Confluence for classical logic through the distinction betwen
values and computations

José Espirito Santo Ralph Matthes
Centro de Matematica, Universidade do Minho, Portugal I.R.I.T. (C.N.R.S. and University of Toulouse lIl), France
j es@at h. uni nho. pt matthes@rit.fr
Koji Nakazawa Luis Pinto
Graduate School of Informatics, Kyoto University, Japan Centro de Matematica, Universidade do Minho, Portugal
knak@xui s. kyoto-u. ac. jp | ui s@rat h. unm nho. pt

We apply an idea originated in the theory of programming leggs—monadic meta-language with
a distinction between values and computations—in the desicga calculus of cut-elimination for
classical logic. The cut-elimination calculus we obtaimgoehends the call-by-name and call-by-
value fragments of Curien-Herbelinsu fi-calculus without losing confluence, and is based on a
distinction of “modes” in the proof expressions and “modehatations in types. Modes resem-
ble colors and polarities, but are quite different: we giveaming to them in terms of a monadic
meta-language where the distinction between values angu@tions is fully explored. This meta-
language is a refinement of the classical monadic languaygopsly introduced by the authors, and
is also developed in the paper.

1 Introduction

It is well-known that confluence fails for cut eliminationdtassical logic in the worst way: proof identity
is trivialized [8]. Computationally, this trivializatiois caused by the “superimposition” of call-by-name
(cbn) and call-by-value (cbv) in the proof reduction of siaal sequent calculusl[1,110].

Several solutions have been proposed to this problem (#.d3,[1,[16, 13/ 2]). Some solutions
consist in constraining the set of derivations (e.g., tlgpeat calculiLC [7] or LKT, LKQ [1]), others
constrain the reduction rules (e.g., the cbn and cbv fragsnef i [d]). A third kind relies on the
enrichment/refinement of the syntax of formulas, by meansotidrs or polarities[[3, 16, 13, 2]. We
propose a new solution of the latter kind: a confluent varidrihe system\ ufi [1] that comprehends
the cbn and cbv fragments @fufi, and that is based on a distinction of two “modes” in the proof
expressions and “mode” annotations in function spaces. spstem is called\ ufi with modesand
denotedA p fiyn.

In a self-contained explanation afufi,, one starts by splitting the set of variables in proof expres
sions into two disjoint sets, by singling out a set of “valwiables”. This allows a refinement of the
notions of value and co-value which immediately solves the/cbv dilemma. Howeven ufi,, has
many design decisions that may look peculiar at first siglot. ifstance, atomic formulas do not get a
mode annotation, while composite formulas do; and whilealées in proof expressions get a mode,
co-variables do not.

A full semantics for (the design of) ufi, is given in terms of a monadic meta-language of the
kind introduced by Moggi[12]. This meta-language, calleeldalculus of values and computatioasd
denotedvCpy, is also developed in the present paper. It is a refinemetieainionadic language previ-
ously introduced by the authofs [5], and as such combinesick logic with a monad. The refinement
is guided by the idea of extending in a coherent way to propfessions the distinction between value

© J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto
4 | .
This work is licensed under the
Creative Commoris Attribution License.

Paulo Oliva (Ed.): Classical Logic and Computation 201
EPTCS 164, 2014, pp. 63377, d0i:10.4204/EPTCS.164.5

http://dx.doi.org/10.4204/EPTCS.164.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

64 Confluence for classical logic through the distinction begw values and computation

Figure 1: Overview

Aufi A

-|T _ uT .

A fy VCup —= A[BY]
cbnAufi cbvApuji
Aufin A pft with modes VCuy calculus of values and computations
(-) monadic translation Aun monadicA u-calculus
|-| forgetful map (1)* instantiation to continuations monad

types and computation types (so that, for instance, a tgpalgression is a value iff it is typable with a
value type). In such a system we can interpret the distindigtween the two modes #fu[i,, in terms
of the distinction value/computation.

Confluence for typed expressions dfifi,, is obtained (through Newman’s lemma) from strong
normalization. The latter, in turn, is obtained by provihgtttwo translations produce strict simulation
by strongly normalizing targets: one is the map froi@py, to the simply-typed -calculus induced by
instantiating the monad &fCpy, to the continuations monad; the other is the monadic seogafitm
A Ui, to VCuy. As a side remark, we observe that the composition of the tarstations produces a
CPS translation o ufi,, which is therefore uniform for cbn and cbv, since the cbn amndfragments
of Aufi are included im ptfiy,.

Structure of the paper. Sectior[2 recalls the monadic meta-language, [5] and develops the cal-
culus of values and computatioN&< 11y. Sectior B recalld pfi and its main critical pair (the cbn/cbv
dilemma), and develops the proposed variank pfii with modes. Sectiof]4 concludes, and discusses
related and future work. See Fig. 1 for an overview.

2 Monadic meta-languages

We start this section by recalling tieuy,-calculus. Next we motivate and formally develop, as a sub-
calculus ofA Ly, a calculus of values and computations, den&t€ghy,. We continue with a comparison
between the two monadic languages, and spell out the imnistic fragment o/ Cpy. Finally, we study
the map fromVCpy, into the simply-typedi -calculus obtained by instantiating the monad/@iy, to

the continuations monad.

2.1 TheA uy-calculus

We recapitulate tha py-calculus that has been proposed by the present authors [5].

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 65

Figure 2: Typing rules and reduction rulesXfiy

Mx:A-t:B|A FrEt:ADBJA THU:A|A
o ACXCAA™ Traxt:AoB|a MO Frtu:B|A Elim
N=t:MA|a: MAA c:(F'Fa:MAAD)
a (FFa:MAL) 3 Trjac.Mala A%
NEs:A|A FEr:MAJA c: (Tx:AFD)
IFrets: MA|A bind(r,x.c) : (I - A)
(B) (Axt)s — [s/X]t (Nu) paat — t (aét)
(o) bind(rets,x.c) — [s/X|c (Nbing) bind(t,x.a(retx)) — at
(m) Llpac — [L/ac

Expressiond are values, terms, and commands that are defined by the i‘n@cyvammaﬁl:
Vi=x|Axt r,st,us=V|tu| yac]rett c:=at| bind(t,x.c).

Variable occurrences ofin t of Ax.t andc of bind(t,x.c), anda in ¢ of pa.c are bound. We introduce
base contextk as commands with a “hole” for a term of the following two forna$| andbind([], x.c).
For a termt, L[t] is defined as “hole-filling”. Term substitutiojs/x|T is defined in the obvious way
as forAufi. Furthermore, structural substitutiofls/a]T are defined by recursively replacing every
subexpressiorau of T, by L[u] (this may need renaming of bound variables). It correspaad$ie
substitution of co-variables ih 1.

Types are given byA,B ::= X | AD B| MA. Thus, besides the type variables and implication of
Aufi, we have a unary operatidv on types. Types of the fortMA are callednonadic typesSequents
are written asT Ft: A|Aandc: (I - A). In both cases is a consistent set of declaratioas MA,
hence with monadic types. Typing rules and reduction ruteggaven in Fig[2. Notice that the rule
uses the derived syntactic class of base contexts and efahera scheme that stands for the following
two rules

(Thind) bind(pa.c,x.c’) — [bind([],x.c")/a]c
(TCovar) b(ua.c) — [b/alc.

It is easy to see thaltuy, satisfies subject reduction, for strong normalization segeevious papef [5].

2.2 Towards a calculus of values and computations

We identify a sub-language dfuy, calledVCpy, the calculus of values and computations. The cal-
culus can be motivated as a sharp implementation of theipléscat the basis of Moggi's semantics of
programming language's [12].

According to Moggi, each programming language tyggves rise to the typeA (of “values of type
A") and MA (of “computations of type\”). In addition, a program of typa& — A’ corresponds to an
expression of typé D MA'. In this rationale: (i) attention is paid only to a part of thuection space,
and (i) there is no role to typed (MA), written M?A in the sequel.VCpy implements (i), extracting

1In the notation of our previous papéf [Btt is written nt, and in the notation of Mogg[[12hind(t,x.c) andrett are
written letx = tinc and]t], respectively.

66 Confluence for classical logic through the distinction begw values and computation

Figure 3: Expressions and types\tt Ly

(value vars v,w, f (valuetype$ B 1= X|ADC
(comp. var$ n,p,q (comp.typeg C = MB
(variableg x)y,z = v|p (types A == B|C
(values VW = v|AxP
(computationy P,Q = p]|retV |Vu|puac
(terms tbu == VI|P
(command$ c == aP|let(Pvc)|{P/p}c

the full consequences at the level of expressions; (ii)resaaly realized in any monadic language, since
each expression of tyg@?A may be coerced to one of tydpéA by monad multiplication, but/Cpiy
goes farther by removinil?A from the syntax of types.

VCuy is thus obtained from L, after three steps of simplification as follows.

Firstly, we restrict implications to the for’A > MA'. This is already done, for instance, in the
presentation of the monadic meta-language by Hatcliff aadv [9]; however, we do the restriction in
a formal way, by separating a class of tyges= MA. If B denotes a non-monadic type, then types are
given byA::= B| C, with B::= X | AD C. Following op. cit, we call typesB (resp.C) “value types”
(resp. “computation types”).

Secondly, we pay attention to expressions. We now have tvamimgs for the word “value”: either
as a term with value type, or the “traditional” one of beingaaiable orA -abstraction. So far, a term has
value type only if it is a “traditional value”. On the otherrith the separation into value and computation
types splits the term-formers info-abstraction (with value type) ameltt, tu andpa.c (with computation
type). The full split of terms into two categoriesmlues Vandcomputations Pis obtained by separating
two sets of term variablesalue variables \andcomputation variables ,pwith the intention of having
awell-modedtyping system, that is, one that assigns to the variablesstygth the right “mode” (value
or computation). This achieves coherence for the two mearoh “value”: a term has a value type iff it
is a traditional value (that is,\@aluevariable orA-abstraction). It follows that a term has a computation
type iff it is a computation. At this point, we are sure notasé any typable terms, if we restrictand
AxttoVuandAx.P, respectively.

Thirdly, we restrict computation types (hence the type efadables) taViB, thus forbiddingM?2A,
and forcingretV instead ofrett.

The formal presentation &fCpy, follows.

2.3 The calculusVCpy

Expressions. The variables of\ L, are divided into two disjoint name spaces, and denotexlibgny
of them is meant. Co-variables are ranged oveafy, as forA ufi andA . Expressions are given by
the grammar in Fid.]3.

Types. The motivation for these syntactic distinctions comes fthmtypes that should be assigned.
The type system of uy is also restricted and divided into two classes, see aggif@Fin particular, as
explained before, there is no type of the fokMiMA) in VCpiy.

The idea of the distinction into values and computationfas values receive value types and com-

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 67

Figure 4: Typing rules of/CLi

rviBrv:Ba™ T.pcrpc|a™e

Mx:AFP:ClA FrEV:ADC|A THuU:AA
FEAxP:ASC|A Nt FEVu:ClA Elim
rpP:Cla:CA c:(l'a:C,Ap)
aP:(FTFa:CA) &° Trpac:C|a
rEvV:B|A rEP:MB|A c:(M,v:BFA)
[retV :MB|A let(P,v.c): (T FA)

FrEP:C|A c:(M,p:CHA)
{P/p}c: (T AQ)

putations receive computation types in a context whereevahriables are assigned value types and
computation variables are assigned computation typesh Samttexts will be calledvell-moded It is
remarkable that the distinction can be done on the levelokgantax (and that it will be preserved under
the reduction rules to be presented below). The new syn&amesit{P/p}c representbind(ret P, p.c)

in A tp. This means that no argumerto bind(t, p.c) other than of the fornret P is considered, but this

is not seen as composed obad and aret operation but atomic iVCpuy,. The expressiomet P does
not even belong t&Cuy. See Sectioh 214 for more on the connection with,.

Typing rules are inherited fromh iy, with their full presentation in Fig.J4. Here, every contéxt
in the judgements isvell-modedin the sense given above. As fdpy,, the contextd) consist only of
bindings of the forma: MA, which, forVCuy, even requires : MB, hencea: C. Thus, more precisely,
co-variables might be called “computation co-variables”.

Clearly, the above-mentioned intuition can be made preniseat - P : A | A implies thatA is a
computation type and thatkV : A| A implies thatA is a value type. This can be read off immediately
from Fig.[4.

Well-modedsubstitutions|u/x]t and [u/X]c, i.e., with x and u either value variable and value or
computation variable and computation, are inherited fiqugy. Well-moded substitutiofu/x]t respects
modes in thafu/x]V is a value andu/x|P is a computation. Likewiséu/x|c is a command. As A Ly,
we use derived syntactic classes of contexts as follows:

(base contexts L == a[]]let([],v.c) (cbn contexts N == LI|{[]/p}c.

The resultN[P] of filling the hole ofN by a computatior® is inherited fromA iy, and also the notion of
structural substitutiofN/ajt, [N/aJc and[C/a]N" and, finally, the definition of well-moded substitution
[u/X]N in cbn contexts that yields cbn contexts.

Reduction rules of VCpuy are given in Fig[h, where co-variabkeis assumed to be fresh in both
B rules. The first thing to check is that the left-hand sideshefrules are well-formed expressions of
VCuy and that the respective right-hand sides belong to the sgmiactic categories. The second step
consists in verifying subject reduction: this is immeditiethe rules other thaf since they are just
restrictions of reduction rules dfuy, and it is fairly easy to see that the right-hand sides of3males
receive the same type &s

The rulesp and o are analogous to the respective rules\gifi (see further down in Sectidn 3.1),
where any execution of term substitution in the reductidiesis delegated to an application of rule

68 Confluence for classical logic through the distinction begw values and computation

Figure 5: Reduction rules &fCpiy

(B) (AVP)V — ublet(retV,v.bP)
(AaP)Q — ub{Q/q}(bP)
(o) let(retV,v.c) — [V/v|C
{P/plc — [P/plc
(m) Lluacg — [L/dc
(Nu) paaP — P (a¢P)
(Met) let(Pv.a(retv)) — aP

o and where therefore th@-reduction rule ofA uji has a right-hand side that is never a normal term.
They are “lazy” since they delay term substitution, but, bgting together3, o andn,, we obtain the
following derivedeager3 rules:

(Be) (AV.P)V — [V/VIP (A0.P)Q — [Q/q]P.
For the first rule, the derivation is
(AV.P)V — g pblet(retV,v.bP) — 4 ub.[V /V](bP) = pub.b()V /V|P) —p, [V /V|P.
For the second rule, it is analogous. According to the forr, dhe r-rule splits again intotg,,, and
(Thet) let(pa.c,v.c’) — Jlet([],v.c')/alc.

The calculus/CpLy, is confluent. There are five critical pairs, each of them spoading to a critical
pair of A uy. A confluence proof can be given using an abstract rewritiegrtem [[4] forB, o and T
and strong commutation with thg-rules.

2.4 Bind, let, and substitution

In this section we formally relatéCri, with A Ly, explaining the decompositions and refinements that
the former brings relatively to the latter.
As said,VCLy, is obtained fromA Ly by a three-fold restriction. In the first step, function spmare
restricted to the formd O MA. This already brings a novelty: tifierule of A uyy can be decomposed into
a new, finer-graine@-rule
(Axt)u — pa.bind(retu,x.at) 1)

pluso, ny. Notice that inA uy (@) would break subject reduction, becatiseould not be forced to have
a monadic typé.

Let us callrestrictedA uy this variant ofA Ly, with the restriction on function spaces and the variant
(@) of the B-rule. ThenVCuy, is clearly a subsystem of restrictédduy,. Formally there is a forgetful
map| - | from the former to the latter that: (i) at the level of typesrgiets the distinction between value
types and computation types; (ii) at the level of expressidorgets the distinction between values and
computations, and blurs the distinction betwésrand substitution:

|let(P,v.c)| = bind(|P|,V.|c]) [{P/p}c| = bind(ret |P|, p.|c|).

20ne can marvel how ifil1) the constructors related to the tyjrethe |.h.s. of the rule are converted into an expression in
the r.h.s. using all of the constructors related to clasicgc and the monad.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 69

Figure 6: Reduction rules for the intuitionistic subsysteiVvC Ly

(B) (AVP)V — let(retV,v.P)
(AqP)Q — {Q/qiP
(0) let(retV,v.Q) — [V/V|Q
{P/d}Q — [P/dQ
(Thet) let(let(P,v.Q),w.Q) — let(Pv.(Q;w.Q))
let({P/p}Qw.Q) — {P/p}(Qw.Q')
(Niet) let(P,v.retv) — P
where
(let(Pv.Q));wQ = let(Pv.(QwQ’))

({P/p}Q;wQ = {P/p}(QwQ)
QwQ = let(QwQ), otherwise

What is the difference betwedst and substitution? This is perhaps clearer in the intuisoi
subsystem of/Cpy, which we now spell out.

We follow the same steps as in our previous papker [5], wherénttuitionistic subsystem of iy,
(essentially Moggi’s monadic meta-languagel [12]) wasioketh First we adopt a single co-variable
say, which is never free in values or computations, and wihésha single free occurrence in commands.
The constructiong = .c and P are like coercions between the syntactic classes of cortiugaand
commands, coercions which in the next step we decide notite,wausing the mutual inclusion of the
two classes, and the collapsemf, .. and of one of the cases af.;. The final step is to merge the two
syntactic classes into a single class of computations.

The resulting intuitionistic subsystem ¥t Ly, has the following syntax:

V,W = Vv|Ax.P PQ = p|retV |Vu|let(PVv.Q) | {P/p}Q.

Again,t,u ::=V | Pandx,y ::= v| p. The reduction rules are found in Fig. 6.

Back to the difference betwedet and substitution: the rule for let only substitutes values, while
the o rule for substitution substitutes any computatitan;enjoysr-rules, which are assoc-like rules for
sequencing the computation, and r#rule, while substitution does not. These distinct behavere
amalgamated in thigind of A L.

2.5 Continuations-monad instantiation

The monad operatiol can be instantiated to be double negation yielding the lwedlwn continuations
monad. We define an instantiation that is capable of embgddiyuy, into A[BY], the latter denoting
simply-typedA -calculus with the only reduction rulB": (Axt)V — [V /Xt for valuesV, i.e.,V is a
variable orA -abstraction.

For our purposes, the main role of the continuations-monathintiation is to provide a strict sim-
ulation, through which strong normalization is inheritednfi A [3"]. We also avoid)-reduction in the
target, so the instantiation makes use of quite sgrexpansions

M= AXtX,

70 Confluence for classical logic through the distinction begw values and computation

Figure 7: Continuations-monad instantiation

=V (retV)® = (retV)*
(AXP)" = Ax.P* P retV: P* = Ak.P*(1K)
pr=p (aP)* = P*(ta)
(retV)* = DNeg(V*) (let(P,v.c))* = P*(Av.c*)
(na.c)* =Aac* ({P/p}c)* = (Ap.c®)P*

(Vu)* = Ak.DNeg(u®) (Aw.V*w(1k))
Figure 8: Admissible typing rules for continuations-mornastantiation

r-P:AlA M-t:AlA c: (-4
MATFP AT A Ft:AT ToA FC L

with x ¢ t. Clearly, this can only be done with terms that will be typgdsbme implication latervVCpiy
is rather handy as source of such mapping, because of iitsatish between value variables that cannot
be n-expanded and computation variables thattdhhe details are as follows.

We define a typé\® of simply-typedA -calculus for every typd of VCuy (—A is abbreviation for
A D | for some fixed type variableé that will never be instantiated and hence qualifies as a tgpe ¢
stant):

X=X (ADC)*=A"D>C* (MB)®* = ——B".

Expressiong of VCLy, are translated into tern¥s® of A -calculus, where an auxiliary definition of terms
P* for computations® of VCpy, is used. The idea is th&" usesn-expansions more sparingly than.
The definition is in Fig[]7, where we use an abbreviaiiteg(t) = Ak.kt with a fresh variable (the
type of DNeg(t) is the double negation of the type of its argument), and werasshat the co-variables
a of VCuy, are variables of the targét-calculus (as we did in previous work on the continuations-
monad instantiation ol uy [B, Section 5.1]). Obviouslyt® and P* are always values of-calculus,
i. e., variables oA -abstractionsP* is even always @ -abstraction. (In the whole development, we will
never use thalP* is a value.) We define the type operatioh®™ by (MB)*™ := —-B®, which extends to
co-contexts) by elementwise application. We can easily check that tresnnl Fig[8 are admissible. In
general, ifP gets typeA, thenA is of the formMB, henceA®* = ——B®. If we then already know thd®*
gets typeA®, alsoP® gets that same type.
Theorem 1(Strict simulation) If T — T’ in VCuy, then T —>Ev T*in A[BY].
Corollary 2. VCpy is strongly normalizable and confluent on typable expressio

Proof. Strong normalization is inherited from["] through strict simulation. Confluence follows from
strong normalizability and local confluence. O

3 Classical logic

In this section we start by recalling theu fi-calculus, its main critical pair, and its cbn and cbv fragtse
Next we motivate and develop a variant dfii with “modes”, denoted\ ufi,,. Finally, a monadic

30ne can define continuations-monad instantiationa pg that avoidn-reduction on the target, but not uniformly on cbn
and cbv[[5]. See Sectidn 4 for further discussion.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 71

Figure 9: Typing rules and reduction rulesXyf i
Mx:AEt:B|A c:(Ma:AAd)
MX:AEX:A|A MrEAxt:ADB|A M-pac:AlA
FFu:A|lA T|e:BEA c:(Mx:AFAD)

Ma:Ara:AA MNMu:e:ADBFA M| pgxc:AFA
FHt:A[A T|e:AFA
(tle) : (F'=A4)
(B) (Axtlu:e) — (u|px.(t|e)) (ng) px.(xe) — e ifx¢e
(m) (ua.cley — [e/alc (nu) Ma(tlay — t ifad¢t
(0) (tixc) — [t/xe

translation ofA i i, into VCpy gives to the source system a semantics parameterized by adrenmd
a proof of confluence, through strong normalization, forttiped expressions.

3.1 TheApujfi-calculus
We recapitulate\ ufi. Expressions are defined by the following grammar.

(values V i=x|Axt (co-value3 E:=alu:e (commands c:= (t|e)
(termg t,ux=V|pac (co-termg e:x=E|[ixc

Expressions are ranged over By T’. Variables (resp. co-variables) are ranged ovewvbw, X, Y, z
(resp.a, b). We assume a countably infinite supply of them and denote&them by using decorations
of the base symbols. Variable occurrences<ah Ax.t and fix.c, anda in pa.c are bound, and an
expression is identified with another one if the only diffeve between them is names of bound variables.
Types are given b\, B ::= X | A D B with type variablesX. There is one kind of sequent per proper
syntactic clas§ -t : A| Afor terms,I" | e: AF A for co-terms, and : (I - A) for commands, wherE
ranges over consistent sets of variable declarattosandA ranges over consistent sets of co-variable
declarationsa : A. Typing rules and reduction rules are given in Fig. 9, wheeerause the nampg
of A-calculus (rule names are considered relative to some tgsters), and the substitutioris/a] and
[t/x] in expressions respecting the syntactic categories areedeéis usual. These are the reductions
considered by PolonovsKi [14]; however, tBeaule for the subtraction connective is not included.
Following Curien and Herbeliri [1], we consider cbn and ctagmentsA ufi" andA ufi¥, respec-
tively, where the critical pair rooted ifua.c|fix.c’) between the rules andris avoided. IMA ufi", we
restrict therrrule to 7", and dually inA pf1¥, we restrict theo rule too” as follows.

() (pacE) — [E/alc (0%) (Vlixe) — V/xc

In both fragments, the only critical pairs are trivial onagalving ni andny, henceA ufi" and A ufi¥
are confluent since weakly orthogonal higher-order remgitsystems are confluent as proved by van
Oostrom and van Raamsdonk [15].

72 Confluence for classical logic through the distinction begw values and computation

Figure 10: Expressions ofu fiyn

(value vars v,w, f (comp. var$ n,p,q
(variableg x,y,z:=v|p (command$ c::= (t|e)
(values V,W:=v|Axt (co-values E:=a|fivc|u:ye
(termg t,u:z=V|n|puac (co-termg e:=E|finc

3.2 Towards a variant of A u i with “modes”

Suppose we single out i i a class of variables amlue variablesranged over by. Letn (resp.x)
range over the non-value variables (resp. both kinds ofalbes). Variables are calledcomputa-
tion variables but the terminology value/computation, like many decisiave will make, will get a
full justification only through the monadic semantics in@uy, given below. We call the distinction
value/computation enodedistinction.

What syntactic consequences come from introducing a mati@ction in variables? Quite some.

Since the bound variable inf-abstraction is like a mode annotation, also e should come in two
annotated versions, one for each mode. The same is true tffeé D B. Since the variabla is not
a value variable, it should not count as a value. On the othedhboth versions af :: e are co-values,
but what aboufix.c? In a kind of dual movement, sinceleft the class of valuegjv.c enters the class
of co-values (so the only co-term that is not a co-valugns).

Reuvisiting the critical paifua.c|fix.c’), it is quite natural that the mode &fresolves the dilemma!
In particular, the case = v gives ar-redex, and it follows that we only needredexes where the right
component of the command is a co-value. On the other handiatbex = n gives ac-redex. In fact
all commands of the fornt|fin.c’) are o-redexes, but they do not cover yet another fornoafedex:
(V|fiv.c'). Do not forget the latter does not couet fiv.c’)—this command is not a redex.

3.3 At with modes

We now give the formal development djufi with modes, denoted u fi,.

The expressionof A ufi,, are inductively defined in Fif_10. The names for value véggbcompu-
tation variables and both kinds of variables are thosé(iy,. Variablex gets a second role for denoting
modes x € {v,n}. This allows to writeu ::;x e and use variable in rules governingu ::y e andu ::, e
uniformly. Note that this is rather a presentational devibere are only two modes, and they go by the
namesv andn. Then,x in its second role is used to denote any of these two modegs fiist role,x
stands for one of the countably many value variables, tyipiceenoted byv, or one of the countably
many computation variables, typically denotedryn using the nams for both a variable and a mode,
rules can be written more succinctly because rule schenmapreging two rules get the appearance of
one single rule.

The separation between value and computation variablessith mode distinction in the proof ex-
pressions of ufi,.: values have value mode, terms have computation mode. Thisarully justified
by the monadic semantics intC 1 below, as values (resp. terms) will be mapped to values.(ocesp-
putations) of the latter calculus. Beware that neither tlelenannotation in ::x e nor the mode of
the bound variable in a-abstraction determines the mode of the expression. licpkt, contrary to
the case oVCpuy, there is no need for a well-modedness constraint in the itlefirof substitution.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 73

Figure 11: Typing rules ok ufi,, for the implications

Mx:A-t:B|A NFu:A|A T|e:BFA
R- Dx

L_
FEAXt:ADyB|A Muixe:ADxBFA 2x

Figure 12: Reduction rules afu iy,

(Axtluixe) — (u|px.(t|e))

fixc) — [t/X]c with:if x=vthent=V
(m (uacle) — [E/alc
(Nax) px.(xje) — e if x¢ eand: ifx=vthene=E
(Nu) pa.tla)y — t,ifa¢t

For instance, there is nothing wrong with the operatidn.t/v|T. A A-abstraction has value mode,
independently of the mode of the bound variable.

Typesare formed from type variables by two implications:A D, B andA D, B. Generically, we
may write both implications a& Dy B.

Although implications carry a mode annotation, we refraiont classifying them (let alone atomic
types) with a mode. As it will become clear from the monadimaatics to be introduced below, we
cannot determine from a type afufi,» alone whether its semantics is a value or computation type; i
fact, every typeA of A ufi,, will determine a value typ&' and a computation typ&. In particular,
A Dy B determines both a value type and a computation type, forinotte annotations—even though,
of course, the annotationguides what those types are. Hence, contrary to what happ&fGuy,, we
cannot expect ii 1 fi,, that a syntactic category is attached to a particular typeéanoecause iA 1 iy,
there is no such thing as type modes. This is why the sequentsifi,, have the same forms as in
Aufi and carrynowell-modedness constraint. So, declarationsViké >, B orn: A >, B are perfectly
normal.

The only typing rules of\ ufi,, that differ fromA ufi are given in FigCIlL. Each of the two rules in
that figure stands for two rules that are uniformly writtertha € {v,n}.

The reduction rulesof A ufi,, given in Fig[I2 are copies of thosedfi {1, with amoding constraint
in the B rule and provisos in the rules, andng,. The ruleris restricted to co-values in the spirit of
rule " of Aufi". Note thata, reduction(ua.c’|fin.c) — [ua.c’/nc, and 1T reduction(pa.c|fiv.c’) —
[fiv.c /a]c are both allowed iR i fi,,. In the rulen; « with x = v, the co-terneis restricted to a co-value.
If we drop the condition, the co-valyev.(v|fin.c) is reduced tgin.c which is not a co-value.

The non-confluent critical pair of ufi is avoided here for both modes

mronly forx=v oxonly forx=n
- B

[fix.c'/alc (pa.c|fix.c/) [na.c/xc

Thus, the reduction rules are weak enough to avoid the “dilaimof Aufi. On the other hand, the

reduction rules may seem too lveak sinc_e commaifydlv.c) is not a redex and not excluded by typing.
There is a forgetful map | : A ufi,, — A uft. It forgets the distinctions between: value variables and

computation variables; the reduction rufgsandf3,, and similarly for the reduction rules andn; the

type constructors, andDp; the typing rulesR-o, andR-Dj, andL-D, andL-D,.

74 Confluence for classical logic through the distinction begw values and computation

Figure 13: Monadic translation &fu iy,

V = retV! Vi = v
n =n ()\x.t)T = Axi
fac = pac
a = af (te) = eff]
pvec = let([],v.C) pnc = {[]/n}c
uve = let([], f.let(o,we[fw])) une = let([],f.{u/q}e[fq))

3.4 Call-by-name and call-by-value

Both the cbn and the cbv fragmenitsi fi" andA ufi¥ of A ufi can be embedded infou i, variables are
mapped into computation variables and value variablesAand is mapped tA D, B, and toA Dy B,
respectively. Likewiseu :: e is mapped tai ::, e andu ::y €, respectively. Through these embeddings
Aufl,, becomes a conservative extension: on the images of thdatians no new reductions arise
w.r. t. the source calculi. Besides the two fragmenisi,, allows additionally interaction between the
cbv and cbn evaluation orders, without losing (as we wil) $ke confluence property enjoyed By i1
andA ufi™, but not by fullA ufi.

We have seen that¥ and " are adopted as two possible solutions to the critical adt.c|ix.c).
But now we can see how drastic these solutions are. We seeirthapfi,,, the commandt|fin.c)
is always okay as a@-redex (it never overlaps), but, in A ufi, that command is not considered as a
oV-redex whert is not a value. Likewise, i [i, the commandpa.c|fiv.c’) is okay as ar-redex (it
never overlap®), but, inA ufi, that command does not count ag"aredex.

3.5 Monadic translation

We now introduce a monadic translation of the system withesddtoVCpy. Since the system with
modes embeds bothufi¥ andA ufi", the translation is uniform for cbn and cbv.

Using the abbreviatio = MAT, we recursively define the value typé of VCuy for each typeA
of A ufi,» (and simultaneously obtain thAtis a computation type):

xt=x (A>yB)'=A">B (A>,B)=ADB.

For one bindingx : A in a term context” of A ufi,n, we define one bindingx:A)T in a term context
of VCuy as follows (one of the two type operato(rsfr or (.) is chosen, this is not a composition of

operations):(v:A)T :=v:Aland(n: A)T :=n:A. For an entire term context, the operation is then
done elementwise) is naturally defined by replacing every typen A by A.

The monadic translation of ufi,, associates computatiofisvith termst, valuesv T with valuesV,
cbn contextse with co-termse (which are even base contexts for co-valggsind commandg with
commands, and is given in Fid._I3. Its crucial admissible typing rudes found in Figl_14.

Observe how, through the monadic translation, the difieesrbetweeniv.c andfin.c, and between
u:yeandu::, e boil down to the difference betwedst and substitution itVCpiy.

Theorem 3(Strict simulation) 1. If T — T’ in A tfin, thenT —F T7 in VCuy, where T, T are either
two terms or two commands.
2. Ife— € in Aufl,,, thene[P] —* €[P] in VCuy for any computation P ivCpy.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 75

Figure 14: Admissible typing rules for monadic translatafm iy,
FrEt:AlA FrEV:A|A c:(F'=4) re:AFA
TFi:A|D TEVEATA o (D) dp: (T, p:AFD)

As a consequenca, i, is the promised confluent calculus of cut-elimination.

Corollary 4. A ufi, is strongly normalizable and confluent on typable expressio

Proof. Strong normalization is inherited froMCpuy, (Corollary[2) through strict simulation. Confluence
follows from strong normalizability and local confluencehelcornerstone of local confluencelip fiy,
is the absence of overlap betweemndrt, as explained before. O

Through composition with the continuations-monad insgian (-)* : VCuy — A [BY], the monadic
semanticg-) : A ufi,, — VCpy is instantiated to a CPS semant(S)) : Aufin — A[BY].

Theorem 5 (CPS translation) If T — T’ in A ufi,,, then (T]) — ([')y in simply-typedA -calculus,
where T, T are either two terms or two commands.

Proof. By putting together Thni.]1 and Thid. 3. O

So we are using the methodology of Hatcliff and Darivy [9] totkgsize a new CPS translation,
as done in[[6]. The obtained CPS translation is easily predubut its explicit typing behaviour and
recursive structure is rather complex (no space for dgt&iliven that the monadic translation is uniform
for cbn and chv, so is the CPS translation. Given that the dliorteanslation and the continuations-
monad instantiation produce strict simulations, the CBSslation embedk 1 fi,,, into the simply-typed
A-calculus.

4 Final remarks

Recovering confluence in classical logid.et us return to Fid.]1 and ignore the monad instantiation. In
this paper twaconfluentsystems are proposed where the cbn and cbv fragments ifembed: A i
with modes andvCpuy,. As usual (recall linear and polarized logi¢s [3) 16]), coefice is regained
through refinement/decoration of the logical connectiveslassical logic. In the case ofufi with
modes, the “amalgamation” of cbn and cbv is obtained thrangte distinctions and annotations; in the
case ofVCpLyy, the distinction between value and computation expressiod types is done on top of an
already refined systend (i), where classical logic is enriched with a monad. The fduj@bap from

A ufi with modes to fullk ufi forgets about modes with loss of confluerice [1], whereasatyetful map
from VCpy to A uy blurs the distinction value/computation without loss ofiftoence[5].

The many ways out of the /r-dilemma illustrate the general theme of the missing infation in
classical cut-elimination. In the systdni'd of [3], the extra information that drives the cut-elimireati
procedure is the “color” of the cut formula. hufi the syntax of formulas is not enriched, so the two
ways out of the dilemma make use of other means of expresaibetifer the ternt in (t|fix.c) (resp.
co-termein (ua.cle)) is a value (resp. a co-value)). Mufi,, the extra information is simply provided
by the mode of a variable.

76 Confluence for classical logic through the distinction begw values and computation

Figure 15: Cbx pictures froni [5]

cbx cbn or cbv
Aum monadicA p-calculus
(.), cbx monadic translation
instantiation to continuations monad
cbx CPS translation
optimized cbx inst. to conts. monad
optimized cbx CPS translation

A

—
_ T~

[-4

cbx A u

==
xX OX

[—1
x

Although we tried to give a self-contained presentation affl,, with a later justification through

the monadic semantics, the semantics appeared before riteecsyirst we designe¥/Cry, and then

e “pulled back” to the syntax of ufi an abstraction of the design ¥Cuy. The resulting system
is striking for many reasons. By amazingly simple meansfl,, resolves the cbn/cbv dilemma while
still comprehending the cbn and cbv fragments. Polarizetesys achieve the same kind of goals, but
by rather more elaborate means: co-existence of positidenagative fragments, mediated by “shift”
operations (see [16], or the long version [of][13], availdibten the author's web page). On the other
hand, the absence of type modes makgsi,, rather less structured than colored or polarized systems.
As a conclusion) ufi,, proves that one does not need a very elaborate proof-tiwrahalysis in order
to “fix” classical logic.

We now comment on two subjects to which we made lateral dartans.

Calculi of values and computations. In the literature there are othattuitionistic calculi of val-
ues and computations, for instance Filinski's multi-mdoadeta-language (M3L) [6] and Levy’s call-
by-push-value (CBPV) [11]. These are very rich languagdsose typing systems include products
and sums; in addition, M3L lets monads be indexed by diffietefiects” and allows “sub-effecting”,
whereas CBPV decomposes the monad into two type operdtiossd F. Notwithstanding this, the
main difference of these languages from the intuitionistiquy, is that function spaces are computation
types, and thereforg-abstractions are computations. This classification hanatdtional justification:
in M3L and CBPV a computation type is a type that denotés-algebra (for7 some semantic monad);
it follows that A O C is a computation type, for i€ denotes one such algebra, so dées C. On the
other hand, our classification of types into value types amdputation types follows the suggestion by
Hatcliff and Danvy [9], and results in a system where “valuggerms that receive a value type) are
simultaneously values (=fully evaluated expressionshénttaditional sense of operational semantics.

Generic account of CPS translations.The idea of factoring CPS translations into a monadic trans-
lation and a “generic” instantiation to the continuationenad is due to Hatcliff and Danvy1[9]. The
extension of this idea to CPS translation of classical sosistems is found in the authors’ previous
work [5], where the system iy was introduced. The results froop. cit. are illustrated in Fig_15,
which in fact contains two pictures, one for each of the chuh @ fragments oA pfi. Each fragment
required its own monadic translation and optimized inséioh in order to achieve strict simulation by
B in the A -calculus.

As a by-product of the present paper, we obtain an improveimehne generic account of CPS trans-
lations from classical source systems. Relatively to tisalts in our paper |5] one sees the following
improvements: (i) A single monadic translation treats amifly cbn and cbv; its source grew and its tar-
get shrunk, relatively to the monadic translations for thie and cbv fragments[5]. (ii) The instantiation
with continuations monad works for both cbn and cbv withcedidated optimizations.

J. Espirito Santo, R. Matthes, K. Nakazawa, and L. Pinto 77

Acknowledgments. We thank our anonymous referees for their helpful commelatse Espirito Santo

and Luis Pinto have been financed by the Research CentretbEMatics of the University of Minho

with the Portuguese Funds from the "Fundacao para a Giém@ Tecnologia”, through the Project
PEStOE/MAT/UI0013/2014.

References

[1] P.-L. Curien & H. Herbelin (2000): The duality of computatian In M. Odersky &
P. Wadler, editors: ICFP '00 SIGPLAN Notices 35, ACM, pp. 233-243. Available at
http://doi.acmorg/10. 1145/ 351240. 351262.

[2] P.-L. Curien & G. Munch-Maccagnoni (2010 he Duality of Computation under Focus C.S. Calude &
V. Sassone, editorg:CS 2010IFIP Advances in Information and Communication Technol82$, Springer,
pp. 165-181. Available &t t p: // dx. doi . or g/ 10. 1007/ 978- 3- 642- 15240-5 13

[3] V. Danos, J.-B. Joinet & H. Schellinx (19975 New Deconstructive Logic: Linear LogicJ. Symb. Log.
62(3), pp. 755-807. Available jat t p: // dx. doi . or g/ 10. 2307/ 2275572,

[4] P. Dehornoy & V. van Oostrom (2008, Proving Confluence by Monotonic Single-Step UpperbowmatF
tions In: Logical Models of Reasoning and Computation (LMRC-08)

[5] J. Espirito Santo, R. Matthes, K. Nakazawa & L. Pinto X130 Monadic translation of classical se-
qguent calculi Mathematical Structures in Computer Scier#6), pp. 1111-1162. Available at
http://dx.doi.org/10. 1017/ 50960129512000436.

[6] A. Filinski (2007): On the relations between monadic semanti€geor. Comput. Scienc&7r5, pp. 41-75.
Available atht t p: // dx. doi . org/ 10. 1016/ .t cs. 2006. 12. 027.

[7] J-Y. Girard (1991):A new constructive logic: classic logidVlathematical Structures in Computer Science
1(3), pp. 255-296. Available &ttt p: / / dx. doi . or g/ 10. 1017/ S0960129500001328.

[8] J-Y. Girard, Y. Lafont & P. Taylor (1989)Proofs and TypesCambridge University Press.

[9] J. Hatcliff & O. Danvy (1994): A generic account of continuation-passing styles In H.-
J. Boehm, B. Lang & D.M. Yellin, editors: POPL'94 ACM, pp. 458-471. Available at
http://doi.acmorg/10.1145/174675. 178053

[10] H. Herbelin (2005)C’est maintenant qu’on calculddabilitation Thesis.

[11] P. Levy (2006): Call-by-push-value: decomposing call-by-value and &si-
name Higher Order and Symbolic Computatiol9(4), pp. 377-414. Available at
http://dx.doi.org/10.1007/s10990- 006- 0480- 6.

[12] E. Moggi (1991): Notions of Computation and Monadsinf. Comput.93(1), pp. 55-92. Available at
http://dx.doi.org/10.1016/0890- 5401(91) 90052- 4,

[13] G. Munch-Maccagnoni (2009): Focalisation and Classical Realisability In E. Gradel
& R. Kahle, editors: CSL 2009 LNCS 5771, Springer, pp. 409-423. Available at
http://dx.doi.org/10.1007/978- 3- 642- 04027- 6_30.

[14] E. Polonovski (2004): Strong normalization of Aufi with explicit substitutions In
I. Walukiewicz, editor: FoSSaCS 20Q4 LNCS 2987, Springer, pp. 423-437. Available at
http://dx.doi.org/10.1007/978- 3- 540- 24727- 2_30.

[15] V. van Oostrom & F. van Raamsdonk (1994)eak orthogonality implies confluence: the higher-order
case In A. Nerode & Y. Matiyasevich, editord:FCS '94, LNCS 813, Springer, pp. 379—-392. Available at
http://dx.doi.org/10.1007/3-540-58140-5 35

[16] N. Zeilberger (2008):0n the unity of duality Ann. Pure App. Logicl53(1-3), pp. 66-96. Available at
http://dx.doi.org/10. 1016/ .apal .2008. 01. 001

http://doi.acm.org/10.1145/351240.351262
http://dx.doi.org/10.1007/978-3-642-15240-5_13
http://dx.doi.org/10.2307/2275572
http://dx.doi.org/10.1017/S0960129512000436
http://dx.doi.org/10.1016/j.tcs.2006.12.027
http://dx.doi.org/10.1017/S0960129500001328
http://doi.acm.org/10.1145/174675.178053
http://dx.doi.org/10.1007/s10990-006-0480-6
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1007/978-3-642-04027-6_30
http://dx.doi.org/10.1007/978-3-540-24727-2_30
http://dx.doi.org/10.1007/3-540-58140-5_35
http://dx.doi.org/10.1016/j.apal.2008.01.001

	1 Introduction
	2 Monadic meta-languages
	2.1 The M-calculus
	2.2 Towards a calculus of values and computations
	2.3 The calculus VCM
	2.4 Bind, let, and substitution
	2.5 Continuations-monad instantiation

	3 Classical logic
	3.1 The -calculus
	3.2 Towards a variant of with ``modes''
	3.3 with modes
	3.4 Call-by-name and call-by-value
	3.5 Monadic translation

	4 Final remarks

