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We study one-dimensional reversible and number-conserving cellular automata (RNCCA) that have
both properties of reversibility and number-conservation. In the case of 2-neighbor RNCCA, Garcı́a-
Ramos proved that every RNCCA shows trivial behavior in the sense that all the signals in the
RNCCA do not interact each other. However, if we increase theneighborhood size, we can find
many complex RNCCAs. Here, we show that for any one-dimensional 2-neighbor reversible parti-
tioned CA (RPCA) withsstates, we can construct a 4-neighbor RNCCA with 4sstates that simulates
the former. Since it is known that there is a computationallyuniversal 24-state 2-neighbor RPCA, we
obtain a universal 96-state 4-neighbor RNCCA.

1 Introduction

A reversible cellular automaton (RCA), and a number-conserving cellular automaton (NCCA) are kinds
of abstract spatiotemporal models that reflect physical properties of reversibility, and conservation (of
mass, energy, etc.), respectively. A reversible and number-conserving cellular automaton (RNCCA) is
thus a model that has both these properties. Though an RNCCA is a very restricted subclass of a CA, its
behavior can be complex if we increase the neighborhood sizeand the number of states.

So far, NCCAs have been extensively studied, and various properties and characterizations of them
have been given [1, 3, 4, 5, 7, 9]. In [10] Moreira investigated universality and decidability of NCCAs. As
for RNCCAs, Schranko and de Oliveira [15] made an experimental study on one-dimensional RNCCAs,
and showed that ans-staten-neighbor RNCCA rule can be decomposed intos-state 2-neighbor RNCCA
rules whens andn are very small. Garcı́a-Ramos [6] proved that, in the 2-neighbor case (i.e., radius
1/2), every RNCCA is ashift-identity product cellular automaton(SIPCA). An SIPCA is an RNCCA
composed of “shift CAs” in which all signals are right-moving, and “identity CAs” in which all signals
are stationary. Hence, in general, an SIPCA has both right-moving and stationary signals, but each signal
is independent to others. Namely, every right-moving signal simply goes through stationary signals
without affecting them. Therefore, all the 2-neighbor RNCCAs show trivial behaviors in the sense that
the signals do not interact each other. On the other hand, Imai, Martin and Saito [8] showed that, in the 3-
neighbor case (i.e., radius 1), there are RNCCAs in which some signals can interact with others, and thus
they show some nontrivial behavior. However, it is not knownwhether there exists a computationally
universal 3-neighbor RNCCA.

In this paper, we investigate the 4-neighbor case (i.e., radius 3/2), and prove there is a computationally
universal RNCCA. We show that for any given 2-neighbors-state reversible partitioned CA (RPCA) we
can construct a 4-neighbor 4s-state RNCCA that simulates the former. On the other hand, itis known
that there is a computationally universal 2-neighbor 24-state RPCA [12], which can simulate any cyclic
tag system proposed by Cook [2]. By this, we can obtain a universal 4-neighbor 96-state RNCCA.
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Computational universality in a variant of a one-dimensional RNCCA was studied by Morita and
Imai [14], but this CA was not in the standard framework of NCCAs, because a partitioned CA (PCA)
was used as an NCCA model. Though a reversible PCA is a subclass of a standard RCA, the number-
conserving property of a PCA is somehow different from an NCCA, since each cell of a PCA has several
parts. Namely, while each cell of a usual NCCA has a single number, that of a number-conserving PCA
has a “tuple” of numbers. Therefore, this paper gives the first universality result of an RNCCA in the
standard framework of an NCCA.

2 Preliminaries

A one-dimensionalcellular automaton (CA)is a system defined by

A= (Z,Q,N, f ,#).

Here,Z is the set of all integers where cells are placed.Q is a non-empty finite set of states of each cell.N
is aneighborhood, which is an element ofZm (m= 1,2, . . .). HenceN can be written asN = (n1, . . . ,nm)
whereni ∈Z (i ∈ {1, . . . ,m}). f : Qm→Q is alocal functionthat determines a state transition of each cell
depending on the states of itsmneighboring cells. #∈ Q is aquiescent statethat satisfiesf (#, . . . ,#) = #.
If f (q1, . . . ,qm) = q holds forq1, . . . ,qm,q∈ Q, we call this relationf (q1, . . . ,qm) = q a transition rule
of A. Thus f can be described as a finite set of transition rules.

A configurationoverQ is a mappingα : Z→ Q. Let Conf(Q) denote the set of all configurations
overQ, i.e., Conf(Q) = {α |α :Z→Q}. A configurationα is calledfinite if the set{x|x∈Z∧α(x) 6= #}
is finite. Otherwise it isinfinite. The set of all finite configurations is denoted by Conffin(Q). Applying
the local functionf to all the cells inZ simultaneously, we can obtain aglobal function Fof A that
determines how a configuration changes to another. More precisely, F : Conf(Q)→ Conf(Q) is defined
by the following formula.

∀α ∈ Conf(Q), x∈ Z : F(α)(x) = f (α(x+n1), . . . ,α(x+nm))

It means that the next state of a cell at the positionx is determined by the present states ofm cells at the
positionsx+ n1, . . . ,x+ nm using the local functionf . If N = (−r,−r + 1, . . . ,0, . . . , r − 1, r) for some
natural numberr ∈ N, thenA is called a CA ofradius r. If N = (−r,−r +1, . . . ,0, . . . , r −2, r −1) for
some positive integerr ∈N−{0}, thenA is called a CA of radius(2r −1)/2. Hereafter, we call a CA of
radiusr ((2r −1)/2, respectively) by a(2r +1)-neighbor CA (2r-neighbor CA).

Let A be a CA, andF be its global function.A is called areversible CA(RCA) iff F is an injection,
i.e., it satisfies the following condition.

∀α1,α2 ∈ Conf(Q) : α1 6= α2 ⇒ F(α1) 6= F(α2)

A more detailed description on the definition of an RCA is found e.g. in [11].

A number-conserving CA is a one such that each cell’s state isan integer, and their sum in a configu-
ration is conserved throughout the evolving process. So far, several definitions and characterizations have
been given for number-conserving CAs [1, 3, 4, 7]. Durand, Formenti and Róka [3] proved that the three
notions,periodic-number-conserving, finite-number-conserving, and number-conserving(for infinite
configurations), are all equivalent. In this paper, we employ the notion of finite-number-conserving to
define a number-conserving CA.
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Let A= (Z,Q,N, f ,0) be a CA, whereQ= {0, . . . ,s−1} (s∈N−{0}), andF be its global function.
The CAA is calledfinite-number-conserving, if the following condition holds.

∀α ∈ Conffin(Q) : ∑
x∈Z

α(x) = ∑
x∈Z

F(α)(x)

A CA is called anumber-conserving cellular automaton(NCCA), if it is finite-number-conserving.

A CA that satisfies both reversibility and finite-number-conserving conditions is called areversible
number-conserving CA(RNCCA).

Next, we give a definition of a partitioned CA, because, in thenext section, we will show a method
of converting a reversible partitioned CA into an RNCCA. Aone-dimensional partitioned cellular au-
tomaton(PCA) is defined by

P= (Z,(Q1, . . . ,Qm),(n1, . . . ,nm), f ).

Here,Qi (i = 1, . . . ,m) is a non-empty finite set of states of thei-th part of each cell, and thus the state
set of each cell isQ= Q1×·· ·×Qm. Them-tuple(n1, . . . ,nm) ∈ Z

m is a neighborhood, andf : Q→ Q
is a local function.

Let pri : Q→ Qi be the projection function such that pri(q1, . . . ,qm) = qi for all (q1, . . . ,qm) ∈ Q. The
global function F : Conf(Q)→ Conf(Q) of P is defined as the one that satisfies the following formula.

∀α ∈ Conf(Q),x∈ Z : F(α)(x) = f (pr1(α(x+n1)), . . . ,prm(α(x+nm)))

By above, one-dimensional PCA of radius 1/2 is defined as follows.

P = (Z,(C,R),(0,−1), f )

Each cell has two parts, i.e., center and right parts, and their state sets areC andR. The next state of a cell
is determined by the present states of the center part of thiscell, and the right part of the left-neighbor
cell (not depending on the whole two parts of the two cells). Figure 1 shows its cellular space, and how
the local functionf is applied. Note that, here, the neighborhood is(0,−1) rather than(−1,0).

It is easy to show the following lemma that states the equivalence of local and global injectivity of a
PCA [13].

Lemma 1 Let P= (Z,(Q1, . . . ,Qm),(n1, . . . ,nm), f ) be a PCA, and F be its global function. Then, the
local function f is injective, iff the global function F is injective.

A PCA with an injective local function is thus called areversible PCA(RPCA).

C C CR R R

t

t + 1

x − 1 x x + 1

︸ ︷︷ ︸

︷ ︸︸ ︷
s

f

Figure 1: Cellular space of a one-dimensional 2-neighbor PCA, and its local functionf .
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3 Converting an RPCA into an RNCCA

Lemma 2 For any given one-dimensional 2-neigbor RPCA P= (Z,(C,R), (0,−1), f ), we can construct
a one-dimensional 4-neigbor RNCCA A that simulates P and has4|C|·|R| states.

Proof. An RNCCAA that simulatesP is given as follows.

A= (Z,Q̃,(−2,−1,0,1), f̃ ,0),

whereQ̃= {0,1, . . . ,4|C|·|R|−1}.
We need some preparations to definef̃ . LetĈ,Č,C̃,R̂,Ř, andR̃ be as follows.

Ĉ = {2k|R| | k= 0,1, . . . , |C|−1}
Č = {2(k+ |C|)|R| | k= 0,1, . . . , |C|−1}
C̃ = Ĉ∪Č
R̂ = {k | k= 0,1, . . . , |R|−1}
Ř = {k+ |R| | k= 0,1, . . . , |R|−1}
R̃ = R̂∪ Ř

Each element ˜c∈ C̃ (r̃ ∈ R̃, respectively) is called aheavy(light) particle, which is a stationary (right-
moving) particle inA as explained later. The number ˜c (r̃ , respectively) itself can be regarded as the
mass of the heavy (light) particle. (Note that readers may think it strange that the particle of mass 0 is
both heavy and light. Though the mass 0 could be considered asnon-existence of a particle, we employ
here the above interpretation for simplicity.) Clearly every element ˜q∈ Q̃ is uniquely decomposed into a
heavy particle and a light particle, and thus the following holds.

∀q̃∈ Q̃,∃c̃∈ C̃,∃r̃ ∈ R̃ (q̃= c̃+ r̃)
∀c̃1, c̃2 ∈ C̃,∀r̃1, r̃2 ∈ R̃ (c̃1+ r̃1 = c̃2+ r̃2 ⇒ c̃1 = c̃2∧ r̃1 = r̃2)

We can thus regard each cell ofA has a heavy particle and a light particle. We define the following
functions p̃C : Q̃→ C̃, and p̃R : Q̃→ R̃, which give a heavy particle, and a light particle associated with
a givenq̃∈ Q̃.

∀q̃∈ Q̃,∀c̃∈ C̃ (p̃C(q̃) = c̃ ⇔ ∃r̃ ∈ R̃(q̃= c̃+ r̃))
∀q̃∈ Q̃,∀r̃ ∈ R̃ (p̃R(q̃) = r̃ ⇔ ∃c̃∈ C̃(q̃= c̃+ r̃))

A pair of heavy particles(ĉ, č)∈ Ĉ×Č (light particles(r̂ , ř)∈ R̂× Ř, respectively) is called acomplemen-
tary pair, if ĉ+ č= 2(2|C|−1)|R| (r̂ + ř = 2|R|−1). In the following, a complementary pair of heavy
(light, respectively) particles is used to simulate a statein C (R). A pair of states(q̃1, q̃2) ∈ Q̃2 is called
balanced with respect to heavy (light, respectively) particles if (p̃C(q̃1), p̃C(q̃2)) ((p̃R(q̃1), p̃R(q̃2))) is a
complementary pair. The set of all balanced pairs of states(q̃1, q̃2) with respect to heavy (light, respec-
tively) particles is denoted byBC (BR), i.e.,

BC = {(q̃1, q̃2) ∈ Q̃2 | (p̃C(q̃1), p̃C(q̃2)) ∈ Ĉ×Č
∧ p̃C(q̃1)+ p̃C(q̃2) = 2(2|C|−1)|R|},

BR = {(q̃1, q̃2) ∈ Q̃2 | (p̃R(q̃1), p̃R(q̃2)) ∈ R̂× Ř
∧ p̃R(q̃1)+ p̃R(q̃2) = 2|R|−1}.

It is easy to see that, for anỹα ∈ Conf(Q̃) andx∈ Z, the following relations hold.

(α̃(x), α̃(x+1)) ∈ BC ⇒ (α̃(x−1), α̃(x)) 6∈ BC ∧ (α̃(x+1), α̃(x+2)) 6∈ BC

(α̃(x), α̃(x+1)) ∈ BR ⇒ (α̃(x−1), α̃(x)) 6∈ BR ∧ (α̃(x+1), α̃(x+2)) 6∈ BR
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We now choose bijectionŝϕC : C → Ĉ, and ϕ̂R : R→ R̂ arbitrarily, and fix them hereafter. Then
define the bijectionšϕC : C → Č, ϕ̌R : R→ Ř, ϕ̂ : C×R→ Q̂, andϕ̌ : C×R→ Q̌ as follows, where
Q̂= {ĉ+ r̂ | ĉ∈ Ĉ, r̂ ∈ R̂}, andQ̌= {č+ ř | č∈ Č, ř ∈ Ř}.

∀c∈C (ϕ̌C(c) = 2(2|C|−1)|R|− ϕ̂C(c))
∀r ∈ R (ϕ̌R(r) = 2|R|−1− ϕ̂R(r))
∀c∈C,∀r ∈ R (ϕ̂(c, r) = ϕ̂C(c)+ ϕ̂R(r))
∀c∈C,∀r ∈ R (ϕ̌(c, r) = ϕ̌C(c)+ ϕ̌R(r))

Now, f̃ : Q̃4 → Q̃ is defined as follows.

f̃ (q̃−2, q̃−1, q̃0, q̃1) =







ϕ̂( f (ϕ̂−1
C (p̃C(q̃0)), ϕ̂−1

R (p̃R(q̃−1)))) if (q̃−1, q̃0) ∈ BR∧ (q̃0, q̃1) ∈ BC

ϕ̌( f (ϕ̂−1
C (p̃C(q̃−1)), ϕ̂−1

R (p̃R(q̃−2)))) if (q̃−2, q̃−1) ∈ BR∧ (q̃−1, q̃0) ∈ BC

p̃C(q̃0)+ p̃R(q̃−1) elsewhere
(1)

Let F̃ be the global function induced bỹf . For any configuratioñα ∈ Conf(Q̃), and for anyy∈ Z, the
valueF̃(α̃)(y) is as follows. If(α̃(y−1), α̃(y)) ∈ BR ∧ (α̃(y), α̃(y+1)) ∈ BC, then

F̃(α̃)(y) = ϕ̂( f (ϕ̂−1
C (p̃C(α̃(y))), ϕ̂−1

R (p̃R(α̃(y−1))))), (2)

F̃(α̃)(y+1) = ϕ̌( f (ϕ̂−1
C (p̃C(α̃(y))), ϕ̂−1

R (p̃R(α̃(y−1))))). (3)

It means the complementary pairs(p̃R(α̃(y−1)), p̃R(α̃(y))) and(p̃C(α̃(y)), p̃C(α̃(y+1))) interact each
other, and the state transition of the RPCAP is simulated. Thus, the new complementary pair of heavy
particles(p̃C(F̃(α̃)(y)), p̃C(F̃(α̃)(y+ 1))) is created at the same position as before, while the pair of
light particles(p̃R(F̃(α̃)(y)), p̃R(F̃(α̃)(y+ 1))) appears at the position shifted rightward by one cell.
On the other hand, if¬((α̃(y−2), α̃(y−1)) ∈ BR ∧ (α̃(y−1), α̃(y)) ∈ BC)) ∧ ¬((α̃(y−1), α̃(y)) ∈
BR ∧ (α̃(y), α̃(y+1)) ∈ BC)), then

F̃(α̃)(y) = p̃C(α̃(y))+ p̃R(α̃(y−1)). (4)

The above means the light particle ˜pR(α̃(y− 1)) simply moves rightward without interacting with the
stationary heavy particle ˜pC(α̃(y)). From (2)–(4), it is easy to see that the following holds for all x∈ Z.

(α̃(x), α̃(x+1)) ∈ BC ⇔ (F̃(α̃)(x), F̃(α̃)(x+1)) ∈ BC (5)

(α̃(x), α̃(x+1)) ∈ BR ⇔ (F̃(α̃)(x+1), F̃(α̃)(x+2)) ∈ BR (6)

First, we show thatA can simulateP correctly as described below. After that, we will showA is
an RNCCA. We define a mapping̃τ : Conf(C×R)→ Conf(Q̃) as follows, whereα ∈ Conf(C×R) and
x∈ Z.

τ̃(α)(2x) = ϕ̂(α(x)) (7)

τ̃(α)(2x+1) = ϕ̌(α(x)) (8)

The configurationα of P is thus represented bỹτ(α) of A (see Fig. 2). We can see(p̃C(τ̃(α)(2x)),
p̃C(τ̃(α)(2x+1))) ∈ BC. However,(p̃R(τ̃(α)(2x−1)), p̃R(τ̃(α)(2x))) 6∈ BR for anyx ∈ Z. Therefore,
by the equation (4) we have the following.

F̃(τ̃(α))(2x) = p̃C(ϕ̂(α(x)))+ p̃R(ϕ̌(α(x−1)))

F̃(τ̃(α))(2x+1) = p̃C(ϕ̌(α(x)))+ p̃R(ϕ̂(α(x)))
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By above, we can observe(p̃C(F̃(τ̃(α))(2x)), p̃C(F̃(τ̃(α))(2x+1))) ∈ BC and(p̃R(F̃(τ̃(α))(2x−1)),
p̃R(F̃(τ̃(α))(2x))) ∈ BR, and thus the following holds by (2) and (3), wherepC : C×R→ C and pR :
C×R→ Rare projection functions, andF is the global function ofP.

F̃2(τ̃(α))(2x) = ϕ̂( f (ϕ̂−1
C (p̃C(ϕ̂(α(x)))), ϕ̂−1

R (p̃R(ϕ̂(α(x−1))))))

= ϕ̂( f (pC(α(x)), pR(α(x−1))))

= ϕ̂(F(α)(x))

= τ̃(F(α))(2x)

F̃2(τ̃(α))(2x+1) = ϕ̌( f (ϕ̂−1
C (p̃C(ϕ̂(α(x)))), ϕ̂−1

R (p̃R(ϕ̂(α(x−1))))))

= ϕ̌( f (pC(α(x)), pR(α(x−1))))

= ϕ̌(F(α)(x))

= τ̃(F(α))(2x+1)

Thus, each evolution step of a configuration ofP is correctly simulated byA in two steps under the
mappingτ̃ . Its simulation process is shown in Fig. 2.

2-neighbor RPCA P

x−1 x

t c1 r1 c2 r2

︸ ︷︷ ︸

︷ ︸︸ ︷

◆

f

t + 1 c3 r3

4-neighbor RNCCA A

2x−2 2x−1 2x 2x+12x+2

2t
r̂1 ř1

ĉ1 č1

r̂2 ř2

ĉ2 č2

2t + 1

r̂1 ř1

ĉ1 č1

r̂2 ř2

ĉ2 č2

2t + 2

r̂3 ř3

ĉ3 č3

Figure 2: A simulation process of a 2-neighbor RPCAP by a 4-neighbor RNCCAA. The configuration
of A at time 2t is obtained from that ofP at timet by the mapping̃τ. Here,(ĉi , či) and(r̂ i , ř i) (i = 1,2,3)
are complementary pairs, and thus ˆci + či = 2(2|C|−1)|R| and ˆr i + ř i = 2|R|−1.

Next, we show thatA is an NCCA. From the equation (1), we can see mass of a particleis transferred
within a complementary pair, or simply shifted rightward, or does not change. Therefore, it is intuitively
obvious thatA is an NCCA. But, here we show thatA has the finite-number-conserving property. First,
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from (2)–(4), we can derive the following.

(α̃(x), α̃(x+1)) ∈ BC

⇒ p̃C(α̃(x))+ p̃C(α̃(x+1)) = p̃C(F̃(α̃)(x))+ p̃C(F̃(α̃)(x+1))
(α̃(x−1), α̃(x)) 6∈ BC∧ (α̃(x), α̃(x+1)) 6∈ BC

⇒ p̃C(α̃(x)) = p̃C(F̃(α̃)(x))
(α̃(x), α̃(x+1)) ∈ BR

⇒ p̃R(α̃(x))+ p̃R(α̃(x+1)) = p̃R(F̃(α̃)(x+1))+ p̃R(F̃(α̃)(x+2))
(α̃(x−1), α̃(x)) 6∈ BR∧ (α̃(x), α̃(x+1)) 6∈ BR

⇒ p̃R(α̃(x)) = p̃R(F̃(α̃)(x+1))

By above, for eachn (= 2,3, . . .), there existn0,n1 andn2 such thatni ∈ {n,n− 1} (i = 0,1,2), and
n3 ∈ {n−1,n−2} that satisfy the following relations.

n1

∑
x=−n0

p̃C(α̃(x)) =
n1

∑
x=−n0

p̃C(F̃(α̃)(x)) (9)

n3

∑
x=−n2

p̃R(α̃(x)) =
n3+1

∑
x=−n2+1

p̃R(F̃(α̃)(x)) (10)

Let α̃ ∈ Conffin(Q̃). Then, the following equation holds by (9) and (10).

∀α̃ ∈ Conf(Q̃) : ∑
x∈Z

α̃(x) = ∑
x∈Z

F̃(α̃)(x)

Therefore,A is finite-number-conserving, and thus an NCCA.

Finally, we showA is reversible. On the contrary we assume it is not. Thus, there are two configura-
tions α̃1, α̃2 ∈ Conf(Q̃) such thatα̃1 6= α̃2 andF̃(α̃1) = F̃(α̃2). First, we note the following.

∀x∈ Z ((α̃1(x), α̃1(x+1)) ∈ BC ⇔ (α̃2(x), α̃2(x+1)) ∈ BC)
∀x∈ Z ((α̃1(x), α̃1(x+1)) ∈ BR ⇔ (α̃2(x), α̃2(x+1)) ∈ BR)

If otherwise,F̃(α̃1) 6= F̃(α̃2) holds by the relations (5) and (6), and it contradicts the assumption. Since
α̃1 6= α̃2, there existsx0 ∈ Z such that ˜pC(α̃1(x0)) 6= p̃C(α̃2(x0)) or p̃R(α̃1(x0)) 6= p̃R(α̃2(x0)). Here, we
prove it only for the case ˜pC(α̃1(x0)) 6= p̃C(α̃2(x0)), since the case ˜pR(α̃1(x0)) 6= p̃R(α̃2(x0)) is similarly
proved. There are three subcases:

(i) (α̃i(x0−1), α̃i(x0)) ∈ BR ∧ (α̃i(x0), α̃i(x0+1)) ∈ BC (i = 1,2),

(ii) (α̃i(x0−2), α̃i(x0−1)) ∈ BR ∧ (α̃i(x0−1), α̃i(x0)) ∈ BC (i = 1,2), and

(iii) Other than the cases (i) and (ii), i.e.,¬((α̃i(x0−1), α̃i(x0)) ∈ BR ∧ (α̃i(x0), α̃i(x0+1)) ∈ BC) ∧
¬((α̃i(x0−2), α̃i(x0−1)) ∈ BR ∧ (α̃i(x0−1), α̃i(x0)) ∈ BC) (i = 1,2).

The case (i): By (2), the following relations hold.

F̃(α̃1)(x0) = ϕ̂( f (ϕ̂−1
C (p̃C(α̃1(x0))), ϕ̂−1

R (p̃R(α̃1(x0−1)))))

F̃(α̃2)(x0) = ϕ̂( f (ϕ̂−1
C (p̃C(α̃2(x0))), ϕ̂−1

R (p̃R(α̃2(x0−1)))))
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From the facts ˜pC(α̃1(x0)) 6= p̃C(α̃2(x0)), ϕ ,ϕC andϕR are bijections, andf is an injection (becauseP
is a reversible PCA),̃F(α̃1)(x0) 6= F̃(α̃2)(x0) follows. This contradicts the assumption. The case (ii):
Since it is similar to the case (i), we omit the proof. The case(iii): By (4), the following relations hold.

F̃(α̃1)(x0) = p̃C(α̃1(x0))+ p̃R(α̃1(x0−1))

F̃(α̃2)(x0) = p̃C(α̃2(x0))+ p̃R(α̃2(x0−1))

Again F̃(α̃1)(x0) 6= F̃(α̃2)(x0), because ˜pC(α̃1(x0)) 6= p̃C(α̃2(x0)), and this contradicts the assumption.
By above, we can conclude thatA is a reversible NCCA. This completes the proof. �

It has been shown that there is a universal one-dimensional 2-neighbor 24-state RPCA [12]. This
RPCA can simulate Any cyclic tag system proposed by Cook [2] can be simulated by this RPCA with
infinite but ultimately-periodic configurations.

Proposition 1 [12] There is a computationally universal one-dimensional 2-neighbor 24-state RPCA.

From Lemma 2 and Proposition 1, the next theorem is derived.

Theorem 1 There is a computationally universal one-dimensional 4-neighbor 96-state RNCCA.

In [12], it is shown that there is a 2-neighbor RPCA that directly simulates a given reversible Turing
machine. Therefore, we can also construct a 4-neighbor RNCCA that directly simulates a reversible
Turing machine. In this case, the RNCCA has ultimately periodic infinite configurations, though the
configuration of the simulated Turing machine is finite.

4 Concluding remarks

In this paper, we proved that any given 2-neighbor RPCAP can be simulated by a 4-neighbor RNCCAA.
Thus computation-universality of a 4-neighbor RNCCA is concluded in spite of the strong constraints of
reversibility and the number-conserving property. WhenA simulatesP, a configurationα of P is kept by
τ̃(α) of A as shown in Fig. 2. But, there is no need to defineτ̃ as given in the equations (7) and (8). The
simulation works well if we use, e.g., the following̃τ ′, where each two-cell-block containinĝϕ(α(x))
andϕ̌(α(x)) is separated from the next block by(k−2) 0-state cells (k= 3,4, . . .).

τ̃ ′(α)(kx) = ϕ̂(α(x))

τ̃ ′(α)(kx+1) = ϕ̌(α(x))

τ̃ ′(α)(kx+ i) = 0 (i = 2,3, . . . ,k−1)

Furthermore, we can see that, even if the spacing between blocks (by 0-state cells) is non-uniform, the
simulation process goes correctly (though state transition timing of the cells are also non-uniform).

On the other hand, it is an open problem whether a stronger result holds, i.e., whether there is a
universal 3-neighbor (radius 1) RNCCA. It is also left for the future study to construct an intrinsically
universal RNCCA.
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