reversibility

We show that the operational semantics controlled by annotation DAG has proper properties for re-
versibility. We focus on the following two properties that are considered fundamental properties for
reversibility [13].

Causal Safety (CS): An action can not be reversed until any actions caused by it have been reversed.

Causal Liveness (CL): We should allow actions to reverse in any order compatible with Causal Safety,
not necessarily the exact inverse of the forward order.

[13] shows that those properties hold in an LTSI (LTS with Independence) provided that a small

number of axioms are valid in the LTSI. We shall follow this approach by defining LTS from
p,Rd,Wt−−−−⇀↽−−−−

and add the independence relation to have the LTSI for the CRIL behavior. We will then show that the
axioms for CS and CL hold.

Definition 4. (C ×A ,Lab,⇀) is the forward LTS for CRIL where:

• Lab = PID×2R×2R; and

• (C,A)
(p,Rd,Wt)−−−−−⇀ (C′,A′) if (C,A)

p,Rd,Wt−−−−⇀↽−−−− (C′,A′)

Definition 5. The (combined) LTS for CRIL is (C ×A ,Lab]Lab,→) where:

• Lab = {(p,Rd,Wt) | (p,Rd,Wt) ∈ Lab}; and

• For a ∈ Lab, (C,A) a→ (C′,A′) iff (C,A) a−⇀ (C′,A′), and (C,A)
a→ (C′,A′) iff (C′,A′) a→ (C,A).

160 CRIL: A Concurrent Reversible Intermediate Language

Lab]Lab is ranged over by α,β , · · · , and Lab by a,b, · · · . und : Lab]Lab→ Lab where und(a) = a
and und(a) = a. a = a. Given t : P a→ Q, t is for Q

a→ P.
For CRIL, the independence of transitions is defined as the independent memory update among

concurrent processes. The processes running concurrently are not in the subprocess relation. Note that
as pid p ·1, p ·2, · · · are assigned to the subprocesses of the process with pid of p. The process with the
pid of p is concurrent to the process with the pid of q if p 6� q and q 6� p. Hence, we give the dependence
relation for labels as follows.

Definition 6. For α,β ∈ Lab] Lab such that und(α) = (p1,Rd1,Wt1) and und(β) = (p2,Rd2,Wt2),
α ιlab β iff

p1 6� p2 ∧ p2 6� p1 ∧ Rd1∩Wt2 =∅ ∧Rd2∩Wt1 =∅

The independence of transitions in LTS is defined as the transitions with independent labels. We
define the Labeled Transition System with Independent transitions as the operational semantics of CRIL.

Definition 7. For t : (C1,A1)
α−→ (C′1,A

′
1) and u : (C2,A2)

β−→ (C′2,A
′
2) in the combined LTS for CRIL, t

and u are independent of each other, written as t ι u if α ιlab β .
(C ×A ,Lab]Lab,→, ι) is the LTS of CRIL with independence.

In the sequel, we write ‘LTSICRIL’ for the LTS of CRIL with independence.

3.3.1 Basic properties for reversibility

We take the axiomatic approach of [13], where the combination of the basic properties gives the proper
reversibility. The first step is to show that the LTSICRIL is pre-reversible. For this purpose, we show
LTSICRIL satisfies the following axioms: “Square Property (SP)”, “Backward Transitions are Inde-
pendent (BTI)”, “Well-Foundedness (WF)”, and “Coinitial Propagation of Independence (CPI)”.

Square Property(SP) For a ∈ Lab, when C
a−−⇀↽−−
prog

C′, we write C a→ prog C′ and C′
a→ prog C. Simi-

larly, when A
a−−⇀↽−−
ann

A′, we write A a→ ann A′ and A′
a→ ann A.

By the definition of the independence transitions, the square property of the α→ prog is immediately
shown.

Proposition 3. Suppose C α−→prog C′, C
β−→prog C′′, and α ιlab β . Then there are the cofinal transitions

C′
β−→prog C′′′ and C′′ α−→prog C′′′.

For annotation DAGs, we need to trace the difference of nodes and edges added or deleted by α→ann
to show the square property. We use the following notation to present differences in annotation DAGs:

For o : (V,ER,EW)
α→ann (V ′,E ′R,E

′
W), diff(o) =

{
(V ′−V,E ′R−ER,E ′W −EW) if α ∈ Lab,

(V −V ′,ER−E ′R,EW −E ′W) if α ∈ Lab

(V,ER,EW)�α (∆V,∆ER,∆EW) =

{
(V ∪∆V,ER∪∆ER,EW ∪∆EW) if α ∈ Lab,

(V −∆V,ER−∆ER,EW −∆EW) if α ∈ Lab

Proposition 4. Let diff(A α→ann A′) = (∆V α ,∆Eα
R ,∆Eα

W) and diff(A
β→ann A′′) = (∆V β ,∆Eβ

R ,∆Eβ

W) with
α ιlab β . Then, ∆V α ∩∆V β = ∆Eα

R ∩∆Eβ

R = ∆Eα
W ∩∆Eβ

W =∅.

S. Oguchi & S. Yuen 161

Proof. For some vα and vβ , ∆V α = {vα} and ∆V β = {vβ}. α ιlab β implies vα 6= vβ . All the edges

of ∆Eα
R]∆Eα

W come into vα and all the edges of ∆Eβ

R]∆Eβ

W come into vβ . Therefore, ∆V α ∩∆V β =

∆Eα
R ∩∆Eβ

R = ∆Eα
W ∩∆Eβ

W =∅.

Proposition 5. Suppose A a→ann A′ and A
β→ann A′′ with a ιlab β . Then there is A′′′ such that A′′ a→ann A′′′

and diff(A a→ann A′) = diff(A′′ a→ann A′′′).

Proof. Assume A = (V,ER,EW), A′′ = (V ′′,E ′′R,E
′′
W), and a = (pa,Rda,Wta). A′′ a→ann A′′′ for some A′′′

since a ∈ Lab. a ιlab β implies that maxpa(A) = maxpa(A
′′) and last(r,EW) = last(r,E ′′W) for r ∈ Rda.

Therefore, diff(A a→ann A′) = diff(A′′ a→ann A′′′).

Proposition 6. Suppose A
a→ann A′ and A

β→ann A′′ with a ιlab β . Then there is A′′′ such that A′′
a→ann A′′′

and diff(A
a→ann A′) = diff(A′′

a→ann A′′′).

Proof. Assume diff(A
β→ann A′′) = (∆V β ,∆Eβ

R ,∆Eβ

W), and a = (pa,Rda,Wta). Let v = (pa,maxpa(V)).
a ιlab β implies that no edges in ∆Eβ

R]∆Eβ

W go out from v and v′ such that v′
r

99K v in A. Therefore,
A′′

a→ann A′′′ for some A′′′. a ιlab β and a ∈ Lab derive diff(A
a→ann A′) = diff(A′′

a→ann A′′′).

Proposition 7. Suppose A α→ann A′ and A
β→ann A′′ with α ιlab β . Then A′′ α→ann A′′′, where A′′′ = A′′�α

diff(A α→ann A′).

Proof. Proposition 5 and 6 derive A′′ α→ann A′′′.

Proposition 8. Suppose A α−→ann A′, A
β−→ann A′′, and α ιlab β . Then there are the cofinal transitions

A′
β−→ann A′′′ and A′′ α−→ann A′′′.

Proof. By proposition 4, diff(A α→ann A′) and diff(A
β→ann A′′) are disjoint if α ιlab β . Hence, the order

of addition and deletion to/from A does not affect the result. Therefore, (A�α diff(A α→ann A′))�β

diff(A
β→ann A′′) = (A�β diff(A

β→ann A′′))�α diff(A α→ann A′) = A′′′. By proposition 7, we have A α→ann

A′
β→ann A′′′ and A

β→ann A′′ α→ann A′′′ hold for such A′′′.

Combining proposition 3 with proposition 8 by ProgAnn, the square property holds.

Lemma 1 (Square Property). Whenever t : (CP,AP)
α−→ (CQ,AQ), u : (CP,AP)

β−→ (CR,AR), and t ι u, then

there are cofinal transitions u′ : (CQ,AQ)
β−→ (CS,AS), and t ′ : (CR,AR)

α−→ (CS,AS).

Backward Transitions are Independent (BTI) BTI is useful for reversibility because an available
backward transition does not depend on any other backward transition. In CRIL, a label of LTSICRIL

gives the information to establish BTI.

Lemma 2 (Backward Transitions are Independent). Whenever t : (CP,AP)
a−→ (CQ,AQ), u : (CP,AP)

b−→
(CR,AR), and t 6= u, then t ι u.

162 CRIL: A Concurrent Reversible Intermediate Language

Proof. Assume AP = (V,ER,EW), a = (pa,Rda,Wta), and b = (pb,Rdb,Wtb). Let va = (pa,maxpa(V))
and vb = (pb,maxpb(V)).

Assume pa � pb. Then pa = pb holds from the operational semantics. pa = pb derives t = u, which
contradicts t 6= u. Therefore, pa 6� pb holds. Similarly, pb 6� pa also holds.

Assume Rda∩Wtb 6=∅. There exists r∈Rda∩Wtb. If r∈Wta, then last(r,EW)= va and last(r,EW)=

vb. Therefore pa = pb, however it contradicts pa 6� pb. If r 6∈Wta, then last(r,EW)
r

99K va ∈ ER. r ∈Wtb
derives last(r,EW) = vb. Therefore vb

r
99K va ∈ ER, however it contradicts that no edges go out from vb

derived from u. Therefore Rda∩Wtb =∅. Similarly, Rdb∩Wta =∅ also holds.

Well-Foundedness (WF) For a backward transition (C,A)
a→ (C′,A′), the number of nodes of A′ is

strictly less than that of A. Since the number of vertices of annotation DAG is finite, it is not possible to
remove vertices infinitely.

Coinitial Propagation of Independence (CPI) Given a commuting square with independence at one
corner, CPI allows us to deduce independence between coinitial transitions at the other three corners.

Lemma 3 (Coinitial Propagation of Independence). Suppose t : (CP,AP)
α−→ (CQ,AQ), u : (CP,AP)

β−→
(CR,AR), u′ : (CQ,AQ)

β−→ (CS,AS), t ′ : (CR,AR)
α−→ (CS,AS), and t ι u. Then u′ ι t.

Proof. t ι u implies α ιlab β . Since β ιlab α , u′ ι t.

3.3.2 Events

The properties above make LTSICRIL pre-reversible. Next, we check if LTSICRIL can derive events for es-
tablishing reversibility. Following [13], events in LTSICRIL are derived as an equivalence over transitions.
Definition 8. Let ∼ be the smallest equivalence relation on transitions satisfying: if t : (CP,AP)

α−→
(CQ,AQ), u : (CP,AP)

β−→ (CR,AR), u′ : (CQ,AQ)
β−→ (CS,AS), t ′ : (CR,AR)

α−→ (CS,AS), and t ι u, then t ∼ t ′.
The equivalence classes of forward transitions [(CP,AP)

a→ (CQ,AQ)], are the events. The equivalence
classes of backward transitions [(CP,AP)

a→ (CQ,AQ)], are the reverse events.

Given γ = α1 · · ·αn ∈ (Lab]Lab)∗, a sequence of transitions (C0,A0)
α1→ ··· αn→ (Cn,An) is written as

s : (C0,A0)
γ→∗ (Cn,An).

Since the transitions of program configurations in LTSICRIL
α→prog have no control for reversibility,

events are substantially derived from the operations of annotation DAGs.
Definition 9. Let ∼ann be the smallest equivalence relation over operations of annotation DAGs satisfy-

ing: if o1 : AP
α−→ann AQ, o2 : AP

β−→ann AR, o′2 : AQ
β−→ann AS, o′1 : AR

α−→ann AS, and α ιlab β , then o1 ∼ o′1.
[A a→ann A′]ann and [A

a→ann A′]ann are the forward and backward equivalence classes by ∼ann.

Proposition 9. For t : (CP,AP)
α−→ (CQ,AQ) and t ′ : (CR,AR)

α−→ (CS,AS), the following holds.
t ∼ t ′ iff o∼ann o′ and ∃γ.(CP,AP)

γ→∗ (CR,AR) where o : AP
α→ann AQ and o′ : AR

α→ann AS.
Intuitively, operations for annotation DAGs are independent if they add or remove nodes and edges

at unrelated places. If o1 ∼ann o2, then o1 and o2 add or remove the same fragment of annotation DAGs
to or from the nodes of the same causality. In LTSICRIL, the equivalence over operations of annotation
DAGs is considered as an event. This shows that events for reversibility are consistently defined over
LTSICRIL, meaning the operational semantics is detailed enough to give the IRE property as follows,
which is necessary for our objectives.

S. Oguchi & S. Yuen 163

Independence Respects Events (IRE)
Lemma 4 (Independence Respects Events). Suppose t ∼ t ′ ι u. Then t ι u.

Proof. If t ∼ t ′, t has the same label as t ′. Then, t ι u.

3.3.3 Causal Safety and Causal Liveness

Let](s, [A a→ A′]ann) be the number of occurrences of transitions t in s such that t ∈ [(C,A) a→ (C′,A′)],
minus the number of occurrences of transitions t in s such that t ∈ [(C,A)

a→ (C′,A′)].
Using the result of [13], the properties of SP(Lemma 1), BTI(Lemma 2), WF, CPI(Lemma 3), and

IRE (Lemma 4) make Causal Safety (CS) and Causal Liveness (CL) hold. Due to the fact that the
causality is stored in the annotation DAGs, the properties can be stated in LTSICRIL as below.

Theorem 1 (Causal Safety). Whenever (CP,AP)
a−→ (CQ,AQ), s : (CQ,AQ)

γ−→∗ (CR,AR) with](s, [AP
a→

AQ]ann) = 0, and (CS,AS)
a−→ (CR,AR) then (CP,AP)

a→ (CQ,AQ) ι t for all t in s such that](s, [AP
a→

AQ]ann)> 0.

Theorem 2 (Causal Liveness). Whenever (CP,AP)
a−→ (CQ,AQ), s : (CQ,AQ)

γ−→∗ (CR,AR),](s, [AP
a→

AQ]) = 0, and (CP,AP)
a→ (CQ,AQ) ι t : (C,A) b→ (C′,A′) for all t in s such that](s, [A a→ A′]) > 0

with (CP,AP)
a→ (CQ,AQ) ∼ (CS,AS)

a→ (CR,AR), then we have (CS,AS)
a−→ (CR,AR) with (CP,AP)

a→
(CQ,AQ)∼ (CS,AS)

a→ (CR,AR).
Based on these properties, LTSICRIL can be implemented correctly with the pointers for processes

managed by a process map along with annotation DAGs as the operational semantics of CRIL.

4 Example: Airline ticketing

We show a version of the airline ticketing program [5] in CRIL in figure 6. Two agents attempt to sell
three seats of an airline. This program has a data race for variable seats of
the remaining seats because two agents may check the remaining seats simul-
taneously before making sales. Since the data race does not always happen,
it is useful to roll back to the point where checking remaining seats is insuf-
ficient. Here, agent1 and agent2 are used to record the number of tickets
sold by each agent.

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

b13

begin main

seats += 3

-> l1

l1 <-

call sub1 , sub2

-> l2

l2 <-

skip

end main

begin sub1

skip

-> l3

l3;l4 <- agent1 ==0

skip

seats >0 -> l5;l7

l5 <-

seats -= 1

-> l6

l6 <-

agent1 += 1

-> l4

l7 <-

skip

end sub1

begin sub2

skip

-> l8

l8;l9 <- agent2 ==0

skip

seats >0 -> l10;l12

l10 <-

seats -= 1

-> l11

l11 <-

agent2 += 1

-> l9

l12 <-

skip

end sub2

Figure 6: An airline ticketing program in CRIL

basic block seats agent1 agent2
(ε,0) b1 3 0 0
(ε,1) b2 3 0 0
(1,0) b4 3 0 0
(2,0) b9 3 0 0
(1,1) b5 3 0 0
(1,2) b6 2 0 0
(1,3) b7 2 1 0
(2,1) b10 2 1 0
(2,2) b11 1 1 0
(2,3) b12 1 1 1
(2,4) b10 1 1 1
(1,4) b5 1 1 1
(2,5) b11 0 1 1
(1,5) b6 -1 1 1
(2,6) b12 -1 1 2
(2,7) b10 -1 1 2
(2,8) b13 -1 1 2
(1,6) b7 -1 2 2
(1,7) b5 -1 2 2
(1,8) b8 -1 2 2
(ε,2) b2 -1 2 2
(ε,3) b3 -1 2 2

Table 3: A faulty execution

164 CRIL: A Concurrent Reversible Intermediate Language

Table 3 shows a forward execution that ends seats = −1. Figure 7 is the annotation DAG when
terminated at ‘end main’ in b3. To investigate the cause of the data race, we focus on the edges labeled
with seats. The solid edges indicate that seats is written in (ε,0), (1,2), (2,2), (2,5), and (1,5).

(ε, 1) (ε, 2) (ε, 3) (1, 0) (2, 0) (1, 8) (2, 8)

⊥

(ε, 0)

(1, 2)

(2, 2)

(2, 5)

(1, 5)

(1, 6)(2, 6)

(1, 7)(2, 7)

(1, 1)(2, 1)

(1, 4)(2, 4)

(1, 3)(2, 3)

agent1agent2

seats

seats

seats

seats

seats

agent1

seats

agent2

seats

agent1agent2

seatsseats

agent1agent2

seats

agent1

seats

agent2

Figure 7: The annotation DAG after the
forward execution with the data race

In particular, seats defined at (2,2) is used to update by pro-
cesses 2 and 3 to cause the data race. (The steps in bold are
involved in the problem.) To resolve the data race, each value
of seats should be checked exactly once, except for the last
value of seats.

Figure 8 shows the airline program where sub1 and sub2

are replaced by those with the V-P operations. The parameter of
the V-P operations works as a semaphore to check and update
seats as a critical region. Figure 9 is the annotation DAG by
the forward execution with sub1 done first once and then sub2

done twice. Process 1 executes b′5 setting semaphore = 1 at
(1,1) first. (sem is for semaphore in the figure.) This pre-
vents process 2 executing b′10 at (2,1) since semaphore must
be 0. Backwards, b′14 and b′15 work as V semaphore. In the
backward execution, the order of basic blocks is stored in the
annotation DAG. It works as follows:

• The sequence of sem→ is alternatively from V and P operations in the forward execution. ⊥ sem−−→ (1,1)
is by b′5 and (1,1) sem−−→ (1,3) by b′14, · · · , (1,3) sem−−→ (2,1) by b′10, (2,1) sem−−→ (2,3) by b′15,· · · .

• When seats= 0, semaphore is released with no operation.
(2,7) sem−−→ (1,5) sem−−→ (1,6) by b′5 and b′8 and (1,6) sem−−→ (2,9) sem−−→ (2,10) by b′10 and b′13.

• In backward, sub2 is ready since (2,10) is
last(EW ,sem).

• Then, sub1 is done with no operation and (2,7) is P
in sub2. The order of V and P is kept until reaching
⊥.

b′4

b′5

b′6

b′14

b′7

b′8

b′9

b′10

b′11

b′15

b′12

b′13

begin sub1

skip

-> l3

l3;l4 <- agent1 ==0

V semaphore

seats >0 -> l5;l7

l5 <-

seats -= 1

-> l13

l13 <-

P semaphore

-> l6

l6 <-

agent1 += 1

-> l4

l7 <-

P semaphore

end sub1

begin sub2

skip

-> l8

l8;l9 <- agent2 ==0

V semaphore

seats >0 -> l10;l12

l10 <-

seats -= 1

-> l14

l14 <-

P semaphore

-> l11

l11 <-

agent2 += 1

-> l9

l12 <-

P semaphore

end sub2

Figure 8: An airline ticketing with semaphore

⊥

(ε, 0)

seats

(ε, 1) (1, 0)

(2, 0)

(1, 1)

semagent1

seats

(1, 2)

seats(1, 3)

sem

(1, 4)

agent1 (2, 1)

sem

agent2

seats

(2, 2)

seats(2, 3)

sem

(2, 4)

agent2

(2, 5)

sem
agent2 seats

(2, 6)

seats(2, 7)

sem

(2, 8)

agent2

(1, 5)

sem
agent1 seats

(1, 6)

sem

(2, 9)

sem

seats

agent2

(2, 10)

sem (ε, 2)

(ε, 3)

Figure 9: The annotation DAG after the
forward execution with semaphore

S. Oguchi & S. Yuen 165

5 Concluding remarks

We have proposed CRIL as a reversible concurrent intermediate language. CRIL is an extension of RIL
[16] to enable running multiple subroutines as processes running in parallel. CRIL is intended to be fairly
low-level in that each instruction is at a level similar to the three-address codes to mediate the translation
from a high-level program to a machine-oriented code. The operational semantics of CRIL defined as
LTSICRIL is shown to have the properties of Causal Safety and Causal Liveness under the independence
of concurrent processes and shared memory update. By the result of [13], LTSICRIL also satisfies other
properties: Parabolic lemma, Causal Consistency, Unique Transition, and Independence of Diamonds.

As related work, [1] provides a compiler from ROOPL++ to PISA [22] with no intermediate lan-
guage, where the translation from an object-oriented source program to the low-level PISA code is a big
task. [6] proposes an annotation to a concurrent imperative program while executing forward, where
the annotation is attached directly to the source program for reversing the execution. [7] investigates
its properties of reversibility. CRIL uses a similar idea as Hoey’s, but CRIL is at a rather lower level
to provide a finer granularity for detailed analysis in translation, such as optimization. [8] presents a
collection of simple stack machines with a fork and merge mechanism, where the causality is embedded
in the runtime.

For future work, we have focused only on the fundamental properties. We will investigate further
how more properties in reversibility contribute to behavioral analysis for concurrent programs. Currently,
the dependency of the heap memory M is treated as one memory resource. More detailed dependency
is necessary for practical use. Deriving the optimization technique in the front-end part of compilers is
future work via the reversible version of SSA, such as RSSA [17] for concurrent imperative programs.
CRIL is based on the shared memory model. Incorporating channel-based communications is also future
work to use for the message-passing model like Erlang [12].

Acknowledgement We thank Dr. Irek Ulidowski of the University of Leicester for giving valuable
suggestions to the draft. We also thank Prof. Nobuko Yoshida of the University of Oxford, Prof. Hiroyuki
Seki, Prof. Koji Nakazawa, and Prof. Yuichi Kaji of Nagoya University for fruitful discussions. We thank
the anonymous reviewers for providing fruitful comments. This work is supported by JSPS Kakenhi
21H03415.

References

[1] Martin Holm Cservenka, Robert Glück, Tue Haulund & Torben Ægidius Mogensen (2018): Data Structures
and Dynamic Memory Management in Reversible Languages. In: Reversible Computation - 10th Interna-
tional Conference, RC 2018, Leicester, UK, September 12-14, 2018, Proceedings, Lecture Notes in Computer
Science 11106, Springer, pp. 269–285, doi:10.1007/978-3-319-99498-7 19.

[2] Vincent Danos & Jean Krivine (2004): Reversible Communicating Systems. In: CONCUR 2004 - Concur-
rency Theory, 15th International Conference, London, UK, August 31 - September 3, 2004, Proceedings,
Lecture Notes in Computer Science 3170, Springer, pp. 292–307, doi:10.1007/978-3-540-28644-8 19.

[3] Niklas Deworetzki, Martin Kutrib, Uwe Meyer & Pia-Doreen Ritzke (2022): Optimizing Reversible Pro-
grams. In: RC 2022, Lecture Notes in Computer Science 13354, Springer, pp. 224–238, doi:10.1007/978-3-
031-09005-9 16.

[4] Lasse Hay-Schmidt, Robert Glück, Martin Holm Cservenka & Tue Haulund (2021): Towards a Unified
Language Architecture for Reversible Object-Oriented Programming. In: Reversible Computation - 13th

https://doi.org/10.1007/978-3-319-99498-7_19
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/978-3-031-09005-9_16
https://doi.org/10.1007/978-3-031-09005-9_16

166 CRIL: A Concurrent Reversible Intermediate Language

International Conference, RC 2021, Virtual Event, July 7-8, 2021, Proceedings, Lecture Notes in Computer
Science 12805, Springer, pp. 96–106, doi:10.1007/978-3-030-79837-6 6.

[5] James Hoey, Ivan Lanese, Naoki Nishida, Irek Ulidowski & Germán Vidal (2020): A Case Study for Re-
versible Computing: Reversible Debugging of Concurrent Programs. In: Reversible Computation: Extending
Horizons of Computing - Selected Results of the COST Action IC1405, Lecture Notes in Computer Science
12070, Springer, pp. 108–127, doi:10.1007/978-3-030-47361-7 5.

[6] James Hoey & Irek Ulidowski (2022): Reversing an imperative concurrent programming language. Sci.
Comput. Program. 223, p. 102873, doi:10.1016/j.scico.2022.102873.

[7] James Hoey & Irek Ulidowski (2022): Towards Causal-Consistent Reversibility of Imperative Concurrent
Programs. In: Reversible Computation - 14th International Conference, RC 2022, Urbino, Italy, July 5-6,
2022, Proceedings, Lecture Notes in Computer Science 13354, Springer, pp. 213–223, doi:10.1007/978-3-
031-09005-9 15.

[8] Takashi Ikeda & Shoji Yuen (2020): A Reversible Runtime Environment for Parallel Programs. In: RC 2020,
Lecture Notes in Computer Science 12227, Springer, pp. 272–279, doi:10.1007/978-3-030-52482-1 18.

[9] Martin Kutrib, Uwe Meyer, Niklas Deworetzki & Marc Schuster (2021): Compiling Janus to RSSA. In: Re-
versible Computation - 13th International Conference, RC 2021, Virtual Event, July 7-8, 2021, Proceedings,
Lecture Notes in Computer Science 12805, Springer, pp. 64–78, doi:10.1007/978-3-030-79837-6 4.

[10] Ivan Lanese, Doriana Medic & Claudio Antares Mezzina (2021): Static versus dynamic reversibility in CCS.
Acta Informatica 58(1-2), pp. 1–34, doi:10.1007/s00236-019-00346-6.

[11] Ivan Lanese, Claudio Antares Mezzina & Jean-Bernard Stefani (2010): Reversing Higher-Order Pi. In:
CONCUR 2010, Lecture Notes in Computer Science 6269, Springer, pp. 478–493, doi:10.1007/978-3-642-
15375-4 33.

[12] Ivan Lanese, Naoki Nishida, Adrián Palacios & Germán Vidal (2018): A theory of reversibility for Erlang. J.
Log. Algebraic Methods Program. 100, pp. 71–97, doi:10.1016/j.jlamp.2018.06.004.

[13] Ivan Lanese, Iain C. C. Phillips & Irek Ulidowski (2020): An Axiomatic Approach to Reversible Computation.
In: Proceedings of FOSSACS 2020, Lecture Notes in Computer Science 12077, Springer, pp. 442–461,
doi:10.1007/978-3-030-45231-5 23. (The full version is at https://arxiv.org/abs/2307.13360.).

[14] Chris Lattner & Vikram S. Adve (2004): LLVM: A Compilation Framework for Lifelong Program Anal-
ysis & Transformation. In: 2nd IEEE / ACM International Symposium on Code Generation and Op-
timization (CGO 2004), 20-24 March 2004, San Jose, CA, USA, IEEE Computer Society, pp. 75–88,
doi:10.1109/CGO.2004.1281665.

[15] Hernán C. Melgratti, Claudio Antares Mezzina & G. Michele Pinna (2021): A distributed operational view of
Reversible Prime Event Structures. In: 36th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2021, Rome, Italy, June 29 - July 2, 2021, IEEE, pp. 1–13, doi:10.1109/LICS52264.2021.9470623.

[16] Torben Ægidius Mogensen (2015): Garbage Collection for Reversible Functional Languages. In: Reversible
Computation - 7th International Conference, RC 2015, Grenoble, France, July 16-17, 2015, Proceedings,
Lecture Notes in Computer Science 9138, Springer, pp. 79–94, doi:10.1007/978-3-319-20860-2 5.

[17] Torben Ægidius Mogensen (2015): RSSA: A Reversible SSA Form. In: Perspectives of System Informatics
- 10th International Andrei Ershov Informatics Conference, PSI 2015, Lecture Notes in Computer Science
9609, Springer, pp. 203–217, doi:10.1007/978-3-319-41579-6 16.

[18] Iain Phillips & Irek Ulidowski (2014): Event Identifier Logic. Math. Struct. Comput. Sci. 24(2),
doi:10.1017/S0960129513000510.

[19] Iain Phillips & Irek Ulidowski (2015): Reversibility and asymmetric conflict in event structures. J. Log.
Algebraic Methods Program. 84(6), pp. 781–805, doi:10.1016/j.jlamp.2015.07.004.

[20] Iain C. C. Phillips & Irek Ulidowski (2007): Reversing algebraic process calculi. J. Log. Algebraic Methods
Program. 73(1-2), pp. 70–96, doi:10.1016/j.jlap.2006.11.002.

https://doi.org/10.1007/978-3-030-79837-6_6
https://doi.org/10.1007/978-3-030-47361-7_5
https://doi.org/10.1016/j.scico.2022.102873
https://doi.org/10.1007/978-3-031-09005-9_15
https://doi.org/10.1007/978-3-031-09005-9_15
https://doi.org/10.1007/978-3-030-52482-1_18
https://doi.org/10.1007/978-3-030-79837-6_4
https://doi.org/10.1007/s00236-019-00346-6
https://doi.org/10.1007/978-3-642-15375-4_33
https://doi.org/10.1007/978-3-642-15375-4_33
https://doi.org/10.1016/j.jlamp.2018.06.004
https://doi.org/10.1007/978-3-030-45231-5_23
https://arxiv.org/abs/2307.13360
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/LICS52264.2021.9470623
https://doi.org/10.1007/978-3-319-20860-2_5
https://doi.org/10.1007/978-3-319-41579-6_16
https://doi.org/10.1017/S0960129513000510
https://doi.org/10.1016/j.jlamp.2015.07.004
https://doi.org/10.1016/j.jlap.2006.11.002

S. Oguchi & S. Yuen 167

[21] Irek Ulidowski, Iain Phillips & Shoji Yuen (2018): Reversing Event Structures. New Gener. Comput. 36(3),
pp. 281–306, doi:10.1007/s00354-018-0040-8.

[22] Carlin Vieri (1999): Reversible computer engineering and architecture. Ph.D. thesis, Massachusetts Institute
of Technology, Cambridge, MA, USA. Available at https://hdl.handle.net/1721.1/80144.

[23] Tetsuo Yokoyama (2010): Reversible Computation and Reversible Programming Languages. Electron. Notes
Theor. Comput. Sci. 253(6), pp. 71–81, doi:10.1016/j.entcs.2010.02.007.

[24] Tetsuo Yokoyama, Holger Bock Axelsen & Robert Glück (2011): Towards a Reversible Functional Lan-
guage. In: RC 2011, Lecture Notes in Computer Science 7165, Springer, pp. 14–29, doi:10.1007/978-3-642-
29517-1 2.

https://doi.org/10.1007/s00354-018-0040-8
https://hdl.handle.net/1721.1/80144
https://doi.org/10.1016/j.entcs.2010.02.007
https://doi.org/10.1007/978-3-642-29517-1_2
https://doi.org/10.1007/978-3-642-29517-1_2

	Introduction
	Timed Rebeca
	Different Semantics of Timed Rebeca
	Model Checking Timed Rebeca Models
	Origins of EXPRESS: some personal memories
	Session types and their expressiveness: introduction
	Background: -calculus and session types
	Encoding sessions
	Extensions
	Applications
	A Type System for Deadlock Freedom
	Session Type Inference

	Introduction
	Data Collection and Analysis
	Data Collection
	Automatic Analysis
	Centrality Measures
	The Two Lives of the SOS Workshop
	Reflections on the Analysis Results

	Personal Reflections
	Strengths
	Gaps
	Trends and Opportunities

	Introduction
	Preliminaries
	An elementary processes language
	Branching probabilistic bisimilarity
	Branching probabilistic bisimilarity is continuous
	Cancellativity for branching probabilistic bisimilarity
	Concluding remarks
	Introduction
	Enabling Preserving Bisimilarity
	An Introductory Example: CCS with Successors
	Structural Operational Semantics
	De Simone Languages
	Transition System Specifications with Successors
	De Simone Languages with Successors
	A Larger Case Study: The Process Algebra ABCdE
	Related Work & Conclusion
	Introduction
	, a Deadlock-Free Asynchronous -Calculus
	CCS: Ensuring Deadlock-Freedom using Composition
	: Deadlock-Freedom for Higher-Order Locks
	Behavioural Equivalence in
	Barbed Equivalence and Labelled Semantics for
	Examples of Behavioural Equivalence in

	w, a Leak-Free Asynchronous -Calculus
	Adding Lock Deallocation
	Typed Behavioural Equivalence in w
	Barbed Equivalence
	Typed Transitions for w, and Bisimilarity

	Related and Future Work
	Additional Material for Section 2
	CCS, Operational Semantics
	CCS, Properties of the Type System
	, Operational Semantics

	Additional Material from Section 3
	Leak-Freedom in w
	Translating a Process in w

	1 Introduction
	2 Skeletal Semantics
	3 Big-step Semantics of Skel
	3.1 From Types to Concrete Values
	3.2 Interpretation of Unspecified Terms
	3.3 Big-step Semantics

	4 Big-step Semantics with Program Points
	4.1 Building Values with Program Points
	4.2 Pattern-matching of Program Points

	5 Abstract Interpretation of Skel
	5.1 Abstract Values
	5.2 Operations on Abstract Values
	5.3 Abstract Interpretation of Skel
	5.4 Correctness of the Abstract Interpretation

	6 Related Work
	7 Conclusion
	Introduction
	Preliminaries
	Parallel Pushdown Automata
	Parallel Processes
	Communicating processes
	The full correspondence
	A characterisation
	Conclusion
	Introduction
	Preliminaries
	Probabilistic Masking Simulation
	Quantifying Fault Tolerance
	Related Work
	Concluding remarks
	Introduction
	CRIL
	Basic block
	Process
	Basic operational semantics

	Reversibility of CRIL
	Annotation DAG
	Operational semantics controlled by Annotation DAG
	Properties for reversibility
	Basic properties for reversibility
	Events
	Causal Safety and Causal Liveness

	Example: Airline ticketing
	Concluding remarks

