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Scalable formal verification constitutes an important lelmae for the design of asynchronous cir-
cuits. Deadlock freedom is a property that is desired bull lawverify. It is an emergent property
that has to be verified monolithically. We present our apgihda using ACL2 to verify necessary
and sufficient conditions over asynchronous delay-insergirimitives. These conditions are used
to derive SAT/SMT instances from circuits built out of thgsenitives. These SAT/SMT instances
help in establishing absence of deadlocks. Our verificaftort consists of building an executable
checker in the ACL2 logic tailored for our purpose. We pravattthis checker is correct. This ap-
proach enables us to prove ACL2 theorems involdegun-sk constructs and free variables fully
automatically.

1 Introduction

Today’s hardware designs commonly are clocked. A rhythridckesignal ensures that a designer can
assume a discrete notion of time. The clocked design paratas many advantages, but they come at
a high cost. It induces overhead and delay in terms of speed fldw and energy [6]. In a clock-free or
asynchronouslesign each element acts only when necessary and at its @&n phis can save energy,
can increase speed and can decrease latency of commumicatio

Recently, Click has been proposed as a library for the dedigeynchronous circuits[4]. It consists
of primitives that aredelay-insensitivei.e., primitives that behave correctly regardless of aaiayl
induced by interfacing with the environment. Click primés are low-level hardware design templates
for delay-insensitive elements such as storages, forks pnd distributor. Connected in a pipelined
fashion, the purpose of these primitives is to behave a®-likg” as possible. They restore a high level
of abstraction during the design phase, even when a clokddimealistic asynchronous hardware is
maintained.

Many state-of-the-art formal verification efforts on adyranous circuits focus on proving properties
over elements in isolation [11} 3,110]. Deadlock freedonwéwer, is an emergent property. Establishing
deadlock freedom of primitives in isolation does not prevashy information on deadlock freedom of the
entire system. A monolithic approach is mandatory. Our @ggh is to automatically derive SAT/SMT
instances from Click circuits. If the instance is infeasjblhe circuit is deadlock-free. If a solution
is found, this solution corresponds to a structural deddldthis approach has been applied before to
synchronous circuits, where it shows great promise in terhssalability [7/1].

Consider the network in Figuigé 1 as an example. The circuitbraposed of six Click primitives.
These primitives use handshakashrough f to establish mutual communication. The input injects
packets which are duplicated by the fork. Two storagemnds; buffer these packets. The join waits for
two packets at its inputs and combines them into one packeathvis sent to the output.

1To be more precise, the primitives are quasi-delay-insigasiFor sake of presentation, we do not distinct thesegerm
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C) Click primitive
I:I Storage

Handshake
Figure 1: Click circuit
Given this circuit, we automatically derive the followingsult:
Deada) <= ((So/A—S1)V (S1A—%))A(So=51) 1)

In words, this formula states that there is a deadlock inmghhandshake if and only if exactly one
of the storages is futind the internal state of both storages is equal. The left hathel &fi the conjunct
indicates that if, e.g., storagg contains a packet but storagedoes not, a deadlock would occur. In
this configuration, the fork will never be able to duplicatetpackets, whereas the join will never be
able to combine two packets. The right hand side indicatsritariably both storages will either both
be empty or both be full. The formula is not satisfiable, tleeye is no assignment of values to variables
that makes the formula true. Consequently, there is no deladl

Key to deriving a deadlock formula such as Equatibn 1, is taldish necessary and sufficient con-
ditions for each Click primitive in isolation. These conalits must characterize the reasons that cause a
handshake to bklocked i.e., not able to transmit a packet, idte, i.e., not receiving a packet. We use
the join as a running example. The join waits for data frontvits inputsa andb before forwarding data
to outputc. Inputais permanently blocked if and only if one of two cases arisestFwhen output
is permanently blocked the join can never forward a packeherefore blocks inpud. Secondly, when
no packet arrives at input, the join will never be able to merge two packets and will mgr@duce an
output. Inputais blocked. Hence the join induces the following necessadysafficient condition:

Complete Condition. The input of a join is permanently blocked if and only if eithie output is per-
manently blocked or the other input is permanently idle.

Block(a) <= Block(c)VIdle(b)

Correct necessary and sufficient conditions for each grienin the Click library are vital to the
correctness of our approach. Even though their correciasdten seems obvious, their formalizations
are complicated and their proofs of correctness are oftghhhitedious. Moreover, the Click library
contains many primitives and our approach requires meltigcessary and sufficient conditions per
primitive. Therefore, we have implemented a small and lyighillored checker for Click primitives in
ACL2. This checker is able to automatically verify necegsard sufficient conditions built out of block-
and idle predicates for a library of delay insensitive ptiveis. This paper presents ACL2 details of our
verification effort, a broader overview can be found in oublmation at ASYNC [[8]. Details on how
these conditions can be used to build a formula such as Bgldtan be found elsewhere [7, 1].

2 Formalizing Blocking and Idle Conditions

We represent Click primitives using the eXtended Delay nsge&ve (XDI) specification([9, 2]. In this
paper, XDI specifications are represented using automagdirsVintroduce the parts of the XDI formal-
ism relevant to this paper. Then, the execution semantigddtate machines are formalized. Finally,
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we use Linear Temporal Logic (LTL) to formalize propertiagpexecutions of Click circuits. LTL uses
the G(lobally) operator to express that some property is always, tand theF(inally) operator which
expresses that some property is eventually {rue [5].

2.1 Formalization of Click Primitives

A Click primitive is connected to several other primitivets gnvironment and may use several hand-
shakes for this. Each handshake is implemented by two Wwiresdh, for requests and acknowledg-
ments. Each wire is either an input to the primitive, or arpatitWe allow the possibility that a request
for handshakén is accompanied by dath In this case, the handshake will be denoted \nfth

Running Example, Part 1. For the join, the set of handshakes{ig,b,c}. The set of input wires is
{ar,bg,Cy} and the set of output wires sy, b,,cz }. The possibility of transmitting data with requests
is not needed.

Figure 2: XDI state graph of a join

Figure 2 shows the XDl state machine of the join. The follaydkCL2 code, which will be explained
in more detail hereafter, corresponds to this XDI state lgrap

(defconst *xdi-sm-joinx

>(;;State Init Type Transitions
(sO T BOX (((b R I)s2) (@R I)s1)))
(s1 NIL BOX (((b R I) s3)))
(s2 NIL BOX (((a R I) s3)))
(s3 NIL TRANSIENT (((c R 0) s4)))
(s4 NIL BOX (((c A 1) s5)))
(s5 NIL TRANSIENT (((b A 0) s7) ((a A 0) s6)))
(s6 NIL TRANSIENT (((b A 0) s0) ((a R I) s9))
(s7 NIL TRANSIENT (((a A 0) s0) ((b R I) s8)))
(s8 NIL TRANSIENT (((a A 0) s2)))
(s9 NIL TRANSIENT (((b A 0) s1))))

An XDI specification consists of a set of states. There is tixame state that is the initial state.
In contrast to the full XDI specification, which provides fidéferent types of states, our presentation
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allows only two types of stateindifferentstates (denoted witB0X) andtransientstates. An indifferent
state poses no progress obligation on either the circuitsoenvironment. A transient state requires
progress of the circuit, i.e., the primitive eventually taproceed to a next state.

Running Example, Part 2. For the join, state gis the initial state. As this state requires an input
from the environment on wireg @nd ky, there are no progress obligations and the type of statis s
indifferent. In state g requests have been received from both a and b. The circsitdhaend a request
to its output c. Consequently, the type of states sransient.

A transition (w s) is a tuple containing the label that represents the wire on which a communi-
cation is to occur for the transition to the next statéo happen. A wires is represented by a tuple
(h R/A I/0) with three values representing the handshake, whether itleeiswused for Requests or
Acknowledgments, and whether the wire is an input or andudutpthe primitive. For example, if the
join is in its initial state and the input wirg changes from low to high, the join moves to stsieFor
details on rules on which transitions are allowed and reguiin XDI specifications, we refer to papers
on the XDI formalism (e.g.[]9]).

2.2 Execution Semantics

The execution semantics of an XDI state mach{nare formalized relative to its environment. Since the
environment consists of Click primitives, it is basicalljaage XDI state machine. The only information
relevant to the analysis of primitivk, is whether its input wires arstableor not. A wirew is stable

if and only if its value is permanently unchanged. This ireplihat if wirew is stable, no transition
labelled withw occurs. Therefore, the environment, i.e., the completefgelick primitives constituting
the circuit, is represented as a set of input wires such #wdt wire in the set is deemed to be stable.

Running Example, Part 3. We consider an environment of the join in which wigeig stable. Any
execution will strand in statessi.e., waiting for the environment to acknowledge the rgicef data
by output c after a request to ¢ has been sent to fetch this dasaentially, the join is dead because
the environment permanenthfockson handshake c. In another environment wirgsaad k; may be
stable. The join will get stuck in its initial statg.slt is waiting for the environment to send requests.
Essentially, the join is dead because the environment imaeentlyidle on handshakes a and b. In total,
the three input wires inducg® different possible groups of environments of interestevailalyzing the
join, ranging from a live one (i.e., the environment is thepgnset), to an environment where all three
input wires of the join are stable (i.e., the environmenhis $et{ag, br,Cy }).

First, we define a predicate to indicate that a given wire igypat wire. We make use of thero j
function, which returns theth projection in a list of lists. For exampléproj 0 *xdi-sm-joinx*)
return the set of states of the XDI state machine of the join.

(defun input-wirep (xdi-sm wire)
(member-equal (list (car wire) (cadr wire) ’I)
(proj O (union (proj 3 xdi-sm)))))

Functioninput-wirep takes as input an XDI state machine and a partial descripfi@wire, namely
atuple(h R/A), whereh is the handshake arRY A indicates a Request or Acknowledge. This is trans-
formed to awire(h R/A I),for which is searched in the set of labels on the transitadrike XDI state
machine. An environment can now be defined as a set of inpeswir

(defun envp (xdi-sm env)
(if (endp env)
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t
(and (input-wirep xdi-sm (car env))
(envp xdi-sm (cdr env)))))

The actual value of the environment depends on the stateafdtwork. In the remainder of this paper,
we quantify overll possible environments.

Given an environment, we can define the next step functionifstate machines. Given a current
state, this function returns the set of next possible stdast, we define a function that takes as input
a list of transitionsts and filters out transitions labelled with a stable wire,, itensitions that cannot
occur. Functiorstable returnst if and only if the given wire is stable in the given environrhen

(defun remove-stable-wire-transitions (ts env)
(cond ((endp ts)
nil)
((stable (caar ts) env)
(remove-stable-wire-transitions (cdr ts) env))
(t
(cons (car ts)
(remove-stable-wire-transitions (cdr ts) env)))))

This function yields all transition§(h R/A I/0) s’) that are not stable. The next step function gives
it all possible transitions from the current statend takes from each resulting transition the next state

(defun xdi-step (xdi-sm s env)
(proj 1 (remove-stable-wire-transitions (nth 3 (assoc s xdi-sm)) env)))

2.3 Labelling States as Blocking or Idling

We identify each non-transient stateldsckingor idling with respect to handshake We define these
labels in such a way that if primitiv& is permanently stuck in a state labelled as “blocKighandshake
his permanently blocked. Handshdkes permanently idle, if primitiveX permanently remains in a state
labelled “idling h".

Running Example, Part 4. For the join, we consider handshake a, which uses wirgara g to
communicate with the join. States 3, &1, S5, S7, S and g are blocking this handshake. In these states,
handshake a has sent a request to the join, which has not leé@owaledged by the join yet. If the join
is permanently stuck in these states, handshake a will peenily wait for an acknowledgment from the
join. Handshake a is permanently blocked. The remainintgstg, $, and g are idling handshake a.
In these states, the join waits for a request from handshak&/lzen it is permanently stuck in of these
states, handshake a is failing to send this request. Hark#shas permanently idle.

To define predicateslocking andidling, we define an executable functieampute-b/i which
recursively explores the state machine and returns aniatisoclist mapping to each state a Boolean
value indicating how the state should be labelled. The tiotuiof this function is that initially states
are idling. As soon as a transitidith R I/0) s’) occurs, apparently the primitive is in a state where
it has been requested to communicate on handshakeit has not finished this communication yet.
All subsequent states are therefore blocking handshakmtil a transition((h A I/0) s’) occurs.
After this transition, the primitive has successfully deeith the request and no communication occurs
on handshaké. All subsequent states are idling handshhkeThis repeats, until all states have been
explored.
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(mutual-recursion
(defun compute-b/i (xdi-sm s h flg ret)
(if (assoc s ret)
ret
(let ((ret (acons s flg ret)))
(compute-b/i-ts xdi-sm (nth 3 (assoc s xdi-sm)) h flg ret))))
(defun compute-b/i-ts (xdi-sm ts h flg ret)
(let ((ret (cond ((equal (caaar ts) h)
(compute-b/i xdi-sm (cadar ts) h (not flg) ret))
(t
(compute-b/i xdi-sm (cadar ts) h flg ret)))))
(compute-b/i-ts xdi-sm (cdr ts) h flg ret))))

Figure 3: Implementation afompute-b/i

Figure[3 shows the ACL2 code of functi@empute-b/i which computes this association list. Func-
tion compute-b/i takes as second parameter a stat€he third parameter is a flag indicating whether
currently explored states are to be marked blocking orgdlih checks whether this state has already
been explored. If so, then no further exploration is nee@terwise, it updates the returned association
list ret by associating the current value of the flag to the currené stafter this update, the function
recursively explores all transitions leading out of therent state. Functionompute-b/i-ts takes as
second parameter a set of transitions. Sequentially twng$hoccur. First, the first transition of the set
is analyzed. If this transition concerns handshakéhe flag is changed indicating that a switch from
blocking to idling happens, or the other way around. A regarsall with the next state as value fois
performed. Second, the remaining transitions are realysexplored.

Functioncompute-b/i is initially called with the initial state and as flag the vahil. The pred-
icate blocking can now be defined by simply looking up the given state in thsilteof function
compute-b/i.

(defun blocking (xdi-sm s h)
(cadr (assoc s (compute-b/i xdi-sm (xdi-get-init-state xdi-sm) h nil nil))))

Predicateidling is defined as not blocking.

Running Example, Part 5. The state machine of the join contains atransitigits s;. We can compute
that:

(blocking *xdi-sm-join* sO a)

evaluates tmil, whereas

(blocking *xdi-sm-join* sl a)

evaluates ta.

This represents that statg is idling handshake a, whereas stateéisblocking handshake a.

Remarks

An important assumption on the Click primitives is that th€DI specification ensures that function
blocking is uniquely defined over all non-transient states. If a aedtates can be reached from the
initial state using a sequence of transitions with one ttimmslabelledhg and no transition labellel,,
functionblocking enforces blockingh,s) to be true. If this state can also be reached with a sequence
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of transitions withouthy as label, functiorblocking enforces blockinth,s) to be false. Such state
graphs are not allowed. We will call a Click primitive for wehi function blocking is unique over all
non-transient statamambiguousin ACL2, we have an executable function checking for unayuity.
Functioncompute-b/i does not necessarily terminate. To prove termination, \geire both a list
of assumptions and some checks which have to be performdebyriction before each recursive call.
We have added the assumption as guards, and defined a lagjisi@in/of this function with the additional
checks. For the logical version, we have proven terminatibhe code shown here is the executable
version, without these checks. Using mie-construct, we have proven that under assumption of the
guards, the logical and the executable versions are equival

2.4 Formulating Block- or Idle Conditions

Whether a primitive can be stuck in a blocking- or idling stdepends on the environment. Consider
again the state machine of the join (see Figure 2). If therenment dictates that wire, is stable,
any execution will strand in sta. This state is blocking handshakeand therefore handshakeis
permanently blocked. We say that a handsHaisepermanently blocked if and only if a primitive will
eventually get stuck in non-transient states labelledckilog h”.

To define LTL properties over XDI state machines, we first defire notion of trace. A trace is a set
of states that is connected via th&i-step function.

(defun xdi-tracep (xdi-sm trace env)
(cond ((endp trace)

t)

((endp (cdr trace))

t)

(t

(and (member (cadr trace) (xdi-step xdi-sm (car trace) env))

(xdi-tracep xdi-sm (cdr trace) env)))))

To express that a machine is permanently stuck in blockiatest we use defun-sk construct to
qguantify over all possible traces starting in the curreatest

(defun-sk G-blocking_ (xdi-sm h s env)
(forall (trace)
(implies (and (xdi-tracep xdi-sm trace env)
(equal (car trace) s))
(or (equal (nth 2 (assoc (car (last trace)) xdi-sm))
’transient)
(blocking xdi-sm (car (last trace)) h)))))

The trailing underscore is used to indicate that the funcigonon-executable. Any trace startingsn
ends either in a transient state or in a state that is blodkamgishaken. Note that we deal with finite
traces only. Since the XDI automata are always finite, anyitefitrace consists of a prefix followed
by a repetition of some trace induced by a cycle. It it theeefufficient to analyze all finite — but of
unbounded length — prefixes.

Similarly, we express the operator using defun-sk construct introducing an existential quantifier.

(defun-sk F-G-blocking_ (xdi-sm h s env)
(exists (trace)
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(and (xdi-tracep xdi-sm trace env)
(equal (car trace) s)
(G-blocking_ xdi-sm h (car (last trace)) env))))

Similar definitions have been formulated for idling. Givewigonmentenv, handshaké is permanently
blockedif and only if the corresponding XDI state machine is eveltyuaslways in a blocking state. Sim-
ilarly, handshakén is permanently idléf and only if the corresponding XDI state machine is eveliyua
always in an idling state.

(defun Blocked_ (xdi-sm h env)

(F-G-blocking_ X h (xdi-get-init-state xdi-sm) env))
(defun Idle_ (xdi-sm h env)

(F-G-idling_ xdi-sm h (xdi-get-init-state xdi-sm) env))

Finally, we can formulate necessary and sufficient conalitiper Click primitive. For example, the
ACL2 formalization of the running example becomes:

Theorem 1.

(defthm blocking-equation-join
(implies (envp xdi-sm env)
(iff (Blocked_ *xdi-sm-join* ’a env)
(or (Blocked_ *xdi-sm-join* ’c env)
(Idle_ *xdi-sm-join* ’b env)))))

3 Model Checking Blocking and Idle Conditions

Proving Theoreni]1 could be done manually as follows. Firstase distinction is required over all
possible environments (in this case, eight in total). Foheanvironment, all traces have to be explored
to see whether the labels computed by funcitenpute-b/i always satisfy the formula that is to be
proven. As we need multiple theorems per primitive and tieeeewhole library of Click primitives, we
want to prove dozens of theorems such as Thediem 1. Natuasathanual proof is simply infeasible
and an automated approach is mandatory. Therefore, ouf f@dmique is to A.) define executable
counterparts to non-executable functi®iscked_andIdle_and B.) make an automatic enumeration
of all possible environments. A once and for all proof thastinfunctions are correctly implemented can
then be used to prove Theorém 1 without further interaction.

3.1 ACL2 Overview of Automated Proof

Our objective for Part A. is to implement functi® ocked in such a way that the following lemma can
be proven (similar fofdle). This is the specification of functiosilocked, its definition will follow.

Lemma 1.

(defthm rewrite-non-exec-Blocked_-to-exec-Blocked
(implies (and (xdi-smp xdi-sm)
(member s (proj O xdi-sm)))
(equal (Blocked_ xdi-sm h s env)
(Blocked xdi-sm h s env))))
:rule-classes :definition)
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Functionxdi-smp recognizes syntactically valid XDI state machines. For stayes that is a valid
state, the result of functioBlocked is equivalent to that of its specificati@ ocked_. Once this theory
has been established, the non-executable defirBtiorked_ is disabled in the theory.

(in-theory (disable Blocked_))

This way we are sure — when proving a theorem — that any ocmerefBlocked_ will be rewritten
using Lemmalbnly (note that a defun-sk construct is non-executable, buillis&en rewritten to a goal
without the original function name, thereby preventinglayggion of Lemmall).

As for Part B., we straightforwardly implement a functiseasonable-envs which takes as input
an XDI state machine and generates a list of all possibler@mvients. We first implement function
compute-input-wires which given an XDI state machine returns the set of input svir€he set of
environments is then computed as follows:

(defun reasonable-envs (xdi-sm)
(powerset (remove-duplicates (compute-input-wires xdi-sm))))

The set of input wires is assembled. Duplicate entries armved, for sake of efficiency. The list of
relevant environments contains any subset of these wires.

Remark

The number of environments grows exponentially. The XDbeadta of interest are however not very
large. In Sectiof]4 we apply our method to a non-trivial Clicknitive, namely the distributor. Regard-
less of the large number of environments, we can easily digdalthis primitive.

Using Parts A. and B., we can prove Theofem 1 completely aatioadly, after rewriting it slightly.
Our final formulation becomes:

(defthm blocking-equation-join
(and (xdi-smp-guard *xdi-sm-joinx)
(implies (member env (reasonable-envs *xdi-sm-joinx*))
(iff (Blocked_ *xdi-sm-join* nil ’in0 env)
(or (Blocked_ *xdi-sm-join* nil ’out env)
(Idle_ *xdi-sm-join* nil ’inl env))))))

First, we explicitly verify that the constamtxdi-sm-joinx* satisfies all guards necessary for cor-
rect execution of functionBlocked andIdle. Functionxdi-smp-guard is executable and therefore
(xdi-smp-guard *xdi-sm-joinx*) iS proven without further interaction. Secondly, we refafate
the theorem, so that open variakiev is a member of a computable set of environments. The ACL2
simplifier will compute all reasonable environments. Sgleatly, having the following lemma enabled
in the theory ensures that thember construct breaks the goal down into eight different subg¢ahe
for each environment):

(defthm member-rewrite
(equal (member a (cons b x))
(if (equal a b) (coms b x)
(member a b))))

For each subgoal, the ACL2 simplifier uses Lenimha 1 (and aairtemma forIdle) to rewrite the
subgoal to executable versionsBifocked and Idle. At this point, all functions are executable and
there are no variables. The truth of each subgoal is autoatlgtevaluated.
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3.2 Implementation ofBlocked and Idle

The implementation oBlocked needs to check whether eventually generally the machine staies
that are either transient or labelled as “blocking” by fumticompute-b/i. So first a function must be
implemented which decides whether in a certain start stéte machine generally is in such states, i.e.,
a functionG-blocking must be implemented. Figuré 4 shows the implementationi®fiimction.

(mutual-recursion
(defun G-blocking (xdi-sm visited s h env)
(if (not (member-equal s visited))
(if (or (equal (nth 2 (assoc s xdi-sm)) ’transient)
(blocking xdi-sm s h))
(G-blocking-ss xdi-sm (cons s visited)
(remove-equal s (xdi-step xdi-sm s env)) h env)
nil)
visited))
(defun G-blocking-ss (xdi-sm visited ss h env)
(if (endp ss)
visited
(let ((ret (G-blocking xdi-sm visited (car ss) h env)))
(cond ((equal ret nil)
ret)
(t
(let ((ret2 (G-blocking-ss xdi-sm visited (cdr ss) h env)))
(if ret2
(append ret ret2)
nil))))))))

Figure 4: Implementation agf-blocking

FunctionG-blocking takes as input the XDI state machine, an accumulator ofedsitates, the
current state, the handshake and the current environmeiitreturnsnil this indicates that there is
some reachable state that is not labelled “blocking” wigpeet to handshake If it does not returmil
it does not returrt, but instead it returns a list of states that has been exgldrkis will be used in the
proofs later on.

If the current state is not visited and labelled “blocking” with respect to handkeh, exploration
continues with all next states using functi@rblocking-ss. This function deals with two cases: either
there are no states to be explored, or there are states toplwezk In the first case, as there are no
more reachable states, all reachable states have beemeskplderefore, the function should return
but instead returns the accumulatdrsited storing all explored states. Otherwise, the function check
whether the first state in the listésblocking. If the result of this check igil, this result is returned.
Otherwise, the intermediate result (i.e., the states egglm the recursive call) are appended to the final
result.

A similar function is implemented to compuFeG-blocking . We extend both functions with an
extra flag so that these functions can also be used to conipu}&-idling. Using these functions, we
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can define the implementationsEifocked_andIdle..

(defun Blocked (xdi-sm h env)

(consp (F-G-blocking xdi-sm nil ¢(,(xdi-get-initial-state xdi-sm)) h env)))
(defun Idle (xdi-sm h env)

(consp (F-G-idling xdi-sm nil ‘(,(xdi-get-initial-state xdi-sm)) h env)))

3.3 Proof of Lemmall

We present the proof of correctness of functibiblocking. The proofs fofF-G-blocking are similar.
The proof is in two directions. We prove Lemina 2 which staltex for any state such that specification
G-blocking_returnst, executable functiod-blocking returns a non-empty list of visited states. Sec-
ondly, we prove Lemmia 3 which states that any state for whiels@able functiot-blocking returns

a non-empty list, specificatiol-blocking_returnst.

Lemma 2.

We formulate the lemma in such a way that induction a#&locking is possible. This requires
parametersisited andss to be free. Also, any assumption on these variables must l@vanant
over functionG-blocking. Our formalization is as follows, and will be detailed hdtea

(defthm G-blocking -->G-blocking
(implies (and (xdi-smp xdi-sm)
(G-blocking_ xdi-sm h s env)
(consp ss)
(subsetp ss (proj O xdi-sm))
(A-xdi-reachable xdi-sm env s ss))
(G-blocking xdi-sm visited ss h t env))

Assume a valid XDl state machine and a statehich is generally blocking according to the specifica-
tion. For any non-empty sefs of valid states we prove that executable funct®locking returns

a non-empty list. As an invariant, we require that all statess are reachable from state Function
A-xdi-reachable returnst if and only if all states irss are reachable from state Reachability be-
tween two states1 ands2 is straightforwardly defined usingdfun-sk construct as the existence of
a non-empty trace starting &1 and ending irs2:

(defun-sk xdi-reachable (xdi-sm env sl s2)
(exists (trace)
(and (xdi-tracep xdi-sm trace env)
(consp trace)
(equal (car trace) sl1)
(equal (car (last trace)) s2))))

Once it is proven that reachability of states from states is indeed an invariant, the proof becomes
conceptually very easy. As soon as G-blocking encountemnanansient state2, we know from the
invariant that state2 is reachable from state From assumptio{G-blocking_ xdi-sm h s env)
we can prove tha$2 is blocking, which is expressed by lemmpec-of-G-blocking :

(defthm spec-of-G-blocking_
(implies (and (G-blocking_ xdi-sm h s env)
(xdi-reachable xdi-sm env s s2)
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(not (equal (nth 2 (assoc s2 xdi-sm)) ’transient)))
(blocking xdi-sm s2 h))
thints (("Goal" :use ((:instance G-blocking_-necc
(trace (xdi-reachable-witness xdi-sm env s s2)))))))

The theorem is proven by instantiating the theorem intreduxy thedefun-sk event corresponding to
G-blocking . This instantiation requires a trace frasmo s2. This trace is exactly the witness created
by thedefun-sk event corresponding tadi-reachable.

Now we do induction oveé-blocking. We have to prove that it does not returiil. It returnsnil
only if it encounters an illegal state or a non-transientestidat is not labelled “blocking”. The first case
cannot happen due to assumptigrdi-smp xdi-sm). The second case cannot happen since the invari-
ant ensures that any explored state is reachable fromsstatd since lemmapec-of-G-blocking_
can be used to prove that any state reachable fdrabelled “blocking”.

Lemma 3.
The lemma is formulated as follows:

(defthm G-blocking-->G-blocking_
(implies (and (xdi-smp xdi-sm (cars xdi-sm))
(member-equal s (cars xdi-sm))
(G-blocking xdi-sm nil (list s) h env))
(G-blocking_ xdi-sm h s env)))

Given a valid XDI state machine and a valid stateghe executable function correctly decides the LTL
formula for states.

For the proof of the lemma we use the fact that functielocking does not returrt when all
reachable non-transient states are labelled “blockingt,the accumulatorisited instead. As we
reason over reachable states, we define functiirreach which takes as input a set of statesand
assembles all states reachable from any staée.ifhe reasoning is as follows:

1. Any state returned b§_blocking is either transient or labelled “blocking”.

2. For any set of statess, the set of states accumulated by
(G-blocking xdi-sm visited ss h env) contains all states returned lf¥di-reach ss).

3. Any state reachable from any statesiis in (xdi-reach ss).

4. We have to prove that any staie reachable frons is either transient or labelled “blocking”.
By 3.) it follows that:
(member s2 (xdi-reach (list s))
By 2.) it follows that:
(member s2 (G-blocking xdi-sm nil (list s) h env)
By 1.) it follows thats2 is either transient or labelled “blocking”.

First, we prove a theorem stating that any non-transiené seturned byG-blocking is indeed
labelled “blocking”.

(defthm all-states-in-G-blocking-are-blocking
(implies (A-blocking xdi-sm visited h)
(A-blocking xdi-sm (G-blocking xdi-sm visited ss h env) h)))
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Function A-blocking is a universal quantifier expressing that all given statese@ther transient or
labelled “blocking”. Assuming this property holds for afiially accumulated states, this property
holds for accumulated states.

We then prove that-blocking returns all states assembled:ii-reach.

(defthm all-reachable-states-in-G-blocking
(implies (G-blocking xdi-sm visited ss h env)
(subsetp (xdi-reach xdi-sm visited ss env)
(G-blocking xdi-sm visited ss h env))))

Assuming thaG-blocking does not returail, we prove that any state that is in the reach of some state
in ss is also member of the list of accumulated states returne@t-b¥ocking.
Finally, we prove correctness of functiadi-reach, i.e., that it contain all reachable states.

(defthm spec-of-xdi-reach
(implies (and (xdi-smp xdi-sm (proj O xdi-sm))
(member s (proj 0 xdi-sm))
(xdi-reachable xdi-sm env s s2))
(member-equal s2 (xdi-reach xdi-sm nil (list s) env)))

Using these lemmas, Lemrha 3 can be proven without inducflonprove the universal quantifier
introduced byG-blocking , we have to prove of a witness state

Svw = (G-blocking -witness xdi-sm h s env)

that it is either transient or labelled “blocking”. Instaing the first lemma with the accumulator
visited set tonil, automatically discharges its assumption. What remairtsetproven is thas,

is accumulated bg-blocking. This is proven by the second lemma, instantiated withited set to
nil andss setto(list s). This forces us to prove that stagis a member okdi-reach. The third
lemma is used to prove this, instantiatia® with (G-blocking -witness xdi-sm h s env).

4 Application

The distributor (see Figuréls) is a Click primitive used for routing packétotgh a network. It uses
handshake on which the availability of data is communicated and thraedshakes seIé’c(OO <d<
11). If d = 00, the incoming data is dropped.df= 01, the packet is routed towards outputSimilarly
d = 10 routes towards output Figure[6 shows the XDI state graph of the distributor. Thieofe

b
a qﬁ
[§
select

Figure 5: Schematic overview of the distributor

input wiresW; is {aR,seIecg,bA,cA}. The remaining wires are output, i.8\p = {ay,selecf,bg,Cr}.
Handshake select uses data for requests.

The blocking equation of inpud of the distributor is shown in Figuifg 7. Blockage of inputs
logically equivalent to three cases. First, if no selechalgver arrives at inputelect, the distributor
will not know how to route packets and will therefore not samt them. Secondly, if always eventually
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Figure 6: XDI state graph of the distributor. Note that saVstates (e.gs;1 ands;» are replicated in
order to simplify the diagram.

a 01 signal arrives on theelect wire, and if outputb is permanently blocked, eventually a packet at
input a will be permanently blocked (note that a 01 signal on ée@ect wire means “route towards
outputb”). The third case is similar but for outpdt

Using the lemmas presented in the previous section, theardfigure[7 can be proven instanta-
neously and without any interaction.

5 Conclusion

We have mechanically verified properties of a library of gietesensitive primitives in the ACL2 theorem
prover. These properties are often deceptively simple,mgak easy to formulate incorrect theorems.
Moreover, their proofs are large and cumbersome. Theirdtimaion is tricky: it is based on XDl state

(defthm blocking-equation-distributor
(and (xdi-smp-guard *xdi-sm-distributor*)
(implies (member-equal env (reasonable-envs *xdi-sm-distributor*))
(iff (Blocked_ *xdi-sm-distributor* ’in env)
(or (and (Idle_ *xdi-sm-distributor* ’select00 env)
(Idle_ *xdi-sm-distributor* ’selectOl1 env)
(Idle_ *xdi-sm-distributor* ’select10 env))
(and (not (Idle_ *xdi-sm-distributor* ’selectOl1 env))
(Blocked_ *xdi-sm-distributor* ’outl env))
(and (not (Idle_ *xdi-sm-distributor* ’selectl10 env))
(Blocked_ *xdi-sm-distributor* ’out0 env)))))))

Figure 7: Blocking Equation for Distributor
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machines and their execution semantics relative to the@nwvient of the primitive. Our approach con-
sists of building a checker for XDI state machines which cacide LTL formulae that are built out of
block- and idle predicates. This checker has been proveactawith respect to its specification. The the-
orems that are to be proven involve free variables and neotgable functions introduced kg fun-sk
constructs. Loading the book that contains our definitiomd lammas suffices to fully automatically
prove these theorems quickily.

The properties that have been proven are used to derive &®ATInstance from an asynchronous
circuit built out of primitives in the library. This deriviain can be quite contrived, especially when data
is taken into account. In the future, we plan to use ACL2 tosproorrectness of our derivation, proving
that feasibility of the derived SAT/SMT instance is loglgatquivalent to the existence of a structural
deadlock.
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