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We present an implementation in the Coq proof assistantpef tirected partial evaluation (TDPE)
algorithms for call-by-name and call-by-value versionsluft and reset delimited control operators,
and in presence of strong sum types. We prove that the digotiansforms well-typed programs
to ones in normal form. These normal forms can not always beedrat using the so far known
equational theories. The typing system does not allow angype modification for function types
and allows delimiters to be set on at most one atomic type. sEngantic domain for evaluation is
expressed in Constructive Type Theory as a dependentld tyyfpmadic structure combining Kripke
models and continuation passing style translations.

1 Introduction

Type directed partial evaluation (TDPE) is a technique paatially evaluates a program by first com-
piling it, and pre-computing known (“static”) input data tre fly, and then decompiling it to normal
form in an efficient process driven by the program’s type. dswliscovered by Danvy|[6] in Program-
ming Languages Theory, although the exact same algorittdrbban isolated at about the same time
also in the study of typed lambda calculi and in Logic: Berged Schwichtenberg [3] found it while
looking for an efficient procedure for reducingenlambda terms and called it Normalization by Evalu-
ation (NBE); Catarina Coquand|[5] realized that it is thegaeure behind the proof of completeness of
minimal intuitionistic logic (withoutl ,\ and3) with respect to Kripke models.

However, when one moves from simply typed lambda calculusgtds richer programming lan-
guages, to extend the TDPE method to cope with the new catstidoes not appear to be straightfor-
ward. Already adding strong sum types seems to require dngglement TDPE using delimited control
operators — indeed, this is one of the more important agita of Danvy and Filinski’s operators shift
and reset([8]. In turn, when considering TDPE for a languadeneled with the delimited control op-
erators themselves, there has only been preliminary wortkkesubject, for the call-by-value case, by
Tsushima and Asali[18].

In this paper, we consider TDPE for the first level of the <iftl reset hierarchy. Using their simpler
non-extended CPS semantics, we build a type-theoreticefraomk that acts as a specification for TDPE
algorithms (Sectiof]2). The algorithms themselves, fohtatl-by-value and call-by-name, are given
in Sectior B, where we also look at specific examples and carthair partial evaluations to the ones
predicted by the known equational theories. In the conoly@ectior 4, we give further explanation
about our implementation and about the related works.

The Coqg implementation of the algorithms can be found atddeess dankoi.github.com/metamath.
Originally, this work was conceived as an alternative ndization proof for the core logical system
from [12], a proper constructive extension of intuitioradbgic with delimited control operators.

*This work is covered by a Kurt Gddel Research Prize Fellggvadl11
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EPTCS 127, 2013, pp. 86=100, d0i:10.4204/EPTCS.127.6
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. p:TFpA
hyp: AT Fp A
P TTh wkn(p): B, Fp A
p:lpA p: T, B
inl(p): T F,b AVB inr(p): T F, AVB

p: M pAVB q:ATl+,C r:B,IrMC
case(p,q,r): M C

p:AltH,B p:T-,bA—B q:MFpA
lam(p):T'F,bA— B app(p,q) : T +pB
p:MH1 L p:A— L Tk L
reset(p) : [ Fp L shift(p) : T F1 A

Table 1: A typing system for lambda calculus with sum typed ¢tnift and reset, where variable binding
is handled using deBruijn indiceby(p andwkn(-))

2 Type-theoretic Model

The programming language that we want to partially evaluaieobject languagewill be the lambda
calculus with function and sum types and the shift/resetrdteld control operators, described in Table 1.
We do not work with the most general known typing system fdit simd reset in which implication is a
quaternary connectivel[7] and we allow a delimitesét(-)) to be set only at an atomic type J.

For expressing variable binding, we rely on deBruijn indide the form ofhyp andwkn(-) rules,
wherehyp can be thought of as zero amkn(-) as the successor. Lambda abstractiam(-)) and
control @hift(-)) are therefore unary.

The turnstile " is annotated by a Booleah of value 0 or 1, value 1 meaning that a delimiting
reset() has been previously applied in the lambda term (typing tesévation). All rules, except for
shift(-) andreset(-) ignore this annotatiob. The rulereset() sets it to 1, anahift() can only be used if
the annotation has been previously set to 1 i.e. in a dekhsitd-term.

The idea behind every TDPE algorithm is the following: we wentransform a program written
in the object language to a meta-level “bytecode” versioit,dfun” this bytecode (this is called the
evaluationphase), and then, based on the program’s type, recover eaprag the object language that
is already in normal form (theeification phase) angB(n)-equal to the starting one. In other words,
one relies on normalization at the meta-level, to producelgect-level normal form. This becomes
non-trivial if the meta-level and the object level are nadarttially the same, like in our case where the
meta-level has no control feature while the object-levedsdo

The essential choice to make is what to choose for the “seciaméta-level structure that evaluation
will take place in. CPS semantics imposes itself, becausdhie orthodox and simplest way to specify
shift and reset [9]. The TDPE will thus be of the form of the tplrase transformation,

Syntax~ ((Value— Answern — Answer) ~» Syntax
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where Syntax denotes the type of programs of the object Egeyuand Value and Answer are “values”
and “answers” of a “continuation” in the usual terminolo@].[ If we also want the transformation to
account foropenterms (which allows to do normalization below a binder) amguarantee that the input
and output programs are actually programs of the same typejegd to enrich the semantic domain
(bytecode) by a pre-order, keeping track of a confextenoting open variables, and a parameter
corresponding to the type of the transformed program. Waiolhe statement

[ AT IFA~THTA

whererl I A denotes the semantic domain that is the target of evalugdiobsectiofn 2]1), and source of
reification (Subsection 2.2).

2.1 Evaluating into the Models

We will use a combination of Kripke-CPS models for classicgjic (used previously with Lee and
Herbelin for proving NBE for the classical sequent calculis,; [14]) and those for intuitionistic logic
(used for proving NBE for intuitionistic natural deductiadith vV and3 [13]). We give the mathematical
definitions, trying to be precise but as informal as possibtbe interested reader may find the fully
formal version in the Cog implementation — keeping also indrthat, while we do use dependent types,
the dependencies are rather welktypes over the small set of formulas, booleans, and theKype

Definition 2.1. A Kripke CPS structurés given by a typeK, a relation<: (K — K — Type) that is a
preorder, i.e. both of

w<w (reflexivity)
Wy <Wp — Wo < Wz — Wy < W3 (transitivity)

hold, and a relation
X : K — Bool — Formula— Type

with the properties:

w1 < Wo — XwWibA — XwsbA (< -monotonicity)
b C by — XwhA — XwhA (C -monotonicity)
XwlLl — XwOL (metareset()).

Bool is the type of booleans with inhabitants O (false) anttde}, andC is the order on booleans
defined by the relation of less-than-or-equal of their nuca¢wvalues. “Type” denotes the type universe
of the meta-language, while Formula is the type of types efdhject language i.e. those built from
—, V, atomic types, and the special fixed typethat reset can be set on — we do not make the usual
assumption that. denotes the empty type, it is simply a notation for a chosemittype.

Inhabitantsw of type K are calledworlds and when we havXwbAwe say that the worldv is
explodingfor the formulaA with annotatiorb. This terminology (“exploding” or “fallible”) comes from
classic use of Kripke models when interpreting absurditg @onstructive way [17]. The relatiox, the
answer type of the continuations, will later be instantatdth the set of typable terms in normal form,
that is, it will be used to pass on the output of the TDPE betwdifferent sub-phases of the algorithm
in the process of building the final normal form.
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Definition 2.2. GivenF : (K — Bool — Formula— Type), A: Formula,b : Bool, w: K, the dependently
typed continuations “monadiy I, A, defined by

wlkg A:= (C: Formulg(w; : K)(w<wj —
(W 1 K)(wyp < wp — FW0A — Xwe0C) — Xw;0C)

Wik A= (wp i K)(w<wy —
(Wo : K)(wy <wp — FWolA — Xwell) — Xwyll)

is calledforcing. That is, we readv -, A as “the worldw forces the typeéA with annotatiornb”.

Remark2.3. We have put the word “monad” in quotes because we have nohstougrove the usual
categorical or the functional programming laws for monadlsl h Yet, the fact that we can define the
monadic unit, bind, and run, will be quite convenient fousturing the computation/proofs later on.

The following two definitions present two alternatives tbah be used to instantiakefrom Defini-
tion[2.2; when the (non-strong) forcing relation is usechim definitions, it is implicitly instantiated with
the strong forcing relation being defined. Note that, typmothtically, (non-strong) forcing and strong
forcing need not be defined simultaneously, Definifion 2:12es first.

Definition 2.4 (Strong forcing, call-by-value variant)l he strong forcingrelationw - A is defined by
recursion on the typ#, by the following clauses:

wiFg A:=XwbA  (A—atomic type
wikg AVB:=wl-H A+wli-; B
wWiFEA—B:= (W :K)(w<w - W I A— W Ik, B)

Definition 2.5 (Strong forcing, call-by-name variantY he strong forcingrelationw |- A is defined by
recursion on the typ#, by the following clauses:

wiFg A:=XwbA  (A—atomic type
wiFg AVB:=wl-, A+wlk, B
WA= B:= (W :K)W<W — W IFy A— W I, B)
Although a different strong forcing relatignll-? -) determines a different forcing relatigni-. -), the

important properties that hold of the latter are nonetlsetee same regardless of which strong forcing
was chosen.

Lemma 2.6. The following properties hold of strong and ordinary forgin

w<wW = wiFS A=W IFS A

w<w = wikpA—w Ik A

bCb —wiFA—wi-, A

bCb swlFyA—=wiky A
wlkp L — Xwhl (run(-))
wiFg A= wikp A (return(-))

(W:K)w<wW =W IFgA— W -y B)

—WlFp A= wli-, B (bind(-,-))
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Proof. The proofs of monotonicity of strong forcing with respectdtandC are done by induction on
the formulaA using monotonicity oX. Monotonicity of (non-strong) forcing requires no indweti The
proofs of rur{-), return-), and bind-, -) follow the structure given on Figufé 1. O

We will use the same turnstile symbols to denote forcing émohg forcing offinite listsof formulas,
I", defined by,

W kg nil ;= Unit

wlkp congAlN) :=wlFp Axwik, T
w g nil ;= Unit

wig congAl) :i=wiFg AxwliFp T,

wherex is the product type (i.e. logical conjunction, when used peedicate) and Unit is the singleton
type. Naturally, the monotonicity properties from the poe lemma extend to forcing and strong
forcing for lists.

Theorem 2.7(Evaluation for call-by-name)lf p: I -, A, then for any w and any lsuch that b= b/ we
have that from the finite product iy I we can construct Wy A.

Theorem 2.8(Evaluation for call-by-value)lf p: T F, A, then for any w and any lsuch that b= b/ we
have that from the finite product ¥, I we can construct Wy A.

Proof. The proofs of both theorems are done in continuation-pgsstyle, by using induction on the
derivation ofp. The program skeletons that corresponds to the proofs caedreon figurdd 2 and 3, and
the full proofs are available in the Coq formalization. O

2.2 Reifying from the Models

While the evaluation theorems from the previous subsec#mbe used for any concrete structure that
implements the Kripke-CPS models axiomatization, in tleistisn we build one such mode¥/, the
universal modelfrom syntactic elements. It gets its name from the factifreimething is forced ire/
then it is also forced in any other possible model.

To obtain a finer grained characterization of the TDPE promedve will separate the lambda terms
into a level ofnormal termsand a level oheutral termausing the following inductive definition.

(—HEF =) >r == lam(r) | inl(r) [ inr(r) | shift(r) | e
(—HE —)>en=app(er) | case(ery,ra) | reset(e) | hyp | wkn(r)

This definition concerngypedlambda terms (i.e. typing tree derivations), althoughrigpnformation
has been suppressed.

The separation into normal versus neutral terms is staridatte NBE literature, but what is new
here is that, in order to obtain the Disjunction Propertyatend of this sectiomeset(-) has to be neutral.

Definition 2.9 (The model%). The universal Kripke-CPS mode¥ is built when the set of worlds is
the set of contextE,

K := List(Formulg,
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and the predicatX is defined by recursion on the structure of types of the oligegjuage,

XrbA:=THFA  (A—atomic type
XTbLl:=TH#e L
XTb(AVB):=T Hi AvB
XIb(A—B):=IHIA— B,

as the set of terms in normal or neutral form of the given type.

The pre-ordeK is defined as the prefix relation on lists. It is not hard to kagreflexivity and tran-
sitivity of < hold, and thak-monotonicity and=-monotonicity hold by the weakening properties of the
typing system (formal lemmasroof nf mon, proof ne mon, proof nf mon2, andproof ne mon2).
The property metaeset() is provided by the syntactieset() rule (formal lemm&_reset).

We can now prove that for any meta-level evaluation therstgx term in the object language
(reification part). Due to contravariance of implication (function tgpeve need a simultaneous map in
the other directionr(aﬂectionpart)@.

Theorem 2.10(Reification () and reflection{)). Given A: Formula I : List(Formulg and b: Bool,
the following two statements hold:

Mo A—THYA “reify” (15 ()
FEEA T Ip A “reflect” ("5 ()

Proof. The two statements are proved simultaneously, by inductiotine typeA. The program skeleton
corresponding to the proof can be seen on figures 4land 5. Thpedaf is done in continuation passing
style and is available in the Coq formalization. O

Let reflectl, b) denote the fold-left of the lidt for the reflection function applied to a variableyp),
using the unit type constructor tt in the base case. For ebarige ' := cons(A, cons(B,cons(C, nil))),
we have

reflec{l",b) : T IFp AX T IFp Bx T Ik, C x Unit
reflec(T",b) = "1 (hyp), ™} (hyp), ™5 (hyp),tt

We can now obtain the main result of the paper by composindzttaduation theorems with the
Reification theorem, all of which have constructive prodfs.other words, we take a term apply a
meta-CPS translatioh] on it, in an initial environment built from the contektby the reflect function,
and then reconstruct a term in normal form based on theAywpgng the reification functiof -).

Corollary 2.11 (TDPE for call-by-name) Given p: I -, A, we have thalt|§ ([plrefiecirp)) : T F”bf A.

Corollary 2.12 (TDPE for call-by-value) Given p: nil -, A, we have thal |2 ([p[uni) : nil F}f A.

Remark2.13 The difference in formulation between the two corollarigsliie to the fact that the Eval-
uation theorem for call-by-name (Theorém]2.7) uses orglif@ncing for the contexf”, while the cor-
responding Theorei 2.8 for call-by-value uses strong rigrciTDPE for CBN can therefore be run on
open terms directly, while for CBV we have to have a closethtas input, although TDPE for CBV
does normalize below lambda abstractions.

INote that, while reflection and evaluation (theoréms 2.7[ARY have the same typing, the first just does eta-expamsion
by recursion on the object-language type, while the lasterore informative being defined by recursion on the objaetiiage
term
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return(-) : — IFg A— — IFp A
returna) =K —K-d

bind(-,-): (- F§ A— — IFpyB) = — Fp A— — IF, B
bind(g,a) =k —a-(a’"— @-a’ k)

run(-): —Ikp L — —1IFg L
run(a):=a-(x — X)

Figure 1: Monadic glue functions

The following property shows that the calculus from Tablet be considered a constructive logical
system, despite the fact that it contains control operatbish are usually connected with classical logic.
(Classical logic does not have this property)

Proposition 2.14(Disjunction Property) If p : nil =9 AV B then from p one can get puch that either
P :nil =g Aor g :nil g B.

Proof. We can use TDPE to transforpito a term in normal fornm : nil H}{ AV B. Now, from the syntax
of normal and neutral forms, one can see that the only pdisistifor r are that it is either &l(r’) or a
inr(r’) —r can not be any of the neutral forms because it does not haee adriable (the context is nil)
—andr cannot be ahift(-) because of the annotation 0 on the turnstile. O

3 Algorithm

In this section we show the algorithmic core of the TDPE pdoce. While the exact program in a
dependently typed language can be seen with all its gorylsigighe Coq formalization, our intention
here is to give a human readable account of the proceduremhaixtracted by hand from the Coq
formalization. This extraction consists in deleting the@eledently typed information which is mostly
connected to handling worlds (members of the preokdeaind the associated monotonicity proofs.

We will use two levels of lambda calculus: on one level we Wile the “dynamic” lambda terms
from Table[1, and on the other “static” level we will use o@ttiyn mathematical function notation=$”
for abstraction, ” for application, 1; for injection-left, 1, for injection-right, and the usual big-open-
curly-bracket for definition by cases. Small Greek letierg, y, ¢, k are used for static variables; there
are no explicit dynamic variables since we use deBruijndesli The equality symbol “:=” denotes
definitional equality.

The monadic glue functions are defined on Fidure 1. Parameteresponding to dependent types
for world-handling have been left out (worlds are markedwiars “").

The evaluation algorithms corresponding to theoremis Zi®ahare given on figurés 2 ahd 3.

The reification algorithms are defined by mutual recursioth weflection algorithms on figurés 4
and(5. For facilitating comparison, the places where cafdilue and call-by-name versions differ are
marked with boxes.
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[p:T FoAlwiyr :Wikp A
[hyp]p :=fst(p)
[wkn(p)]p == [[pﬂsnc(p)
[lam(p)]p := return(a — [p]a.p)
[app(p,9)]p := bind(@ — @-[dl,, [P]p)
[inl(p)]p := return(i1[p]p)
[inr(p)]p := return(iz[p[p)
fease(p.arlp = bindy - { (e VTS )
[shift(p)]o —K’_>run([[p]]returr(aHreturr(a-K))p)
[reset(p)]5~" := return(run([p],))
[reset(p)]5=0 := returnmetareset (run([p],)))
Figure 2: Evaluation for call-by-name
[p:T Fp A]]wwgr cwikp A
[hyp], = returrtfst(p))
[wkn(p)]p == [[pﬂsndp)
[lam(p)]p := retur(a — [pla,p)

[app(p, a)]p := bind(¢ — bind(¢, [d[,), [P],)
[inl(p)]p := bind(a — return(i1a), [plp)
linr(p)]p := bind(a — return(i2a), [plp)

fease(p.anlp = bindy — { (e V=S )
)

[reset( )ﬂg

=K run([[p]]a»—\,returr(Kﬂ),P)

= return(run([p],))
= returnmetareset (run([p],)))

Figure 3: Evaluation for call-by-value
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"5 ()T AT HEA
"Ip (@) := run(a)
M1 (a) :==run(a) for atomicAg # L
M50 (a) := shift(a - (x — app(hyp, X)) for atomicAg # L
"1578 (@) i=lam("J§ (k — AT15 (hyp) - (@' = @ - (@ — @- (return(a’)) - k))))

o (T (B) . if y=1p
Ho (@)=a (VH{ nr(18 (B) | if y— 123 )

FIAVE (o) — shifi(q app(hyp,inl("J1 (B))) , if y=1P
417 () i= shife(a (VH{ app(hyp,inr (18 (8))) . if y= 1B >)

M) THEA=T I, A
r b (e) :=return(e) for atomicAg
"5 (€) := returr(a — "5 (app(e. 15 (a))))
MEVB (€) := Kk > case(e, 14 (hyp) - (a — K - 1yreturn(a)), B8 (hyp) - (a — k - 1return(a)))

Figure 4. Reification and reflection for call-by-name

A ()T AT HIA
"Iy (@) ==run(a)
M5 (a) :=run(a) for atomicAg # L
M0 (a) := shift(a - (x ~ app(hyp, X))) for atomicAg # L
"8 (@) = lam("Jg (k = A1 (hyp) - (@ = a- (@ = 9- ([a’])-x)))

inr("48 (return(B) ) , if y=12B

F@VB (a) := shift(a - (V'_> { app(hypa?nl(l—rilB( returnB))))) if Vi 118 >)
app(hyp.inr(T 13 (rewm(B) ) . if y= 128

"5VB (a):=a- (yn—> { inl("Jo (rewrn(B) ) , if y=1.p )
- )
A

" ()i THEAS T I, A
M40 (e) := return(e) for atomicAg
™58 (e) := return(a — " (app(e, "1} ([ return(a) ))))
"15'° (€) := Kk — case(e, "1} (hyp) - (o > K - 11[a]),>™1 (hyp) - (a — k-1 @)

Figure 5: Reification and reflection for call-by-value



Danko llik 95

3.1 Known Equational Theories

Before considering computational tests, we recall thelavia equational theories for shift and reset.

The equational theory for call-by-value shift and reset t@ full hierarchy, has been proven sound
and complete with respect to the extended CPS translatjdry[Rameyamal[15]. Considering the first
level of the hierarchy which is of interest here, the equetiare expressed using the classegatiies
(V) andpure evaluation contexis-),

Vi=Xx|AX.p F:=[|Fp|VF
as follows:

(Ax-p)V = p{V/x} @
AxVx=V whenx ¢ FV(V) (2)
(AxF[X)p=F|p| whenx ¢ FV(F) 3)
V)=V 4)
((Ax-p)(@)) = (Ax.(p))(0) ()
SKAp) = LK.p (6)
ZkKk(p) = (p) whenk ¢ FV(p) (7)
Skkp=p whenk ¢ FV(p) (8)
(Fl7k.pl) = (P{(AX.(F[X)) / k}) whenx ¢ FV(F) U {k} ©)

The equational theory for call-by-name shift and resetterfirst level of the hierarchy, has been
studied by Kameyama and Tanakal[16]. For the purpose of myasdundness and completeness with
respect to Biernacka and Biernackl’s [4] call-by-name C&8antics for shift and reset, Kameyama and
Tanaka distinguish between two kinds of term applicatiadhs,usual one, and the one to continuation
variables {); and two kinds of substitutions, for normal variabl¢s/k}), and for continuation variables
({k=-}). The classes of values and pure evaluation contexts dretiess of the call-by-name ones,
given b

U:=AXxp E:=[|Ep
The equational theory is as follows,

(Ax.p)g= p{a/x} (10)
U)=u (11)
K <> E[7k.p| = (p{k= (K <> E)}) (12)
Zk(p) = kp (13)
Skk+—p=p whenk ¢ FV(p) (14)
(E[k.p]) = (p{k=E}), (15)

where the substitution{k = -} is defined by recursive descent on the teyiend affects only the sub-
terms of the fornmk «— p by:

(K <> p){k=E} = (E[p{k=E}]) whenk’ =k
(K <> p){k=E} =K < (p{k=E}) whenk’ # k

’Kameyama and Tanaka also consider consiaataong the call-by-name values, however no variables aveed. Since
we do not have constants in our minimal object-languageunfystve did not include them as an optiontbf
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We have used conventional syntax, writirget(p) as(p), andshift(p) as.”k.p, and will continue
to do so in the next subsection.

3.2 Example Runs of the Algorithm

Let us now consider some test-runs of our TDPE procedureh Egample consists of an input term,
marked with a number to refer to, and two outputs: using TD&Ell-by-value (CBV) and for call-
by-name (CBN).

We begin with simple examples where the continuation végiah shift is not used (exceptions
effect).

AXA(AyY) (kX)) (16)
AX(X) (CBV)
AX((X)) (CBN)
AX((((Ay.y) (kX)) 17)
AX(X) (CBV)
AX((X)) (CBN)

The CBN normal forms are not perfect as the resets are systathaduplicated at top level. This
duplication is not related to the number of reset as inputassbe seen from Example_(17), but to a
“bug” in the Coq formalization. Namely, the lemnkant_sforces_mon2’, proving monotonicity of
non-strong forcing with respect to the Boolean order, useset in the proof, and, since this lemma is
not used in the CBV case, the problem does not appearﬁhere.

The CBV equational theory can derive the TDPE output for edam[16) and[(17). The CBN
equational theory derivedx.(x) but notAx.((x)). However, our TDPE for CBN identifies the two,
because it also normalizéx.(x) to Ax.((x)).

The next example does not use a control operator, but hagaitdel

Axy.((xy)) (18)
AXY.(Xy) (CBV)
Axy.((x(y))) (CBN)

The CBV and CBN equational theories do not transform Exar{i@ further, because the subtery
is not a value. TDPE for CBV removes one delimiter, agyifvere a value, and TDPE for CBN delimits
the inside variable y, as if it were taking into account thetiables are not values according to the CBN
equational theory.

Let us consider an example that uses the continuation iasidhéft.

Axy. (X(-7’k k(ky))) (19)
Axy.(x(xy)) (CBV)
Axy.{(x(y))) (CBN)

3The solution might be to make the non-strong forcing monadiatane also for the_ relation and not only fox on
worlds, and is the subject of future work.
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Starting from Examplé (19), the CBV equational theory cataivkthe termixy. ((Aa.(xa)) ((Aa.(xa))y)),
and then also the terthxy.((Aa.(xa))(xy)), however, no further rewriting is possible using that theory
because neither ix[]) a pure evaluation context nor {8y) a value. As for the CBN equational theory, it
can not rewrite the starting teriin_(19), because there atedagplications to the continuation variable
k< (k<) and, unlike in the CBV case(| is not a pure evaluation context in CBN. Note that: 1) there
is nox missing in the output of CBN TDPE; 2) the terkixy.((A a.(xa))(xy)) obtained by CBV equations
is normalized by the CBV TDPE procedure to the same thingras (&9) (seenbe_tests.v from the
implementation), meaning that TDPE knows how to furtheuoedthose “blocked” terms.

The following example is very similar to the previous onendewe will not comment on it much,
but its purpose is to show that CBN TDPE can duplicate theabéek if needed.

Axy. (X(x(# K k(ky)))) (20)
Axy. (X(X(xy)) (CBV)
Axy. ((x(x(y)))) (CBN)

The next example contains an evaluation context and a forshitifthat can be used with the equa-
tional theory for CBN.

AXY((LK.Ky)x) (21)
AXY.(yX) (CBV)
AXy.((y(x))) (CBN)

The CBV equational theory rewritels (21) Axy.((yx)), and the CBN one rewrite5 (1) foxy.(yx). If
we apply TDPE on these results of rewriting, we get the sanjgubas the TDPE fof (21).

In the following example, two shifts interact inside the samaset.

Axyz((7ky(k2) (7K .z(K'x))) (22)
Axyz(y(z(zX)) (CBV)
AXYZ ((Y((z{x))))) (CBN)

The CBV equational theory can transformI(22)\eyz (y(z(zx))) which can in turn be transformed by
CBV TDPE to the same result as for {22). The CBN equationalrihean rewrite the left occurrence
of shift and obtaim xyz (y(z(.#’K.z(k'x)))), but no further rewriting is possible becatggis not a pure
evaluation context in CBN; neverthelessgyz(y(z(.#K .z(k'x)))) can further be transformed by CBN
TDPE to the same output as for (22).

We consider an example that involves sum types, but brigflgeswe do not have a ready made
equational theory to compare the output to.

Axy.(casex of (Az.k.kz| Azz)) (23)
Axy.casex of (Az(2) || Az(2)) (CBV)
Axy.casexof (Az(((2))) [| Az{{(2)))) (CBN)

We see that not only the reset is pushed from the front of the-eapression into its branches.
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4 Discussion and Related Work

The CPS translation that we use for CBV TDPE is ex@ctl;e standard (non-extended) CBV CPS
translation of Danvy and Filinski [8], known also as 1-CP8triis in 1-CPS arising from shift are not
evaluation-order independent when executed in regulartifumal programming languages, and that is
why, to fix the semantics of shift and reset regardless ofahget language of CPS, an additional CBV
CPS translation of the CPS result is usually performed, hisdcomposition of two CPS translations is
known as the extended CPS, or 2-CPS. It is with respect t@2tQiPS that Kameyama [[15] proved the
equational theory for CBV to be sound and complete.

The CPS translation used for CBN TDPEnst the available 1-CPS of Biernacka and Biernacki
[4]. The difference is in the shift rule (see Figlile 2), asrBaeka and Biernacki'§shift(p)], := kK —
run([p]«,p) would not type check in our type theoretic model. The stath@aCPS translation, that
Kameyama and Tanakia [16] proved their equational theor€BRiX sound and complete for, is obtained
by performing aCBYV translation of the 1-CPS CBN translation.

We profit from our implementation language having strongmidlﬁ in that we do not have to apply
two passes of CPS. That is, 1-CPS is sufficient because oluatiea (CPS translation) of a term at the
meta-level is a typed and closed term which reduces to the sanmal form regardless of the reduction
strategy. The typed CPS-s used by Kameyama and Tanaka reegsdive types, while we do not. On
the other hand, we do not know if it possible at all to accoontbnstants defined by general recursion
in our modelf. The guestion, therefore, of whether our TDPE could be Ugefpractice is open. We
certainly find it useful when “practice” concerns lambdacadilfor Logic and proof assistants.

We saw in Subsectidn 3.2 that some terms that cannot be fuevetten by the equational theories,
can be further normalized by the TDPE. On the other hand,dhatenal theories have been proven to
be sound and complete with respect to the CPS translatiahisthan equation holds between two terms
if and only if the two terms hav@-n-equal CPS translations. That means that the extra “regtiti
done by the TDPE somehow extends the equality of CPS traorsdat indeed, the outputs of TDPE
for the examples of Subsectibn 8.2 dot have CPS translation3-n-equal with the ones of the inputs.
Nevertheless, at least for all the examples that we havedgste TDPE identifies the original terms with
the “intermediary” results arrived to by the equationalatties.

As for the typing system we use, we note that it is Filinskistem [10], which is sufficient for
representing monadic effects by delimited control. A dédfece with that system is that there is an
annotationb on the turnstile ) whose purpose is to not allow shifts appearing outside liended.
This could have also been guaranteed by an external symtaigria on whole terms, but the calculus
is easier to model if all information is already present ia tiping system. The more general typing
system for shift and reset, with answer type modificatiom, type check more programs, but with the
price of a function being able to modify its own answer typat thve are not ready to pay. In particular,
the modified meening of implication would not immediatelyrespond to something well known on the
side of Logic.

4There are additional typing annotations concerning wattiched to the continuations at the type theoretic levetier
subtle point is that, when evaluating reset (figlides Zanth8)type theoretic model predicates when to insert a syotasget
between the return and the run. One may insert a reset intibe cases as well, if one wants to obtain normal forms withemor
resets, but we prefer to not do it since it is not mandated eyrbdel.

SConstructive type theory is strongly normalizing and thiera simple and efficient implementation of a virtual machine
for strong reductior [11].

5We have however, in separate work, extended the model t@highe primitive recursion (Godel's System T) plus shift
and reset on numeric types.
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Our work was developed independently of the results of tegipus work on TDPE for CBV shift
and reset of Tsushima and Asai [18], which seems to deriva freir preceding works on traditional
offline and online partial evaluation for shift and reset[2]., The difference between theirs and our
results seems to be that: 1) they treat a more general tygsigmn (function types with answer type
modification); 2) we aim to produce normal forms that elinknas many shifts and resets as possible:
for example, during reification for function types, Tsushiemd Asai’'s TDPE constructshkift(-) imme-
diately after the firstam(-), whereas we postpone the constructionhift(-) to some cases of reification
that will subsequently called.
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