Verified Subtyping with Traits and Mixins

Asankhaya Sharma
Department of Computer Science
National Univeristy of Singapore

asankhs@comp.nus.edu.sg

Traits allow decomposing programs into smaller parts andnsiare a form of composition that
resemble multiple inheritance. Unfortunately, in the pre=e of traits, programming languages like
Scala give up on subtyping relation between objects. Inghjger, we present a method to check
subtyping between objects based on entailment in separatjic. We implement our method as a
domain specific language in Scala and apply it on the Scatalatd library. We have verified that
67% of mixins used in the Scala standard library do indeedloconto subtyping between the traits
that are used to build them.

1 Introduction

Traits [€] have been recognized as a mechanism to supporgfaieed reuse in programming. Sev-
eral programming languages (Scala, Fortress, Ruby, etqppost the use of traits in some form or
other. Traits and mixins provide support for code reuse amdposition that goes beyond classes and
inheritance in object oriented programs. In addition, cbgiented (OO) programs themselves are no-
toriously hard to verify in a modular fashion. Recenily[[4],] separation logic based approach has
yielded success in verification of object oriented prograntss include support for verifying inheritance
and behavior subtyping, in conformance with OO paradignthis paper, we extend the work done on
verification of OO programs in separation logic to verify syding with traits and mixins.

Below we consider an example that illustrates the problesubfyping with traits and mixins. The
ICell trait captures an object with an integer value that can bessed wittget andset methods. The
BICell trait provides a basic implementation fi@ell, while theDoubleandInc traits extend théCell
trait by doubling and incrementing the integer value retpely.

trait DoubleextenddCell {
abstract override defet(x : Int)
{ superset(2xx)}

trait BlCell extendsICell {
private varx:Int=20

trait ICell { def get())
gg: g;[(())(:2:)} de{fxs}eI(X' Int) trait Inc extenddCell {
' o abstract override defet(x : Int)
{thisx=x}
! } {superset(x+ 1)}

These traits are used in the following class mixins. Theg@teralue field of the objects @ddICell
mixin is always odd, while the value is even for object€aenICellmixin.

class OddICellextends BlCell with Inc with Double
class EvenlCellextends BICell with Doublewith Inc

S.-W. Lin and L. Petrucci (Eds.): 2nd French Singaporean © Asankhaya Sharma
Workshop on Formal Methods and Applications This work is licensed under the
EPTCS 156, 2014, pp. 45551, doi:10.4204/EPTCS.156.8 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.156.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

46 Verified Subtyping with Traits and Mixins

In the presence of traits, the type system of Scala is natgtoough to distinguish between accepted
uses of the traits. This can be illustrated by the followirgraple.

defm (c: BICell with Inc with Double) : Int = {c.get}
val oic = newOddICell

val eic= newEvenICell

m(oic) // Valid

m(eic) // Valid

The methodm can be called with an object of both mixis/enlCellandOddICell, even though
the expected object (c) type is a supertypelofdICell and notEvenlCell Thus, the type system in
Scala cannot distinguish between the two calls made to mathas it does not check for subtyping
between the objects. The key contribution of this paper jsrésent a method for checking subtyping
in the presence of traits and mixins in Scala. In sedtion 2pwsent an approach based on entailment
in separation logic to verify subtyping. In sectioh 3, wegenet a domain specific language which is
embedded in Scala and can support verified subtyping witls stad mixins. We apply our technigue to
the mixin class hierarchies in the Scala standard libradyanify subtyping in 67% of the traits as shown
in sectiorC4. Our complete development including the sonoke of the domain specific language and
all examples are available on-line at the following URL.

http://loris-7.ddns.comp.nus.edu.sg/ ~ project/SLEEKDSL/

2 Verified Subtyping

We consider a core language based 6n [4] for formalizing ppraach. As shown in figuté 1, to simplify
the presentation we focus only on type information for $raitd mixins while ignoring all other features
in our core language. We also assume that all classes arefpaitin compositions and only traits are
used to create mixins. Since, existing approaches [4] cadldalass based single inheritance, we focus
only on mixin compositions in this paper. The rest of the tatds in the core language are related
to predicates®) in separation logic. Each trait (and mixi@)can be represented by a corresponding
predicateC(v*).

mixin ::= class Clextends g [with C,]*
pred :=C(V)=® [inv 1]
) t=V (3w KA

K = emp | C(V*) | K1* K2

m r=a|mAe axi=6]-8

B ’=Vi=Vp | v=null | a<0| a=0
a t=Kk|kxv|ai+a

Figure 1: Core Language for Traits and Mixins

Predicates based on separation logic are sufficient tofgpaciins because of class linearization in
Scala[[10]. After class linearization a mixin class composi(unlike multiple inheritance) has a single
linear hierarchy. In the case of our running example, thamaigive rise to the following linearizations:

http://loris-7.ddns.comp.nus.edu.sg/~project/SLEEKDSL/

Asankhaya Sharma 47

OddICell+ Double« Inc + BICell
OddICellthis) = BICell(this,v) x Inc(v,v;) x* Double(vy,null)
EvenlCell+ Inc «+ Double+ BICell
EvenlCellthis) = BlCell(this, v) « Double(v, v) * Inc(vi,null)

A mixin class composition can be treated as a single inheritdnierarchy based on the linearization
and thus, subtyping between the mixins can be decided bichiethe entailment based on separation
logic predicates. In case of our running example, the catiéthodm s valid with oic object but not the
eic object as the following entailments show.

OddICelloic) + BICell(c,V) x Inc(v,v;) x Double(v;,null) Valid
EvenlCelleic) + BICell(c,V) « Inc(v,v1) * Double(v;,null) Invalid

We now show how the problem of checking subtyping betweeeatdjpelonging to two different mixins
is reduced to an entailment between the correspondinggatiedi in separation logic. This entailment
can be checked with the help of existing solvers for separdtigic (like SLEEK [3]). The entailment
rule for checking subtyping with traits and mixins is giverfigure[2. An object of mixirC is a subtype
of mixin D when the entailment between their corresponding predicatseparation logic is valid.

[ENT—Subtype—Check]
class Clextends g [with C;J*
class D[extends B [with Dy|*
Cy(this,v1)[+Ca(va,v2)]" F Dy(this, uy)[D2(us, Up)]*
C<:D

Figure 2: Checking Subtyping with Entailment

Entailment checking in separation logic can be used to éesutbtyping with traits and mixins. But
in order to integrate subtyping support inside Scala we $acee engineering challenges. In particular,
it is too restrictive and infeasible to do this kind of cheaukifor all the mixins. This requires support
for selective subtyping as all mixins will not satisfy thebggpe relation. In order to provide the pro-
grammer the choice of checking subtyping usage in their austiive have implemented an embedded
domain specific language (DSL) in Scala. This DSL uses theEXL_&ntailment checker for checking
the validity of entailments in separation logic. In the ngattion we describe the SLEEK DSL and how
it is integrated in Scala.

3 Implementation with SLEEK DSL

Our proposal is based on embedding a domain specific langi#idgeEK DSL) in Scala. As shown

in figure[3, a Scala library (SLEEK lib) interfaces directlythvthe external application - the SLEEK
entailment prover. In addition, we extend Scala with a DSLEEK DSL) which makes use of the Scala
library to provide the entailment checking feature insid®l& programs. Further, for using with the
Scala interpreter we provide an interactive mode (SLEE&r)nwhich uses the SLEEK DSL and library
to enable interactive entailment proving. Thus, the im@etation of the verified subtyping in Scala
with SLEEK has three main components:

48 Verified Subtyping with Traits and Mixins

[

\
I DSL H Library I» SLEEK Entailment
? ? Prover

I Interactive Mode I

Scala with SLEEK
\ J

Figure 3: Overview of SLEEK DSL

— a Scala library that supports all SLEEK interactions

— adomain specific language (DSL) implemented in Scala thatetsdhe SLEEK input language.
With this DSL we get for free embedded type checking in Scala.

— a helper library designed for the Scala interpreter. Thatipruns SLEEK in interactive mode in
the background to provide seamless integration with Scala.

In short, the SLEEK library provides basic functionality fmonstructing Scala objects representing
separation logic formulas. The entailment checking metlhad fact the actual front-end for SLEEK.
It takes two Scala objects representing separation logiodtas, translates them to the SLEEK input
language and invokes SLEEK. The result and the possibléuess captured and parsed using the Scala
parser combinator library to extract the Scala representatTo facilitate a better syntax for writing
formulas and support for richer interplay with the Scalaetypve present a domain specific language,
SLEEK DSL implemented on top of the Scala library. We will lmé the SLEEK DSL by presenting
how an entailment checking can be encoded in our DSL.

3.1 SLEEK DSL

As an example consider the following entailment check betwtvo separation logic formulas defined
using SLEEK DSL.
valr = x:node(_,null) - x::11(m) && m ===

It encodes an entailment between two formulas, one desgriisingle heap node, an instance of a
data structure calledode The second formula describes a state in which x is the rootgroof for a
data structure described by theredicate. This predicate abstracts a linked list of size m.

SLEEK DSL relies on the functions defined in the SLEEK Librargreate new easy to use operators
that provide a more user friendly syntax. A special operdiar double colon (::) is used to describe the
points-to relation commonly used for heap nodes. It alseiges the usual arithmetic (e.g-,—) and
boolean (e.g. &&||, ===, ! ==,) operators to help in constructing the separation logimfda. The
notation used in the DSL is similar to the one used for SLEEK3jn The use of a DSL allows easy
intermixing of SLEEK formulas with other Scala types. We usglicit conversions between types (e.g.
from scalalnt to formulgIntSorf) to make it even easier to use these formulas in Scala pregram

Furthermore, our library provides a definition for tis&alid method in the formula class. In order
to check the validity of the above entailment it is sufficiemtall r.isValid which feeds the entailment
to SLEEK and converts the result back intes@laBooleanfor use as a conditional. Implicit methods
provide an easy mechanism to convert from one type of obetite desired type. This enables the

Asankhaya Sharma 49

support for a SLEEK like syntax within Scala. Formulas allmwa variety of types for the parameters
used (such asandm). In the Scala library these types are grouped under thewolp type hierarchy.

sealed traitTop
trait BoolSort extendsTop
trait IntSort extendsTop
trait BagSort extendsTop
trait ShapeSortextendsTop
trait Bottom extendsBoolSort
with IntSort with BagSort with ShapeSort

This trait allows the embedding of the types used in the sgjoar logic formula as Scala types. By
defining the various operators using these types, soft typeking for SLEEK formulas is automatically
ensured by the underlying Scala type system. The benefiting @asDSL is that it provides a simpler
syntax and familiar look and feel for the user of the librare formula represented by the DSL is also
much more concise.

The SLEEK DSL allows programmers to verify entailments teritin separation logic. In addition,
programmers can use the DSL to encode subtyping check adaimamt check in separation logic as
described in sectidd 2.

3.2 SLEEK Interactive Mode

The Scala runtime provides a good interpreter for rapidgbyping which can be used from the command
line. Similarly, SLEEK also has an interactive mode in whitciccepts commands and gives the results
back to command line. In order to make SLEEK'’s interactivedmavailable to the Scala interpreter,
we provide a helper library that hides the extra intricaanesirred by using SLEEK interactively. The
benefit of using the interactive mode is that the user definedigates and data types will not be defined
again with each call tisValid method. This makes the interactive mode of SLEEK DSL fasteerw
compared to calling the same function from the basic SLEB#atiy.

Our implementation for verified subtyping integrates inttald@ as an APl (SLEEK library), as a
language (SLEEK DSL) and as an interpreter (SLEEK Intevaatiode). This provides programmers
the ability to use our procedure in different ways as desired

4 Experiments

We have used SLEEK DSL to verify subtyping of mixin compasis from the Scala standard library. To
the best of our knowledge this it the first such study of subtyin Scala. The following table presents
the results. The first column is the name of the class hieyadiie second column lists the total number
of mixins in the hierarchy, while the third column gives thawmber of mixins for which we can verify
that the subtyping relation holds. The last column givegoreentage of mixins with subtyping.

Class Hierarchy | Total Num of Mixing Mixins with Subtyping Percentage

Exceptions 11 11 100
Maths 5 4 80
Parser Combinator 6 6 100
Collections 27 12 44

Total 49 33 67

50 Verified Subtyping with Traits and Mixins

As an example of mixin hierarchy whose subtyping relatiomsverified consider the following which
represents the maths library in Scala. The only mixin whigtaks the subtyping relation is PartialOrdering.
Rest of the mixins can be verified to respect the expectedginigt Thus we have verified that subtyping
holds for 4 out of 5 mixins that are part of math class hierarch

Equiv is SUPERTYPE of PartialOrdering
PartialOrdering is NOT SUPERTYPE of Ordering
Ordering is SUPERTYPE of Numeric
Numeric is SUPERTYPE of Integral
Numeric is SUPERTYPE of Fractional

5 Related Work

The work that comes closest to our method for checking siyis the work of Bierman et.al[2], they
provide a mechanism to use SMT solvers for deciding subtypira first order functional language. On
the other hand, we use SLEEK an entailment checker for sipaiagic to decide subtyping between
traits and mixins. SMT solvers have also been used [1] fafyieg typing constraints. Similar to our
implementation of SLEEK DSL, th8cal&? proposal of Koksal et. al [9] integrates the Z3 SMT solver
into Scala. Although the integration is similar, the twovens have different focuses: Z3 is a general
SMT solver, while SLEEK is a prover for separation logic.

Another line of work is on specification and verification dits and mixins. Damiani et. al explore
trait verification in [5]. They observe the need for multigieecifications and introduce the concept of
proof outline. They support a trait based language witht@chcomposition - symmetric sum of traits and
trait alteration. Our work does not directly address thaessf trait verification but checking subtyping
is essential part of OO verification using separation lodic We believe that dynamic specifications
of [4] along with verified subtyping can be used to verify tsaand mixins. Behavior subtyping is a
stronger notion of subtyping between objects. The approélzazy behavioral subtypin@[7] can support
incremental verification of classes in presence of muliipteeritance. However, this is overly restrictive
for mixin compositions in Scala and our method provides aatfi@xible support for subtyping in Scala.

6 Conclusions

In this paper, we presented a method to enable verified sulgtyp Scala. Our method is based on
a reduction to entailment checking in separation logic. YNplemented a domain specific language
(SLEEK DSL) in Scala to enable programmers to check subgypintheir programs. Using SLEEK
DSL we carried out a study of the Scala standard library antie@ that 67% of the mixins were
composed of traits that are in a subtyping relation.

Acknowledgements

We thank Shengyi Wang for his prompt and useful feedback ep#éper. Cristian Gherghina and Chin
Wei Ngan provided valuable comments and suggestions onrgnpeasentation of this work.

Asankhaya Sharma 51

References

[1] Michael Backes, Catalin Hritcu & Thorsten Tarracid(2): Automatically verifying typing constraints for
a data processing languageln: Certified Programs and ProofSpringer, pp. 296-313, d&0.1007/
978-3-642-25379-9_22

[2] Gavin M. Bierman, Andrew D. Gordon, Catalin Hritcu &aDid Langworthy (2010)Semantic Subtyping
with an SMT SolverlCFP '10, pp. 105-116, ddi0.1145/1863543.1863560

[3] Wei-Ngan Chin, Cristina David & Cristian Gherghina (201 A HIP and SLEEK verification systenin:
SPLASH pp. 9-10, doit0.1145/2048147.2048152

[4] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen & Shengaoltin (2008):Enhancing modular OO verifi-
cation with separation logicin: POPL pp. 87-99, doit0.1145/1328438.1328452

[5] Ferruccio Damiani, Johan Dovland, Einar Broch Johnseim& Schaefer (2011)Verifying traits: a proof
system for fine-grained reusk: FTfJF, pp. 8:1-8:6, doit0.1145/2076674.2076682

[6] Dino Distefano & Matthew J. Parkinson (2008%tar: towards practical verification for javadn: OOPSLA
pp. 213-226, doi:0.1145/1449764.1449782

[7] Johan Dovland, Einar Broch Johnsen, Olaf Owe & Martinfféte(2011):Incremental reasoning with lazy

behavioral subtyping for multiple inheritanceSci. Comput. Programdoi:10.1016/j.scico.2010.
09.006 .

[8] Stéphane Ducasse, Oscar Nierstrasz, Nathanael I5édé@el Wuyts & Andrew P. Black (2006)Traits: A

mechanism for fine-grained reus&CM Trans. Program. Lang. Sy£28(2), pp. 331-388, ddi0.1145/
1119479.1119483

[9] Ali Sinan Koksal, Viktor Kuncak & Philippe Suter (2011pcala to the power of Z3: integrating SMT and
programming In: CADE, pp. 400-406, dol:0.1007/978-3-642-22438-6_30

[10] Martin Odersky, Philippe Altherr, Vincent Cremet, iluh Dragos, Gilles Dubochet, Burak Emir, Sean
McDirmid, Stphane Micheloud, Nikolay Mihaylov, Michel Sclz, Erik Stenman, Lex Spoon & Matthias
Zenger (2006)An Overview of the Scala Programming Languagechnical Report, EPFL.

[11] Matthew J. Parkinson & Gavin M. Bierman (200&eparation logic, abstraction and inheritanda: POPL,
pp. 75-86, doit0.1145/1328438.1328451

http://dx.doi.org/10.1007/978-3-642-25379-9_22
http://dx.doi.org/10.1007/978-3-642-25379-9_22
http://dx.doi.org/10.1145/1863543.1863560
http://dx.doi.org/10.1145/2048147.2048152
http://dx.doi.org/10.1145/1328438.1328452
http://dx.doi.org/10.1145/2076674.2076682
http://dx.doi.org/10.1145/1449764.1449782
http://dx.doi.org/10.1016/j.scico.2010.09.006
http://dx.doi.org/10.1016/j.scico.2010.09.006
http://dx.doi.org/10.1145/1119479.1119483
http://dx.doi.org/10.1145/1119479.1119483
http://dx.doi.org/10.1007/978-3-642-22438-6_30
http://dx.doi.org/10.1145/1328438.1328451

	1 Introduction
	2 Verified Subtyping
	3 Implementation with SLEEK DSL
	3.1 SLEEK DSL
	3.2 SLEEK Interactive Mode

	4 Experiments
	5 Related Work
	6 Conclusions

