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Lenses are a mathematical structure for maintaining consistency between a pair of systems. In their

ongoing research program, Johnson and Rosebrugh have sought to unify the treatment of symmetric

lenses with spans of asymmetric lenses. This paper presents a diagrammatic approach to symmetric

lenses between categories, through representing the propagation operations with Mealy morphisms.

The central result of this paper is to demonstrate that the bicategory of symmetric lenses is locally

adjoint to the bicategory of spans of asymmetric lenses, through constructing an explicit adjoint triple

between the hom-categories.

1 Introduction

Lenses are a mathematical structure which model sychronisation between a pair of systems. Lenses have

been actively studied in both computer science and category theory since the seminal paper [7], and

now play an important role in a diverse range of applications including bidirectional transformations,

model-driven engineering, database view-updating, systems interoperations, data sharing, and functional

programming.

While typically lenses are used to describe asymmetric relationships between systems, many of these

examples are better understood as special cases of symmetric lenses. Since the introduction of symmetric

lenses in the paper [9], there has been a significant research program lead by Johnson and Rosebrugh

(see [12, 13, 14, 15, 16]) to unify their treatment with spans of asymmetric lenses. However, despite this

research revealing numerous important aspects of symmetric lenses, many constructions appear ad hoc by

relying upon justification from applications, and remain without a robust category-theoretic foundation.

This paper develops a diagrammatic approach to symmetric lenses in category theory, which clarifies

and generalises the previous results by Johnson and Rosebrugh. Symmetric lenses are characterised

as a pair of Mealy morphisms, and may be represented as certain diagrams in Cat. The main result

demonstrates, for a pair of systems A and B, an adjoint triple between the category of symmetric lenses

and the category of spans of asymmetric lenses.

SymLens(A,B) SpnLens(A,B)
⊥

⊥
(1.1)

Furthermore, these adjunctions characterise SymLens(A,B) as both a reflective and coreflective subcate-

gory of SpnLens(A,B), and underlie local adjunctions between the corresponding bicategories SymLens

and SpnLens.

This paper treats a system as a category, whose objects are the states of the system, and whose

morphisms are the updates (or transitions) between states of the system. In the paper [5], asymmetric
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delta lenses were introduced as the maps between systems, which propagate updates in one system to

updates in another. A close category-theoretic study of delta lenses appeared in [11], and in [2] it was

discovered that they may be understood in terms of functors and cofunctors. In the ACT2019 paper [3],

delta lenses were generalised to internal category theory, and more importantly, it was shown that an

asymmetric delta lens may be represented as a certain commutative diagram in Cat.

The focus of this paper is symmetric delta lenses, introduced in [6], and their relationship with spans

of asymmetric delta lenses. While the key results are concentrated on the theoretical foundation of these

structures, this work also contains important benefits towards applications, from simplifying the use, and

further study, of lenses.

Overview of the paper

Section 2 reviews the different kinds of morphisms between categories which are later used to define

lenses. The definitions of discrete opfibration, bijective-on-objects functor, and fully faithful functor are

recalled, as well as the less familiar definitions of cofunctor (see [8, 1]) and Mealy morphism (see [18];

also known as a two-dimensional partial map in [17, 19]). In Lemma 2.6 and Lemma 2.11, cofunctors

and Mealy morphisms are faithfully represented as spans in Cat. Note that Mealy morphisms in this paper

are slightly different from [18, Example 3], as there is no requirement for the functor component to be

“objectwise constant on the fibres”. The bicategory Meal of small categories and Mealy morphisms is

equivalent to the bicategory Mnd(Span) of monads and lax monad morphisms in the bicategory of spans.

In Section 3, the definition of an asymmetric lens is recalled from [5, 11], and their characterisation

from [3] as diagrams in Cat is stated in Lemma 3.2. While the category Lens of small categories and

lenses does not admit all pullbacks, it is proved in Proposition 3.4 that the category Lens(B), of lenses

over a base category B, has products. Using this proposition, the bicategory SpnLens of small categories

and spans of asymmetric lenses is constructed. From the perspective of applications, the bicategory

SpnLens allows the modelling of updates between systems which cannot synchronise directly, but instead

depend on some intermediary system.

Section 4 presents a concise construction of the bicategory SymLens of small categories and sym-

metric lenses, using the bicategory Meal. A symmetric lens between a pair of systems may be understood

as a set of correspondences between the states of the systems, together with a pair of Mealy morphisms

which propagate the system updates in each direction. Informally, the “symmetric” aspect of symmetric

lenses may be understood in the context of dagger categories, through a canonical family of functors

†: SymLens(A,B)→ SymLens(B,A) which take the opposite of a symmetric lens.

In Section 5, the precise categorical relationship between SpnLens and SymLens is presented by the

adjoint triple in Theorem 5.1. The proof relies on the diagrammatic approach to symmetric lenses in an

essential way, and reveals several aspects of [15, Theorem 40] which were hidden by an unnecessary

equivalence relation.

2 Background

Let Cat denote the category of small categories and functors. There are three classes of functors that will

be of particular interest in this paper.

Definition 2.1. A functor f : A → B is a discrete opfibration if for all objects a ∈ A and morphisms

u : f a → b ∈ B, there exists a unique morphism ϕ(a,u) : a → p(a,u) in A such that f ϕ(a,u) = u. The

notation p(a,u) is used to denote the object cod(ϕ(a,u)). Let D denote the class of discrete opfibrations.
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Definition 2.2. A functor is bijective-on-objects if its object assignment is a bijection. Let E denote the

class of bijective-on-objects functors.

Definition 2.3. A functor f : A → B is fully faithful if for all objects a,a′ ∈ A and morphisms u : f a →
f a′ ∈ B, there exists a unique morphism w : a → a′ in A such that f w = u. Let M denote the class of

fully faithful functors.

There is a well-known orthogonal factorisation system (E,M) on Cat, called the bo-ff factorisation

system, in which every functor factorises into a bijective-on-objects functor followed by a fully faithful

functor. The image of a functor f : A → B is a category I f whose objects are those of A, and whose

morphisms are triples (a,u,a′) : a → a′ where a,a′ ∈ A and u : f a → f a′ ∈ B. The functor f : A → B

factorises through the image as follows:

A I f B

a a f a

a′ a′ f a′

w

· · · · · ·

(a, f w,a′) f w

· · · · · ·

(2.1)

The universal property of the bo-ff factorisation system may be stated as follows. Given a commuta-

tive square of functors,

A B

C D

e

f

m

g

h (2.2)

where e is bijective-on-objects and m is fully faithful, there exists a unique functor h : C → B such that

h◦ e = f and m◦h = g. In particular, note that this universal property defines the image I f uniquely up

to isomorphism.

Definition 2.4 (See [1]). Let A and B be categories. A cofunctor ϕ : B 9 A consists of an assignment

on objects ϕ : ob(A) → ob(B) together with an operation assigning each pair (a,u), where a ∈ A and

u : ϕa → b ∈ B, to a morphism ϕ(a,u) : a → p(a,u) in A, satisfying the axioms:

(1) ϕ p(a,u) = b

(2) ϕ(a,1ϕa) = 1a

(3) ϕ(a,v◦u) = ϕ(p(a,u),v)◦ϕ(a,u)

The notation p(a,u) is used to denote the object cod(ϕ(a,u)).

Example 2.5. Every discrete opfibration A → B yields a cofunctor B 9 A, and every bijective-on-objects

functor A → B yields a cofunctor A 9 B.

Let Cof denote the category of small categories and cofunctors. Given cofunctors γ : C 9 B and

ϕ : B 9 A, their composite ϕ ◦ γ : C 9 A may be understood from the following diagram:

C B A

γϕa ϕa a

c q(ϕa,u) p(a,γ(ϕa,u))

/ /

u

· · · · · ·

γ(ϕa,u) ϕ(a,γ(ϕa,u))

· · · · · ·

(2.3)
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There is an orthogonal factorisation system (Dop,E) on Cof, in which every cofunctor factorises into

a discrete opfibration (taken in the opposite direction) followed by a bijective-on-objects functor. The

image of a cofunctor ϕ : B 9 A is a category Λ whose objects are those of A, and whose morphisms are

pairs (a,u) : a → p(a,u), where a ∈ A and u : ϕa → b ∈ B. The cofunctor ϕ : B 9 A factorises through

the image as follows:

B Λ A

ϕa a a

b p(a,u) p(a,u)

/ /

u

· · · · · ·

(a,u) ϕ(a,u)

· · · · · ·

(2.4)

Notice that the cofunctor B 9 Λ describes a discrete opfibration Λ → B, and the cofunctor Λ 9 A

describes an identity-on-objects functor Λ → A.

Lemma 2.6. Given a cofunctor ϕ : B 9 A there is a span of functors,

Λ

B A

ϕ ϕ (2.5)

where ϕ is a discrete opfibration and ϕ is identity-on-objects.

If Cof is understood as a locally-discrete 2-category, Lemma 2.6 provides a way of constructing a

locally fully faithful, identity-on-objects pseudofunctor Cof → Span(Cat). From now on cofunctors will

always be given by their span representation (2.5).

Definition 2.7 (See [18]). Let A and B be categories. A Mealy morphism A 9 B consists of a discrete

category X0 together with a span of functors (g0,X0, f0) : A9 B and operations assigning each pair (x,u),
where x ∈ X0 and u : g0x → a ∈ A, to an object q(x,u) in X0 and a morphism f (x,u) : f0x → f0q(x,u) in

B, satisfying the axioms:

(1) g0q(x,u) = a

(2) q(x,1gx) = x and f (x,1g0x) = 1 f0x

(3) q(x,v◦u) = q(q(x,u),v) and f (x,v◦u) = f (q(x,u),v)◦ f (x,u)

Example 2.8. Every functor A → B yields a Mealy morphism A 9 B, and every cofunctor B → A yields

a Mealy morphism B 9 A.

Example 2.9 (Example 4 in [18]). Given a pair of sets A and B, a Mealy morphism between free monoids

A∗ and B∗ is exactly a Mealy machine with input alphabet A and output alphabet B.

Let Meal denote the bicategory of small categories and Mealy morphisms. Unlike the special cases

functors and cofunctors, composition of Mealy morphisms is not strictly associative, since the structure

involves a span of functions. There are two possible notions of 2-cell between Mealy morphisms; this

paper uses the stricter notion as given below.

Definition 2.10. Let (X0,g0, f0,q, f ) and (Y0,k0,h0, p,h) be Mealy morphisms A 9 B. A map of Mealy

morphisms consists of a morphism of spans,

X0

A B

Y0

g0 f0

m

k0 h0

(2.6)
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such that mq(x,u) = p(mx,u) and f (x,u) = h(mx,u) for each pair (x,u), where x∈X0 and u : g0x→ a∈A.

Analogous to the orthogonal factorisation system on Cof, every Mealy morphism factorises into a

discrete opfibration followed by a functor. Using the notation of Definition 2.10, the image of a Mealy

morphism A 9 B is a category X , whose set of objects is X0 and whose morphisms are pairs (x,u) : x →
q(x,u), where x ∈ X0 and u : g0x → a. The factorisation of a Mealy morphism may then be described by

the following diagram:

A X B

g0x x f0x

a q(x,u) f0q(x,u)

/ /

u

· · · · · ·

(x,u) f (x,u)

· · · · · ·

(2.7)

Notice that the Mealy morphism A 9 X describes a discrete opfibration X → A, and the Mealy morphism

X 9 B describes a functor X → B.

Lemma 2.11. Given a Mealy morphism A 9 B there is a span of functors,

X

A B

g f (2.8)

where g is a discrete opfibration.

Lemma 2.11 provides a way of constructing a locally fully faithful, identity-on-objects pseudofunctor

Meal → Span(Cat). From now on Mealy morphisms will always be understood by their span represen-

tation (2.8). It is also worth noting that every Mealy morphism may also be factorised into a cofunctor

followed by a fully faithful functor. These two possible factorisations would amount to a kind of ternary

factorisation system (Dop,E,M) on Meal, however this observation won’t be pursued in this paper.

3 Spans of asymmetric lenses

The goal of this section is to introduce the following three structures:

⋄ The category Lens of small categories and (asymmetric) lenses;

⋄ The category Lens(B) of lenses over a base category B;

⋄ The bicategory SpnLens of small categories and spans of lenses.

It is well-known that Lens does not have all pullbacks, which complicates the usual construction of the

bicategory of spans. The main obstruction is that while every cospan in Lens admits a canonical cone, the

universal property of the pullback does not hold. However, for any small category B, there is a suitably

defined category Lens(B) which does admit cartesian products. Together these categories allow for the

construction of a suitable bicategory SpnLens, whose morphisms are spans in Lens but whose 2-cells

are defined by morphisms in Lens(B).

Definition 3.1. An (asymmetric) lens ( f ,ϕ) : A ⇋ B consists of a functor f : A → B together with a

function,

(a ∈ A,u : f a → b) 7−→ ϕ(a,u) : a → p(a,u)

satisfying the axioms:
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(1) f ϕ(a,u) = u

(2) ϕ(a,1 f a) = 1a

(3) ϕ(a,v◦u) = ϕ(p(a,u),v)◦ϕ(a,u)

Equivalently, an asymmetric lens consists of a functor f : A → B together with a cofunctor ϕ : B 9 A

such that f a = ϕa and f ϕ(a,u) = u.

The functor and cofunctor components of asymmetric lens are usually known as the GET and the

PUT, respectively. The three axioms above also correspond to the PUTGET, GETPUT, and PUTPUT

laws, respectively.

Lemma 3.2. Given a lens ( f ,ϕ) : A ⇋ B there is a commutative diagram of functors,

Λ

A B

ϕ ϕ

f

(3.1)

where ϕ is an identity-on-objects functor and ϕ is a discrete opfibration.

Like cofunctors and Mealy morphisms, a lens will always be understood by its diagrammatic repre-

sentation (3.1) in Cat. Let Lens be the category of small categories and lenses. Composition of lenses

is given by composing the respective functor and cofunctor components, and the representation (3.1) of

the composite may be understood by the following diagram:

Λ×B Ω

Λ Ω

A B C

y

ϕ ϕ γ γ

f g

(3.2)

Given a pair of lenses ( f ,ϕ) : A ⇋ B and (g,γ) : C ⇋ B forming a cospan in Lens,

Λ Ω

A B C

ϕ ϕ γ γ

f g

(3.3)

there is a canonical cone, or “fake pullback”, given by the span in Lens:

A×B Ω Λ×B C

A A×B C C

π0
1×γ ϕ×1 π1

π0 π1

(3.4)

Note that this “fake pullback” diagram is sent to a genuine pullback via the forgetful functor Lens →
Cat. The category Lens also has the same terminal object as Cat, and fake pullbacks over the terminal

yields a semi-cartesian monoidal structure on Lens.

The reason (3.4) fails, in general, to be a genuine pullback in Lens is that the corresponding universal

property is not satisfied. However, recall that pullbacks in Cat are the same as products in a slice category

Cat/B for some small category B. While the slice category Lens/B is not useful, there is a suitable

category Lens(B) with cartesian products, together with a product-preserving functor Lens(B)→ Cat/B,

that provides the “fake pullbacks” in Lens with a universal property.
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Definition 3.3. The category Lens(B) of lenses over a base category B has objects given by lenses with

codomain B, and morphisms ( f ,ϕ)→ (g,γ) given by commutative diagrams of the form:

Λ Ω

A C

B

ϕ

h

γ

h

f g

ϕ γ

(3.5)

Note that only the functor h : A → C above need be specified; the functor h : Λ → Ω will always

be uniquely induced from h, however may not (in general) make the back square in (3.5) commute.

The above definition of Lens(B) is motivated as a generalisation of the category of SOpf(B) of split

opfibrations and cleavage-preserving functors, which is obtained as a full subcategory. An variant of

Lens(B) has also been considered in [11] as the category of algebras for a semi-monad on Cat/B.

Proposition 3.4. The category Lens(B) has products, for all small categories B.

Proof. Consider a pair of lenses in Lens(B) as depicted in (3.3). Their product is given by the lens,

Λ×B Ω

A×B C B

ϕπ0 = γπ1ϕ×γ

f π0 = gπ1

(3.6)

which is equal the composite of the appropriate lenses in (3.3) and (3.4). The product projections are

given by the following diagrams:

Λ Λ×B Ω

A A×B C

B

ϕ

π0

ϕ×γ

π0

f f π0

ϕ ϕπ0

Λ×B Ω Ω

A×B C C

B

ϕ×γ

π1

γ

π1

gπ1
g

γπ1 γ

(3.7)

It is not difficult to show that the lens (3.6) also satisfies the universal property of the product in the

category Lens(B).

Proposition 3.4 shows that the fake pullbacks constructed in Lens actually have a universal property

with respect to the morphisms in Lens(B), for the appropriate small category B. Now consider the family

of functors Lens(B) → Cat which assign each lens to its domain category, and each morphism (3.5) to

the corresponding functor between domains.

Definition 3.5. Let SpnLens be the bicategory of spans of asymmetric lenses, whose objects are small

categories, and whose hom-categories SpnLens(A,B) are constructed by the pullback:

SpnLens(A,B)

Lens(A) Lens(B)

Cat

y

(3.8)
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An object in SpnLens(A,B) is a span of asymmetric lenses from A to B, and a morphism is given by a

functor X → X ′, together with induced functors Ω → Ω′ and Λ → Λ′, such that each face (including the

two outer squares) in the following diagram commute:

Ω X Λ

A B

Ω′ X ′ Λ′

(3.9)

Horizontal composition is given by fake pullback of lenses, followed by lens composition of the projec-

tions with the appropriate legs of the span. Horizontal composition is associative up to natural isomor-

phism with respect to the morphisms (3.9) above.

There is an identity-on-objects pseudofunctor Lens → SpnLens which takes a lens A ⇋ B to the right

leg of a span of lenses from A to B, with left leg given by the identity lens.

The construction of the bicategory SpnLens is a generalisation of a category previously defined in

[13, 15]. This category has objects given by small categories, and certain equivalence classes of spans

of asymmetric lenses as morphisms. Removing the equivalence relation and considering the appropriate

2-cells naturally gives rise to the bicategory SpnLens considered here.

4 Symmetric lenses

The goal of this section is to introduce the bicategory SymLens of small categories and symmetric lenses.

Consider the family of functors UA,B : Meal(A,B)→ Span(Cat)(A,B) with the assignment on Mealy

morphisms (Definition 2.10) stated for the span representation (2.8) as follows:

X

A B

g f 7−→
X0

A B

g0 f0 (4.1)

This functor is given by pre-composing the legs of the span with the canonical identity-on-objects functor

from the discrete category X0 →X . Furthermore, consider the family of functors †A,B : Span(Cat)(B,A)→
Span(Cat)(A,B) which send each span ( f ,X ,g) : B 9 A to its reverse span (g,X , f ) : A 9 B.

Definition 4.1. Let SymLens be the bicategory of symmetric lenses, whose objects are small categories,

and whose hom-categories SymLens(A,B) are constructed by the pullback:

SymLens(A,B)

Meal(A,B) Meal(B,A)

Span(Cat)(A,B)
UA,B †A,B◦UB,A

y

(4.2)
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An object in SymLens(A,B) is a symmetric lens, and may be depicted by a pair of spans:

X+

A B

X−

g f

g f

(4.3)

The 2-cells are given by the corresponding maps of Mealy morphisms, and horizontal composition is

also inherited from Meal.

Notation 4.2. In the diagram (4.3), the upper span is a Mealy morphism A 9 B, while the lower span

is a Mealy morphism B 9 A. As the notation suggests, both X+ and X− are categories with the same

discrete category of objects X0. Moreover, the following diagrams commute:

X0

X+ A×B

〈g0, f0〉

〈g, f 〉

X0

X− A×B

〈g0, f0〉

〈g, f 〉

(4.4)

Taking these diagrams together with (4.3), a symmetric lens may be completely described by the follow-

ing commutative diagram of functors,

X+

A X0 B

X−

g f

g f

(4.5)

where g and f are discrete opfibrations. However, for the remainder of the paper a symmetric lens will

be depicted by a diagram of the form (4.3) for simplicity.

There is an identity-on-objects pseudofunctor Lens → SymLens with the following assignment on

morphisms:

Λ

A B

ϕ ϕ

f

7−→

A

A B

Λ

1 f

ϕ ϕ

(4.6)

Note that the discrete opfibration ϕ above would usually be denoted by f with the notational convention

for symmetric lenses. From this pseudofunctor, symmetric lenses may be seen as a generalisation of

asymmetric lenses. In SymLens morphisms are pairs of suitable Mealy morphisms, while in Lens this

must be a functor/cofunctor pair. However there is also a loss of information in (4.6), as a symmetric

lens no longer encodes the commutativity condition of the corresponding asymmetric lens.

The construction of the bicategory SymLens is a generalisation of a category previously defined

in [13, 15]. This category has objects given by small categories, and certain equivalence classes of

symmetric lenses (called fb-lenses) as morphisms. Removing the equivalence relation and considering

the appropriate 2-cells yields the bicategory SpnLens considered here.
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5 An adjoint triple

This section presents the main theorem of the paper.

Theorem 5.1. Let A and B be small categories. Then there exists adjoint triple L ⊣ M ⊣ R between the

category of symmetric lenses and the category of spans of asymmetric lenses,

SymLens(A,B) SpnLens(A,B)

R

L

⊥
⊥

(5.1)

such that R is reflective and L is coreflective (that is, ML = MR = 1).

The functor M : SpnLens(A,B)→ SymLens(A,B) is defined on objects as follows:

Ω X Λ

A B

γ

γ

g f

ϕ

ϕ 7−→

Ω

A B

Λ

γ f γ

gϕ ϕ

(5.2)

Recall that γ and ϕ are identity-on-objects functors, so Ω and Λ have the same objects, and the resulting

symmetric lens is well-defined.

To construct the right adjoint R, consider a symmetric lens given by (4.3). Applying the bo-ff fac-

torisation (2.1) to the functor 〈g0, f0〉 : X0 → A×B yields a diagram:

X̃

X0 A×B

me

〈g0, f0〉

(5.3)

This factorisation is chosen such that image X̃ has the same objects as the discrete category X0. Using the

universal property (2.2) of the bo-ff factorisation, together with the commutative diagrams (4.4), there

exists unique, identity-on-objects functors:

X0 X̃

X+ A×B

e

m

〈g, f 〉

σ

X0 X̃

X− A×B

e

m

〈g, f 〉

τ (5.4)

The functor R : SymLens(A,B)→ SpnLens(A,B) is defined on objects as follows:

X+

A B

X−

g f

g f

7−→

X+ X̃ X−

A B

g

σ

π0m π1m

τ

f (5.5)
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One may notice immediately that the composite MR : SymLens(A,B)→ SymLens(A,B) is equal to

the identity functor. The unit for the adjunction M ⊣ R is constructed using the universal property of the

bo-ff factorisation, and is given as follows:

Ω X Λ

A B

Ω X̃ Λ

1Ω

γ

γ

g f

ϕ

1Λ

ϕ

γ

σ

π0m π1m

τ

ϕ
(5.6)

To construct the left adjoint L, again consider a symmetric lens given by (4.3). Since X+ and X−

have the same discrete category of objects X0, there is pushout along the identity-on-objects functors

given by:

X0 X−

X+ X+⊔X0
X−

ι1

ι0

p

(5.7)

For brevity, let X̂ := X+ ⊔X0
X−. Note that identity-on-objects functors are stable under pushout, so

both ι0 and ι1 are also identity-on-objects functors. The functor R : SymLens(A,B)→ SpnLens(A,B) is

defined on objects as follows:

X+

A B

X−

g f

g f

7−→

X+ X̂ X−

A B

g

ι0

[g,g] [ f , f ]

ι1

f (5.8)

One may notice immediately that the composite ML : SymLens(A,B)→ SymLens(A,B) is equal to

the identity functor. The counit for the adjunction L ⊣ M is constructed using the universal property of

the pushout, and is given as follows:

Ω X̂ Λ

A B

Ω X Λ

γ

ι0

1Ω [γ ,ϕ ]

[γ ,gϕ ] [ f γ ,ϕ ]

ι1

ϕ
1Λ

γ

γ

g f

ϕ

ϕ

(5.9)

Corollary 5.2. There exist identity-on-objects pseudofunctors between the bicategory of symmetric lenses

and the bicategory of spans of asymmetric lenses,

SymLens SpnLens

R

M

L

(5.10)

such that L and R are locally fully faithful and are locally adjoint to M.
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6 Concluding remarks and future work

This paper has established a new category-theoretic foundation for symmetric delta lenses. In contrast to

the algebraic approach of Johnson and Rosebrugh, this paper develops a natural diagrammatic approach

to symmetric lenses and spans of asymmetric lenses, by using the properties of certain classes of func-

tors. This framework yields significantly simpler definitions (for example, compare the characterisation

of a symmetric lens via Mealy morphisms in (4.3) to [15, Definition 7]), and allows for a clearer under-

standing of the composition of symmetric lenses, which is important for their application in fields such

as database view-updating and model-driven engineering.

While symmetric lenses and spans of asymmetric lenses were previously understood in [15] as mor-

phisms in an isomorphic pair of categories, the bicategories SymLens and SpnLens constructed in this

paper share a more interesting relationship. The main theorem shows that SymLens(A,B) is both a re-

flective and coreflective subcategory of SpnLens(A,B), which suggests that symmetric lenses are less

expressive than spans of asymmetric lenses when modelling update propagation between systems. The

subcategory inclusions also provide a way of characterising which spans of asymmetric lenses arise from

symmetric lenses: either the functor components of the span are jointly fully faithful (via the right ad-

joint) or the identity-on-objects functors in the cofunctor components are pushout injections (via the left

adjoint). A detailed study of the mathematical implications of the local adjunction between SymLens

and SpnLens is left for future research.

The notion of universal symmetric lenses, as considered in [16, 10], will also be the focus of future

work. In the paper [4], explicit conditions for universal asymmetric lenses were established, and it is

hoped that these results may be extended to the symmetric setting.

Although this paper has established explicit technical advances towards the understanding of sym-

metric delta lenses, it also suggests broader goals for the understanding of lenses in applied category

theory. Analogous to the transition from functions to relations, this paper further develops the transition

from asymmetric lenses to the general setting of symmetric lenses, as pioneered by Johnson and Rose-

brugh. Realising this framework with other kinds of lenses in the literature has the potential to capture a

wider range of applications and deliver mathematically interesting results.
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[18] Robert Paré (2012): Mealy Morphisms of Enriched Categories. Applied Categorical Structures, doi:10.

1007/s10485-010-9238-8.

[19] Ross Street (2020): Polynomials as spans. Cahiers de Topologie et Géométrie Différentielle Catégoriques
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