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We study one-dimensional reversible and number-consgogfiular automata (RNCCA) that have
both properties of reversibility and number-conservatiorihe case of 2-neighbor RNCCA, Garcia-
Ramos proved that every RNCCA shows trivial behavior in thiese that all the signals in the
RNCCA do not interact each other. However, if we increasentfighborhood size, we can find
many complex RNCCAs. Here, we show that for any one-dimersia-neighbor reversible parti-

tioned CA (RPCA) withs states, we can construct a 4-neighbor RNCCA wihktéates that simulates

the former. Since it is known that there is a computationafliyersal 24-state 2-neighbor RPCA, we
obtain a universal 96-state 4-neighbor RNCCA.

1 Introduction

A reversible cellular automaton (RCA), and a number-consgrcellular automaton (NCCA) are kinds
of abstract spatiotemporal models that reflect physicgbgntees of reversibility, and conservation (of
mass, energy, etc.), respectively. A reversible and nwodeserving cellular automaton (RNCCA) is
thus a model that has both these properties. Though an RNE&Aeéry restricted subclass of a CA, its
behavior can be complex if we increase the neighborhoodasidehe number of states.

So far, NCCAs have been extensively studied, and varioysepties and characterizations of them
have been given [1] B 4,/5,[7, 9]. [n]10] Moreira investigataiversality and decidability of NCCAs. As
for RNCCAs, Schranko and de Oliveita |15] made an experialestudy on one-dimensional RNCCAs,
and showed that asstaten-neighbor RNCCA rule can be decomposed igtiate 2-neighbor RNCCA
rules whens andn are very small. Garcia-Ramds [6] proved that, in the 24neig case (i.e., radius
1/2), every RNCCA is ahift-identity product cellular automatofSIPCA). An SIPCA is an RNCCA
composed of “shift CAs” in which all signals are right-mogijrand “identity CAs” in which all signals
are stationary. Hence, in general, an SIPCA has both rigivittg and stationary signals, but each signal
is independent to others. Namely, every right-moving digiraply goes through stationary signals
without affecting them. Therefore, all the 2-neighbor RN&&G&how trivial behaviors in the sense that
the signals do not interact each other. On the other hand, Maatin and Saito([8] showed that, in the 3-
neighbor case (i.e., radius 1), there are RNCCAs in whichessignals can interact with others, and thus
they show some nontrivial behavior. However, it is not knomimether there exists a computationally
universal 3-neighbor RNCCA.

In this paper, we investigate the 4-neighbor case (i.eiysa®i2), and prove there is a computationally
universal RNCCA. We show that for any given 2-neighbatate reversible partitioned CA (RPCA) we
can construct a 4-neighbos-4tate RNCCA that simulates the former. On the other hand,kbhown
that there is a computationally universal 2-neighbor 24esRPCAI[12], which can simulate any cyclic
tag system proposed by Codk [2]. By this, we can obtain a usa&-neighbor 96-state RNCCA.
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Computational universality in a variant of a one-dimenaloRNCCA was studied by Morita and
Imai [14], but this CA was not in the standard framework of N&Cbecause a partitioned CA (PCA)
was used as an NCCA model. Though a reversible PCA is a sshalasstandard RCA, the number-
conserving property of a PCA is somehow different from an MCsince each cell of a PCA has several
parts. Namely, while each cell of a usual NCCA has a singlebmnrthat of a number-conserving PCA
has a “tuple” of numbers. Therefore, this paper gives the dimésersality result of an RNCCA in the
standard framework of an NCCA.

2 Preliminaries
A one-dimensionatellular automaton (CAjs a system defined by
A: (Z7Q7N7 f7#)

Here,Z is the set of all integers where cells are plad@ds a non-empty finite set of states of each cill.
is aneighborhoodwhich is an element ™ (m=1,2,...). HenceN can be written abl = (ny,...,Nm)
wheren, € Z (i € {1,...,m}). f : Q™ — Qis alocal functionthat determines a state transition of each cell
depending on the states of itsneighboring cells. # Qs aquiescent statthat satisfied (#,...,#) = #.
If f(01,...,9m) =q holds forqy,...,dqm,q € Q, we call this relationf (qs, . ..,gm) = g atransition rule
of A. Thusf can be described as a finite set of transition rules.

A configurationoverQ is a mappinga : Z — Q. Let Conf Q) denote the set of all configurations
overQ, i.e., ConfQ) = {a|a :Z — Q}. A configurationa is calledfiniteif the set{x|x € Z A a(x) # #}
is finite. Otherwise it isnfinite. The set of all finite configurations is denoted by Ga(®). Applying
the local functionf to all the cells inZ simultaneously, we can obtainghobal function Fof A that
determines how a configuration changes to another. Moréspigd- : Conf(Q) — Conf(Q) is defined
by the following formula.

Va € Conf(Q), xe Z: F(a)(x) = f(a(x+ny),...,d(X+nNm))

It means that the next state of a cell at the posikasdetermined by the present statesrotells at the
positionsx+ Ny, ..., X+ Ny using the local functiorf. If N = (—r,—r+1,...,0,...,r —1,r) for some
natural number € N, thenAis called a CA ofradius r. If N=(—r,—r+1,...,0,...,r —2,r — 1) for
some positive integare N — {0}, thenAis called a CA of radiug2r — 1) /2. Hereafter, we call a CA of
radiusr ((2r — 1)/2, respectively) by &2r + 1)-neighbor CA (2-neighbor CA).

Let A be a CA, and- be its global functionA is called areversible CARCA) iff F is an injection,
i.e., it satisfies the following condition.

Vag, a2 € Conf(Q) : a1 # a2 = F(a1) # F(az)

A more detailed description on the definition of an RCA is fdwng. in [11].

A number-conserving CA is a one such that each cell’'s state isteger, and their sum in a configu-
ration is conserved throughout the evolving process. Sedaeral definitions and characterizations have
been given for number-conserving CASI[1, 3,4, 7]. Durandfemti and Roka [3] proved that the three
notions,periodic-number-conservingfinite-number-conserving and number-conservingfor infinite
configurations), are all equivalent. In this paper, we empie notion of finite-number-conserving to
define a number-conserving CA.
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LetA=(Z,Q,N, f,0) be a CA, wher&® = {0,...,s—1} (s€ N—{0}), andF be its global function.
The CAA s calledfinite-number-conservingf the following condition holds.

Va e Confin(Q) : Z a(x) = Z F(a)(x)

XEL XEL

A CA is called anumber-conserving cellular automat@NCCA), if it is finite-number-conserving.

A CA that satisfies both reversibility and finite-number-serving conditions is called reversible
number-conserving CARNCCA).

Next, we give a definition of a partitioned CA, because, inrbgt section, we will show a method
of converting a reversible partitioned CA into an RNCCApnAe-dimensional partitioned cellular au-
tomaton(PCA) is defined by

P= (Z7(Q17'"7Qm)7(n17""nm)’ f)

Here,Q; (i=1,...,m) is a non-empty finite set of states of thth part of each cell, and thus the state
set of each cell i = Qy x --- x Qm. Them-tuple (ny,...,ny,) € ZMis a neighborhood, anfl: Q — Q
is a local function.

Let pr, : Q — Q; be the projection function such that s, . .. ,0m) = g; for all (qu,...,0qm) € Q. The
global function F : Conf(Q) — Conf(Q) of P is defined as the one that satisfies the following formula.

Va € Conf(Q),xe Z: F(a)(x) = f(pry(a(x-+n1)),...,pry(a(X+nm)))
By above, one-dimensional PCA of radius 1/2 is defined aeval!
P = (Z,(C,R),(0,-1),f)

Each cell has two patrts, i.e., center and right parts, anddtae sets ar€ andR. The next state of a cell
is determined by the present states of the center part otéflisand the right part of the left-neighbor
cell (not depending on the whole two parts of the two cellsyuFe[1 shows its cellular space, and how
the local functionf is applied. Note that, here, the neighborhoo(is-1) rather than—1,0).

It is easy to show the following lemma that states the egenae of local and global injectivity of a
PCA [13].
Lemmal Let P=(Z,(Q,...,Qm),(M,...,nm), f) be a PCA, and F be its global function. Then, the
local function f is injective, iff the global function F isj@ttive.

A PCA with an injective local function is thus calledeversible PCARPCA).
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Figure 1. Cellular space of a one-dimensional 2-neighbok R@d its local functionf.
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3 Converting an RPCA into an RNCCA

Lemma 2 For any given one-dimensional 2-neigbor RPCAFZ, (C,R), (0,—1), f), we can construct
a one-dimensional 4-neigbor RNCCA A that simulates P andlj@is|R| states.

Proof. An RNCCA A that simulate® is given as follows.
= (Z7©a (_27 _17 07 1)7 f~7 0)7

whereQ = {0,1,...,4/C|-|R| — 1}. o
We need some preparations to deffndetC,C,C,R,R, andR be as follows.

= {2KR/|k=0,1,...,|C| -1}

= {2(k+[C))|R[ |k=0,1,...,|C[ -1}
cucC

— {k|k=0,1,...,|R—1}

— [k+|R/|k=01,...,JR—1}

= RUR

T 0T O OO
Il

Each element & C (f € R, respectively) is called heavy(light) particle, which is a stationary (right-
moving) particle inA as explained later. The number(i; respectively) itself can be regarded as the
mass of the heavy (light) particle. (Note that readers mankth strange that the particle of mass 0 is
both heavy and light. Though the mass 0 could be consideradragxistence of a particle, we employ
here the above interpretation for simplicity.) Clearly svelementyge Q is uniquely decomposed into a
heavy particle and a light particle, and thus the followirgdgls.

quQ,HceC HreR(q—chr)
Vcl,czeC Vi, fo € R(cl+r1202+r2 = 01—02/\r1:r2)

We can thus regard each cell Afhas a heavy particle and a light particle. We define the faligw
functionspc : O — €, andpr: Q — R which give a heavy particle, and a light particle assodiatéth
a givenge Q.

Ve QVEeC (fc(f) =€ « I eR(G=E+T))

Ve QVF e R(Pr(6) =F < e C(§=¢E+TF))
A pair of heavy particles€, ¢) € C x C (light particles(f,F) € Rx R, respectively) is called @mplemen-
tary pair, if €+ ¢=2(2|C| —1)|R| (f+F = 2|R| — 1). In the following, a complementary pair of heavy
(light, respectively) particles is used to simulate a sitat (R). A pair of stateg6,¢p) € Q? s called
balanced with respect to heavy (light, respectively) p#etif (Pc(G1), Bc(b)) ((Pr(G1), Pr(G2))) Is @
complementary pair. The set of all balanced pairs of st@igsj,) with respect to heavy (light, respec-
tively) particles is denoted bgc (Br), i.€.,

Bc = {(61,02) € Q| (Be(fh), Pe(f)) eCxC
_ APc(@)+ Pe(bz) = 2(2/Cl - 1)|R[ }
Br={(f1,G) € Q®| (PBr(fr), Pr(2)) € RxR
APr(G1) + Pr(G2) = 2|R| — 1}

a(x)) & Bc A (A(x+1),0(x+2)) ¢ Bc
,0(X) € BrA (G(x+1),a
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We now choose bijectionfc : C — C, and §g : R — R arbitrarily, and fix them hereafter. Then
define the bijection®ic :C —C, $r:R— R $:CxR— O, and¢ : C x R— O as follows, where
Q={¢e+f|écCrFeR},andQ={&+F|EcC,f eR}.

Ve e C (@c(c) = 2(2[C| - 1)IR| - dc(c))
Vr € R(Pr(r) = 2|R| —1—¢r(r))

VeeC,Vre R(§(c,r) = dc(c) + r(r))
YeeC,Vr e R(¢(c,r) = de(c) + gr(r))

Now, f : §* — Qis defined as follows.

) é(f (cbc( (60)), ‘ﬁﬁl(ﬁR(qf ) if (8-1,60) € BRA (60,61) € Bc
f(62,0-1,00,01) = § ¢(F(Pc (Pc(b-1)). Pr (Pr(G-2)))) if (G-2,G-1) € BRA(G-1.60) €Bc (1)
Pc(Go) + Pr(G-1) elsewhere

LetF pe the global function induced b For any configuratiort € Conf(Q), and for anyy € Z, the
valueF (&)(y) is as follows. If(a(y—1),a(y)) € Br A (a(y),a(y+1)) € Be, then

F@)y) = ¢(f(dc'(Pe(@(y)). dr"(Br(@(y—1))))). 2
F@)(y+1) = ¢(f(dc (Be(@(y),dr (Fr(@(y—1))))- 3)

It means the complementary paiifiz(ad (y— 1)), pr(a(y))) and(pc(a(y)), pc(@(y+1))) interact each
other, and the state transition of the RP@As simulated. Thus, the new complementary pair of heavy

particles (fc(F(a)(y)), Pc(F(&)(y+1))) is created at the same position as before, while the pair of
light particles (Pr(F (&)(y)), Pr(F (&)(y+ 1))) appears at the position shifted rightward by one cell.
On the other hand, if((a(y—2),a(y—1)) e BrA (G(y—1), a(y)) € Bc)) A =((a(y—1),a(y)) €

Br A (G(y),a(y+1)) € Bc)), then

F(a)y) = Pe(@(y)+ pr(@(y—1). (4)

The above means the light partig(& (y — 1)) simply moves rightward without interacting with the
stationary heavy particlpc{a (y)). From [2)-{(4), it is easy to see that the following holds fibixae Z.

(@(x),8(x+1) €Bc & (F(@)(X),F(a)(x+1)) €Bc (5)
(G(x),d(x+1))€Br < (F(@)(x+1),F(@)(x+2)) € Br (6)
First, we show thaf can simulateP correctly as described below. After that, we will shéws

an RNCCA. We define a mappirig: Conf(C x R) — Conf(Q) as follows, wherex € Conf(C x R) and
Xe Z.

f(a)(2) = ¢(a(x) (7)
f(o)(2x+1) = ¢(a(x) )
The configurationa of P is thus represented by(a) of A (see Fig[R). We can seéc(T(a)(2x)),
Pc(T(a)(2x+1))) € Bc. However,(pr(T(a)(2x—1)), fr(T(a)(2X))) & Bg for anyx € Z. Therefore,
by the equation {4) we have the following.
F(f(a) () =

F(f(a))(x+1) =
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By above, we can obsendic(F ((a))(2X)), Pe(F (F(a))(2x+1))) € Bc and (Br(F (F(a))(2x— 1)),
Pr(F(T(a))(2x))) € Bgr, and thus the following holds byl(2) and (3), whexe:C xR — C andpr :
C x R— Rare projection functions, arfé is the global function oP.

FA(F(a)(2) = @(f(dc (Ae(d(a (). ¢ (Br(®(a(x—1))))))

= ¢(f(pc(a(x), pr(a(x—1))))
= ¢(F(a)(x)
= I(F(a)()

FA(E(@)(2x+1) = $(f(dc*(Be(d(a(x)), b (Fr(d(a(x—1)))))
= ¢(f(pc(a(x)), pr(a(x—1))))
= ¢(F(a)()
= T(F(a))(2x+1)

Thus, each evolution step of a configurationPofs correctly simulated by in two steps under the
mappingT. Its simulation process is shown in Hig. 2.

2-neighbor RPCA P 4-neighbor RNCCA A
r—1 T 202 221 22 2x+12242
. s DD,
t CriTi|C2; 2t
] @@
N
@)
f 2t+1
@@
—_—
t+1 C3 T3 2t +2 @ @
] OO

Figure 2: A simulation process of a 2-neighbor RPE Ay a 4-neighbor RNCCA\. The configuration
of Aat time 2 is obtained from that oP at timet by the mapping. Here,(¢;,¢) and(fi,f;) (i=1,2,3)
are complementary pairs, and thys-T = 2(2|C| — 1)|R| andr; + i = 2|R| — 1.

Next, we show thaf\ is an NCCA. From the equationl(1), we can see mass of a pagitknsferred
within a complementary pair, or simply shifted rightward does not change. Therefore, it is intuitively
obvious thatA is an NCCA. But, here we show théathas the finite-number-conserving property. First,
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from (2)-(4), we can derive the following.

(&(x),8(x+1)) € B ) )

= Pc(@ (X)) + Pe(a(x+1)) = pc(F(a)(x)) + Pc(F(0)(x+1))
(G(x—1),d(x))  Bc A (0(x),0(x+1)) €Bc

= Pc(@(x) = fc(F(a)(x))
(&(x),d(x+1)) € Bg ) )

= Pr(@(X)) + Pr(a (x+1)) = Pr(F (@) (x+ 1)) + Br(F (&) (x+2))
(a(x—1),0(x)) € BrA(0(x),0(x+1)) & Br

= Pr(G(x)) = Pr(F (a)(x+1))

By above, for eachn (= 2,3,...), there existng,n; andn, such thatn; € {n,n— 1} (i =0,1,2), and
nz € {n—1,n— 2} that satisfy the following relations.

_z_l pe(a(x) = _z_l Be(F (6)(x)) )
N3 nz+1
_Z Pr(0(x) = ,Z lf)R(F”(a)(x)) (10)

Leta ¢ Confﬁn(@). Then, the following equation holds byl (9) and](10).
Va eConf(Q): Y a(x) =3 F(@)(Xx)
XEL XEL

Therefore A is finite-number-conserving, and thus an NCCA.

Finally, we showA is reversible. On the contrary we assume it is not. Thusetheg two configura-
tions a1, a, € Conf(Q) such thath; # &, andF (&1) = F(a2). First, we note the following.

If otherwise,F (&1) # F (&2) holds by the relation§{5) and](6), and it contradicts themggion. Since
01 # @2, there existg € Z such thatpc (a1 (X)) # Pc(@2(X0)) or Pr(01(X0)) # Pr(02(X0)). Here, we

prove it only for the cas@c{a1(x0)) # Pe(b2(X0)), since the caspr(a1(Xo)) # Pr(b2(X0)) is similarly
proved. There are three subcases:

(i) (Gi(xo—1),0i(X0)) € Br A (Gi(X0),Gi(X+1)) € Bc (i=1,2),
(i) (Gi(x0—2),0i(%—1)) € Br A (Gi(%0—1),0i(x)) € Bc (i=1,2), and

(iii) Other than the cases (i) and (ii), i.ea( (& (X0 — 1), Gi(X0)) € Br A (&i(X0), Oi(Xo+1)) € Bc) A
(@ (%0~ 2), (% — 1)) € Br A (& (%0 — 1), (%)) € Be) (i =1,2).

The case (i): ByL(R), the following relations hold.

Pl

F:(al)(XO) = $(f(dc*(Pe(81(%0))), b (Fr(G1(x0 — 1)))))
F(d2)(0) = @(f(dc (Pec(d2(%0))), - (Br(G2(%0 — 1)))))
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From the fact9c(a1(X0)) # Pe(b2(x0)), @, ¢c and ¢r are bijections, and is an injection (because
is a reversible PCA)- (01)(Xo) # F(02)(x) follows. This contradicts the assumption. The case (ii):
Since it is similar to the case (i), we omit the proof. The d@ige By (4), the following relations hold.

F(1) (%) = pc(1(x0))+ Pr(@1(x%— 1))
F(2)(%) = Pc(82(x0))+ Pr(d2(x0 — 1))

Again F (d1)(xo) # F(82) (%), becausepd(@1(xo)) # fc(d2(%0)), and this contradicts the assumption.
By above, we can conclude thatis a reversible NCCA. This completes the proof. O

It has been shown that there is a universal one-dimensicnaighbor 24-state RPCA [l12]. This
RPCA can simulate Any cyclic tag system proposed by Cook 2] lee simulated by this RPCA with
infinite but ultimately-periodic configurations.

Proposition 1 [12] There is a computationally universal one-dimensional Rimeor 24-state RPCA.

From LemmaR and Propositibh 1, the next theorem is derived.
Theorem 1 There is a computationally universal one-dimensional imgor 96-state RNCCA.

In [12], it is shown that there is a 2-neighbor RPCA that disesimulates a given reversible Turing
machine. Therefore, we can also construct a 4-neighbor RN@&t directly simulates a reversible
Turing machine. In this case, the RNCCA has ultimately mhcionfinite configurations, though the
configuration of the simulated Turing machine is finite.

4 Concluding remarks

In this paper, we proved that any given 2-neighbor RARG#an be simulated by a 4-neighbor RNCBA
Thus computation-universality of a 4-neighbor RNCCA isdaded in spite of the strong constraints of
reversibility and the number-conserving property. WAesimulatesP, a configuratioro of P is kept by
T(a) of Aas shown in Fid.]2. But, there is no need to defiras given in the equations](7) amd (8). The
simulation works well if we use, e.g., the followirig, where each two-cell-block containirfy a(x))
and¢ (a(x)) is separated from the next block by— 2) 0-state cellsK=3,4,...).

(a)(ky = $(a(x)
T(a)(kx+1) = ¢(a(x))
¥(a)(kx+i) = O (i=23,...k-1)

Furthermore, we can see that, even if the spacing betweekdb(by 0-state cells) is non-uniform, the
simulation process goes correctly (though state tramsiiining of the cells are also non-uniform).

On the other hand, it is an open problem whether a strongeitt feslds, i.e., whether there is a
universal 3-neighbor (radius 1) RNCCA. It is also left foetfuture study to construct an intrinsically
universal RNCCA.
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