A Monad for Probabilistic Point Processes

Swaraj Dash Sam Staton

University of Oxford
Oxford, United Kingdom

swaraj.dash@cs.ox.ac.uk sam.staton@cs.ox.ac.uk

A point process on a space is a random bag of elements of that space. In this paper we explore
programming with point processes in a monadic style. To this end we identify point processes on
a space X with probability measures of bags of elements in X. We describe this view of point
processes using the composition of the Giry and bag monads on the category of measurable spaces
and functions and prove that this composition also forms a monad using a distributive law for monads.
Finally, we define a morphism from a point process to its intensity measure, and show that this is a
monad morphism. A special case of this monad morphism gives us Wald’s Lemma, an identity used
to calculate the expected value of the sum of a random number of random variables. Using our monad
we define a range of point processes and point process operations and compositionally compute their
corresponding intensity measures using the monad morphism.

1 Introduction

Point processes (e.g. [15]) are random collections of points. They serve as important tools in statistical
analysis, where they are used to study various phenomena in fields as diverse as ecology, astronomy,
computational neuroscience, and telecommunications, and in Bayesian analysis, where they are used
for probabilistic inference (e.g. [17]). As a simple example, in Figure |1| we illustrate five draws from
a Poisson point process on the unit square. A Poisson point process is defined to be one in which the
number of points in any two disjoint regions are independent of each other. One of the core tools of point
process theory is the notion of intensity measure, which assigns to each region the average number of
points that will appear in the region. In a homogeneous Poisson point process like Figure[I] the average
number of points in a region is proportional to the area of the region. This is a very simple point process,
but an important starting point for many models.
The centerpiece of our categorical analysis of point processes is the space

G(B(X))

which we now explain.

* X is a measurable space such as the unit square I? or the natural numbers N. We work in a category
of measurable spaces so that we can discuss probability and integration in both the countable and
uncountable settings. (See §2]for details.)

Figure 1: Five draws from a Poisson point process on the unit square with rate 10.0.

David I. Spivak and Jamie Vicary (Eds.): © S. Dash & S. Staton
Applied Category Theory 2020 (ACT2020) This work is licensed under the
EPTCS 333, 2021, pp. 19 doii10.4204/EPTCS.333.2 Creative Commons|Attribution License.

http://dx.doi.org/10.4204/EPTCS.333.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

20 A Monad for Point Processes

01234561 0123456/ 01

123456

&}
w
~
w1t
(@)
o

Figure 2: Four draws from a point process on the natural numbers.

* B(X) is a space of all bags of points in X. A bag (aka multiset) is a finite unordered list of elements
in X. For example, the first draw in Figure|l|is a bag of 9 points in X = I?, and the last draw in
Figure [2is a bag of 6 points in X = N, with 5 overlapping points at 0 (multiplicity 5) and one at 6
(multiplicity 1). (See §3|for details.)

* G(B(X)) is a space of point processes, i.e. the space of probability measures on the space of bags
of points in X. Here, G stands for Giry, who carried out early work on the category theory of
spaces of probability measures.

(This space G(B(X)) is typically uncountable, but as is common in statistics, it is helpful to run a simu-
lation, outputting a finite number of draws, as in Figures[I] 2| and4])
This paper has two main contributions:

* The construction G(B(X)) forms a monad (§4). This is useful because it gives us a composi-
tional framework for point processes. One can build point processes (elements 1 — G(B(X))) by
composing morphisms in the Kleisli category for the monad GB, using a syntax like Haskell’s
do-notation (§5). Our construction of a monad uses Beck’s theory of distributive laws of monads.

* The construction assigning to each point process its intensity measure is a monad morphism (§6]
Theorem. [I3]). Thus, if we build a point process in a compositional way, we can also calculate its
intensity in the same compositional way. The key idea here is to regard both G and B as submonads
of a monad M of all measures, so that the intensity measure function can be defined as a composite

GB — MM % M.

Broader context. The broader context of this work is the idea that category theory can be a language
for organizing the structure of statistical models. At one end of the spectrum, this line of work involves a
foundational categorical analysis (e.g. [6}(8,19, 110, 11}[18}[19,23L127]). At the other end of the spectrum is
“probabilistic programming’, a popular method of statistical modelling using programs (e.g. [[13}130}125]);
in many instances this is functional programming and so heavily inspired by category theory. This full
spectrum of work plays a foundational role in probability and statistics, but also addresses a practical
grand challenge of interpretability in statistical models, since category theory and programming allow us
to clearly organize the structure of complicated statistical models, via composition.

Our work here appears to be the first work on point processes in this context. However, point pro-
cesses are widely used in statistical models in practice. We mention two programming styles whose
relationship to point processes has only recently become evident:

* probabilistic logic programming, in the style of BLOG [31]], is about describing random sets of
points;

* probabilistic databases are random bags of records [15]].

S. Dash & S. Staton 21

In future work we intend to set out in more detail how our categorical development in this paper can be
used to inform the practice of probabilistic logic programming and probabilistic databases in a composi-
tional way.

2 Mathematical preliminaries

We recall basic measure theory, which is the standard formulation for probability theory over uncountable
spaces (e.g. [20]).

2.1 Measure theory

Definition 1. A o-algebra on a set X is a nonempty family Xx of subsets of X that is closed under
complements and countable unions. The pair (X,Xy) is called a measurable space (we just write X
when Xy can be inferred from context).

Given (X,Xx), a measure is a function v : ¥y — R such that for all countable collections of disjoint
sets A; € Xx, v(U;A;) = Y V(A;). In particular, v(&) = 0. It is a probability measure if v(X) = 1.
A pre-measure is defined to be this additivity condition except that it is not necessarily defined on a
o-algebra.

Examples. The Borel sets form the least o-algebra X of subsets of R that contain the intervals (a,b).
On a countable set X, such as N or the one-point set 1 = {x}, we will typically consider the discrete
o-algebra, which contains all the subsets. In this context, the measures are entirely determined by their
values on singletons, v({x}), and so a measure is the same thing as a function X — R7.

Definition 2. Let (X,Xx) and (Y,Xy) be two measurable spaces. A measurable function f: X — Y is a
function such that f~!(U) € Zx when U € Xy. The category Meas contains as objects measurable spaces
with the morphisms being measurable functions between them.

For any measurable function f : X — R%, and any measure v : Xy — R%, we can define the Lebesgue
integral or expected value [y f dv of f.

Definition 3. A measurable space (X,Xx) is a standard Borel space if it is either measurably isomorphic
to (R,XR) or it is countable and discrete.

2.2 Giry monad

The Giry functor G : Meas — Meas sends a measurable space to the space of all possible probability
measures on it [12]]. By slight abuse of notation, let G(X,Xx) := (GX,Xx). GX is the set of all probabil-
ity measures v : Xx — [0, 1] on X equipped with the 5-algebra Xgx generated by the set of all evaluation
maps evy : GX — [0,1], sending v to v(U) (where U € Xx). In other words, it is generated by sets of
probability measures DY = {v : Xy — [0,1] | v(U) € I}.

Yox = G({D;j ‘ Uely,lc %([07 1])})

where 4([0, 1]) is the Borel o-algebra and o is the closure operator which when given a family of subsets
generates the required c-algebra by closing the family under countable unions and complements. The
following unit n¢ : X — GX and multiplication ¢ : GGX — GX make G into a monad.

1 ifxeU
ne ul(v)=AU. [evy dv

G(x)=86,=AU.
(%) {0 otherwise{ﬂ GX

22 A Monad for Point Processes

Given measurable f : X — Y, the functorial action Gf : GX — GY sends v € GX to the push-forward
measure of v along f, vo f~! € GY. An important property of push-forward measures is the change-of-
variables formula [, ¢ d(Gf)(v) = [x(go f) dv (where g: Y — [0, 1]).

2.3 All-measures monad

The all-measures functor M : Meas — Meas is defined similarly to the Giry functor. It sends measurable
spaces (X, Xy) to the space of all measures (MX,Xyx) where MX is the set of measures p : £x — R and
Tux =o({mV |U € Zx,r e R}) withm¥ = {u: £y — R? | u(U) < r}. The same unit and multiplication
maps make M into a monad. (Warning: The Giry monad is strong and commutative, but the all-measures
monad M is not strong, because Fubini’s Theorem does not hold for arbitrary measures. So something
more refined is needed for functional programming, but that is not an issue for this paper; see e.g. [28]]
for details.)

3 A monad for finite bags in Meas

In this Section we discuss the construction of the bag monad in the context of measure theory. A bag (aka
multiset) is a finite unordered list of elements in some set. For example, the bag [8,8,5,8,5] contains 5
twice and 8 three times, and can also be written as [5,5, 8,8, 8] since bags are unordered. We begin by
recalling the bag endofunctor B in Set, which we show to lift to an endofunctor in Meas by assigning
the o-algebra Xpy to the space of bags in § [3.1] (Definition [d). In § [3.2] we prove that B, which is a
monad in Set, lifts to a monad in Meas by showing that the unit and multiplication maps extend to
measurable functions. Later in § @ we will need to define probability measures on BX, i.e., functions
Ypx — [0, 1]. Defining such functions entails having to define them on arbitrary combinations of unions
and intersections of our generating sets A,lg. We simplify this task by making use of Carathéodory’s
extension theorem in § [3.3|to show that it suffices to simply define these functions on the generating sets
of Xpx without needing to define them on all of Xpx.

3.1 The bag functor in Set and Meas

Consider the well-known finite bag endofunctor B : Set — Set where BX is the set of all finite bags with
elements of X. Given a function f : X — Y, the function Bf : BX — BY applies f component-wise to its
argument bag. The natural transformations 1% : X — BX and u2 : BBX — BX which return the singleton
bag and the (multiplicity respecting) union of bags respectively make (B, 1%, u?) into a monad.

% (x) = [x] ux (b1, bal) = b

In order to lift B : Set — Set to B : Meas — Meas we equip a c-algebra ¥px to our set BX.

Definition 4 (Measurable space of bags). Let BX be the set of bags on the measurable space X. Equip
BX with the o-algebra Xy formed by the 6-closure of generating sets AY = {b € BX | b contains exactly
k elements in U }.

Ypx = 6({AV |U € Zx,k € N})

Then (BX,Xpy) is the measurable space of bags of X.

IThroughout this paper we use A-notation to describe functions between sets. Note that the category Meas is not cartesian
closed and so this is not intended as a formal internal language (c.f. [18]]).

S. Dash & S. Staton 23

It is important to note that the generating set Ag € Xpx contains bags of X of cardinality at least k,
as each bag in it contains k elements in U, in addition to possible other elements not in U. The set Af ,
on the other hand, contains all the bags of X of cardinality exactly k (since X is our universal set). Their
intersection A¥ NAY is then the set of bags of cardinality n with k elements in U. This can be extended
to construct the set of bags of cardinality n containing k; elements in U; for some family of sets U; € Xy,

which is then the intersection AX N (ﬂiAZ" > .

3.2 The bag monad in Meas

Lemma 5. The unit and multiplication maps N8 : X — BX and u8 : BBX — BX are measurable.

Proof. To prove the measurability of these functions it suffices to show that the pre-images of the gen-
erating sets A,lf are measurable. Consider U € Yx and some A,lf € Ypx. The inverse image map of the

unit 7B~ (AY) evaluates to U (the complement of U) if k = 0, U if k = 1, and & otherwise, all of which

are elements of Xy, and so T[}? - is measurable. We now sketch why ,u)‘? - (A,?) € Yppx and later show a
detailed argument for the case k = 4. Call this set &Z. By definition of the inverse image map, & is the
collection of bags of bags such that the arbitrary union of each bag of bags contains exactly k elements
in U. Recall that the set of bags of cardinality n containing k; elements in U; for some family of sets

U; € Xy, is given by AX N (ﬂiA,Z") By using this technique of describing collections of bags and con-
sidering the various partitions of the number & such that the resulting arbitrary union of bags will contain

k elements in U, we can express & entirely using measurable sets, allowing us to conclude that u? is a
measurable function. O

Example 6. Let &2 = ,u)lf_l(Af{). 4 can be partitioned in five ways: {4,3+1,24+22+1+1,1+1+
1+ 1}. 2 is the set of bags of bags such that the arbitrary union of each bag of bags contains exactly 4
elements in U. We start by considering elements of this set based on their cardinalities.

* There is only one collection of bags of cardinality 1 which are members of &?. These are the bags
which contain a single bag which in turn contains 4 elements in U. Denote this collection as (4).

* There are three collections of bags of cardinality 2 which are members of &?. The first contains
two bags which have 4 and 0 elements in U, the second with 3 and 1 elements in U, and the third
with 2 and 2 elements in U, respectively. We write them as (4,0), (3,1), and (2,2).

* Cardinality 3: (4,0,0), (3,1,0), (2,2,0), and (2,1, 1).
« Cardinality 4: (4,0,0,0), (3,1,0,0), (2,2,0,0), (2,1,1,0), (1,1,1,1).
e Cardinality 5: (4,0,0,0,0), (3,1,0,0,0), (2,2,0,0,0), (2,1,1,0,0), (1,1,1,1,0). And so on.

Each collection is definable using the generating sets, and the collections of different cardinalities are
mutually disjoint. For example, (3,1,0) = A8¥ N (AT nAT nAT*) and (2,1,1,0) = ABX n (AT nAS N
AIIBO) where B; = AY. Finally, 2 is the union of all these disjoint collections.

2 = (AY) = (4)U(4,00U(3,1)U(2,2)U(4,0,0)U...
Theorem 7. (B: Meas — Meas, 0%, u?) is a monad.

Proof. The monad laws hold as in Set. Furthermore, % and u? are measurable (Lemma . O

24 A Monad for Point Processes

3.3 Defining measures on BX

In this Section we construct a ring — a set of sets containing the empty set closed under pairwise unions
and relative complements — of the generating sets A,l{] of Xpx in order to invoke Carathéodory’s extension
theorem. This allows us to define measures by defining them on just specific unions of intersections of
the sets A,l(} of Xpx rather than having to define them on all the arbitrary combinations of unions and
intersections of these sets.

Theorem 8 (Carathéodory’s extension). Let Z be a ring and v : % — R be a pre-measure. Then there
exists a measure V : 6(%) — R such that V(S) = v(S) for all S € Z.

We start by defining %’ to be the set of countable intersections of our generating sets above such that
their base sets are mutually disjoint.

R = {ﬂAZ"

U; € ¥x,U;’s mutually disjoint, k; € N}

Now define Z to be the closure of %’ under countable unions. The elements of % are the umons of
intersections of certain generating sets. In particular, any P € & can be expressed as P = J;(; AV k’,

Examples. One example of such a set P is (A§ ﬂAg) U (Ag NAT)U (A ﬂAg NAS) where a, 8, 7,6 € Zx.
Note that although & and 3, B and ¥, and «, 3, and & are all mutually disjoint (by definition of %), it is
still possible for ¢ and ¥ to overlap. Using standard set theoretic identities we can redefine P in terms of
o \ ¥ (instead of just @), 3,7, & for all the base sets across the unions to be mutually disjoint.

Consider also the set (Af ﬂA?)U (AF NAY) where a, B,y € Ly are mutually disjoint. We can rewrite
Af ﬁAﬁ3 as UJ; (A} ﬁAé3 NA?) since (J;A? is simply the universal set. The right half of the set above can
similarly be rewritten, enabling us to reformulate it as [J;(A? ﬁAf NAY)ul;(A% ﬁAf3 nAJ).

From the two examples above, we can assume without loss of generality that an arbitrary element
P € # will be of the form U;N; AUj such that all the U;’s are mutually disjoint.Finally, note that any two

sets []A Us ~and A, ’j are dlS_]Olnt unless for all j, k,, j = k, ;. And so, every P can be viewed as the
disjoint union of a set of sets. Call this the disjoint normal form (it is not unique).

Lemma 9. % contains the empty set and is closed under pairwise unions and relative complements.

Proof. Tt is clear that @ € #. The set & is by definition closed under countable unions, and so is
also closed under pairwise unions. Consider P and Q € % with their respective disjoint normal forms.
Without loss of generality, we can express both P and Q using the same set of mutually disjoint base
sets U; € Lx. This gives us P = (J;N jAf,/,.{ ;and Q = U;N jAij. Since both P and Q have been formed
by taking the unions of a common set of disjoint sets belonging to %', their difference P\ Q can also be
expressed at the disjoint union of sets belonging to %’ and so P\ Q € Z. O

Having shown Z to be a ring, we have by Carathéodory’s extension theorem that any pre-measure
defined on Z extends to a measure defined on 6(%). And so, in order to define a measure on BX, it will

. U; . . .
suffice to define it on sets |J;(jAk,-/j' We use this fact in the next Section.

S. Dash & S. Staton 25

4 Point process monad

A point process on a space X is a probability measure on bags of X. By composing the Giry and bag
monads we can define GBX to be the space of point processes on X. In other words, a point process
o € GBX is a probability measure o : Xgx — [0, 1] assigning probabilities to measurable subsets of bags
Ag. The probability of observing k points in the region U of the point process Q. is then OC(A,L{/).

Earlier we showed that G and B both form monads. It is well-known that the composition of two
monads does not automatically yield a new monad. In this Section we prove that the composite functor
GB admits a monadic structure by defining the natural transformation / : BG — GB, called the distributive
law [1] of G over B, such that the following identities hold.

(Triangle I) [oBn¢=n°B Gn® =1onBG (Triangle II)
(Pentagon I) [oBu®=p°BoGlolG GuBolBoBl =10ou®G (Pentagon II)

This distributive law [then induces the GB monad with the unit defined as the horizontal composition
N xn?B, and the join defined as the composition of the horizontal composition p% u? with GIB.

GynB GyyB
n®: 11" 6B and u98:6BGB L GoBB LM 6B

4.1 Distributive law

The distributive law Iy : BGX — GBX is a function from bags of probability measures to probability
measures on bags. We showed in § hat in order to define a measure on Xy it suffices to define a
pre-measure on sets of the form (J; jAk,-{ I Carathéodory’s extension theorem ensures this pre-measure
extends to a measure.

In the definition that follows, we consider a bag of probability measures [vy,...,V,] € BGX and
u:N jAgf ;€ Epx. We define the application of [[vy,...,V,] to this disjoint union of intersections as the

sum of products of /[vy,...,V,] (AZ/J) Each of these sub-terms is in turn defined as the push-forward of
the product measure along K, a function mapping n-tuples to bags of cardinality n. An example follows
in (I)).

1[Vi,..., V] UﬂA,[(]’] o an[vl,---yvn](AZf)
i i
def LI oK@ (427)

where K, : Y — B,Y is the measurable function that sends n-tuples to bags of cardinality n (B,Y C BY).
(K, is measurable since K, ! : £ y — Xyn sends sets A,lg to their corresponding disjoint unions of n-
products of U and U. For example, K, '(AY) =U xU w U x U.) In the definition above ¥ has been
instantiated to be GX.

Intuition: the term [[vy, ..., V,] is a point process where the probability of observing k points in some
region U € Yy is the probability of observing a total of £ points landing in U after independently sampling
a point each from all the v;’s € GX. The following example calculation of /[vy, v2](AY) confirms this
idea.

[[vi,v2](A]) = GKx(vi @ »a)(AY) = (vi @ v2) (K5 ' (AY))

= (V] ®V2)(U xU W U x U) =V (U)VQ(U) + WV (U)VQ(U). 1

26 A Monad for Point Processes

Note that [[Vi,...,V,](AY) = 0 for k > n. Observe that ¥, I[vy,...,V,](AY) = 1.

Showing that / is measurable is a routine calculation, and is made simpler with the knowledge that
sets of constant-cardinality bags are measurable.

We noted earlier that the sets AY contain bags of varying cardinalities. In the following lemma we
show that the measure I[vy,...,V,] acts only on the subset of these sets with cardinality n. This result is
simple yet very useful in providing an intuitive understanding of the distributive law, and is instrumental
in proving the second pentagon identity.

Lemma 10. For [vi,...,V,] € BGX, I[vi,...,V,](AX W) =1[vi,...,v,](W) if m = n and 0 if m # n.

Proof. Consider I[vy,...,V,](AX). Using the definition of [this probability can be expressed as the sum
of products of a combination of v;(X) and v;(X) terms (where i, j range from 1 to n). Unless m = n,
each summand will contain at least one factor with v;(X) = v;(@) = 0, nullifying the entire sum. It is
only non-zero when m = n, representing the probability of observing n points in the entire space, which
has probability 1. The measure of any set AX NW is then just the measure of W. U

Theorem 11. (GB : Meas — Meas, %% u%8) is a monad via the distributive law | : BG — GB.

Proof (sketch). We prove that the four identities for the distributive law hold. The two triangle identities
follow from simple algebra. For the first pentagon identity we make use of the change-of-variables
formula, as I[vy, ..., V,] = GK,(); V;) is a push-forward measure, and prove the resulting equality using
standard integration identities. For the final pentagon identity we are required to work with the set
ul - (A,l{]), which we decompose using the method presented in Lemma Invoking Lemma [10|on these
constant-cardinality decompositions allows us to simplify the resulting expression by removing sets with
measure zero and prove the final equality after some more algebraic manipulations. O

4.2 Unit and bind

The unit N returns the deterministic point process 7195 (x) with the singular point x. When program-
ming with monads it is often convenient to focus on Kleisli composition in a stylized form, using
the function »=;p: Meas(X,GBY) — Meas(GBX,GBY) (pronounced bind); we write a@ »=¢p f for

»=cp (f)() [24].

This presents us with useful intuition for pro- Y2e * f) ® o T
gramming with point processes. Let X and Y g . Q * @ *
be discrete sets. Then the process of sampling ! ° e °

flx) e

points from « »=gp f € GBY can be viewed as
the following simulation, illustrated in Figure
(1) Sample a bag of points from . (2) Each point
x; in this bag produces a point process f(x;) from which we sample a bag of points in Y. (3) A sample
of points from the overall point process is the union of these bags of points in Y. This intuition allows us
to declaratively program with point processes by being able to define them simply by how they must be
simulated. We make extensive use of this intuition in the next Section.

Figure 3: Sampling from a composite process.

Aside about related work. A long-term problem in programming semantics has been the combination
of probability and non-determinism (e.g. [29]). In that context, it is well known that there is no dis-
tributive law between the probability monad and the powerset monad (e.g. [29, 32, [14]). It has recently
become well-known that, in the set-theoretic case, it is possible to find a distributive law by using a bag
monad instead of a powerset monad (e.g. [22, App. A], [4}[32]). This is not a sleight of hand, because

S. Dash & S. Staton 27

point processes are not necessarily to be thought of in terms of computational non-determinism. In fact,
in the probability theory literature, it is most common to regard point processes as random bags rather
than as random sets.

The bag construction is a free commutative monoid, and the free commutative comonoid also plays
an important role in the theory of linear logic. Recently, bag-like exponentials have arisen in models of
probabilistic linear logic [13,[16]. The precise relationship to our monad and our distributive law remains
to be seen.

More broadly, bags, multisets and urns play a fundamental role in statistics and arise at various points
in a categorical treatment (e.g. 19, 20} 21]]).

5 Examples of point processes via the monad

Probability distributions as point processes As a first example, we describe probability distributions
on the natural numbers as point processes on the singleton space 1 = {x}, based on the observation that a
bag of singletons is a natural number (B1 = N). Any probability distribution d € GN (so that Y7~ yd; = 1)
can be presented as a point process d € GB1 where we observe k copies of x with probability dj:

d(a") =di @

Building compound probability distributions. Using our monad we define compound distributions
as point processes on the unit type. A compound probability distribution is the probability distribution of
the sum of a number of independent identically-distributed random variables, where the number of terms
to be added is itself a random variable. For example, given a random variable N ~ Poisson(A) and iid
variables X;, the random variable ¥ = ¥, X; forms a compound Poisson distribution.

Recall the behaviour of =g on countable sets described in §4.2] By considering N € GB1 (say, the
Poisson distribution) and X € GB1 (the distribution of the iid X;), we can express compound distributions
as:

Yy = N>=cpAx X € GBI. 3)

A Poisson point process on the unit square The Poisson point process on the unit square I? (Fig.
can be simulated by first sampling a random number of points from the Poisson distribution, and then
uniformly distributing these points across I2. Consider again a Poisson distribution N € GB1 as a point
process. Now consider the point process U € GBI? which returns a single point uniformly distributed in
I?. The Poisson point process 7 can be built using the monad:

T =N>»=gAxU € GBI. “4)

Thinning a point process. Thinning is an operation applied to the points of an underlying point pro-
cess, where the points are thinned (removed) according to some probabilistic rule. Given some point
process @ € GBX and some thinning rule ¢ : X — GBX such that #(x) probabilistically returns either [x]
or &, we can use the monad to build the thinned point process o’ € GBX as

a' = o »>=gp Ax. t(x) € GBX.

28 A Monad for Point Processes

Displacing a point process. Displacement is an operation applied to the points of an underlying point
process, where the points are independently randomly displaced (translated) according to some distri-
bution. We model this distribution as a single-point point process A € GBR. The location of this ran-
dom point is the random displacement distance. For o € GBR we simulate the displaced point process
o € GBR by sampling an x from a, a displacement distance d from A, and then returning the displaced
point.

a' = a»>=gp Ax. (A>=cp Ad. T]GB(x+d)) € GBR.

Clustered point processes. Clus-
tered point processes are useful in .
modelling phenomena which involve . R
multiple points spawning from in- ' ’
dividual seeds, such as clusters of ol
trees, galaxies, or diseases. In- Ry

formally, a clustered point process T e \'__::".5.."::.' Fa

is anything built using the monadic YLt ISP

bind y; »= Axp(x), where 7; is a -

point process for the initial seeds, Figure 4: Two draws from a clustered point process

and P, is a point process that grows

from each seed, where the location x of a given seed may be a parameter. For a simple example, consider
the point process in Fig. {] consisting of small square clusters within the unit square. To simulate it we
first sample the centres of these clusters from our Poisson point process 7 on the unit square (), and for
each cluster center we sample another Poisson point process. To sample the second point process, we
again sample from another Poisson distribution N, whose rate now depends on the provided coordinates
of the cluster — the closer to the diagonal, the higher the rate, and we uniformly distribute these points in
a small square about this center using U’, which is a location-dependent and scaled-down modification
of U introduced earlier. This results a Poisson number of clusters of Poisson processes, with those closer
to the diagonal being denser than those farther away.

B = 1= A(x,y). (N'(x,y) »>=cp A x. U'(x,y)) € GBI

Here, N is itself defined using the monad (). This example is quite simple, but already illustrates that we
can use the monad to quickly and clearly compose point processes to build complex statistical models.

6 The intensity measure as a monad morphism

A useful characteristic for describing point processes is the expected number of points in a given region.
For example, in Fig. [T] we illustrated the homogeneous Poisson process with rate 10. The expected
number of points in any region is proportional to 10a where a is the area of the region. More generally,
the intensity measure of a point process is the measure that assigns to each measurable subset the expected
number points in it.

There is a function E : GB(X) — M(X) that takes a point process to its intensity measure. In Theo-
rem. [I5] we show that this function is actually a monad morphism from the point process monad (§4)) to
the monad of all measures (§2.3)). Thus, if we build a point process using the monadic constructions (for
example by composing morphisms in the Kleisli category of GB) then we can immediately read off its

S. Dash & S. Staton 29

intensity measure in a compositional way. This new result generalizes Wald’s lemma (Ex. [I7)), which is
a core result in probability theory.

6.1 Constructing a monad morphism

The expected number of points in a region U € Xy of a point process & € GBX can be given in terms of
our generating sets AY for BX, as Y k- a(AY).

We first show how to understand this in a more abstract way, by injecting both probability measures
GX and bags BX each into measures MX, in a measurable and natural way. The injection i® : G — M
is straightforward because GX C MX. The injection i® : B — M sends bags [xi,...,x,] to Y, &, the
multiplicity-respecting sum of Dirac deltas centered around the elements x;. It is measurable since its
inverse image map sends the generating sets mY € Xyx to }LJOA,U € Xpx. The proof that this is injective
relies on X being standard Borel. This injection is familiar in point process theory, indeed many authors
actually define BX as a space of integer-valued measures in the first place. We can combine the horizontal
composition of these two injections (i® i¥) with the multiplication of M in order to define E.

E ¥ 6 uy i m
In the remainder of this paper we omit * when writing horizontal compositions. This definition of [E does
indeed return the intensity measure of a point process:

Lemma 12. For any point process o € GBX, E(a)(U) = ¥ k- o(AY).

G

Proof. Consider o € GBX and U € Xx. On expanding the horizontal composition i®i® and using the

change-of-variables formula for pushforward measures we have that
E(@)(U) = [evy dME(ifx(@) = [&B)U) aldb).
MX beBX

We separately compute this integral on the disjoint partitions A,E’ (k € N) of BX. In each partition, the
value of i§ (b)(U) is equal to k (by definition). This gives us the desired infinite sum of Y k- a(AY). O

To show that E : GB — M is a monad morphism we need to prove that
(Unit) N =Eon®® and uMoEE =Eou® (Mult).

Our main result stems from the fact that [interacts well with i and i®, which we prove next.
Lemma 13. (Eo/=) uMoi®xifol=uMoifi®: BG — M.

Proof. (Diagram chasing) Consider [vy,...,V,] € BGX and U € Lx. Go-
ing from BGX to MX along the left edge and applying the resulting map J(iB i%x (iGiB)XJ
to U gives us Y,;V;(U). Along the other edge, making use of Lemma

I
BGX —~ GBX

we get Y,i-1[vi,...,v,](AY). Their equality can be proved by notic- MX @ Mx ;@ MX
ing that [[vi,...,V,](AY) is simply the coefficient of x* in the polynomial

P(x) =L;(vi(U) + vi(U) - x). And so equivalently P(x) = Y [[vi,...,V,](AY) -x'. The desired equality
is then arrived at by taking the derivative of P(x) at x = 1. O

Lemma 14. (° : G — M and i® : B — M are monad morphisms.

30 A Monad for Point Processes

Theorem 15. The intensity measure E : GB — M is a monad morphism.

Proof. A simple calculation shows Unit to hold. For Mult consider the two diagrams below.

GIB
GBGB GGBB
N u°BB Gu®
Gi®i°B ‘\I) Gi%i®B GGBB— GBB——— GB
GMMB ou's Gj{lB ou’s GMMB
) /@SR iGi5BB Gf\‘ iBB <V> B
oumi L) jopp L) oppin N .
MpM M MuMm uMBB Mu®
Mm* M3 M MMBB ——— MBB MB
uMMM MuM uMmMm -
MMiBiB GI\‘ MiBiB w/V II\w Mi®
M3 /IiD M2 @ M3 \\,/ \,,, /
_ _/ M M
u" MM Mu
M ;LM ‘uM M”M M4 M3 M2
uM uM
M? M M?

All the sub-diagrams above commute: (I) due to Lemma[I3] (II) by naturality, (IIT) due to associativity
of uM, (IV) and (VII) due to i% and {8 being monad morphisms (Lemma , and finally (V) and (VI) by
naturality. Using the commutative diagrams above we prove the required equality.

uMoEE : GBGB — M

uMoEE = uM oM™ o yMMM 0 i®MMi® o GiBi°B (defn. of E + naturality)
= uMoMuM o yMMM 0 i°MMi® o Gi°iPBo GIB (left diagram)
=uMomuM o uMMM o MMiPi® 0 i°i°BB o GIB (naturality)
=uMoMi®oi®BoGufou®BBoGIB (right diagram)
=uMoMi®oi®Bo 8 (defn. of u%5)
=Eou% (defn. of E) [

6.2 Examples

Example 16. In §5| we simulated a Poisson point process by composing the Poisson distribution with a
uniform singleton. We show this has the required intensity measure in a compositional way, using the
monad morphism. Let N € GB1 = GN be the Poisson distribution with mean A, and let U € GBI be

the uniformly distributed single-point process, from §5| The simulated Poisson process is &7 = (N >=¢p
A*.U), and we have

E(n) = E(N »>=gp A *. Q)

=E(N) »=py A *. E(U) (Theorem [13))
=AW € Ip E(N)(x) x E(U)(W)
=AW €Zp.Ax|W| € MI?

In the penultimate step we use the fact that in the discrete case the bind for M, just like for G, computes
a weighted sum, which in this case is just a single term. In the final step, we substitute in the intensity

S. Dash & S. Staton 31

of N and the intensity measure of the uniform point process U, producing the correct intensity. W is a
measurable subset of the unit square and |W| is its area.

Example 17 (Discrete Wald’s Lemma). We regard arbitrary probability distributions N, X on the natural
numbers as point processes in GBI via (2)). Wald’s lemma says that the expected value of the compound
distribution (¥, (3)) is the product of the expectations, which is immediate from the fact that [E is a monad
morphism:

E(y) =E(N »=¢g A *. X)
=E(N) »=y A *. E(X) (Theorem [T3)
=A% E(N)(*) xE(X)(%) eMl

Remark. We remark that a natural transformation in the opposite direction (M — GB) has been ex-
hibited in [2], where M (X) is the space of finite non-empty measures. This natural transformation takes
an intensity measure to the corresponding inhomogeneous Poisson process. Since M is not a monad, it
remains to be seen whether this natural transformation can be made into a monad morphism somehow.

Concluding remarks. We have exhibited a monad GB for point processes (§4), and shown that the
intensity measure is a monad morphism (§06)). This gives a compositional way of building and reasoning
about increasingly complicated point processes (§5). This is further evidence towards the claim that
applied category theory has the potential to be a useful tool for statistical modelling.

Acknowledgements. We are grateful for discussions with Peter Lindner regarding the role of point
processes in his work [[15]. Thanks too to Bart Jacobs and Gordon Plotkin about the role of multisets.
Thanks to the anonymous reviewers and to Mathieu Huot and Dario Stein for their feedback. Finally
we appreciate the opportunity to present this work at the LAFI 2020 workshop [7]. Staton’s research is
supported by a Royal Society University Research Fellowship.

References

[1] J. Beck (1969): Distributive laws. In B. Eckmann, editor: Seminar on Triples and Categorical Homology
Theory, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 119-140, doi;10.1007/BFb0083084.

[2] F. Dahlgqvist, V. Danos & 1. Garnier (2016): Giry and the Machine. In: Proc. MFPS 2016, pp. 85-110,
doi:10.1016/j.entcs.2016.09.033,

[3] F. Dahlgvist & D. Kozen (2020): Semantics of Higher-Order Probabilistic Programs with Conditioning. In:
Proc. POPL 2020, doi;10.1017/S0960129516000426.

[4] F. Dahlqvist, L. Parlant & A. Silva (2018): Layer by Layer — Combining Monads. In: Proc. ICTAC 2018,
doi:10.2168/Imcs-3(4:11)2007.

[5] D. Daley & D. Vere-Jones (2006): An Introduction to the Theory of Point Processes: Volume I: Elementary
Theory and Methods. Probability and Its Applications, Springer New York.

[6] V.Danos & 1. Garnier (2015): Dirichlet is Natural. In: Proc. MFPS 20135, Electr. Notes Theoret. Comput. Sci
319, pp. 137-164, doi:10.1016/j.entcs.2015.12.010.

[7] S. Dash & S. Staton (2020): A Monad for Point Processes. Talk at LAFI 2020.

[8] T. Ehrhard, M. Pagani & C. Tasson (2018): Measurable cones and stable, measurable functions: a model for
probabilistic higher-order programming. Proc. ACM Program. Lang. (POPL) 2, doi:10.1145/3158147.

http://dx.doi.org/10.1007/BFb0083084
http://dx.doi.org/10.1016/j.entcs.2016.09.033
http://dx.doi.org/10.1017/S0960129516000426
http://dx.doi.org/10.2168/lmcs-3(4:11)2007
http://dx.doi.org/10.1016/j.entcs.2015.12.010
http://dx.doi.org/10.1145/3158147

32

(9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]
(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

A Monad for Point Processes

T. Fritz (2019): A synthetic approach to Markov kernels, conditional independence and theorems on sufficient
statistics. arxiv:1908.07021.

T. Fritz, P. Perrone & S. Rezagholi (2019): The support is a morphism of monads. In: Proc. ACT 2019.

R. Garner (2019): Hypernormalisation, linear exponential monads and the Giry tricocycloid. In: Proc. ACT
2019.

M. Giry (1982): A categorical approach to probability theory. In: Categorical aspects of topology
and analysis (Ottawa, Ont., 1980), Lecture Notes in Mathematics 915, Springer, Berlin, pp. 68-85,
doi:10.1007/BFb0092872.

N.D. Goodman, V.K. Mansinghka, D.M. Roy, K. Bonawitz & J.B. Tenenbaum (2008): Church: a language
for generative models. In: Proc. UAI 2008, pp. 220-229.

A. Goy & D. Petrisan (2020): Combining probabilistic and non-deterministic choice via weak distributive
laws. In: Proc. LICS 2020, doi:10.1017/S0960129505005074.

M. Grohe & P. Lindner (2019): Probabilistic Databases with an Infinite Open-World Assumption. In:
Proc. PODS 2019, pp. 17-31, doii10.1145/3294052.3319681.

M. Hamano (2019): A Linear Exponential Comonad in s-finite Transition Kernels and Probabilistic Coherent
Spaces. arxiv:1909.07589.

T. Herlau, M.N. Schmidt & M. Morup (2016): Completely random measures for modelling block-structured
sparse networks. In: Proc. NeurIPS 2016, pp. 4260-4268, doi;10.5555/3157382.3157574.

C. Heunen, O. Kammar, S. Staton & H. Yang (2017): A convenient category for higher-order probability
theory. In: Proc. LICS 2017, IEEE Press, doi:10.1109/LICS.2017.8005137.

B. Jacobs (2019): Structured Probabilitistic Reasoning. Draft available from the author’s website.

B. Jacobs & S. Staton (2020): De Finetti’s construction as a categorical limit. In: Proc. CMCS 2020.

B. Jacobs (2019): Learning along a Channel:the Expectation part of Expectation-Maximisation. In:
Proc. MFPS 2019, doi:10.1016/j.entcs.2019.09.008,

K. Keimel & G. Plotkin: Mixed powerdomains for probability and nondeterminism. arXiv:1612.01005.

P. McCullagh (2002): What is a statistical model? Annals of Statistics 30(5), pp. 1225-1310,
doi:10.1214/a0s/1035844977.

E. Moggi (1991): Notions of Computation and Monads. Inf. Comput. 93(1), p. 55-92, doi:10.1016/0890-
5401(91)90052-4.

P. Narayanan, J. Carette, W. Romano, C. Shan & R. Zinkov (2016): Probabilistic inference by program trans-
formation in Hakaru (system description). In: Proc. FLOPS 2016, Springer, pp. 6279, doi:10.1007/978-3-
319-29604-3_5.

D. Pollard (2001): A User’s Guide to Measure Theoretic Probability. CUP,
doii10.1017/CBO9780511811555.

A. Simpson (2017): Probability Sheaves and the Giry Monad. In: Proc. CALCO 2017,
doi:10.4230/LIPIcs.CALCO.2017.1.

S. Staton (2017): Commutative semantics for Probabilistic Programming. In: Proc. ESOP 2017, Lect. Notes
Comput. Sci. 10201, Springer, pp. 855-879, doi110.1007/978-3-662-46669-8_3,

D. Varacca & G. Winskel (2006): Distributing probability over non-determinism. Mathematical structures in
computer science 16, pp. 87-113, doii10.1017/S0960129505005074.

F. Wood, J.W. van de Meent & V. Mansinghka (2014): A new approach to probabilistic programming infer-
ence. In: Proc. AISTATS 2014.

Y. Wu, S. Srivastava, N. Hay, S. Du & S.J. Russell (2018): Discrete-Continuous Mixtures in Probabilistic
Programming: Generalized Semantics and Inference Algorithms. In: Proc. ICML 2018, pp. 5339-5348.

M. Zwart & D. Marsden (2019): No-Go Theorems for Distributive Laws. In: Proc. LICS 2019,
doi:10.1109/LICS.2019.8785707.

http://dx.doi.org/10.1007/BFb0092872
http://dx.doi.org/10.1017/S0960129505005074
http://dx.doi.org/10.1145/3294052.3319681
http://dx.doi.org/10.5555/3157382.3157574
http://dx.doi.org/10.1109/LICS.2017.8005137
http://dx.doi.org/10.1016/j.entcs.2019.09.008
http://dx.doi.org/10.1214/aos/1035844977
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1007/978-3-319-29604-3_5
http://dx.doi.org/10.1007/978-3-319-29604-3_5
http://dx.doi.org/10.1017/CBO9780511811555
http://dx.doi.org/10.4230/LIPIcs.CALCO.2017.1
http://dx.doi.org/10.1007/978-3-662-46669-8_3
http://dx.doi.org/10.1017/S0960129505005074
http://dx.doi.org/10.1109/LICS.2019.8785707

	1 Introduction
	2 Mathematical preliminaries
	2.1 Measure theory
	2.2 Giry monad
	2.3 All-measures monad

	3 A monad for finite bags in Meas
	3.1 The bag functor in Set and Meas
	3.2 The bag monad in Meas
	3.3 Defining measures on BX

	4 Point process monad
	4.1 Distributive law
	4.2 Unit and bind

	5 Examples of point processes via the monad
	6 The intensity measure as a monad morphism
	6.1 Constructing a monad morphism
	6.2 Examples

