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Reversible systems feature both forward computations and backward computations, where the latter
undo the effects of the former in a causally consistent manner. The compositionality properties and
equational characterizations of strong and weak variants of forward-reverse bisimilarity as well as of
its two components, i.e., forward bisimilarity and reverse bisimilarity, have been investigated on a
minimal process calculus for nondeterministic reversible systems that are sequential, so as to be neu-
tral with respect to interleaving vs. truly concurrent semantics of parallel composition. In this paper
we provide logical characterizations for the considered bisimilarities based on forward and back-
ward modalities, which reveals that strong and weak reverse bisimilarities respectively correspond
to strong and weak reverse trace equivalences. Moreover, we establish a clear connection between
weak forward-reverse bisimilarity and branching bisimilarity, so that the former inherits two further
logical characterizations from the latter over a specific class of processes.

1 Introduction

Reversibility in computing started to gain attention since the seminal works [13, 2], where it was shown
that reversible computations may achieve low levels of heat dissipation. Nowadays reversible computing
has many applications ranging from computational biochemistry and parallel discrete-event simulation
to robotics, control theory, fault tolerant systems, and concurrent program debugging.

In a reversible system, two directions of computation can be observed: a forward one, coinciding
with the normal way of computing, and a backward one, along which the effects of the forward one are
undone when needed in a causally consistent way, i.e., by returning to a past consistent state. The latter
task is not easy to accomplish in a concurrent system, because the undo procedure necessarily starts from
the last performed action and this may not be unique. The usually adopted strategy is that an action can
be undone provided that all of its consequences, if any, have been undone beforehand [7].

In the process algebra literature, two approaches have been developed to reverse computations based
on keeping track of past actions: the dynamic one of [7] and the static one of [18], later shown to be
equivalent in terms of labeled transition systems isomorphism [14].

The former yields RCCS, a variant of CCS [16] that uses stack-based memories attached to processes
to record all the actions executed by those processes. A single transition relation is defined, while actions
are divided into forward and backward resulting in forward and backward transitions. This approach is
suitable when the operational semantics is given in terms of reduction semantics, like in the case of very
expressive calculi as well as programming languages.

In contrast, the latter proposes a general method, of which CCSK is a result, to reverse calculi, relying
on the idea of retaining within the process syntax all executed actions, which are suitably decorated, and
all dynamic operators, which are thus made static. A forward transition relation and a backward transition
relation are separately defined, which are labeled with actions extended with communication keys so as
to remember who synchronized with whom when going backward. This approach is very handy when it
comes to deal with labeled transition systems and basic process calculi.
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In [18] forward-reverse bisimilarity was introduced too. Unlike standard forward-only bisimilar-
ity [17, 16], it is truly concurrent as it does not satisfy the expansion law of parallel composition into a
choice among all possible action sequencings. The interleaving view can be restored in a reversible set-
ting by employing back-and-forth bisimilarity [8]. This is defined on computation paths instead of states,
thus preserving not only causality but also history as backward moves are constrained to take place along
the path followed when going forward even in the presence of concurrency. In the latter setting, a single
transition relation is considered, which is viewed as bidirectional, and in the bisimulation game the dis-
tinction between going forward or backward is made by matching outgoing or incoming transitions of
the considered processes, respectively.

In [4] forward-reverse bisimilarity and its two components, i.e., forward bisimilarity and reverse
bisimilarity, have been investigated in terms of compositionality properties and equational characteri-
zations, both for nondeterministic processes and Markovian processes. In order to remain neutral with
respect to interleaving view vs. true concurrency, the study has been conducted over a sequential pro-
cesses calculus, in which parallel composition is not admitted so that not even the communication keys
of [18] are needed. Furthermore, like in [8] a single transition relation has been defined and the distinc-
tion between outgoing and incoming transitions has been exploited in the bisimulation game. In [3] the
investigation of compositionality and axiomatizations has been extended to weak variants of forward, re-
verse, and forward-reverse bisimilarities, i.e., variants that are capable of abstracting from unobservable
actions, in the case of nondeterministic processes only.

In this paper we address the logical characterization of the aforementioned strong and weak bisim-
ilarities over nondeterministic reversibile sequential processes. The objective is to single out suitable
modal logics that induce equivalences that turn out to be alternative characterizations of the considered
bisimilarities, so that two processes are bisimilar iff they satisfy the same set of formulas of the corre-
sponding logic. Starting from Hennessy-Milner logic [11], which includes forward modalities whereby
it is possible to characterize the standard forward-only strong and weak bisimilarities of [16], the idea is
to add backward modalities in the spirit of [8] so as to be able to characterize reverse and forward-reverse
strong and weak bisimilarities. Unlike [8], where back-and-forth bisimilarities as well as modality inter-
pretations are defined over computation paths, in our reversible setting both the considered bisimilarities
and the associated modal logic interpretations are defined over states.

Our study reveals that strong and weak reverse bisimilarities do not need conjunction in their logical
characterizations. In other words, they boil down to strong and weak reverse trace equivalences, respec-
tively. Moreover, recalling that branching bisimilarity [10] is known to coincide with weak back-and-
forth bisimilarity defined over computation paths [8], we show that branching bisimilarity also coincides
for a specific class of processes with our weak forward-reverse bisimilarity defined over states. Based on
the results in [9], this opens the way to two further logical characterizations of the latter in addition to the
one based on forward and backward modalities. The first characterization replaces the aforementioned
modalities with an until operator, whilst the second one is given by the temporal logic CTL∗ without the
next operator.

The paper is organized as follows. In Section 2 we recall syntax and semantics for the considered
calculus of nondeterministic reversible sequential processes as well as the strong forward, reverse, and
forward-reverse bisimilarities investigated in [4] and their weak counterparts examined in [3]. In Sec-
tion 3 we provide the modal logic characterizations of all the aforementioned bisimilarities based on
forward and backward modalities interpreted over states. In Section 4 we establish a clear connection
between branching bisimilarity and our weak forward-reverse bisimilarity defined over states. In Sec-
tion 5 we conclude with final remarks and directions for future work.
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2 Background

2.1 Syntax of Nondeterministic Reversible Sequential Processes

Given a countable set A of actions – ranged over by a,b,c – including an unobservable action denoted
by τ , the syntax of reversible sequential processes is defined as follows [4]:

P ::= 0 | a .P | a†.P | P+P
where:

• 0 is the terminated process.

• a .P is a process that can execute action a and whose forward continuation is P.

• a† .P is a process that executed action a and whose forward continuation is inside P.

• P1 +P2 expresses a nondeterministic choice between P1 and P2 as far as both of them have not
executed any action yet, otherwise only the one that was selected in the past can move.

We syntactically characterize through suitable predicates three classes of processes generated by the
grammar above. Firstly, we have initial processes, i.e., processes in which all the actions are unexecuted:

initial(0)
initial(a .P) ⇐= initial(P)

initial(P1 +P2) ⇐= initial(P1)∧ initial(P2)
Secondly, we have final processes, i.e., processes in which all the actions along a single path have

been executed:
final(0)

final(a†.P) ⇐= final(P)
final(P1 +P2) ⇐= (final(P1)∧ initial(P2))∨

(initial(P1)∧final(P2))
Multiple paths arise only in the presence of alternative compositions. At each occurrence of +, only
the subprocess chosen for execution can move, while the other one, although not selected, is kept as an
initial subprocess within the overall process to support reversibility.

Thirdly, we have the processes that are reachable from an initial one, whose set we denote by P:
reachable(0)

reachable(a .P) ⇐= initial(P)
reachable(a†.P) ⇐= reachable(P)

reachable(P1 +P2) ⇐= (reachable(P1)∧ initial(P2))∨
(initial(P1)∧ reachable(P2))

It is worth noting that:

• 0 is the only process that is both initial and final as well as reachable.

• Any initial or final process is reachable too.

• P also contains processes that are neither initial nor final, like e.g. a†.b .0.

• The relative positions of already executed actions and actions to be executed matter; in particular,
an action of the former kind can never follow one of the latter kind. For instance, a†.b .0 ∈ P
whereas b .a†.0 /∈ P.
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(ACTf)
initial(P)

a .P a−→ a†.P
(ACTp)

P b−→P′

a†.P b−→ a†.P′

(CHOl)
P1

a−→P′
1 initial(P2)

P1 +P2
a−→P′

1 +P2
(CHOr)

P2
a−→P′

2 initial(P1)

P1 +P2
a−→P1 +P′

2

Table 1: Operational semantic rules for reversible action prefix and choice

2.2 Operational Semantic Rules

According to the approach of [18], dynamic operators such as action prefix and alternative composition
have to be made static by the semantics, so as to retain within the syntax all the information needed to
enable reversibility. For the sake of minimality, unlike [18] we do not generate two distinct transition
relations – a forward one −→ and a backward one −⇝ – but a single transition relation, which we
implicitly regard as being symmetric like in [8] to enforce the loop property: every executed action can
be undone and every undone action can be redone.

In our setting, a backward transition from P′ to P (P′ a
−⇝P) is subsumed by the corresponding

forward transition t from P to P′ (P a−→P′). As will become clear with the definition of behavioral
equivalences, like in [8] when going forward we view t as an outgoing transition of P, while when going
backward we view t as an incoming transition of P′. The semantic rules for −→ ⊆ P×A×P are defined
in Table 1 and generate the labeled transition system (P,A,−→) [4].

The first rule for action prefix (ACTf where f stands for forward) applies only if P is initial and
retains the executed action in the target process of the generated forward transition by decorating the
action itself with †. The second rule for action prefix (ACTp where p stands for propagation) propagates
actions executed by inner initial subprocesses.

In both rules for alternative composition (CHOl and CHOr where l stands for left and r stands for
right), the subprocess that has not been selected for execution is retained as an initial subprocess in the
target process of the generated transition. When both subprocesses are initial, both rules for alternative
composition are applicable, otherwise only one of them can be applied and in that case it is the non-initial
subprocess that can move, because the other one has been discarded at the moment of the selection.

Every state corresponding to a non-final process has at least one outgoing transition, while every
state corresponding to a non-initial process has exactly one incoming transition due to the decoration of
executed actions. The labeled transition system underlying an initial process turns out to be a tree, whose
branching points correspond to occurrences of +.

Example 2.1 The labeled transition systems generated by the rules in Table 1 for the two initial pro-
cesses a .0+a .0 and a .0 are depicted below:

0_a . 

0_a . 0_a . 0_a . +

0_a . 0_a . +0_a . 0_a . +

a a a

.

As far as the one on the left is concerned, we observe that, in the case of a standard process calcu-
lus, a single a-transition from a .0+ a .0 to 0 would have been generated due to the absence of action
decorations within processes.
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2.3 Strong Forward, Reverse, and Forward-Reverse Bisimilarities

While forward bisimilarity considers only outgoing transitions [17, 16], reverse bisimilarity considers
only incoming transitions. Forward-reverse bisimilarity [18] considers instead both outgoing transitions
and incoming ones. Here are their strong versions studied in [4], where strong means not abstracting
from τ-actions.

Definition 2.2 We say that P1,P2 ∈ P are forward bisimilar, written P1 ∼FB P2, iff (P1,P2) ∈ B for some
forward bisimulation B. A symmetric relation B over P is a forward bisimulation iff for all (P1,P2)∈B
and a ∈ A:

• Whenever P1
a−→P′

1, then P2
a−→P′

2 with (P′
1,P

′
2) ∈ B.

Definition 2.3 We say that P1,P2 ∈ P are reverse bisimilar, written P1 ∼RB P2, iff (P1,P2) ∈ B for some
reverse bisimulation B. A symmetric relation B over P is a reverse bisimulation iff for all (P1,P2) ∈ B
and a ∈ A:

• Whenever P′
1

a−→P1, then P′
2

a−→P2 with (P′
1,P

′
2) ∈ B.

Definition 2.4 We say that P1,P2 ∈ P are forward-reverse bisimilar, written P1 ∼FRB P2, iff (P1,P2) ∈ B
for some forward-reverse bisimulation B. A symmetric relation B over P is a forward-reverse bisimu-
lation iff for all (P1,P2) ∈ B and a ∈ A:

• Whenever P1
a−→P′

1, then P2
a−→P′

2 with (P′
1,P

′
2) ∈ B.

• Whenever P′
1

a−→P1, then P′
2

a−→P2 with (P′
1,P

′
2) ∈ B.

∼FRB ⊊ ∼FB ∩ ∼RB with the inclusion being strict because, e.g., the two final processes a†.0 and
a†.0+ c .0 are identified by ∼FB (no outgoing transitions on both sides) and by ∼RB (only an incoming
a-transition on both sides), but distinguished by ∼FRB as in the latter process action c is enabled again
after undoing a (and hence there is an outgoing c-transition in addition to an outgoing a-transition).
Moreover, ∼FB and ∼RB are incomparable because for instance:

a†.0 ∼FB 0 but a†.0 ̸∼RB 0
a .0 ∼RB 0 but a .0 ̸∼FB 0

Note that that ∼FRB = ∼FB over initial processes, with ∼RB strictly coarser, whilst ∼FRB ̸= ∼RB over
final processes because, after going backward, previously discarded subprocesses come into play again
in the forward direction.

Example 2.5 The two processes considered in Example 2.1 are identified by all the three equivalences.
This is witnessed by any bisimulation that contains the pairs (a .0+ a .0,a .0), (a†.0+ a .0,a†.0), and
(a .0+a†.0,a†.0).

As observed in [4], it makes sense that ∼FB identifies processes with a different past and that ∼RB
identifies processes with a different future, in particular with 0 that has neither past nor future. However,
for ∼FB this breaks compositionality with respect to alternative composition. As an example:

a†.b .0 ∼FB b .0
a†.b .0+ c .0 ̸∼FB b .0+ c .0

because in a†.b .0+ c .0 action c is disabled due to the presence of the already executed action a†, while
in b .0+ c .0 action c is enabled as there are no past actions preventing it from occurring. Note that
a similar phenomenon does not happen with ∼RB as a†.b .0 ̸∼RB b .0 due to the incoming a-transition
of a†.b .0.

This problem, which does not show up for ∼RB and ∼FRB because these two equivalences cannot
identify an initial process with a non-initial one, leads to the following variant of ∼FB that is sensitive to
the presence of the past.
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Definition 2.6 We say that P1,P2 ∈ P are past-sensitive forward bisimilar, written P1 ∼FB:ps P2, iff
(P1,P2)∈B for some past-sensitive forward bisimulation B. A relation B over P is a past-sensitive for-
ward bisimulation iff it is a forward bisimulation such that initial(P1)⇐⇒ initial(P2) for all (P1,P2)∈B.

Now ∼FB:ps is sensitive to the presence of the past:
a†.b .0 ̸∼FB:ps b .0

but can still identify non-initial processes having a different past:
a†

1 .P ∼FB:ps a†
2 .P

It holds that ∼FRB ⊊∼FB:ps ∩ ∼RB, with ∼FRB=∼FB:ps over initial processes as well as ∼FB:ps and ∼RB
being incomparable because, e.g., for a1 ̸= a2:

a†
1 .P ∼FB:ps a†

2 .P but a†
1 .P ̸∼RB a†

2 .P
a1 .P ∼RB a2 .P but a1 .P ̸∼FB:ps a2 .P

In [4] it has been shown that all the considered strong bisimilarities are congruences with respect to
action prefix, while only ∼FB:ps, ∼RB, and ∼FRB are congruences with respect to alternative composition
too, with ∼FB:ps being the coarsest congruence with respect to + contained in ∼FB. Moreover, sound and
complete equational characterizations have been provided for the three congruences.

2.4 Weak Forward, Reverse, and Forward-Reverse Bisimilarities

In [3] weak variants of forward, reverse, and forward-reverse bisimilarities have been studied, which are
capable of abstracting from τ-actions. In the following definitions, P τ∗

=⇒P′ means that P′ = P or there
exists a nonempty sequence of finitely many τ-transitions such that the target of each of them coincides
with the source of the subsequent one, with the source of the first one being P and the target of the
last one being P′. Moreover, τ∗

=⇒ a−→ τ∗
=⇒ stands for an a-transition possibly preceded and followed by

finitely many τ-transitions. We further let Ā = A\{τ}.

Definition 2.7 We say that P1,P2 ∈ P are weakly forward bisimilar, written P1 ≈FB P2, iff (P1,P2) ∈ B
for some weak forward bisimulation B. A symmetric binary relation B over P is a weak forward
bisimulation iff, whenever (P1,P2) ∈ B, then:

• Whenever P1
τ−→P′

1, then P2
τ∗
=⇒P′

2 and (P′
1,P

′
2) ∈ B.

• Whenever P1
a−→P′

1 for a ∈ Ā, then P2
τ∗
=⇒ a−→ τ∗

=⇒P′
2 and (P′

1,P
′
2) ∈ B.

Definition 2.8 We say that P1,P2 ∈ P are weakly reverse bisimilar, written P1 ≈RB P2, iff (P1,P2) ∈ B
for some weak reverse bisimulation B. A symmetric binary relation B over P is a weak reverse
bisimulation iff, whenever (P1,P2) ∈ B, then:

• Whenever P′
1

τ−→P1, then P′
2

τ∗
=⇒P2 and (P′

1,P
′
2) ∈ B.

• Whenever P′
1

a−→P1 for a ∈ Ā, then P′
2

τ∗
=⇒ a−→ τ∗

=⇒P2 and (P′
1,P

′
2) ∈ B.

Definition 2.9 We say that P1,P2 ∈ P are weakly forward-reverse bisimilar, written P1 ≈FRB P2, iff
(P1,P2) ∈ B for some weak forward-reverse bisimulation B. A symmetric binary relation B over P
is a weak forward-reverse bisimulation iff, whenever (P1,P2) ∈ B, then:

• Whenever P1
τ−→P′

1, then P2
τ∗
=⇒P′

2 and (P′
1,P

′
2) ∈ B.
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• Whenever P1
a−→P′

1 for a ∈ Ā, then P2
τ∗
=⇒ a−→ τ∗

=⇒P′
2 and (P′

1,P
′
2) ∈ B.

• Whenever P′
1

τ−→P1, then P′
2

τ∗
=⇒P2 and (P′

1,P
′
2) ∈ B.

• Whenever P′
1

a−→P1 for a ∈ Ā, then P′
2

τ∗
=⇒ a−→ τ∗

=⇒P2 and (P′
1,P

′
2) ∈ B.

Each of the three weak bisimilarities is strictly coarser than the corresponding strong one. Similar
to the strong case, ≈FRB ⊊ ≈FB ∩ ≈RB with ≈FB and ≈RB being incomparable. Unlike the strong case,
≈FRB ̸= ≈FB over initial processes. For instance, τ .a .0+ a .0+ b .0 and τ .a .0+ b .0 are identified
by ≈FB but told apart by ≈FRB: if the former performs a, the latter responds with τ followed by a and
if it subsequently undoes a thus becoming τ†.a .0+ b .0 in which only a is enabled, the latter can only
respond by undoing a thus becoming τ .a .0+a .0+b .0 in which both a and b are enabled. An analogous
counterexample with non-initial τ-actions is given by c .(τ .a .0+a .0+b .0) and c .(τ .a .0+b .0).

As observed in [3], ≈FB suffers from the same compositionality problem with respect to alternative
composition as ∼FB. Moreover, ≈FB and ≈FRB feature the same compositionality problem as weak
bisimilarity for standard forward-only processes [16], i.e., for ≈∈ {≈FB,≈FRB} it holds that:

τ .a .0 ≈ a .0
τ .a .0+b .0 ̸≈ a .0+b .0

because if τ .a .0+ b .0 performs τ thereby evolving to τ†.a .0+ b .0 where only a is enabled in the
forward direction, then a .0+ b .0 can neither move nor idle in the attempt to evolve in such a way to
match τ†.a .0+b .0.

To solve both problems it is sufficient to redefine the two equivalences by making them sensitive to
the presence of the past, exactly as in the strong case for forward bisimilarity. By so doing, τ .a .0 is no
longer identified with a .0: if the former performs τ thereby evolving to τ†.a .0 and the latter idles, then
τ†.a .0 and a .0 are told apart because they are not both initial or non-initial.

Definition 2.10 We say that P1,P2 ∈ P are weakly past-sensitive forward bisimilar, written P1 ≈FB:ps P2,
iff (P1,P2) ∈ B for some weak past-sensitive forward bisimulation B. A binary relation B over P is a
weak past-sensitive forward bisimulation iff it is a weak forward bisimulation such that initial(P1)⇐⇒
initial(P2) for all (P1,P2) ∈ B.

Definition 2.11 We say that P1,P2 ∈ P are weakly past-sensitive forward-reverse bisimilar, written
P1 ≈FRB:ps P2, iff (P1,P2) ∈ B for some weak past-sensitive forward-reverse bisimulation B. A binary
relation B over P is a weak past-sensitive forward-reverse bisimulation iff it is a weak forward-reverse
bisimulation such that initial(P1)⇐⇒ initial(P2) for all (P1,P2) ∈ B.

Like in the non-past-sensitive case, ≈FRB:ps ̸=≈FB:ps over initial processes, as shown by τ .a .0+a .0
and τ .a .0: if the former performs a, the latter responds with τ followed by a and if it subsequently
undoes a thus becoming the non-initial process τ†.a .0, the latter can only respond by undoing a thus
becoming the initial process τ .a .0+ a .0. An analogous counterexample with non-initial τ-actions is
given again by c .(τ .a .0+a .0+b .0) and c .(τ .a .0+b .0).

Observing that ∼FRB ⊊ ≈FRB:ps as the former naturally satisfies the initiality condition, in [3] it has
been shown that all the considered weak bisimilarities are congruences with respect to action prefix,
while only ≈FB:ps, ≈RB, and ≈FRB:ps are congruences with respect to alternative composition too, with
≈FB:ps and ≈FRB:ps respectively being the coarsest congruences with respect to + contained in ≈FB and
≈FRB. Sound and complete equational characterizations have been provided for the three congruences.
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3 Modal Logic Characterizations

In this section we investigate modal logic characterizations for the three strong bisimilarities ∼FB, ∼RB,
and ∼FRB, the three weak bisimilarities ≈FB, ≈RB, and ≈FRB, and the three past-sensitive variants ∼FB:ps,
≈FB:ps, and ≈FRB:ps.

We start by introducing a general modal logic L from which we will take nine fragments to char-
acterize the nine aforementioned bisimilarities. It consists of Hennessy-Milner logic [11] extended with
the proposition init, the strong backward modality ⟨a†⟩, the two weak forward modalities ⟨⟨τ⟩⟩ and ⟨⟨a⟩⟩,
and the two weak backward modalities ⟨⟨τ†⟩⟩ and ⟨⟨a†⟩⟩ (where a ∈ Ā within weak modalities):

φ ::= true | init | ¬φ | φ ∧φ | ⟨a⟩φ | ⟨a†⟩φ | ⟨⟨τ⟩⟩φ | ⟨⟨a⟩⟩φ | ⟨⟨τ†⟩⟩φ | ⟨⟨a†⟩⟩φ
The satisfaction relation |=⊆ P×L is defined by induction on the syntactical structure of the formulas
as follows:

P |= true for all P ∈ P
P |= init iff initial(P)
P |= ¬φ iff P ̸|= φ

P |= φ1 ∧φ2 iff P |= φ1 and P |= φ2

P |= ⟨a⟩φ iff there exists P′ ∈ P such that P a−→P′ and P′ |= φ

P |= ⟨a†⟩φ iff there exists P′ ∈ P such that P′ a−→P and P′ |= φ

P |= ⟨⟨τ⟩⟩φ iff there exists P′ ∈ P such that P τ∗
=⇒P′ and P′ |= φ

P |= ⟨⟨a⟩⟩φ iff there exists P′ ∈ P such that P τ∗
=⇒ a−→ τ∗

=⇒P′ and P′ |= φ

P |= ⟨⟨τ†⟩⟩φ iff there exists P′ ∈ P such that P′ τ∗
=⇒P and P′ |= φ

P |= ⟨⟨a†⟩⟩φ iff there exists P′ ∈ P such that P′ τ∗
=⇒ a−→ τ∗

=⇒P and P′ |= φ

The use of backward operators is not new in the definition of properties of programs through tem-
poral logics [15] or modal logics [12]. In particular, in the latter work a logic with a past operator was
introduced to capture interesting properties of generalized labeled transition systems where only visible
actions are considered, in which setting it is proved that the equivalence induced by the considered logic
coincides with a generalization of the standard forward-only strong bisimilarity of [16]. This result was
later confirmed in [9] where it is shown that the addition of a strong backward modality (interpreted
over computation paths instead of states) provides no additional discriminating power with respect to the
Hennessy-Milner logic, i.e., the induced equivalence is again strong bisimilarity.

In contrast, in our context – in which all equivalences are defined over states – the strong forward
bisimilarities ∼FB and ∼FB:ps do not coincide with the strong forward-reverse bisimilarity ∼FRB and
this extends to their weak counterparts. In other words, the presence of backward modalities matters.
It is worth noting that our two weak backward modalities are similar to the ones considered in [8, 9]
to characterize weak back-and-forth bisimilarity (defined over computation paths), which is finer than
the standard forward-only weak bisimilarity of [16] and coincides with branching bisimilarity [10].

By taking suitable fragments of L we can characterize all the nine bisimilarities introduced in Sec-
tion 2. For each of the four strong bisimilarities ∼B, where B ∈ {FB,FB:ps,RB,FRB}, we can define
the corresponding logic LB. The same can be done for each of the five weak bisimilarities ≈B, where
B ∈ {FB,FB:ps,RB,FRB,FRB:ps}, to obtain the corresponding logic L τ

B . All the considered fragments
can be found in Table 2, which indicates that the proposition init is needed only for the past-sensitive
bisimilarities. The forthcoming Theorems 3.1 and 3.2 show that each such fragment induces the intended
bisimilarity, in the sense that two processes are bisimilar iff they satisfy the same set of formulas of the
fragment at hand.
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true init ¬ ∧ ⟨a⟩ ⟨a†⟩ ⟨⟨τ⟩⟩ ⟨⟨a⟩⟩ ⟨⟨τ†⟩⟩ ⟨⟨a†⟩⟩
LFB ✓ ✓ ✓ ✓
LFB:ps ✓ ✓ ✓ ✓ ✓
LRB ✓ ✓
LFRB ✓ ✓ ✓ ✓ ✓

L τ
FB ✓ ✓ ✓ ✓ ✓

L τ
FB:ps ✓ ✓ ✓ ✓ ✓ ✓

L τ
RB ✓ ✓ ✓

L τ
FRB ✓ ✓ ✓ ✓ ✓ ✓ ✓

L τ
FRB:ps ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: Fragments of L characterizing the considered bisimilarities

The technique used to prove the two theorems is inspired by the one employed in [1] to show that
Hennessy-Milner logic characterizes the strong forward-only bisimilarity of [16]. The two implications
of either theorem are demonstrated separately. To prove that any pair of bisimilar processes P1 and P2
satisfy the same formulas of the considered fragment, we assume that P1 |= φ for some formula φ and
then we proceed by induction on the depth of φ to show that P2 |= φ too, where the depth of a formula is
defined by induction on the syntactical structure of the formula itself as follows:

depth(true) = 1
depth(init) = 1
depth(¬φ) = 1+depth(φ)

depth(φ1 ∧φ2) = 1+max(depth(φ1),depth(φ2))
depth(⟨a⟩φ) = 1+depth(φ)

depth(⟨a†⟩φ) = 1+depth(φ)
depth(⟨⟨τ⟩⟩φ) = 1+depth(φ)
depth(⟨⟨a⟩⟩φ) = 1+depth(φ)

depth(⟨⟨τ†⟩⟩φ) = 1+depth(φ)
depth(⟨⟨a†⟩⟩φ) = 1+depth(φ)

As for the reverse implication, we show that the relation B formed by all pairs of processes (P1,P2) that
satisfy the same formulas of the considered fragment is a bisimulation. More specifically, starting from
(P1,P2) ∈ B we proceed by contradiction by assuming that, whenever P1 has a move to/from P′

1 with an
action a, then there is no P′

2 such that P2 has a move to/from P′
2 with a and (P′

1,P
′
2) ∈B. This entails that,

for every P2i forward/backward reachable from P2 by performing a, by definition of B there exists some
formula φi such that P′

1 |= φi and P′
2i
̸|= φi, which leads to a formula with a forward/backward modality

on a followed by
∧

i φi that is satisfied by P1 but not by P2, thereby contradicting (P1,P2) ∈ B.

Theorem 3.1 Let P1,P2 ∈ P and B ∈ {FB,FB:ps,RB,FRB}. Then P1 ∼B P2 ⇐⇒ ∀φ ∈ LB.P1 |= φ ⇔
P2 |= φ .

Theorem 3.2 Let P1,P2 ∈ P and B ∈ {FB,FB:ps,RB,FRB,FRB:ps}. Then P1 ≈B P2 ⇐⇒ ∀φ ∈ L τ
B .

P1 |= φ ⇔ P2 |= φ .

We conclude with the following observations:

• The fragments that characterize the four forward bisimilarities ∼FB, ∼FB:ps, ≈FB, and ≈FB:ps are
essentially identical to the Hennessy-Milner logic (first two bisimilarities) and its weak variant



76 Modal Logic Characterizations of Forward, Reverse, and Forward-Reverse Bisimilarities

(last two bisimilarities). The only difference is the possible presence of the proposition init, which
is needed to distinguish between initial and non-initial processes in the past-sensitive cases.

• The fragments that characterize the two reverse bisimilarities ∼RB and ≈RB only include true and
the backward modalities ⟨a†⟩ (first bisimilarity) and ⟨⟨τ†⟩⟩ and ⟨⟨a†⟩⟩ (second bisimilarity). The
absence of conjunction reflects the fact that, when going backward, processes must follow exactly
the sequence of actions they performed in the forward direction and hence no choice is involved,
consistent with every non-initial process having precisely one incoming transition. In other words,
the strong and weak reverse bisimilarities boil down to strong and weak reverse trace equivalences,
respectively, which consider traces obtained when going in the backward direction.

• The fragments that characterize the three forward-reverse bisimilarities ∼FRB, ≈FRB, and ≈FRB:PS
are akin to the logic LBF introduced in [8] to characterize weak back-and-forth bisimilarity and
branching bisimilarity. A crucial distinction between our three fragments and LBF is that the
former are interpreted over states while LBF is interpreted over computation paths. Moreover, as
already mentioned, defining a strong variant of LBF would yield a logic that characterizes strong
bisimilarity, whereas in our setting forward-only bisimilarities are different from forward-reverse
ones and hence different logics are needed.

4 Weak Forward-Reverse Bisimilarity and Branching Bisimilarity

In this section we establish a clear connection between weak forward-reverse bisimilarity and branching
bisimilarity [10]. Unlike the standard forward-only weak bisimilarity of [16], branching bisimilarity
preserves the branching structure of processes even when abstracting from τ-actions.

Definition 4.1 We say that P1,P2 ∈ P are branching bisimilar, written P1 ≈BB P2, iff (P1,P2) ∈ B for
some branching bisimulation B. A symmetric binary relation B over P is a branching bisimulation iff,
whenever (P1,P2) ∈ B, then for all P1

a−→P′
1 it holds that:

• either a = τ and (P′
1,P2) ∈ B;

• or P2
τ∗
=⇒ P̄2

a−→P′
2 with (P1, P̄2) ∈ B and (P′

1,P
′
2) ∈ B.

Branching bisimilarity is known to have some relationships with reversibility. More precisely, in [8]
strong and weak back-and-forth bisimilarities have been introduced over labeled transition systems –
where outgoing transitions are considered in the forward bisimulation game while incoming transitions
are considered in the backward bisimulation game – and respectively shown to coincide with the standard
forward-only strong bisimilarity of [16] and branching bisimilarity.

In the setting of [8], strong and weak back-and-forth bisimilarities have been defined over com-
putation paths rather than states so that, in the presence of concurrency, any backward computation is
constrained to follow the same path as the corresponding forward computation, which is consistent with
an interleaving view of parallel composition. This is quite different from the forward-reverse bisimilarity
over states defined in [18], which accounts for the fact that when going backward the order in which
independent transitions are undone may be different from the order in which they were executed in the
forward direction, thus leading to a truly concurrent semantics.

Since in our setting we consider only sequential processes, hence any backward computation nat-
urally follows the same path as the corresponding forward computation, we are neutral with respect to
interleaving vs. true concurrency. Like in [8] we define a single transition relation and then we distinguish
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between outgoing transitions and incoming transitions in the bisimulation game. However, unlike [8],
our bisimilarities are defined over states as in [16, 10, 18], not over paths. In the rest of this section
we show that our weak forward-reverse bisimilarity over states coincides with branching bisimilarity
by following the proof strategy adopted in [8] for weak back-and-forth bisimilarity.

First of all, we prove that, like branching bisimilarity, our weak forward-reverse bisimilarity satisfies
the stuttering property [10]. This means that, given a sequence of finitely many τ-transitions, if the
source process of the first transition and the target process of the last transition are equivalent to each
other, then all the intermediate processes are equivalent to them too – see P2

τ∗
=⇒ P̄2 in Definition 4.1

when P1,P2, P̄2 are pairwise related by the maximal branching bisimulation ≈BB. In other words, while
traversing the considered sequence of τ-transitions, we remain in the same equivalence class of processes,
not only in the forward direction but – as we are talking about weak forward-reverse bisimilarity – also
in the backward direction. This property does not hold in the case of the standard forward-only weak
bisimilarity of [16].

Lemma 4.2 Let n ∈ N>0, Pi ∈ P for all 0 ≤ i ≤ n, and Pi
τ−→Pi+1 for all 0 ≤ i ≤ n− 1. If P0 ≈FRB Pn

then Pi ≈FRB P0 for all 0 ≤ i ≤ n.

Proof Consider the reflexive and symmetric binary relation B = ∪i∈NBi over P where:

• B0 = ≈FRB.

• Bi = Bi−1 ∪{(P,P′),(P′,P) ∈ P×P | ∃P′′ ∈ P.(P,P′′) ∈ Bi−1 ∧P τ∗
=⇒P′ τ−→P′′} for all i ∈ N>0.

We start by proving that B satisfies the stuttering property, i.e., given n∈N>0 and Pi ∈P for all 0≤ i≤ n,
if Pi

τ−→Pi+1 for all 0 ≤ i ≤ n− 1 and (P0,Pn) ∈ B, then (Pi,P0) ∈ B for all 0 ≤ i ≤ n. We proceed by
induction on n:

• If n = 1 then the considered computation is simply P0
τ−→P1 with (P0,P1) ∈ B and hence trivially

(Pi,P0) ∈ B for all 0 ≤ i ≤ 1 as B is reflexive – (P0,P0) ∈ B – and symmetric – (P1,P0) ∈ B.

• Let n > 1. Since (P0,Pn) ∈ B, there must exist m ∈N such that (P0,Pn) ∈ Bm. Let us consider the
smallest such m. Then (P0,Pn−1) ∈ Bm+1 by definition of Bm+1, hence (P0,Pn−1) ∈ B. From the
induction hypothesis it follows that (Pi,P0) ∈ B for all 0 ≤ i ≤ n− 1, hence (Pi,P0) ∈ B for all
0 ≤ i ≤ n because (P0,Pn) ∈ B and B is symmetric so that (Pn,P0) ∈ B.

We now prove that every symmetric relation Bi is a weak forward-reverse bisimulation. We proceed by
induction on i ∈ N:

• If i = 0 then Bi is the maximal weak forward-reverse bisimulation.

• Let i ≥ 1 and suppose that Bi−1 is a weak forward-reverse bisimulation. Given (P,P′) ∈ Bi,
assume that P a−→Q (resp. Q a−→P) where a ∈ A. There are two cases:

– If (P,P′) ∈ Bi−1 then by the induction hypothesis a = τ and P′ τ∗
=⇒Q′ (resp. Q′ τ∗

=⇒P′)

or a ̸= τ and P′ τ∗
=⇒ a−→ τ∗

=⇒Q′ (resp. Q′ τ∗
=⇒ a−→ τ∗

=⇒P′) with (Q,Q′) ∈ Bi−1 and hence
(Q,Q′) ∈ Bi as Bi−1 ⊆ Bi by definition of Bi.

– If instead (P,P′) /∈ Bi−1 then from (P,P′) ∈ Bi it follows that ∃P′′ ∈ P.(P,P′′) ∈ Bi−1 ∧
P τ∗
=⇒P′ τ−→P′′. There are two subcases:

* In the forward case, i.e., P a−→Q, there are two further subcases:
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· If (Q,P′′) ∈ Bi−1 and a = τ , then from P′ τ−→P′′ it follows that P′ τ∗
=⇒P′′ with

(Q,P′′) ∈ Bi as Bi−1 ⊆ Bi.
· Otherwise from (P,P′′) ∈ Bi−1 and the induction hypothesis it follows that

P′′ τ∗
=⇒ a−→ τ∗

=⇒P′′′ with (Q,P′′′)∈Bi−1 so that P′ τ∗
=⇒ a−→ τ∗

=⇒P′′′ with (Q,P′′′)∈
Bi as Bi−1 ⊆ Bi.

* In the backward case, i.e., Q a−→P, it suffices to note that from P τ∗
=⇒P′ it follows that

Q a−→ τ∗
=⇒P′.

Since B is the union of countably many weak forward-reverse bisimulations, it holds that B ⊆ ≈FRB.
On the other hand, ≈FRB ⊆ B by definition of B0. In conclusion B = ≈FRB – i.e., no relation Bi for
i ∈ N>0 adds further pairs with respect to B0 – and hence ≈FRB satisfies the stuttering property because
so does B.

Note that the lemma above considers ≈FRB, not ≈FRB:PS. Indeed the stuttering property does not
hold for ≈FRB:PS when initial(P0), because in that case a τ-action would be decorated inside P1 and
hence P1 ̸≈FRB:ps P0. Therefore ≈FRB:PS satisfies the stuttering property only over non-initial processes.

Secondly, we prove that ≈FRB satisfies the cross property [8]. This means that, whenever two pro-
cesses reachable from two ≈FRB-equivalent processes can perform a sequence of finitely many
τ-transitions such that each of the two target processes is ≈FRB-equivalent to the source process of the
other sequence, then the two target processes are ≈FRB-equivalent to each other as well.

Lemma 4.3 Let P1,P2 ∈ P be such that P1 ≈FRB P2. For all P′
1,P

′′
1 ∈ P reachable from P1 such that

P′
1

τ∗
=⇒P′′

1 and for all P′
2,P

′′
2 ∈ P reachable from P2 such that P′

2
τ∗
=⇒P′′

2 , if P′
1 ≈FRB P′′

2 and P′′
1 ≈FRB P′

2
then P′′

1 ≈FRB P′′
2 .

Proof Given P1,P2 ∈P with P1 ≈FRB P2, consider the symmetric relation B =≈FRB∪{(P′′
1 ,P

′′
2 ),(P

′′
2 ,P

′′
1 )

∈ P× P | ∃P′
1,P

′
2 ∈ P resp. reachable from P1,P2. P′

1
τ∗
=⇒P′′

1 ∧ P′
2

τ∗
=⇒P′′

2 ∧ P′
1 ≈FRB P′′

2 ∧ P′′
1 ≈FRB P′

2}.
The result follows by proving that B is a weak forward-reverse bisimulation, because this implies that
P′′

1 ≈FRB P′′
2 for every additional pair – i.e., B satisfies the cross property – as well as B = ≈FRB – hence

≈FRB satisfies the cross property too.
Let (P′′

1 ,P
′′
2 ) ∈ B \≈FRB to avoid trivial cases. Then there exist P′

1,P
′
2 ∈ P respectively reachable from

P1,P2 such that P′
1

τ∗
=⇒P′′

1 , P′
2

τ∗
=⇒P′′

2 , P′
1 ≈FRB P′′

2 , and P′′
1 ≈FRB P′

2. There are two cases:

• In the forward case, assume that P′′
1

a−→P′′′
1 , from which it follows that P′

1
τ∗
=⇒P′′

1
a−→P′′′

1 . Since

P′
1 ≈FRB P′′

2 , we obtain P′′
2

τ∗
=⇒ a−→ τ∗

=⇒P′′′
2 , or P′′

2
τ∗
=⇒P′′′

2 when a = τ , with P′′′
1 ≈FRB P′′′

2 and

hence (P′′′
1 ,P′′′

2 ) ∈ B. Starting from P′′
2

a−→P′′′
2 one exploits P′

2
τ∗
=⇒P′′

2 and P′′
1 ≈FRB P′

2 instead.

• In the backward case, assume that P′′′
1

a−→P′′
1 . Since P′′

1 ≈FRB P′
2, we obtain P′′′

2
τ∗
=⇒ a−→ τ∗

=⇒P′
2,

so that P′′′
2

τ∗
=⇒ a−→ τ∗

=⇒P′′
2 , or P′′′

2
τ∗
=⇒P′

2 when a = τ , so that P′′′
2

τ∗
=⇒P′′

2 , with P′′′
1 ≈FRB P′′′

2 and

hence (P′′′
1 ,P′′′

2 ) ∈ B. Starting from P′′′
2

a−→P′′
2 one exploits P′

1 ≈FRB P′′
2 and P′

1
τ∗
=⇒P′′

1 instead.

We are now in a position of proving that ≈FRB coincides with ≈BB. This only holds over initial
processes though. As an example, a†

1.b .P ≈BB a†
2.b .P but a†

1.b .P ̸≈FRB a†
2.b .P when a1 ̸= a2.

Theorem 4.4 Let P1,P2 ∈ P be initial. Then P1 ≈FRB P2 iff P1 ≈BB P2.

Proof Given two initial processes P1,P2 ∈ P, we divide the proof into two parts:
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• Given a weak forward-reverse bisimulation B witnessing P1 ≈FRB P2 and only containing all the
pairs of ≈FRB-equivalent processes reachable from P1 and P2 so that Lemma 4.3 is applicable to B,
we prove that B is a branching bisimulation too. Let (Q1,Q2)∈B, where Q1 is reachable from P1
while Q2 is reachable from P2, and assume that Q1

a−→Q′
1. There are two cases:

– Suppose that a = τ and Q2
τ∗
=⇒Q′

2 with (Q′
1,Q

′
2) ∈ B. This means that we have a sequence

of n ≥ 0 transitions of the form Q2,i
τ−→Q2,i+1 for all 0 ≤ i ≤ n− 1 where Q2,0 is Q2 while

Q2,n is Q′
2 so that (Q′

1,Q2,n) ∈ B.
If n = 0 then Q′

2 is Q2 and we are done because (Q′
1,Q2) ∈ B, otherwise from Q2,n we go

back to Q2,n−1 via Q2,n−1
τ−→Q2,n. If Q′

1 stays idle so that (Q′
1,Q2,n−1) ∈ B and n = 1 then

we are done because (Q′
1,Q2) ∈ B, otherwise we go back to Q2,n−2 via Q2,n−2

τ−→Q2,n−1.
By repeating this procedure, either we get to (Q′

1,Q2,0) ∈ B and we are done because
(Q′

1,Q2) ∈ B, or for some 0 < m ≤ n such that (Q′
1,Q2,m) ∈ B we have that the incoming

transition Q2,m−1
τ−→Q2,m is matched by Q̄1

τ∗
=⇒Q1

τ−→Q′
1 with (Q̄1,Q2,m−1) ∈ B.

In the latter case, since Q̄1
τ∗
=⇒Q1, Q2

τ∗
=⇒Q2,m−1, (Q̄1,Q2,m−1) ∈ B, and (Q1,Q2) ∈ B,

from Lemma 4.3 it follows that (Q1,Q2,m−1) ∈ B. In conclusion Q2
τ∗
=⇒Q2,m−1

τ−→Q2,m
with (Q1,Q2,m−1) ∈ B and (Q′

1,Q2,m) ∈ B.

– Suppose that a ̸= τ and Q2
τ∗
=⇒ Q̄2

a−→ Q̄′
2

τ∗
=⇒Q′

2 with (Q′
1,Q

′
2) ∈ B.

From Q̄′
2

τ∗
=⇒Q′

2 and (Q′
1,Q

′
2) ∈ B it follows that Q̄′

1
τ∗
=⇒Q′

1 with (Q̄′
1, Q̄

′
2) ∈ B. Since Q′

1
already has an incoming a-transition from Q1 and every non-initial process has exactly one
incoming transition, we derive that Q̄′

1 is Q′
1 and hence (Q′

1, Q̄
′
2) ∈ B.

From Q̄2
a−→ Q̄′

2 and (Q′
1, Q̄

′
2) ∈ B it follows that Q̄1

τ∗
=⇒Q1

a−→Q′
1 with (Q̄1, Q̄2) ∈ B.

Since Q̄1
τ∗
=⇒Q1, Q2

τ∗
=⇒ Q̄2, (Q̄1, Q̄2) ∈ B, and (Q1,Q2) ∈ B, from Lemma 4.3 it follows

that (Q1, Q̄2) ∈ B.

In conclusion Q2
τ∗
=⇒ Q̄2

a−→ Q̄′
2 with (Q1, Q̄2) ∈ B and (Q′

1, Q̄
′
2) ∈ B.

• Given a branching bisimulation B witnessing P1 ≈BB P2 and only containing all the processes
reachable from P1 and P2, we prove that B is a weak forward-reverse bisimulation too.
Let (Q1,Q2) ∈ B with Q1 reachable from P1 and Q2 reachable from P2. There are two cases:

– In the forward case, assume that Q1
a−→Q′

1. Then either a = τ and (Q′
1,Q2) ∈ B, hence

Q2
τ∗
=⇒Q2 with (Q′

1,Q2) ∈ B, or Q2
τ∗
=⇒ Q̄2

a−→Q′
2 with (Q1, Q̄2) ∈ B and (Q′

1,Q
′
2) ∈ B,

hence Q2
τ∗
=⇒ a−→ τ∗

=⇒Q′
2 with (Q′

1,Q
′
2) ∈ B.

– In the backward case – which cannot be the one of (P1,P2) ∈ B as both processes are initial
– assume that Q′

1
a−→Q1. There are two subcases:

* Suppose that Q′
1 is P1. Then either a = τ and (Q′

1,Q2) ∈ B, where Q2 is P2 and

Q2
τ∗
=⇒Q2, or Q′

2
τ∗
=⇒ Q̄2

a−→Q2 with (Q′
1, Q̄2) ∈ B and (Q′

1,Q
′
2) ∈ B, where Q′

2 is P2

and Q′
2

τ∗
=⇒ a−→ τ∗

=⇒Q2.
* If Q′

1 is not P1, then P1 reaches Q′
1 with a sequence of moves that are B-compatible

with those with which P2 reaches some Q′
2 such that (Q′

1,Q
′
2) ∈ B as B only contains

all the processes reachable from P1 and P2. Therefore either a = τ and (Q1,Q′
2) ∈ B,

where Q′
2 is Q2 and Q2

τ∗
=⇒Q2, or Q′

2
τ∗
=⇒ Q̄2

a−→Q2 with (Q′
1, Q̄2) ∈ B in addition to

(Q′
1,Q

′
2) ∈ B and (Q1,Q2) ∈ B, where Q′

2
τ∗
=⇒ a−→ τ∗

=⇒Q2.
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According to the logical characterizations of branching bisimilarity shown in [9], this result opens the
way to further logical characterizations of ≈FRB over initial processes in addition to the one of Section 3
based on forward and backward modalities:

• The first additional characterization replaces the two aforementioned modalities with an until
operator φ1⟨⟨a⟩⟩φ2. This is satisfied by a process P iff either a = τ with P satisfying φ2, or

P τ∗
=⇒ P̄ a−→P′ with every process along P τ∗

=⇒ P̄ satisfying φ1 and P′ satisfying φ2.

• The second additional characterization is given by the temporal logic CTL∗ without the next op-
erator, thanks to a revisitation of the stuttering equivalence of [5] and the bridge between Kripke
structures (in which states are labeled with propositions) and labeled transition systems (in which
transitions are labeled with actions) built in [9].

5 Conclusion

In this paper we have investigated modal logic characterizations of forward, reverse, and forward-reverse
bisimilarities, both strong and weak, over nondeterministic reversible sequential processes. While pre-
vious work [4, 3] has addressed compositionality and axiomatizations of those bisimilarities, here the
focus has been on identifying suitable modal logics, which are essentially variants of the Hennessy-
Milner logic [11], such that two processes are bisimilar iff they satisfy the same set of formulas of the
corresponding modal logic.

The additional backward modalities used in this paper are inspired by those in [8], with the important
difference that bisimilarities and modal interpretations in the former are defined over states – as is usual
– while those in the latter are defined over computation paths. The modal logic characterizations have
revealed that strong and weak reverse bisimilarities respectively boil down to strong and weak reverse
trace equivalences. Moreover, we have shown that weak forward-reverse bisimilarity coincides with
branching bisimilarity [10] over initial processes, thus providing two further logical characterizations for
the former thanks to [9].

The study carried out in this paper can contribute, together with the results in [4, 3], to the devel-
opment of a fully-fledged process algebraic theory of reversible systems. On a more applicative side,
following [6] we also observe that the established modal logic characterizations are useful to provide
diagnostic information because, whenever two processes are not bisimilar, then there exists at least one
formula in the modal logic corresponding to the considered bisimilarity that is satisfied by only one of
the two processes and hence can explain the inequivalence.
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