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We consider an extension of the classical Total Store Order (TSO) semantics by expanding it to

turn-based 2-player safety games. During her turn, a player can select any of the communicating

processes and perform its next transition. We consider different formulations of the safety game

problem depending on whether one player or both of them transfer messages from the process buffers

to the shared memory. We give the complete decidability picture for all the possible alternatives.

1 Introduction

Most modern architectures, such as Intel x86 [21], SPARC [27], IBM’s POWER [20], and ARM [11],

implement several relaxations and optimisations that reduce the latency of memory accesses. This has the

effect of breaking the Sequential Consistency (SC) assumption [22]. SC is the classical strong semantics

for concurrent programs that interleaves the parallel executions of processes while maintaining the order

in which instructions were issued. Programmers usually assume that the execution of programs follows

the SC model. However, this is not true when we consider concurrent programs running on modern

architectures. In fact, even simple programs such as mutual exclusion and producer-consumer protocols,

that are correct under SC, may exhibit erroneous behaviors. This is mainly due to the relaxation of the

execution order of the instructions. For instance, a standard relaxation is to allow the reordering of reads

and writes of the same process if the reads have been issued after the writes and they concern different

memory locations. This relaxation can be implemented using an unbounded perfect FIFO queue/buffer

between each process and the memory. These buffers are used to store delayed writes. The corresponding

model is called Total Store Ordering (TSO) and corresponds to the formalisation of SPARC and Intel x86

[24, 26].

In TSO, an unbounded buffer is associated with each process. When a process executes a write

operation, this write is appended to the end of the buffer of that process. A pending write operation on

the variable x at the head of a buffer can be deleted in a non-deterministic manner. This updates the value

of the shared variable x in the memory. To perform a read operation on a variable x, the process first

checks its buffer for a pending write operation on the variable x. If such a write exists, then the process

reads the value written by the newest pending write operation on x. Otherwise, the process fetches the

value of the variable x from the memory. The verification of programs running under TSO is challenging

due to the unboundedness of the buffers. In fact, the induced state space of a program under TSO maybe

infinite even if the program itself is a finite-state system.

The reachability problem for programs under TSO checks whether a given program state is reachable

during program execution. It is also called safety problem, in case the target state is considered to be

a bad state. It has been shown decidable using different alternative semantics for TSO (e.g., [13, 4,

3]). Furthermore, it has been shown in [13] that lossy channel systems (see e.g., [10, 18, 9, 25]) can

http://dx.doi.org/10.4204/EPTCS.390.6
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be simulated by programs running under TSO. This entails that the reachability problem for programs

under TSO is non-primitive recursive and that the repeated reachability problem is undecidable. This is

an immediate consequence of the fact that the reachability problem for lossy channel is non-primitive

recursive [25] and that the repeated reachability problem is undecidable [9]. The termination problem

for programs running under TSO has been shown to be decidable in [12] using the framework of well-

structured transition systems [18, 10].

The authors of [14, 15] consider the robustness problem for programs running under TSO. This

problem consists in checking whether, for any given TSO execution, there is an equivalent SC execution

of the same program. Two executions are declared equivalent by the robustness criterion if they agree

on (1) the order in which instructions are executed within the same process (i.e., program order), (2) the

write instruction from which each read instruction fetches its value (i.e., read-from relation), and (3) the

order in which write instruction on the same variable are committed to memory (i.e., store ordering).

The problem of checking whether a program is robust has been shown to be PSPACE-complete in [14].

A variant of the robustness problem which is called persistence, declares that two runs are equivalent

if (1) they have the same program order and (2) all write instructions reach the memory in the same

order. Checking the persistency of a program under TSO has been shown to be PSPACE-complete in

[6]. Observe that the persistency and robustness problems are stronger than the safety problem (i.e., if a

program is safe under SC and robust/persistent, then it is also safe under TSO).

Due to the non-determinism of the buffer updates, the buffers associated with each process under

TSO appear to exhibit a lossy behaviour. Previously, games on lossy channel systems (and more general

on monotonic systems) were studied in [8]. Unfortunately these results are not applicable / transferable

to programs under TSO whose induced transition systems are not monotone [13].

In this paper, we consider a natural continuation of the works on both the study of the decidabil-

ity/complexity of the formal verification of programs under TSO and the study of games on concurrent

systems. This is further motivated by the fact that formal games provide a framework to reason about a

system’s behaviour, which can be leveraged in control model checking, for example in controller synthe-

sis problems.

In more detail, we consider (safety) games played on the transition systems induced by programs

running under TSO. Given a program under TSO, we construct a game in which two players A and

B take turns in executing instructions of the program. The goal of player B is to reach a given set of

final configurations, while player A tries to avoid this. Thus, it can also be seen as a reachability game

with respect to player B. In this game, the turn determines which player will execute the next program

instruction. However, this definition leaves the control of updates undefined. To address this, we give

the player the possibility to update memory by removing the pending writes from the buffer between the

execution of two instructions.

The control over the buffer updates is shared between the two players in varying ways. We differen-

tiate between multiple scenarios based on when exactly each player is allowed to update. In particular,

for each player A or B we have the following cases: (1) she can never update, (2) she can update after

her own turn, (3) she can update before her own turn, and (4) she can always update, i.e. before and after

her own turn. In total, we obtain an exhaustive collection of 16 different TSO games. We divide these 16

games into four different groups, depending on their decidability results.

• Group I (7 games) can be reduced to TSO games with 2-bounded buffers.

• Group II (1 game) can be reduced to TSO games with bounded buffers.

• Group III (7 games) can simulate perfect channel systems.

• Group IV (1 game) can be reduced to a finite game without buffers.
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Player A:

always before after never

Player B:

always I (d)

before II (d)

after III (u)

never IV (d)

Figure 1: Groups of TSO games, where players A and B are allowed to update the buffer: always, before

their own move, after their own move, or never. The games in group I, II and IV are decidable (d), the

games in group III are undecidable (u).

This classification is shown in Figure 1. Of these four groups, only Group III is undecidable, the others

each reduce to a finite game and are thus decidable.

Finally, we establish the exact computational complexity for the decidable games. In fact, we show

that the problem is EXPTIME-complete. We prove EXPTIME-hardness by a reduction from the problem

of acceptance of a word by a linearly bounded alternating Turing machine [17]. To prove EXPTIME-

membership, we show that it is possible to compute the set of winning region for player B in exponential

time. These results are surprising given the non-primitive recursive complexity of the reachability prob-

lem for programs under TSO and the undecidability of the repeated reachability problem.

Related Works. In addition to the related work mentioned in the introduction on the decidability / com-

plexity of the verification problems of programs running under TSO, there have been some works on

parameterized verification of programs running under TSO. The problem consists in verifying a concur-

rent program regardless of the number of involved processes (which are identical finite-state systems).

The parameterised reachability problem of programs running under TSO has been shown to be decid-

able in [2, 3]. While this problem for concurrent programs performing only read and writing operations

(no atomic read-write instructions) is PSPACE-complete [7]. This result has been recently extended

to processes manipulating abstract data types over infinite domains [5]. Checking the robustness of a

parameterised concurrent system is decidable and EXPSPACE-hard [14].

As far as we know this is the first work that considers the game problem for programs running

under TSO. The proofs and techniques used in this paper are different from the ones used to prove

decidability / complexity results for the verification of programs under TSO except the undecidability

result which uses some ideas from the reduction from the reachability problem for lossy channel systems

to its corresponding problem for programs under TSO [13]. However, our undecidability proof requires

us to implement a protocol that detects lossiness of messages in order to turn the lossy channel system

into a perfect one (which is the most intricate part of the proof).

2 Preliminaries

2.1 Transition Systems

A (labeled) transition system is a triple 〈C,L,−→〉, where C is a set of configurations, L is a set of

labels, and −→⊆ C×L×C is a transition relation. We usually write c1
label
−−−→c2 if 〈c1, label,c2〉 ∈ −→.

Furthermore, we write c1−→c2 if there exists some label such that c1
label
−−−→c2. A run π of T is a sequence

of transitions c0
label1−−−−→c1

label2−−−−→c2 . . .
labeln−−−−→cn. It is also written as c0

π
−→cn. A configuration c′ is
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reachable from a configuration c, if there exists a run from c to c′.

For a configuration c, we defined Pre(c) = {c′ | c′−→c} and Post(c) = {c′ | c−→c′}. We extend these

notions to sets of configurations C′ with Pre(C′) =
⋃

c∈C′ Pre(c) and Post(C′) =
⋃

c∈C′ Post(c).
An unlabeled transition system is a transition system without labels. Formally, it is defined as a TS

with a singleton label set. In this case, we omit the labels.

2.2 Perfect Channel Systems

Given a set of messages M, define the set of channel operations Op = {!m,?m | m ∈M}∪{skip}. A

perfect channel system (PCS) is a triple L= 〈S,M,δ 〉, where S is a set of states, M is a set of messages,

and δ ⊆ S×Op×S is a transition relation. We write s1
op
−−→s2 if 〈s1,op,s2〉 ∈ δ .

Intuitively, a PCS models a finite state automaton that is augmented by a perfect (i.e. non-lossy)

FIFO buffer, called channel. During a send operation !m, the channel system appends m to the tail of the

channel. A transition ?m is called receive operation. It is only enabled if the channel is not empty and m

is its oldest message. When the channel system performs this operation, it removes m from the head of

the channel. Lastly, a skip operation just changes the state, but does not modify the buffer.

The formal semantics of L are defined by a transition system TL = 〈CL,LL,−→L〉, where CL =
S×M∗, LL = Op and the transition relation −→L is the smallest relation given by:

• If s1
!m
−−→s2 and w ∈M∗, then 〈s1,w〉

!m
−−→L〈s2,m ·w〉.

• If s1
?m
−−→s2 and w ∈M∗, then 〈s1,w ·m〉

?m
−−→L〈s2,w〉.

• If s1
skip
−−−→s2 and w ∈M∗, then 〈s1,w〉

skip
−−−→L〈s2,w〉.

A state sF ∈ S is reachable from a configuration c0 ∈ CL, if there exists a configuration cF = 〈sF ,wF〉
such that cF is reachable from c0 in TL. The state reachability problem of PCS is, given a perfect

channel system L, an initial configuration c0 ∈ CL and a final state sF ∈ S, to decide whether sF is

reachable from c0 in TL. It is undecidable [16].

3 Concurrent Programs

3.1 Syntax

Let Dom be a finite data domain and Vars be a finite set of shared variables over Dom. We define the

instruction set Instrs = {rd(x,d),wr(x,d) | x ∈ Vars,d ∈ Dom} ∪ {skip,mf}, which are called read,

write, skip and memory fence, respectively. A process is represented by a finite state labeled transition

system. It is given as the triple Proc= 〈Q, Instrs,δ 〉, where Q is a finite set of local states and δ ⊆ Q×

Instrs×Q is the transition relation. As with transition systems, we write q1
instr
−−−→q2 if 〈q1, instr,q2〉 ∈ δ

and q1−→q2 if there exists some instr such that q1
instr
−−−→q2.

A concurrent program is a tuple of processes P = 〈Procι〉ι∈I , where I is a finite set of process

identifiers. For each ι ∈ I we have Procι = 〈Qι , Instrs,δ ι〉. A global state of P is a function S :

I−→
⋃

ι∈IQ
ι that maps each process to its local state, i.e S(ι) ∈Qι .

3.2 TSO Semantics

Under TSO semantics, the processes of a concurrent program do not interact with the shared memory

directly, but indirectly through a FIFO store buffer instead. When performing a write instruction wr(x,d),
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read-own-write
q

rd(x,d)
−−−−−→q′ S(ι)=q B(ι)|{x}×Dom=〈x,d〉·w

〈S,B,M〉
rd(x,d)ι−−−−−→P 〈S[ι←q′],B,M〉

read-from-memory
q

rd(x,d)
−−−−−→q′ S(ι)=q B(ι)|{x}×Dom=ε M(x)=d

〈S,B,M〉
rd(x,d)ι−−−−−→P 〈S[ι←q′],B,M〉

write
q

wr(x,d)
−−−−−→q′ S(ι)=q

〈S,B,M〉
wr(x,d)ι−−−−−→P 〈S[ι←q′],B[ι←〈x,d〉·B(ι)],M〉

skip
q

skip
−−−→q′ S(ι)=q

〈S,B,M〉
skipι−−−−→P 〈S[ι←q′],B,M〉

memory-fence
q

mf
−−→q′ S(ι)=q B(ι)=ε

〈S,B,M〉
mfι−−−→P 〈S[ι←q′],B,M〉

update
B(ι)=w·〈x,d〉

〈S,B,M〉
upι−−−→P 〈S,B[ι←w],M[x←d]〉

Figure 2: TSO semantics

the process adds a new message 〈x,d〉 to the tail of its store buffer. A read instruction rd(x,d) works

differently depending on the current buffer content of the process. If the buffer contains a write message

on variable x, the value d must correspond to the value of the most recent such message. Otherwise, the

value is read directly from memory. A skip instruction only changes the local state of the process. The

memory fence instruction is disabled, i.e. it cannot be executed, unless the buffer of the process is empty.

Additionally, at any point during the execution, the process can update the write message at the head of

its buffer to the memory. For example, if the oldest message in the buffer is 〈x,d〉, it will be removed

from the buffer and the memory value of variable x will be updated to contain the value d. This happens

in a non-deterministic manner.

Formally, we introduce a TSO configuration as a tuple c= 〈S,B,M〉, where:

• S : I−→
⋃

ι∈IQ
ι is a global state of P.

• B : I−→(Vars×Dom)∗ represents the buffer state of each process.

• M : Vars−→Dom represents the memory state of each shared variable.

Given a configuration c, we write S(c), B(c) and M(c) for the global program state, buffer state and

memory state of c. The semantics of a concurrent program running under TSO is defined by a transition

system TP = 〈CP ,LP ,−→P〉, where CP is the set of all possible TSO configurations, LP = {instrι |
instr ∈ Instrs, ι ∈ I}∪ {upι | ι ∈ I} is the set of labels. The transition relation −→P is given by the

rules in Figure 2, where we use B(ι)|{x}×Dom to denote the restriction of B(ι) to write messages on the

variable x.

A global state SF is reachable from an initial configuration c0, if there is a configuration cF with

S(cF) = SF such that cF is reachable from c0 in TP . The state reachability problem of TSO is, given a

program P, an initial configuration c0 and a final global state SF , to decide whether SF is reachable from

c0 in TP .
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We define up∗ to be the transitive closure of {upι | ι ∈ I}, i.e. c1
up∗

−−−→P c2 if and only if c2 can be

obtained from c1 by some amount of buffer updates.

4 Games

4.1 Definitions

A (safety) game is an unlabeled transition sytem, in which two players A and B take turns making a move

in the transition system, i.e. changing the state of the game from one configuration to an adjacent one.

The goal of player B is to reach a given set of final configurations, while player A tries to avoid this.

Thus, it can also be seen as a reachability game with respect to player B.

Formally, a game is defined as a tuple G = 〈C,CA,CB,−→,CF〉, where C is the set of configurations,

CA and CB form a partition of C, the transition relation is restricted to −→⊆ (CA×CB)∪ (CB×CA), and

CF ⊆ CA is a set of final states. Furthermore, we assume without loss of generality that G is deadlock-

free, i.e. Post(c) 6= /0 for all c ∈ C.

A play P of G is an infinite sequence c0,c1, . . . such that ci−→ci+1 for all i ∈ N. In the context of

safety games, P is winning for player B if there is i ∈ N such that ci ∈ CF . Otherwise, it is winning for

player A. This means that player B tries to force the play into CF , while player A tries to avoid this.

A strategy of player A is a partial function σA : C∗⇀ CB, such that σA(c0, . . . ,cn) is defined if and

only if c0, . . . ,cn is a prefix of a play, cn ∈ CA and σA(c0, . . . ,cn) ∈ Post(cn). A strategy σA is called

positional, if it only depends on cn, i.e. if σA(c0, . . . ,cn) = σA(cn) for all (c0, . . . ,cn) on which σA is

defined. Thus, a positional strategy is usually given as a total function σA : CA−→CB. Given two games

G and G′ and a strategy σA for G, an extension of σA to G′ is a strategy σ ′A of G′ that is also an extension

of σA to the configuration set of G′ in the mathematical sense, i.e. σA(c0, . . . ,cn) = σ ′A(c0, . . . ,cn) for all

(c0, . . . ,cn) on which σA is defined. Conversely, σA is called the restriction of σ ′A to G. For player B,

strategies are defined accordingly.

Two strategies σA and σB together with an initial configuration c0 induce a play P(c0,σA,σB) =
c0,c1, . . . such that ci+1 = σA(c0, . . . ,ci) for all ci ∈ CA and ci+1 = σB(c0, . . . ,ci) for all ci ∈ CB. A

strategy σA is winning from a configuration c, if for all strategies σB it holds that P(σA,σB,c) is a

winning play for player A. A configuration c is winning for player A if she has a strategy that is winning

from c. Equivalent notions exist for player B. The safety problem for a game G and a configuration c is

to decide whether c is winning for player A.

Lemma 1 (Proposition 2.21 in [23]). In safety games, every configuration is winning for exactly one

player. A player with a winning strategy also has a positional winning strategy.

Since we only consider safety games in this paper, strategies will be considered to be positional

unless explicitly stated otherwise. Furthermore, Lemma 1 implies the following:

• cA ∈ CA is winning for player A ⇐⇒ there is cB ∈ Post(cA) that is winning for player A.

• cB ∈ CB is winning for player A ⇐⇒ all cA ∈ Post(cB) are winning for player A.

A finite game is a game with a finite set of configurations. It is rather intuitive that the safety problem

is decidable for finite games, e.g. by applying a backward induction algorithm. In particular, the winning

configurations for each player are computable in linear time:

Lemma 2 (Chapter 2 in [19]). Computing the set of winning configurations for a finite game with n

configurations and m transitions is in O(n+m).
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4.2 TSO games

A TSO program P = 〈Procι〉ι∈I and a set of final local states QP
F ⊆QP induce a safety game G(P,QP

F )=
〈C,CA,CB,−→,CF〉 as follows. The sets CA and CB are copies of the set CP of TSO configurations, an-

notated by A and B, respectively: CA := {cA | c ∈ CP} and CB := {cB | c ∈ CP}. The set of final config-

urations is defined as CF := {〈S,B,M〉A ∈ CA | ∃ ι ∈ I : S(ι) ∈ QP
F }, i.e. the set of all configurations

where at least one process is in a final state. The transition relation −→ is defined by the following rules:

• For each transition c
instrι−−−−→P c′ where c,c′ ∈ CP , ι ∈ I and instr ∈ Instrs, it holds that cA−→c′B

and cB−→c′A. This means that each player can execute any TSO instruction, but they take turns

alternatingly.

• If player A can update before her own turn: For each transition cA−→c′B introduced by any of the

previous rules, it holds that c̃A−→c′B for all c̃ with c̃
up∗

−−−→P c.

• If player A can update after her own turn: For each transition cA−→c′B introduced by any of the

previous rules, it holds that cA−→ c̃′B for all c̃′ with c′
up∗

−−−→P c̃′.

• The update rules for player B are defined in a similar manner.

From this definition, we obtain 16 different variants of TSO games, which differ in whether each of

the players can update never, before her turn, after her turn, or always (before and after her turn). We

group games with similar decidability and complexity results together. An overview of these four groups

is presented in Figure 1. Each group is described in detail in the following sections.

But first, we present a general result that gives a lower complexity bound for all groups of TSO

games. Unexpectedly, even a single process is enough to show EXPTIME-hardness. We prove this by

reducing the word acceptance problem of linearly bounded alternating Turing machines (ATM) to the

safety problem of a single-process TSO game. The idea is to store the state and head position of the ATM

in the local state of the process, and use a set of variables to save the word on the working tape. Based on

the alternations of the Turing machine, either player A or player B decides which transition the program

will simulate. Interestingly, we can argue that the exact type of TSO game is irrelevant. Moreover, the

construction does not make use of the memory buffers, which implies that the result would even hold

if the program followed SC semantics. The formal proof can be found in Appendix A of the extended

version of this paper [28].

Theorem 3. The safety problem for TSO games is EXPTIME-hard.

5 Group I

All TSO games in this group have the following in common: There is one player that can update messages

after her turn, and the other player can update messages before her turn. Both players might be allowed to

do more than that, but fortunately we do not need to differentiate between those cases. In the following,

we call the player that updates after her turn player X, and the other one player Y. Although the definition

of safety games seems to be of asymmetric nature (player B tries to reach a final configuration, while

player A tries to avoid them), the proof does not rely on the exact identity of player X and Y.

In this section, given a configuration c, we write c̄ to denote the unique configuration obtained from

c after updating all messages to the memory. More formally, c
up∗

−−−→ c̄ and all buffers of c̄ are empty.

Let G = 〈C,CA,CB,−→,CF〉 be a TSO game as described above, currently in some configuration

c0 ∈ C. We first consider the situation where player X has a winning strategy σX from c0. Let σY be an
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c c′

c̄′

c′′
σX

σ̄X

up∗

σ̄Y

σY

Figure 3: Commutative diagram of strategies in games of group I.

arbitrary strategy for player Y and define two more strategies σ̄X : c 7→ σX(c) and σ̄Y : c 7→ σY (c̄). That is,

they act like σX and σY , respectively, with the addition that σ̄X empties the buffer after each turn and σ̄Y

empties the buffer before each turn. From the definitions it follows directly that σ̄Y (σX(c)) = σY (σ̄X (c))
for all c ∈ CX . An example can be seen in Figure 3.

We argue that σ̄X is a winning strategy for player X. The intuition behind this is as follows: Using

the notation of Figure 3, if a configuration c′′ is reachable from c̄′, then it is also reachable from c′, since

player Y can empty all buffers at the start of her turn and then proceed as if she started in c̄′. On the other

hand, there might be configurations reachable from c′ but not c̄′, for example a read transition might get

disabled by one of the buffer updates. Thus, player X never gets a disadvantage by emptying the buffers.

Claim 4. σ̄X is a winning strategy from c0.

Proof. Case c0 ∈ CX : Since σ̄Y (σX(c)) = σY (σ̄X(c)) for all c ∈ CX , the plays P1 = P(c0,σX , σ̄Y ) and

P2 = P(c0, σ̄X ,σY ) agree on every second configuration, i.e. the configurations in CX . Moreover,

the configurations in between (after an odd number of steps) at least share the same global state, i.e.

S(σX(c)) = S(σ̄X(c)). In particular, the sequence of visited global TSO states is the same in both plays.

Since σX is a winning strategy from c0, it means that P1 is winning for player X. This means that P2 is

also winning, because for both players, a winning play is clearly determined by the sequence of visited

global TSO states. Because we chose σY arbitrarily, it follows that σ̄X is a winning strategy.

Case c0 ∈ CY : For the other case, we consider the configurations in Post(c0) instead. We observe that

σX must be a winning strategy for all c ∈ Post(c0). We apply the first case of this proof to each of these

configurations and obtain that σ̄X is a winning strategy for all of them. It follows that σ̄X is a winning

strategy for c0.

Suppose that player X plays her modified strategy as described above. We observe that after at most

two steps, every play induced by her strategy and an arbitrary strategy of the opposing player only visits

configurations with at most one message in the buffers: Player X will empty all buffers at the end of each

of her turns and player Y can only add at most one message to the buffers in between. Hence, they can

play on a finite set of configurations instead.

To show this, we construct a finite game G′ = 〈C′,C′A,C
′
B,−→

′,C′F〉 as follows. C′Y contains all con-

figurations of CY that have at most one buffer message, i.e. {〈S,B,M〉Y ∈ CY | ∑ι∈I |B(ι)| ≤ 1}. If

c0 ∈ CY , we also add it to C′Y , otherwise to C′X . Lastly, we add Post(C′Y ) to C′X , where Post is with respect

to G. −→′ is defined as the restriction of −→ to configurations of G′, and C′F = CF ∩C
′
A. Note that C′X also

contains configurations with two messages. This is needed to account for the case that player Y has a

winning strategy, which is handled later in this proof. Now, let σ̄ ′X be the restriction of σ̄X to C′X (in the

mathematical sense, i.e σ̄ ′X : C′X−→CY and σ̄X(c) = σ̄ ′X(c) for all c ∈ C′X ).

Claim 5. σ̄ ′X is a winning strategy for c0 in G′.
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Proof. Looking at the definitions, we confirm that σ̄ ′X actually is a valid strategy for G′, i.e. σ̄ ′X(c) ∈ C′Y ,

for all c ∈ C′X , since σ̄ ′X(c) has empty buffers. (This makes σ̄ ′X the restriction of σ̄X to G′.) Consider a

strategy σ ′Y for player Y in G′ and an arbitrary extension σY to G. Because σ̄ ′X and σ̄X agree on C′X and

σ̄ ′Y and σ̄Y agree on C′Y , P= P(c0, σ̄
′
X , σ̄Y ) and P′ = P(c0, σ̄

′
X , σ̄Y ) are in fact the exact same play. Since

σ̄X is a winning strategy, P is a winning play, and thus also P′. Here, note that G and G′ agree on the

final configurations within C′. Since σ ′Y was arbitrary, it follows that σ̄ ′X is a winning strategy from c0 in

G′.

What is left to show is that a winning strategy for G′ induces a winning strategy for G. Suppose σ ′X
is a winning strategy for player X in game G′ for the configuration c0. Let σX be an arbitrary extension

of σ ′X to G.

Claim 6. σX is a winning strategy for c0 in G.

Proof. Let σY be a strategy of player Y in G and σ ′Y the restriction of σY to C′Y (again, in the mathematical

sense). Since the outgoing transitions of every c ∈ C′Y are the same in both G and G′, σ ′Y is a strategy

for G′ (and the restriction of σY to G′). Furthermore, starting from c0, we see that σX and σY induce the

exact same play in G as σ ′X and σ ′Y in G′. Since the former play is winning, so must be the latter one.

Now, we quickly cover the situation where it is player Y that has a winning strategy. We follow the

same arguments as previously, with minor changes. This time, assume σY to be a winning strategy and

let σX be arbitrary. Define σ̄X and σ̄Y as above. Following the beginning of the proof of Claim 4, we

can conclude that the sequence of visited global TSO states is the same in both play P1 and P2. For the

remainder of the proof, we swap the roles of X and Y and obtain that σ̄Y is a winning strategy.

Let σ̄ ′Y be the restriction of σ̄Y to C′Y . Since σ̄ ′Y (C
′
Y ) = σ̄Y (C

′
Y ) ⊆ Post(C′Y ) ⊆ C′X , it follows that

σ̄ ′Y is a strategy of G′ (Post is again with respect to G). Consider a strategy σ ′X for player X in G′ and

an arbitrary extension σX to G. Similar as in Claim 5, we see that P(c0, σ̄
′
X , σ̄Y ) = P(c0, σ̄

′
X , σ̄Y ) and

conclude that σ̄ ′Y is a winning strategy.

The other direction follows from the proof of Claim 6, with the roles of X and Y swapped.

Theorem 7. The safety problem for games of group I is EXPTIME-complete.

Proof. By Claim 4 and Claim 5, if a configuration c0 is winning for player X in G, then it is also win-

ning in G′. The reverse holds by Claim 6. The equivalent statement for player Y follows from results

outlined above. Thus, the safety problem for G is equivalent to the safety problem for G′. G′ is finite and

has exponentially many configurations. EXPTIME-completeness follows immediately from Lemma 2

(membership) and Theorem 3 (hardness).

Remark 8. In the game where both players are allowed to update the buffer at any time, we can show

an interesting conclusion. By Claim 4 and the equivalent statement for the second player, we can restrict

both players to strategies that empty the buffer after each turn. Thus, the game is played only on configu-

rations with empty buffer, except for the initial configuration which might contain some buffer messages.

This implies that the TSO program that is described by the game implicitly follows SC semantics.

6 Group II

This group contains TSO games where both players are allowed to update the buffer only before their

own move. Let player X be the player that has a winning strategy and player Y her opponent. Note that
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Figure 4: Commutative diagram of strategies in games of group II, in the case where instrι 6= rd(x,d).

this differs from the previous section, in which the players X and Y were defined based on their updating

capabilties.

Similar to the argumentation for Group I, we want to show that player X also has a winning strategy

where she empties the buffer in each move. But, in contrast to before, this time there is an exception:

Since the player has to update the buffer before her move, by updating a memory variable she might

disable a read transition that she intended to execute. Thus, we do not require her to empty the buffer in

that case.

Formally, let G = 〈C,CX ,CY ,−→,CF〉 be a TSO game where both players are allowed to perform

buffer updates exactly before their own moves. Suppose σX is a winning strategy for player X and some

configuration c0. We construct another strategy σ̄X for player X. Let c ∈ CX , c′ = σX(c) and c̄ as in

the previous section, i.e. the unique configuration such that c
up∗

−−−→P c̄ and the buffers of c are empty.

Suppose that c
instrι−−−−→P c′, where instrι is not a read instruction. Then, starting from c, updating all

buffer messages does not change that the transition from S(c)(ι) to S(c′)(ι) is enabled. Thus, instrι can

also be executed from c̄. We call the resulting configuration c̃′ and observe that c̄−→P c̃′ and c′
up∗

−−−→ c̃′.

We define σ̄X(c) = c̃′. This can be seen in Figure 4. Note that c̃′ may have at most one message in its

buffers. In the other case, where there is no transition from c to c′ other than read instructions, we define

σ̄X(c) = σX(c) = c′.

Claim 9. σ̄X is a winning strategy for c0.

Proof. First, suppose that c0 ∈ CX and let σY be an arbitrary strategy of player Y. We define another

(non-positional) strategy σ̄Y , that depends on the last two configurations, by σ̄Y (c,c
′) = σY (σ̄X(c)). We

observe that for all c ∈ CX , it holds that σ̄Y (c,σX(c)) = σY (σ̄X(c)). It follows that the play P1 induced

by σX and σ̄Y and the play P2 induced by σ̄X and σY agree on every second configuration, i.e. the

configurations in CX . In particular, the sequence of visited global TSO configurations is the same in

both plays. Since σX is winning, it means that P1 is winning for player X and thus also P2 is winning.

Because we chose σY arbitrarily, it follows that σ̄X is a winning strategy.

Otherwise, if c0 ∈ CY , we consider the successors of c0 instead. We note that σ̄X must also be a

winning strategy for each c ∈ Post(c0). But then, we can apply the previous arguments to each of those

configurations and conclude that σ̄X is a winning strategy for all of them. Thus, it is also a winning

strategy for c0.

We conclude that if player X has a winning strategy σX , then she also has a winning strategy σ̄X

where she empties the buffers before every turn in which she does not perform a read operation. By

symmetry, the same holds true for player Y. Thus, we can limit our analysis to this type of strategies.

We see that the number of messages in the buffers is bounded: Suppose that the game is in configuration
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c ∈ CX . Then, σ̄X either empties the buffer and adds at most one new message, or it performs a transition

due to a read instruction, which does not increase the size of the buffers. The analogous argumentation

holds for player Y. Hence, we can reduce the game to a game on bounded buffers, which is finite state

and thus decidable.

Given the configuration c0 as above, we construct a finite game G′ = 〈C′,C′X ,C
′
Y ,−→

′,C′F〉 as follows.

The set C′X contains all configurations from CX which have at most as many buffer messages than c0

(or at most one message, if c0 has empty buffers): C′X = {c ∈ CX | |B(c)| ≤max{1, |B(c0)|}}, where

|B|= ∑ι∈I |B(ι)|. The set C′Y is defined accordingly. Note that both sets are finite. Lastly, −→′ is defined

as the restriction of −→ to configurations of G′, and C′F = CF ∩C
′
A. We define σ̄ ′X to be the restriction of

σ̄X to C′X . Since σ̄ ′X(c) ∈ C′Y for all c ∈ C′X , σ̄ ′X is indeed a valid strategy for G′. In particular, it is the

restriction of σ̄X to G′.

Claim 10. σ̄ ′X is a winning strategy for c0 in G′.

Proof. First, consider the case where c0 ∈ CX . Let σ ′Y be a strategy for player Y in G′ and let σY be an

arbitrary extension of σ ′Y to G. The play P induced by σ̄X and σY in G is the same as the play P′ induced

by σ̄ ′X and σ ′Y in G′. Since σ̄X is a winning strategy, P is a winning play. It follows that P′ must also be

a winning strategy. Since σ ′Y was arbitrary, it follows that σ̄ ′X is a winning strategy and c0 is winning in

G′.

Theorem 11. The safety problem for games of group II is EXPTIME-complete.

Proof. By Claim 9 and Claim 10, if a configuration c0 is winning for player A in game G, then it is also

winning in G′. The same holds true for player B. Thus, the safety problem for G is equivalent to the safety

problem for G′. Similar to the games of group I, G′ is finite and has exponentially many configurations.

By Lemma 2 and Theorem 3, we can again conclude that the safety problem is EXPTIME-complete.

7 Group III

This group consists of all games where exactly one player has control over the buffer updates, and

additionally the game where both players are allowed to update buffer messages after their own move.

Intuitively, all of them have in common that the TSO program can attribute a buffer update to one specific

player. If only one player can update messages, this is clear. In the other game, the first player who ob-

serves that a buffer message has reached the memory is not the one who has performed the buffer update.

Thus, the program is able to punish misbehaviour, i.e. not following protocols or losing messages.

We will show that the safety problem is undecidable for this group of games. To accomplish that,

we reduce the state reachability problem of PCS to the safety problem of each game. Since the former

problem is undecidable, so is the latter.

The case where player A is allowed to perform buffer updates at any time is called the A-TSO game.

It is explained in detail in the following. The other cases work similar, but require slightly different

program constructions. They are presented in the appendix [28].

Consider the A-TSO game, i.e. the case where player A can update messages at any time, but player

B can never do so. Given a PCS L = 〈S,M,−→L〉 and a final state sF ∈ S, we construct a TSO program

P that simulates L. We design the program such that sF is reachable in L if and only if player B wins

the safety game induced by P. Thus, the construction gives her the initiative to decide which transitions

of L will be simulated. Meanwhile, the task of player A is to take care of the buffer updates.
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P consists of three processes Proc1, Proc2 and Proc3, that operate on the variables {xwr,xrd,y} over

the domain M⊎{0,1,⊥}. The first process simulates the control flow and the message channel of the

PCS L. The second process provides a mean to read from the channel. The only task of the third process

is to prevent deadlocks, or rather to make any deadlocked player lose. Proc3 achieves this with four

states: the initial state, an intermediate state, and one winning state for each player, respectively. If one

of the players cannot move in both Proc1 and Proc2, they have to take a transition in Proc3. From the

initial state of this process, there exists only one outgoing transition, which is to the intermediate state.

From there, the other player can move to her respective winning state and the process will only self-loop

from then on. For player A, her state is winning because she can refuse to update any messages, which

will ensure that player B keeps being deadlocked in Proc1 and Proc2. For player B, her state simply is

contained in QP
F . In the following, we will mostly omit Proc3 from the analysis and just assume that both

players avoid reaching a configuration where they cannot take any transition in either Proc1 or Proc2.

As mentioned above, we will construct Proc1 and Proc2 to simulate the perfect channel system in a

way that gives player B the control about which channel operation will be simulated. To achieve this,

each channel operation will need an even number of transitions to be simulated in P. Since player B

starts the game, this means that after every fully completed simulation step, it is again her turn and she

can initiate another simulation step as she pleases. Furthermore, during the simulation of a skip or send

operation, we want to prevent player A from executing Proc2, since this process is only needed for the

receive operation. Suppose that we want to block player A from taking a transition q
instr
−−−→P q′. We add

a new transition q′
skip
−−−→P qF , where qF ∈ S

P
F . Hence, reaching q′ is immediately losing for player A,

since player B can respond by moving to qF .

Next, we will describe how Proc1 and Proc2 simulate the perfect channel system L. For each tran-

sition in L, we construct a sequence of transitions in Proc1 that simulates both the state change and the

channel behaviour of the L-transition. To achieve this, Proc1 uses its buffer to store the messages of

the PCS’s channel. In particular, to simulate a send operation !m, Proc1 adds the message 〈xwr,m〉 to

its buffer. For receive operations, Proc1 cannot read its own oldest buffer message, since it is overshad-

owed by the more recent messages. Thus, the program uses Proc2 to read the message from memory

and copies it to the variable xrd, where it can be read by Proc1. We call the combination of reading a

message m from xwr and writing it to xrd the rotation of m.

While this is sufficient to simulate all behaviours of the PCS, it also allows for additional behaviour

that is not captured by L. More precisely, we need to ensure that each channel message is received once

and only once. Equivalently, we need to prevent the loss and duplication of messages. This can happen

due to multiple reasons.

The first phenomenon that allows the loss of messages is the seeming lossiness of the TSO buffer.

Although it is not strictly lossy, it can appear so: Consider an execution of P that simulates two send op-

erations !m1 and !m2, i.e. Proc1 adds 〈xwr,m1〉 and 〈xwr,m2〉 to its buffer. Assume that player A decides

to update both messages to the memory, without Proc2 performing a message rotation in between. The

first message m1 is overwritten by the second message m2 and is lost beyond recovery.

To prevent this, we extend the construction of Proc1 such that it inserts an auxiliary message 〈y,1〉
into its buffer after the simulation of each send operation. After a message rotation, that is, after Proc2

copied a message from xwr to xrd, the process then resets the value of xwr to its initial value ⊥. Next,

the process checks that y contains the value 0, which indicates that only one message was updated to the

memory. Now, player A is allowed to update exactly one 〈y,1〉 buffer message, after which Proc2 resets

y to 0. To ensure that player A has actually updated only one message in this step, Proc2 then checks

that xwr is still empty. Since player A is exclusively responsible for buffer updates, Proc2 deadlocks her
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whenever one of these checks fails.

In the next scenario, we discover a different way of message loss. Consider again an execution of

P that simulates two send operations !m1 and !m2. Assume Player A updates m1 to the memory and

Proc2 performs a message rotation. Immediately afterwards, the same happens to m2, without Proc1

simulating a receive operation in between. Again, m1 is overwritten by m2 before being received, thus it

is lost.

Player A is prevented from losing a message in this way by disallowing her to perform a complete

message rotation (including the update of one 〈y,1〉-message and the reset of the variables) entirely on

her own. More precisely, we add a winning transition for player B to Proc2 that she can take if and only

if player A is the one initiating the update of 〈y,1〉. On the other hand, player A can prevent player B

from performing two rotations right after each other by refusing to update the next buffer message until

Proc1 initiates the simulation of a receive operation.

Lastly, we investigate message duplication. This occurs if Proc1 simulates two receive operations

without Proc2 performing a message rotation in between. In this case, the most recently rotated message

is received twice.

The program prevents this by blocking Proc1 from progressing after a receive operation until Proc2

has finished a full rotation. In detail, at the very end of the message rotation and 〈y,1〉-update, Proc2

reset the value of xrd to its initial value ⊥. After simulating a receive operation, Proc1 is blocked until it

can read this value from memory.

This concludes the mechanisms implemented to ensure that each channel message is received once

and only once. Thus, we have constructed an A-TSO game that simulates a perfect channel system. We

summarise our results in the following theorem. The formal proof can be found in Appendix B [28].

Theorem 12. The safety problem for the A-TSO game is undecidable.

8 Group IV

In TSO games where no player is allowed to perform any buffer updates, there is no communication

between the processes at all. A read operation of a process Procι on a variable x either reads the initial

value from the shared memory, or the value of the last write of Procι on x from the buffer, if such a write

operation has happened.

Thus, we are only interested in the transitions that are enabled for each process, but we do not need

to care about the actual buffer content. In particular, the information that we need to capture from the

buffers and the memory is the values that each process can read from the variables, and whether a process

can execute a memory fence instruction or not. Together with the global state of the current configuration,

this completely determines the enabled transitions in the system.

We call this concept the view of the processes on the concurrent system and define it formally as a

tuple v= 〈S,V,F〉, where:

• S : I−→
⋃

ι∈IQ
ι is a global state of P.

• V : I ×Vars−→Dom defines which value each process reads from a variable.

• F : I−→{true, false} represents the possibility to perform a memory fence instruction.

Given a view v= 〈S,V,F〉, we write S(v), V(v) and F(v) for the global program state S , the value state

V and the fence state F of v.

The view of a configuration c is denoted by v(c) and defined in the following way. First, S(v(c)) =
S(c). For all ι ∈ I and x ∈ Vars, if B(c)(ι)|{x}×Dom = 〈x,d〉 ·w, then V(v(c))(ι ,x) = d. Otherwise,
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V(v(c))(ι ,x) =M(c)(x). Lastly, F(v(c))(ι) = true if and only if B(c)(ι) = ε . We extend the notation

to sets of configurations in the usual way, i.e. v(C′) = {v(c) | c ∈ C′}.
For c,c′ ∈ CP , if v(c) = v(c′), then we write c≡ c′ and say that c and c′ are view-equivalent. In such

a case, a local process of P cannot differentiate between c and c′ in the sense that the enabled transitions

in both configurations are the same. Lemma 13 captures this idea formally.

Lemma 13. For all c1,c2,c3 ∈ CP , ι ∈ I and instr ∈ Instrs with c1
instrι−−−−→c2 and c1 ≡ c3, there exists a

c4 ∈ CP such that c3
instrι−−−−→c4 and c2 ≡ c4.

Proof. We first show that instrι is enabled at c3. Since c1 ≡ c3, it holds that S(c1) = S(c3). Furthermore,

if instrι = rd(x,d)ι , then V(v(c1))(ι ,x) = V(v(c3))(ι ,x) = d. Also, if instrι = mfι , then F(v(c1))(ι) =
F(v(c3))(ι) = ε . From these considerations and the definition of the TSO semantics (see Figure 2), it

follows that instrι is indeed enabled at c3.

Let c4 be the configuration obtained after performing instrι , i.e. c3
rd(x,d)ι
−−−−−→c4. It holds that S(c4) =

S(c2) = S(c1)[ι ← S(c2)(ι)]. If instrι = wr(x,d)ι , then V(v(c4)) = V(v(c2)) = V(v(c1))[(ι ,x)← d]
and F(v(c4)) = F(v(c2)) = F(v(c1))[ι ← false]. Otherwise, V(v(c4)) = V(v(c2)) = V(v(c1)) and

F(v(c4)) = F(v(c2)) = F(v(c1)). In all cases it follows that c2 ≡ c4.

We define a finite safety game played on TSO views and show that we can restrict our analysis to this

game. Let G = 〈C,CA,CB,−→,CF〉 be a TSO game where neither player can perform any updates. We

define a new game G′ = 〈V,VA,VB,−→
′,VF〉 that is played on the views of G. We define VA = {v(c)A |

cA ∈ CA}, VB = {v(c)B | cB ∈ CB}, V= VA∪VB and VF = {v(c)A | cA ∈ CF}. Lastly, v(c)−→′ v(c′) if and

only if c−→c′. This is well-defined by Lemma 13.

Lemma 14. A configuration c0 ∈C is winning (for player A / B) in G if and only if the view v0 = v(c0)∈V
is winning (for player A / B) in G′.

Proof. To simplify notation, we extend v(c) to configurations of TSO games by v(cA) = v(c)A and

v(cB) = v(c)B for cA ∈ CA and cB ∈ CB. Hence, we can write VA = v(CA) and similar.

Suppose c0 is winning for some player X with (positional) strategy σX and consider the case c0 ∈ CX .

In the following, we will define a (non-positional) strategy σ ′X for G′.
First, we need an auxiliary function f : C×V−→C that fulfills the condition: For all c ∈ C and v ∈ V

such that v(c)−→′ v, it holds that c−→ f (c,v) and v = v( f (c,v)). Intuitively, f selects a successor of c

with view v. Such a function exists by Lemma 13.

For n even and a sequence v0, . . . ,vn, iteratively define c2i−1 = σ(c2i−2) and c2i = f (c2i−1,v2i) for

i = 1, . . . ,n/2. Then, σ ′X(v0, . . . ,vn) = v(σX (cn)). We will show that σ ′X is a winning strategy for v0.

Consider a positional strategy σ ′Y for player Y in G′. We define a positional strategy σY for player Y

in G by σY (c) = f (c,σ ′Y (v(c))). Consider the play P = c0,c1, . . . induced by σX and σY , and the play

P′ = v0,v1, . . . induced by σ ′X and σ ′Y .

We proof by induction over k, that (i) vk = v(ck) and (ii) ck of P coincides with ck as in the definition

of σ ′X . In this context, we refer to the latter with c̄k. For k = 0, v0 = v(c0) and c0 = c̄0 by definition. For

k odd, ck = σX(ck−1) = c̄k by the induction hypothesis. Also,

vk = σ ′X(v0, . . . ,vk−1) = v(σX(c̄k−1)) = v(σX(ck−1)) = v(ck) .

For k > 0 even,

ck = σY (ck−1) = f (ck−1,σ
′
Y (v(ck−1))) = f (c̄k−1,σ

′
Y (vk−1)) = f (c̄k−1,vk) = c̄k .
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Lastly,

v(ck) = v(σY (ck−1)) = v( f (ck−1,σ
′
Y (v(ck−1)))) = v( f (ck−1,σ

′
Y (vk−1))) = v( f (ck−1,vk)) = vk ,

where the last equality follows from the definition of f .

Since σX is a winning strategy for c0, P is a winning play for player X. From the definition of VF

it follows that P′ is a winning play in G′ and thus v0 is winning for player X. Note that by Lemma 1,

we could have chosen a positional strategy in place of σ ′X . Since we did not put any restrictions on the

identity of player X, this concludes both the if and the only if direction of the proof for the case c0 ∈ CX .

Otherwise, if c0 ∈CY , we consider all configurations of Post(c0) instead. We have the following chain

of equivalences: c0 is winning ⇐⇒ all c ∈ Post(c0) are winning ⇐⇒ all v ∈ v(Post(c0)) are winning

⇐⇒ all v ∈ Post(v(c0)) are winning ⇐⇒ v(c0) is winning. Here, the second equivalence applies the

first case of this proof and the third equivalence uses Post(v(c0)) = v(Post(c0)), which follows from the

definition of G′.

Theorem 15. The safety problem for games in group IV is EXPTIME-complete.

Proof. By Lemma 14, the safety problem for G is equivalent to the safety problem of G′, which is

played on views. Since there exist only exponentially many views, EXPTIME-completeness follows

from Lemma 2 and Theorem 3, similar to Group I and II.

9 Conclusion and Future Work

In this work we have addressed for the first time the game problem for programs running under weak

memory models in general and TSO in particular. Surprisingly, our results show that depending on when

the updates take place, the problem can turn out to be undecidable or decidable. In fact, there is a subtle

difference between the decidable (group I, II and IV) and undecidable (group III) TSO games. For the

former games, when a player is taking a turn, the system does not know who was responsible for the last

update. But for the latter games, the last update can be attributed to a specific player. Another surprising

finding is the complexity of the game problem for the groups I, II and IV which is EXPTIME-complete

in contrast with the non-primitive recursive complexity of the reachability problem for programs running

under TSO and the undecidability of the repeated reachability problem.

In future work, the games where exactly one player has control over the buffer seem to be the most

natural ones to expand on. In particular, the A-TSO game (where player A can update before and after

her move) and the B-TSO game (same, but for player B). On the other hand, the games of groups I, II

and IV seem to be degenerate cases and therefore rather uninteresting. In particular, they do not seem to

be more powerful than games on programs that follow SC semantics.

Another direction for future work is considering other memory models, such as the partial store

ordering semantics, the release-acquire semantics, and the ARM semantics. It is also interesting to define

stochastic games for programs running under TSO as extension of the probabilistic TSO semantics [1].
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