
U. de’Liguoro and A. Saurin (Eds.):
Control Operators and their Semantics 2013 (COS’13)
EPTCS 127, 2013, pp. 86–100, doi:10.4204/EPTCS.127.6

Type Directed Partial Evaluation for Level-1 Shift and Reset

Danko Ilik∗

Laboratory for Complex Systems and Networks
Macedonian Academy of Sciences and Arts

Skopje, Macedonia

danko.ilik@gmail.com

We present an implementation in the Coq proof assistant of type directed partial evaluation (TDPE)
algorithms for call-by-name and call-by-value versions ofshift and reset delimited control operators,
and in presence of strong sum types. We prove that the algorithm transforms well-typed programs
to ones in normal form. These normal forms can not always be arrived at using the so far known
equational theories. The typing system does not allow answer-type modification for function types
and allows delimiters to be set on at most one atomic type. Thesemantic domain for evaluation is
expressed in Constructive Type Theory as a dependently typed monadic structure combining Kripke
models and continuation passing style translations.

1 Introduction

Type directed partial evaluation (TDPE) is a technique thatpartially evaluates a program by first com-
piling it, and pre-computing known (“static”) input data onthe fly, and then decompiling it to normal
form in an efficient process driven by the program’s type. It was discovered by Danvy [6] in Program-
ming Languages Theory, although the exact same algorithm had been isolated at about the same time
also in the study of typed lambda calculi and in Logic: Bergerand Schwichtenberg [3] found it while
looking for an efficient procedure for reducingopenlambda terms and called it Normalization by Evalu-
ation (NBE); Catarina Coquand [5] realized that it is the procedure behind the proof of completeness of
minimal intuitionistic logic (without⊥,∨ and∃) with respect to Kripke models.

However, when one moves from simply typed lambda calculus towards richer programming lan-
guages, to extend the TDPE method to cope with the new constructs does not appear to be straightfor-
ward. Already adding strong sum types seems to require one toimplement TDPE using delimited control
operators – indeed, this is one of the more important applications of Danvy and Filinski’s operators shift
and reset [8]. In turn, when considering TDPE for a language extended with the delimited control op-
erators themselves, there has only been preliminary work onthe subject, for the call-by-value case, by
Tsushima and Asai [18].

In this paper, we consider TDPE for the first level of the shiftand reset hierarchy. Using their simpler
non-extended CPS semantics, we build a type-theoretic framework that acts as a specification for TDPE
algorithms (Section 2). The algorithms themselves, for both call-by-value and call-by-name, are given
in Section 3, where we also look at specific examples and compare their partial evaluations to the ones
predicted by the known equational theories. In the concluding Section 4, we give further explanation
about our implementation and about the related works.

The Coq implementation of the algorithms can be found at the address dankoi.github.com/metamath.
Originally, this work was conceived as an alternative normalization proof for the core logical system
from [12], a proper constructive extension of intuitionistic logic with delimited control operators.

∗This work is covered by a Kurt Gödel Research Prize Fellowship 2011

http://dx.doi.org/10.4204/EPTCS.127.6
http://dankoi.github.com/metamath/

Danko Ilik 87

hyp : A,Γ ⊢b A
p : Γ ⊢b A

wkn(p) : B,Γ ⊢b A

p : Γ ⊢b A
inl(p) : Γ ⊢b A∨B

p : Γ ⊢b B
inr(p) : Γ ⊢b A∨B

p : Γ ⊢b A∨B q : A,Γ ⊢b C r : B,Γ ⊢b C
case(p,q, r) : Γ ⊢b C

p : A,Γ ⊢b B
lam(p) : Γ ⊢b A→ B

p : Γ ⊢b A→ B q : Γ ⊢b A
app(p,q) : Γ ⊢b B

p : Γ ⊢1⊥

reset(p) : Γ ⊢b⊥

p : A→⊥,Γ ⊢1⊥

shift(p) : Γ ⊢1 A

Table 1: A typing system for lambda calculus with sum types and shift and reset, where variable binding
is handled using deBruijn indices (hyp andwkn(·))

2 Type-theoretic Model

The programming language that we want to partially evaluate, our object language, will be the lambda
calculus with function and sum types and the shift/reset delimited control operators, described in Table 1.
We do not work with the most general known typing system for shift and reset in which implication is a
quaternary connective [7] and we allow a delimiter (reset(·)) to be set only at an atomic type (⊥).

For expressing variable binding, we rely on deBruijn indices in the form ofhyp andwkn(·) rules,
wherehyp can be thought of as zero andwkn(·) as the successor. Lambda abstraction (lam(·)) and
control (shift(·)) are therefore unary.

The turnstile “⊢” is annotated by a Booleanb of value 0 or 1, value 1 meaning that a delimiting
reset() has been previously applied in the lambda term (typing tree derivation). All rules, except for
shift(·) andreset(·) ignore this annotationb. The rulereset() sets it to 1, andshift() can only be used if
the annotation has been previously set to 1 i.e. in a delimited sub-term.

The idea behind every TDPE algorithm is the following: we want to transform a program written
in the object language to a meta-level “bytecode” version ofit, “run” this bytecode (this is called the
evaluationphase), and then, based on the program’s type, recover a program in the object language that
is already in normal form (thereification phase) andβ (η)-equal to the starting one. In other words,
one relies on normalization at the meta-level, to produce anobject-level normal form. This becomes
non-trivial if the meta-level and the object level are not essentially the same, like in our case where the
meta-level has no control feature while the object-level does.

The essential choice to make is what to choose for the “semantic” meta-level structure that evaluation
will take place in. CPS semantics imposes itself, because itis the orthodox and simplest way to specify
shift and reset [9]. The TDPE will thus be of the form of the two-phase transformation,

Syntax ((Value→ Answer)→ Answer) Syntax,

88 Type Directed Partial Evaluation for Level-1 Shift and Reset

where Syntax denotes the type of programs of the object language, and Value and Answer are “values”
and “answers” of a “continuation” in the usual terminology [6]. If we also want the transformation to
account foropenterms (which allows to do normalization below a binder) and to guarantee that the input
and output programs are actually programs of the same type, we need to enrich the semantic domain
(bytecode) by a pre-order, keeping track of a contextΓ denoting open variables, and a parameterA
corresponding to the type of the transformed program. We obtain the statement

Γ ⊢ A Γ
 A Γ ⊢nf A,

whereΓ
 A denotes the semantic domain that is the target of evaluation(Subsection 2.1), and source of
reification (Subsection 2.2).

2.1 Evaluating into the Models

We will use a combination of Kripke-CPS models for classicallogic (used previously with Lee and
Herbelin for proving NBE for the classical sequent calculusLK µµ̃ [14]) and those for intuitionistic logic
(used for proving NBE for intuitionistic natural deductionwith ∨ and∃ [13]). We give the mathematical
definitions, trying to be precise but as informal as possible– the interested reader may find the fully
formal version in the Coq implementation – keeping also in mind that, while we do use dependent types,
the dependencies are rather weak (Π-types over the small set of formulas, booleans, and the typeK).

Definition 2.1. A Kripke CPS structureis given by a typeK, a relation≤: (K → K → Type) that is a
preorder, i.e. both of

w≤ w (reflexivity)

w1≤ w2→ w2≤ w3→ w1≤w3 (transitivity)

hold, and a relation
X : K→ Bool→ Formula→ Type

with the properties:

w1≤ w2→ Xw1bA→ Xw2bA (≤ -monotonicity)

b1⊑ b2→ Xwb1A→ Xwb2A (⊑ -monotonicity)

Xw1⊥→ Xw0⊥ (meta-reset()).

Bool is the type of booleans with inhabitants 0 (false) and 1 (true), and⊑ is the order on booleans
defined by the relation of less-than-or-equal of their numerical values. “Type” denotes the type universe
of the meta-language, while Formula is the type of types of the object language i.e. those built from
→, ∨, atomic types, and the special fixed type⊥ that reset can be set on – we do not make the usual
assumption that⊥ denotes the empty type, it is simply a notation for a chosen atomic type.

Inhabitantsw of type K are calledworlds, and when we haveXwbA we say that the worldw is
explodingfor the formulaA with annotationb. This terminology (“exploding” or “fallible”) comes from
classic use of Kripke models when interpreting absurdity ina constructive way [17]. The relationX, the
answer type of the continuations, will later be instantiated with the set of typable terms in normal form,
that is, it will be used to pass on the output of the TDPE between different sub-phases of the algorithm
in the process of building the final normal form.

Danko Ilik 89

Definition 2.2. GivenF : (K→Bool→ Formula→ Type), A : Formula,b : Bool, w : K, the dependently
typed continuations “monad”,w
b A, defined by

w
0 A := (C : Formula)(w1 : K)(w≤ w1→

(w2 : K)(w1≤ w2→ Fw20A→ Xw20C)→ Xw10C)

w
1 A := (w1 : K)(w≤ w1→

(w2 : K)(w1≤ w2→ Fw21A→ Xw21⊥)→ Xw11⊥)

is calledforcing. That is, we readw
b A as “the worldw forces the typeA with annotationb”.

Remark2.3. We have put the word “monad” in quotes because we have not sought to prove the usual
categorical or the functional programming laws for monads hold. Yet, the fact that we can define the
monadic unit, bind, and run, will be quite convenient for structuring the computation/proofs later on.

The following two definitions present two alternatives thatcan be used to instantiateF from Defini-
tion 2.2; when the (non-strong) forcing relation is used in the definitions, it is implicitly instantiated with
the strong forcing relation being defined. Note that, type theoretically, (non-strong) forcing and strong
forcing need not be defined simultaneously, Definition 2.2 comes first.

Definition 2.4 (Strong forcing, call-by-value variant). Thestrong forcingrelationw
s
b A is defined by

recursion on the typeA, by the following clauses:

w
s
b A := XwbA (A−atomic type)

w
s
b A∨B := w
s

b A+w
s
b B

w
s
b A→ B := (w′ : K)(w≤ w′→ w′
s

b A→ w′
b B)

Definition 2.5 (Strong forcing, call-by-name variant). Thestrong forcingrelationw
s
b A is defined by

recursion on the typeA, by the following clauses:

w
s
b A := XwbA (A−atomic type)

w
s
b A∨B := w
b A+w
b B

w
s
b A→ B := (w′ : K)(w≤ w′→ w′
b A→ w′
b B)

Although a different strong forcing relation(·
s
· ·) determines a different forcing relation(·
· ·), the

important properties that hold of the latter are nonetheless the same regardless of which strong forcing
was chosen.

Lemma 2.6. The following properties hold of strong and ordinary forcing:

w≤ w′→ w
s
b A→ w′
s

b A

w≤ w′→ w
b A→ w′
b A

b⊑ b′→ w
s
b A→ w
s

b′ A

b⊑ b′→ w
b A→ w
b′ A

w
b⊥→ Xwb⊥ (run(·))

w
s
b A→ w
b A (return(·))

(w′ : K)(w≤ w′→ w′
s
b A→ w′
b B)

→ w
b A→ w
b B (bind(·, ·))

90 Type Directed Partial Evaluation for Level-1 Shift and Reset

Proof. The proofs of monotonicity of strong forcing with respect to≤ and⊑ are done by induction on
the formulaA using monotonicity ofX. Monotonicity of (non-strong) forcing requires no induction. The
proofs of run(·), return(·), and bind(·, ·) follow the structure given on Figure 1.

We will use the same turnstile symbols to denote forcing and strong forcing offinite listsof formulas,
Γ, defined by,

w
b nil := Unit

w
b cons(A,Γ) := w
b A×w
b Γ
w
s

b nil := Unit

w
s
b cons(A,Γ) := w
s

b A×w
s
b Γ,

where× is the product type (i.e. logical conjunction, when used as apredicate) and Unit is the singleton
type. Naturally, the monotonicity properties from the previous lemma extend to forcing and strong
forcing for lists.

Theorem 2.7(Evaluation for call-by-name). If p : Γ ⊢b A, then for any w and any b′ such that b⊑ b′ we
have that from the finite product w
b′ Γ we can construct w
b′ A.

Theorem 2.8(Evaluation for call-by-value). If p : Γ ⊢b A, then for any w and any b′ such that b⊑ b′ we
have that from the finite product w
s

b′ Γ we can construct w
b′ A.

Proof. The proofs of both theorems are done in continuation-passing style, by using induction on the
derivation ofp. The program skeletons that corresponds to the proofs can beseen on figures 2 and 3, and
the full proofs are available in the Coq formalization.

2.2 Reifying from the Models

While the evaluation theorems from the previous subsectioncan be used for any concrete structure that
implements the Kripke-CPS models axiomatization, in this section we build one such model,U , the
universal model, from syntactic elements. It gets its name from the fact thatif something is forced inU
then it is also forced in any other possible model.

To obtain a finer grained characterization of the TDPE procedure, we will separate the lambda terms
into a level ofnormal termsand a level ofneutral termsusing the following inductive definition.

(− ⊢nf
b −) ∋ r ::= lam(r) | inl(r) | inr(r) | shift(r) | e

(− ⊢ne
b −) ∋ e ::= app(e, r) | case(e, r1, r2) | reset(e) | hyp | wkn(r)

This definition concernstypedlambda terms (i.e. typing tree derivations), although typing information
has been suppressed.

The separation into normal versus neutral terms is standardin the NBE literature, but what is new
here is that, in order to obtain the Disjunction Property at the end of this section,reset(·) has to be neutral.

Definition 2.9 (The modelU). The universal Kripke-CPS modelU is built when the set of worlds is
the set of contextsΓ,

K := List(Formula),

Danko Ilik 91

and the predicateX is defined by recursion on the structure of types of the objectlanguage,

XΓbA := Γ ⊢ne
b A (A−atomic type)

XΓb⊥ := Γ ⊢ne
b ⊥

XΓb(A∨B) := Γ ⊢nf
b A∨B

XΓb(A→ B) := Γ ⊢nf
b A→ B,

as the set of terms in normal or neutral form of the given type.
The pre-order≤ is defined as the prefix relation on lists. It is not hard to see that reflexivity and tran-

sitivity of ≤ hold, and that≤-monotonicity and⊑-monotonicity hold by the weakening properties of the
typing system (formal lemmasproof nf mon, proof ne mon, proof nf mon2, andproof ne mon2).
The property meta-reset() is provided by the syntacticreset() rule (formal lemmaX reset).

We can now prove that for any meta-level evaluation there exists a term in the object language
(reificationpart). Due to contravariance of implication (function types), we need a simultaneous map in
the other direction (reflectionpart)1.

Theorem 2.10(Reification (↓) and reflection (↑)). Given A: Formula, Γ : List(Formula) and b: Bool,
the following two statements hold:

Γ
b A→ Γ ⊢nf
b A “reify” (Γ↓Ab (·))

Γ ⊢ne
b A→ Γ
b A “reflect” (Γ↑Ab (·))

Proof. The two statements are proved simultaneously, by inductionon the typeA. The program skeleton
corresponding to the proof can be seen on figures 4 and 5. The full proof is done in continuation passing
style and is available in the Coq formalization.

Let reflect(Γ,b) denote the fold-left of the listΓ for the reflection function applied to a variable (hyp),
using the unit type constructor tt in the base case. For example, for Γ := cons(A,cons(B,cons(C,nil))),
we have

reflect(Γ,b) : Γ
b A×Γ
b B×Γ
b C×Unit

reflect(Γ,b) = Γ↑Ab (hyp),
Γ↑Bb (hyp),

Γ↑Cb (hyp), tt

We can now obtain the main result of the paper by composing theEvaluation theorems with the
Reification theorem, all of which have constructive proofs.In other words, we take a termp, apply a
meta-CPS translationJ·K on it, in an initial environment built from the contextΓ by the reflect function,
and then reconstruct a term in normal form based on the typeA using the reification function(↓ ·).

Corollary 2.11 (TDPE for call-by-name). Given p: Γ ⊢b A, we have thatΓ↓Ab (JpKreflect(Γ,b)) : Γ ⊢nf
b A.

Corollary 2.12 (TDPE for call-by-value). Given p: nil ⊢b A, we have thatnil↓Ab (JpKUnit) : nil ⊢nf
b A.

Remark2.13. The difference in formulation between the two corollaries is due to the fact that the Eval-
uation theorem for call-by-name (Theorem 2.7) uses ordinary forcing for the contextΓ, while the cor-
responding Theorem 2.8 for call-by-value uses strong forcing. TDPE for CBN can therefore be run on
open terms directly, while for CBV we have to have a closed term as input, although TDPE for CBV
does normalize below lambda abstractions.

1Note that, while reflection and evaluation (theorems 2.7 and2.8), have the same typing, the first just does eta-expansions
by recursion on the object-language type, while the latter is more informative being defined by recursion on the object-language
term.

92 Type Directed Partial Evaluation for Level-1 Shift and Reset

return(·) :−
s
b A→−
b A

return(α) := κ 7→ κ ·α

bind(·, ·) : (−
s
b A→−
b B)→−
b A→−
b B

bind(φ ,α) := κ 7→ α · (α ′ 7→ φ ·α ′ ·κ)

run(·) :−
b⊥→−

s
b⊥

run(α) := α · (χ 7→ χ)

Figure 1: Monadic glue functions

The following property shows that the calculus from Table 1 can be considered a constructive logical
system, despite the fact that it contains control operatorswhich are usually connected with classical logic.
(Classical logic does not have this property)

Proposition 2.14(Disjunction Property). If p : nil ⊢0 A∨B then from p one can get p′ such that either
p′ : nil ⊢0 A or p′ : nil ⊢0 B.

Proof. We can use TDPE to transformp to a term in normal formr : nil ⊢nf
0 A∨B. Now, from the syntax

of normal and neutral forms, one can see that the only possibilities for r are that it is either ainl(r ′) or a
inr(r ′) – r can not be any of the neutral forms because it does not have a free variable (the context is nil)
– andr cannot be ashift(·) because of the annotation 0 on the turnstile.

3 Algorithm

In this section we show the algorithmic core of the TDPE procedure. While the exact program in a
dependently typed language can be seen with all its gory details in the Coq formalization, our intention
here is to give a human readable account of the procedure thatwe extracted by hand from the Coq
formalization. This extraction consists in deleting the dependently typed information which is mostly
connected to handling worlds (members of the preorderK) and the associated monotonicity proofs.

We will use two levels of lambda calculus: on one level we willhave the “dynamic” lambda terms
from Table 1, and on the other “static” level we will use ordinary mathematical function notation: “7→”
for abstraction, “·” for application, ι1 for injection-left, ι2 for injection-right, and the usual big-open-
curly-bracket for definition by cases. Small Greek lettersα ,β ,γ ,φ ,κ are used for static variables; there
are no explicit dynamic variables since we use deBruijn indices. The equality symbol “:=” denotes
definitional equality.

The monadic glue functions are defined on Figure 1. Parameters corresponding to dependent types
for world-handling have been left out (worlds are marked with bars “−”).

The evaluation algorithms corresponding to theorems 2.8 and 2.7 are given on figures 2 and 3.
The reification algorithms are defined by mutual recursion with reflection algorithms on figures 4

and 5. For facilitating comparison, the places where call-by-value and call-by-name versions differ are
marked with boxes.

Danko Ilik 93

Jp : Γ ⊢b AKw
bΓ : w
b A

JhypKρ := fst(ρ)
Jwkn(p)Kρ := JpKsnd(ρ)

Jlam(p)Kρ := return(α 7→ JpKα ,ρ)

Japp(p,q)Kρ := bind(φ 7→ φ · JqKρ ,JpKρ)

Jinl(p)Kρ := return(ι1JpKρ)

Jinr(p)Kρ := return(ι2JpKρ)

Jcase(p,q, r)Kρ := bind(γ 7→
{

JqKα ,ρ , if γ = ι1α
JrKβ ,ρ , if γ = ι2β ,JpKρ)

Jshift(p)Kρ := κ 7→ run(JpKreturn(α 7→return(α ·κ)),ρ)

Jreset(p)Kb=1
ρ := return(run(JpKρ))

Jreset(p)Kb=0
ρ := return(meta-reset(run(JpKρ)))

Figure 2: Evaluation for call-by-name

Jp : Γ ⊢b AKw
s
bΓ : w
b A

JhypKρ := return(fst(ρ))
Jwkn(p)Kρ := JpKsnd(ρ)

Jlam(p)Kρ := return(α 7→ JpKα ,ρ)

Japp(p,q)Kρ := bind(φ 7→ bind(φ ,JqKρ),JpKρ)

Jinl(p)Kρ := bind(α 7→ return(ι1α),JpKρ)

Jinr(p)Kρ := bind(α 7→ return(ι2α),JpKρ)

Jcase(p,q, r)Kρ := bind(γ 7→
{

JqKα ,ρ , if γ = ι1α
JrKβ ,ρ , if γ = ι2β ,JpKρ)

Jshift(p)Kρ := κ 7→ run(JpKα 7→return(κ ·α),ρ)

Jreset(p)Kb=1
ρ := return(run(JpKρ))

Jreset(p)Kb=0
ρ := return(meta-reset(run(JpKρ)))

Figure 3: Evaluation for call-by-value

94 Type Directed Partial Evaluation for Level-1 Shift and Reset

Γ↓Ab (·) : Γ
b A→ Γ ⊢nf
b A

Γ↓⊥b (α) := run(α)

Γ↓A0
0 (α) := run(α) for atomicA0 6=⊥

Γ↓A0
1 (α) := shift(α · (χ 7→ app(hyp,χ))) for atomicA0 6=⊥

Γ↓A→B
b (α) := lam(Γ↓Bb (κ 7→ A,Γ↑Ab (hyp) · (α ′ 7→ α · (φ 7→ φ · (return(α ′)) ·κ))))

Γ↓A∨B
0 (α) := α ·

(

γ 7→
{

inl(Γ↓A0 (β)) , if γ = ι1β
inr(Γ↓B0 (β)) , if γ = ι2β

)

Γ↓A∨B
1 (α) := shift(α ·

(

γ 7→
{

app(hyp, inl(Γ↓A1 (β))) , if γ = ι1β
app(hyp, inr(Γ↓B1 (β))) , if γ = ι2β

)

)

Γ↑Ab (·) : Γ ⊢ne
b A→ Γ
b A

Γ↑A0
b (e) := return(e) for atomicA0

Γ↑A→B
b (e) := return(α 7→ Γ↑Bb (app(e,

Γ↓Ab (α))))
Γ↑A∨B

b (e) := κ 7→ case(e,A,Γ↑Ab (hyp) · (α 7→ κ · ι1return(α)),B,Γ↑Bb (hyp) · (α 7→ κ · ι2return(α)))

Figure 4: Reification and reflection for call-by-name

Γ↓Ab (·) : Γ
b A→ Γ ⊢nf
b A

Γ↓⊥b (α) := run(α)

Γ↓A0
0 (α) := run(α) for atomicA0 6=⊥

Γ↓A0
1 (α) := shift(α · (χ 7→ app(hyp,χ))) for atomicA0 6=⊥

Γ↓A→B
b (α) := lam(Γ↓Bb (κ 7→ A,Γ↑Ab (hyp) · (α ′ 7→ α · (φ 7→ φ · (α ′) ·κ))))

Γ↓A∨B
0 (α) := α ·

(

γ 7→

{

inl(Γ↓A0 (return(β))) , if γ = ι1β
inr(Γ↓B0 (return(β))) , if γ = ι2β

)

Γ↓A∨B
1 (α) := shift(α ·

(

γ 7→

{

app(hyp, inl(Γ↓A1 (return(β)))) , if γ = ι1β
app(hyp, inr(Γ↓B1 (return(β)))) , if γ = ι2β

)

)

Γ↑Ab (·) : Γ ⊢ne
b A→ Γ
b A

Γ↑A0
b (e) := return(e) for atomicA0

Γ↑A→B
b (e) := return(α 7→ Γ↑Bb (app(e,

Γ↓Ab (return(α)))))

Γ↑A∨B
b (e) := κ 7→ case(e,A,Γ↑Ab (hyp) · (α 7→ κ · ι1 α),B,Γ↑Bb (hyp) · (α 7→ κ · ι2 α))

Figure 5: Reification and reflection for call-by-value

Danko Ilik 95

3.1 Known Equational Theories

Before considering computational tests, we recall the available equational theories for shift and reset.
The equational theory for call-by-value shift and reset, for the full hierarchy, has been proven sound

and complete with respect to the extended CPS translation [8] by Kameyama [15]. Considering the first
level of the hierarchy which is of interest here, the equations are expressed using the classes ofvalues
(V) andpure evaluation contexts(F),

V ::= x | λx.p F ::= [] | F p |VF,

as follows:

(λx.p)V = p{V/x} (1)

λx.V x=V whenx /∈ FV(V) (2)

(λx.F [x])p= F[p] whenx /∈ FV(F) (3)

〈V〉=V (4)

〈(λx.p)〈q〉〉= (λx.〈p〉)〈q〉 (5)

S k.〈p〉= S k.p (6)

S k.k〈p〉= 〈p〉 whenk /∈ FV(p) (7)

S k.kp= p whenk /∈ FV(p) (8)

〈F[S k.p]〉= 〈p{(λx.〈F [x]〉) / k}〉 whenx /∈ FV(F)∪{k} (9)

The equational theory for call-by-name shift and reset, forthe first level of the hierarchy, has been
studied by Kameyama and Tanaka [16]. For the purpose of proving soundness and completeness with
respect to Biernacka and Biernacki’s [4] call-by-name CPS semantics for shift and reset, Kameyama and
Tanaka distinguish between two kinds of term applications,the usual one, and the one to continuation
variables (←֓); and two kinds of substitutions, for normal variables ({·/x}), and for continuation variables
({k⇒ ·}). The classes of values and pure evaluation contexts are restrictions of the call-by-name ones,
given by:2

U ::= λx.p E ::= [] | E p

The equational theory is as follows,

(λx.p)q= p{q/x} (10)

〈U〉=U (11)

k′ ←֓ E[S k.p] = 〈p{k⇒ (k′ ←֓ E)}〉 (12)

S k.〈p〉= S k.p (13)

S k.k ←֓ p= p whenk /∈ FV(p) (14)

〈E[S k.p]〉= 〈p{k⇒ E}〉, (15)

where the substitutionq{k⇒ ·} is defined by recursive descent on the termq and affects only the sub-
terms of the formk ←֓ p by:

(k′ ←֓ p){k⇒ E}= 〈E[p{k⇒ E}]〉 whenk′ = k

(k′ ←֓ p){k⇒ E}= k′ ←֓ (p{k⇒ E}) whenk′ 6= k

2Kameyama and Tanaka also consider constantsc among the call-by-name values, however no variables are allowed. Since
we do not have constants in our minimal object-language of study, we did not include them as an option ofU .

96 Type Directed Partial Evaluation for Level-1 Shift and Reset

We have used conventional syntax, writingreset(p) as〈p〉, andshift(p) asS k.p, and will continue
to do so in the next subsection.

3.2 Example Runs of the Algorithm

Let us now consider some test-runs of our TDPE procedure. Each example consists of an input term,
marked with a number to refer to, and two outputs: using TDPE for call-by-value (CBV) and for call-
by-name (CBN).

We begin with simple examples where the continuation variable of shift is not used (exceptions
effect).

λx.〈(λy.y)(S k.x)〉 (16)

λx.〈x〉 (CBV)

λx.〈〈x〉〉 (CBN)

λx.〈〈〈(λy.y)(S k.x)〉〉〉 (17)

λx.〈x〉 (CBV)

λx.〈〈x〉〉 (CBN)

The CBN normal forms are not perfect as the resets are systematically duplicated at top level. This
duplication is not related to the number of reset as input, ascan be seen from Example (17), but to a
“bug” in the Coq formalization. Namely, the lemmaKont sforces mon2’, proving monotonicity of
non-strong forcing with respect to the Boolean order, uses areset in the proof, and, since this lemma is
not used in the CBV case, the problem does not appear there.3

The CBV equational theory can derive the TDPE output for examples (16) and (17). The CBN
equational theory derivesλx.〈x〉 but not λx.〈〈x〉〉. However, our TDPE for CBN identifies the two,
because it also normalizesλx.〈x〉 to λx.〈〈x〉〉.

The next example does not use a control operator, but has a delimiter.

λxy.〈〈xy〉〉 (18)

λxy.〈xy〉 (CBV)

λxy.〈〈x〈y〉〉〉 (CBN)

The CBV and CBN equational theories do not transform Example(18) further, because the subtermxy
is not a value. TDPE for CBV removes one delimiter, as ifxy were a value, and TDPE for CBN delimits
the inside variable y, as if it were taking into account that variables are not values according to the CBN
equational theory.

Let us consider an example that uses the continuation insidea shift.

λxy.〈x(S k.k(ky))〉 (19)

λxy.〈x(xy)〉 (CBV)

λxy.〈〈x〈y〉〉〉 (CBN)

3The solution might be to make the non-strong forcing monad monotone also for the⊑ relation and not only for≤ on
worlds, and is the subject of future work.

Danko Ilik 97

Starting from Example (19), the CBV equational theory can obtain the termλxy.〈(λa.〈xa〉)
(

(λa.〈xa〉)y
)

〉,
and then also the termλxy.〈(λa.〈xa〉)〈xy〉〉, however, no further rewriting is possible using that theory,
because neither is〈x[]〉 a pure evaluation context nor is〈xy〉 a value. As for the CBN equational theory, it
can not rewrite the starting term (19), because there are nested applications to the continuation variable
k ←֓ (k ←֓ y) and, unlike in the CBV case,x[] is not a pure evaluation context in CBN. Note that: 1) there
is nox missing in the output of CBN TDPE; 2) the termλxy.〈(λa.〈xa〉)〈xy〉〉 obtained by CBV equations
is normalized by the CBV TDPE procedure to the same thing as term (19) (seenbe tests.v from the
implementation), meaning that TDPE knows how to further reduce those “blocked” terms.

The following example is very similar to the previous one, hence we will not comment on it much,
but its purpose is to show that CBN TDPE can duplicate the variablex if needed.

λxy.〈x〈x(S k.k(ky))〉〉 (20)

λxy.〈x(x(xy))〉 (CBV)

λxy.〈〈x〈x〈y〉〉〉〉 (CBN)

The next example contains an evaluation context and a form ofshift that can be used with the equa-
tional theory for CBN.

λxy.〈(S k.ky)x〉 (21)

λxy.〈yx〉 (CBV)

λxy.〈〈y〈x〉〉〉 (CBN)

The CBV equational theory rewrites (21) toλxy.〈〈yx〉〉, and the CBN one rewrites (21) toλxy.〈yx〉. If
we apply TDPE on these results of rewriting, we get the same output as the TDPE for (21).

In the following example, two shifts interact inside the same reset.

λxyz.〈
(

S k.y(kz)
)(

S k′.z(k′x)
)

〉 (22)

λxyz.〈y(z(zx))〉 (CBV)

λxyz.〈〈y〈z〈z〈x〉〉〉〉〉 (CBN)

The CBV equational theory can transform (22) toλxyz.〈y〈z〈zx〉〉〉 which can in turn be transformed by
CBV TDPE to the same result as for (22). The CBN equational theory can rewrite the left occurrence
of shift and obtainλxyz.〈y〈z

(

S k′.z(k′x)
)

〉〉, but no further rewriting is possible becausez[] is not a pure
evaluation context in CBN; nevertheless,λxyz.〈y〈z

(

S k′.z(k′x)
)

〉〉 can further be transformed by CBN
TDPE to the same output as for (22).

We consider an example that involves sum types, but briefly, since we do not have a ready made
equational theory to compare the output to.

λxy.〈casex of (λz.S k.kz‖ λz.z)〉 (23)

λxy.casex of (λz.〈z〉 ‖ λz.〈z〉) (CBV)

λxy.casex of (λz.〈〈〈z〉〉〉 ‖ λz.〈〈〈z〉〉〉) (CBN)

We see that not only the reset is pushed from the front of the case-expression into its branches.

98 Type Directed Partial Evaluation for Level-1 Shift and Reset

4 Discussion and Related Work

The CPS translation that we use for CBV TDPE is exactly4 the standard (non-extended) CBV CPS
translation of Danvy and Filinski [8], known also as 1-CPS. Terms in 1-CPS arising from shift are not
evaluation-order independent when executed in regular functional programming languages, and that is
why, to fix the semantics of shift and reset regardless of the target language of CPS, an additional CBV
CPS translation of the CPS result is usually performed, and this composition of two CPS translations is
known as the extended CPS, or 2-CPS. It is with respect to this2-CPS that Kameyama [15] proved the
equational theory for CBV to be sound and complete.

The CPS translation used for CBN TDPE isnot the available 1-CPS of Biernacka and Biernacki
[4]. The difference is in the shift rule (see Figure 2), as Biernacka and Biernacki’sJshift(p)Kρ := κ 7→
run(JpKκ ,ρ) would not type check in our type theoretic model. The standard 2-CPS translation, that
Kameyama and Tanaka [16] proved their equational theory forCBN sound and complete for, is obtained
by performing aCBV translation of the 1-CPS CBN translation.

We profit from our implementation language having strong reduction5 in that we do not have to apply
two passes of CPS. That is, 1-CPS is sufficient because our evaluation (CPS translation) of a term at the
meta-level is a typed and closed term which reduces to the same normal form regardless of the reduction
strategy. The typed CPS-s used by Kameyama and Tanaka need recursive types, while we do not. On
the other hand, we do not know if it possible at all to account for constants defined by general recursion
in our model6. The question, therefore, of whether our TDPE could be useful in practice is open. We
certainly find it useful when “practice” concerns lambda calculi for Logic and proof assistants.

We saw in Subsection 3.2 that some terms that cannot be further rewritten by the equational theories,
can be further normalized by the TDPE. On the other hand, the equational theories have been proven to
be sound and complete with respect to the CPS translation, that is, an equation holds between two terms
if and only if the two terms haveβ -η-equal CPS translations. That means that the extra “rewriting”
done by the TDPE somehow extends the equality of CPS translations – indeed, the outputs of TDPE
for the examples of Subsection 3.2 donot have CPS translationsβ -η-equal with the ones of the inputs.
Nevertheless, at least for all the examples that we have tested, the TDPE identifies the original terms with
the “intermediary” results arrived to by the equational theories.

As for the typing system we use, we note that it is Filinski’s system [10], which is sufficient for
representing monadic effects by delimited control. A difference with that system is that there is an
annotationb on the turnstile (⊢b) whose purpose is to not allow shifts appearing outside the delimited.
This could have also been guaranteed by an external syntactic criteria on whole terms, but the calculus
is easier to model if all information is already present in the typing system. The more general typing
system for shift and reset, with answer type modification, can type check more programs, but with the
price of a function being able to modify its own answer type that we are not ready to pay. In particular,
the modified meening of implication would not immediately correspond to something well known on the
side of Logic.

4There are additional typing annotations concerning worldsattached to the continuations at the type theoretic level. Another
subtle point is that, when evaluating reset (figures 2 and 3),the type theoretic model predicates when to insert a syntactic reset
between the return and the run. One may insert a reset in the other cases as well, if one wants to obtain normal forms with more
resets, but we prefer to not do it since it is not mandated by the model.

5Constructive type theory is strongly normalizing and thereis a simple and efficient implementation of a virtual machine
for strong reduction [11].

6We have however, in separate work, extended the model to higher type primitive recursion (Godel’s System T) plus shift
and reset on numeric types.

Danko Ilik 99

Our work was developed independently of the results of the previous work on TDPE for CBV shift
and reset of Tsushima and Asai [18], which seems to derive from their preceding works on traditional
offline and online partial evaluation for shift and reset [1,2]. The difference between theirs and our
results seems to be that: 1) they treat a more general typing system (function types with answer type
modification); 2) we aim to produce normal forms that eliminate as many shifts and resets as possible:
for example, during reification for function types, Tsushima and Asai’s TDPE constructs ashift(·) imme-
diately after the firstlam(·), whereas we postpone the construction ofshift(·) to some cases of reification
that will subsequently called.

Acknowledgements

I thank the anonymous referees for pointing out problematicparts that led to improvement of the paper.

References

[1] Kenichi Asai (2002):Online partial evaluation for shift and reset. In Peter Thiemann, editor:Proceed-
ings of the 2002 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipu-
lation (PEPM ’02), Portland, Oregon, USA, January 14-15, 2002, ACM, pp. 19–30, doi:10.1145/503032.
503034.

[2] Kenichi Asai (2004):Offline partial evaluation for shift and reset. In Nevin Heintze & Peter Sestoft, editors:
Proceedings of the 2004 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program
Manipulatiog, 2004, Verona, Italy, August 24-25, 2004, ACM, pp. 3–14, doi:10.1145/1014007.1014009.

[3] Ulrich Berger & Helmut Schwichtenberg (1991):An Inverse of the Evaluation Functional for Typed lambda-
calculus. In: Proceedings, Sixth Annual IEEE Symposium on Logic in Computer Science, 15-18 July, 1991,
Amsterdam, The Netherlands, IEEE Computer Society, pp. 203–211, doi:10.1109/LICS.1991.151645.

[4] Malgorzata Biernacka & Dariusz Biernacki (2009):Context-based proofs of termination for typed delimited-
control operators. In: Proceedings of the 11th ACM SIGPLAN conference on Principles and practice of
declarative programming, PPDP ’09, ACM, New York, NY, USA, pp. 289–300, doi:10.1145/1599410.

1599446.

[5] Catarina Coquand (1993):From Semantics to Rules: A Machine Assisted Analysis. In: CSL ’93, Lecture
Notes in Computer Science832, Springer, pp. 91–105, doi:10.1007/BFb0049326.

[6] Olivier Danvy (1999):Type-Directed Partial Evaluation. In John Hatcliff, Torben Mogensen & Peter Thie-
mann, editors:Partial Evaluation, Lecture Notes in Computer Science1706, Springer Berlin / Heidelberg,
pp. 367–411, doi:10.1007/3-540-47018-2_16.

[7] Olivier Danvy & Andrzej Filinski (1989):A Functional Abstraction of Typed Contexts. Technical Report,
Computer Science Department, University of Copenhagen. DIKU Rapport 89/12.

[8] Olivier Danvy & Andrzej Filinski (1990):Abstracting Control. In: LISP and Functional Programming, pp.
151–160, doi:10.1145/91556.91622.

[9] Olivier Danvy & Andrzej Filinski (1992):Representing Control: A Study of the CPS Transformation. Math-
ematical Structures in Computer Science2(4), pp. 361–391, doi:10.1017/S0960129500001535.

[10] Andrzej Filinski (1996):Controlling Effects. Ph.D. thesis, School of Computer Science, Carnegie Mellon
University. Technical Report CMU-CS-96-119 (144pp.).

[11] Benjamin Grégoire & Xavier Leroy (2002):A compiled implementation of strong reduction. SIGPLAN Not.
37(9), pp. 235–246, doi:10.1145/583852.581501.

[12] Danko Ilik (2012):Delimited control operators prove Double-negation Shift. Annals of Pure and Applied
Logic 163(11), pp. 1549 – 1559, doi:10.1016/j.apal.2011.12.008.

http://dx.doi.org/10.1145/503032.503034
http://dx.doi.org/10.1145/503032.503034
http://dx.doi.org/10.1145/1014007.1014009
http://dx.doi.org/10.1109/LICS.1991.151645
http://dx.doi.org/10.1145/1599410.1599446
http://dx.doi.org/10.1145/1599410.1599446
http://dx.doi.org/10.1007/BFb0049326
http://dx.doi.org/10.1007/3-540-47018-2_16
http://dx.doi.org/10.1145/91556.91622
http://dx.doi.org/10.1017/S0960129500001535
http://dx.doi.org/10.1145/583852.581501
http://dx.doi.org/10.1016/j.apal.2011.12.008

100 Type Directed Partial Evaluation for Level-1 Shift and Reset

[13] Danko Ilik (2013):Continuation-passing style models complete for intuitionistic logic. Annals of Pure and
Applied Logic164(6), pp. 651 – 663, doi:10.1016/j.apal.2012.05.003.

[14] Danko Ilik, Gyesik Lee & Hugo Herbelin (2010):Kripke models for classical logic. Annals of Pure and
Applied Logic 161(11), pp. 1367 – 1378, doi:10.1016/j.apal.2010.04.007. Special Issue: Classical
Logic and Computation (2008).

[15] Yukiyoshi Kameyama (2007):Axioms for control operators in the CPS hierarchy. Higher Order Symbol.
Comput.20(4), pp. 339–369, doi:10.1007/s10990-007-9009-x.

[16] Yukiyoshi Kameyama & Asami Tanaka (2010):Equational axiomatization of call-by-name delimited control.
In: Proceedings of the 12th international ACM SIGPLAN symposium on Principles and practice of declara-
tive programming, PPDP ’10, ACM, New York, NY, USA, pp. 77–86, doi:10.1145/1836089.1836100.

[17] A. S. Troelstra & D. van Dalen (1988):Constructivism in mathematics. Vol. I. Studies in Logic
and the Foundations of Mathematics121, North-Holland Publishing Co., Amsterdam, doi:10.1016/

S0049-237X(09)70523-3. An introduction.

[18] Kanae Tsushima & Kenichi Asai (2009):Towards Type-Directed Partial Evaluation for Shift and Reset. In:
Informal proceedings of the 2009 Workshop on Normalizationby Evaluation, Los Angeles, California, pp.
57–64.

http://dx.doi.org/10.1016/j.apal.2012.05.003
http://dx.doi.org/10.1016/j.apal.2010.04.007
http://dx.doi.org/10.1007/s10990-007-9009-x
http://dx.doi.org/10.1145/1836089.1836100
http://dx.doi.org/10.1016/S0049-237X(09)70523-3
http://dx.doi.org/10.1016/S0049-237X(09)70523-3

	1 Introduction
	2 Type-theoretic Model
	2.1 Evaluating into the Models
	2.2 Reifying from the Models

	3 Algorithm
	3.1 Known Equational Theories
	3.2 Example Runs of the Algorithm

	4 Discussion and Related Work

