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We present CGAAL, our efficient on-the-fly model checker for alternating-time temporal logic (ATL)
on concurrent game structures (CGS). We present how our tool encodes ATL as extended dependency
graphs with negation edges and employs the distributed on-the-fly algorithm by Dalsgaard et al. Our
tool offers multiple novel search strategies for the algorithm, including DHS which is inspired by
PageRank and uses the in-degree of configurations as a heuristic, IHS which estimates instability
of assignment values, and LPS which estimates the distance to a state satisfying the constituent
property using linear programming. CGS are input using our modelling language LCGS, where
composition and synchronisation are easily described. We prove the correctness of our encoding,
and our experiments show that our tool CGAAL is often one to three orders of magnitude faster
than the popular tool PRISM-games on case studies from PRISM’s documentation and among case
studies we have developed. In our evaluation, we also compare and evaluate our search strategies,
and find that our custom search strategies are often significantly faster than the usual breadth-first
and depth-first search strategies. #fritfit

1 Introduction

Software plays a large role in our everyday lives, making decisions, enabling efficient communication,
ensuring safety, and many more critical tasks. Furthermore, the complexity of the software and the
decisions they have to make are ever-increasing due the to interconnectivity and reactive nature of modern
systems. These software systems mutually depend on, communicate with, and guide each other based on
their collective and internal states. Even a few interconnected systems that are not necessarily themselves
too complex can give rise to an extremely complex system as a whole. Safety-critical software that
operates in contexts where errors could lead to human casualties or significant capital losses requires
methods to verify their correctness. Unfortunately, such methods are difficult to implement due to the
sheer state-space explosion that arises from the inherent parallel composition of systems.

In this paper, we consider systems that can be expressed as discrete multiplayer games in which the
actors can perform actions concurrently. That is, in each configuration of the game, each player simulta-
neously chooses an action they wish to perform and the resulting decision vector then deterministically
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results in the next configuration of the game. Such concurrent games are extremely expressive and can be
used to model a variety of complex systems and lends themselves inherently, by their concurrent nature,
to describing multi-actor systems. The properties that we wish to verify on these systems are those that
can be expressed by Alternating-time Temporal Logic (ATL) [1], a game theoretic extension of Compu-
tation Tree Logic (CTL) [2, 3], that like CTL can be used to describe safety and liveness properties. ATL
extends CTL by replacing the existential and universal path quantifiers with so-called coalition quan-
tifiers. These coalition quantifiers describe properties of the game in which a coalition of players can
either enforce some desired outcome or cannot avoid an outcome. Of course, proof of satisfaction of
such property is done by finding a strategy showing that the players can indeed enforce said property or
by showing that no matter what strategy the players follow they cannot avoid said property.

One existing tool that can model check concurrent (stochastic) games is PRISM-games [12], an exten-
sion of the probabilistic model checker PRISM [11]. PRISM excels at stochastic models such as discrete-
and continuous-time Markov chains, Markov decision processes, and (priced) probabilistic timed au-
tomata, for which it can verify various properties described in LTL , CSL, and probabilistic CTL*. There
are multiple verification engines in PRISM, both symbolic and explicit-state. The PRISM-games exten-
sion focuses on stochastic games in which game-theoretic approaches are needed. PRISM-games can
among other things synthesise strategies and reason about equilibria-based properties, where players
may have distinct, but not necessarily conflicting objectives. These properties are typically described
with probabilistic ATL with rewards. In version 3.0 [12], PRISM-games added support for concurrent
stochastic games.

In [14], Liu and Smolka present a global and a local algorithm to compute fixed-point boolean vertex
assignments in dependency graphs with directed hyper-edges representing dependencies between vertex
values. The global algorithm has a better worst-case running time of the two, but the on-the-fly local al-
gorithm only explores the graph as needed to compute the fixed-point assignment. Many problems have
since been encoded as dependency graphs. Notably, model-checking problems for CTL can be encoded
as dependency graphs and the algorithms by Liu and Smolka can be used to compute the satisfaction
relation enabling model-checking using dependency graphs. J. F. Jensen et al. [9] show that weighted
CTL can be encoded in dependency graphs as well and introduce symbolic edges to handle weights
efficiently. In [10], M. C. Jensen et al. introduce symbolic dependency graphs, an encoding of proba-
bilistic weighted CTL, and an implementation of a local and global algorithm. A. Dalsgaard et al. [4]
present a distributed extension to the local algorithm to boost the performance and show how to model
Petri Nets problems using CTL and dependency graphs. Furthermore, they extend dependency graphs by
adding components and negation edges to solve formulae with negations. An abstract dependency graph
framework is presented by S. Enevoldsen et al. in [6] where they generalise the various extensions of
the dependency graphs with a general algorithm for any Noetherian partial order domain. In the closely
related work of [5], S. Enevoldsen et at. uses abstract dependency graphs to model check probabilistic
ATL for weighted stochastic games. In multiple works [4, 10] the local algorithm is found to be faster
more often than the global algorithm in practice.

In this paper, we introduce the tool CGAAL (Concurrent Games AALborg), a model checker imple-
mented in Rust that allows for the verification of ATL properties on concurrent games. CGAAL works
by encoding the model checking problem as an extended dependency graph and by implementing the
on-the-fly local distributed algorithm by Dalsgaard et al. [4]. The concurrent games are described and
inputted to the tool using LCGS, our PRISM-language inspired model language, and for specific ATL
formulae, we can output a strategy describing how to ensure satisfaction given a positive result. Fur-
thermore, CGAAL implements a variety of strategies for searching the problem state space: a heuristic
inspired by PageRank [15] and two heuristic search strategies that exploit the state vector representation
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of our model, alongside the usual breadth-first and depth-first approach. We conduct experiments com-
paring our different search strategies with each other on several case studies and show that having more
available compute threads often leads to speed-ups of 1-2 orders of magnitude. We also perform exper-
iments comparing our tool on a selection of case studies to the state-of-the-art PRISM-games. Though
while PRISM-games is a tool specialised for probabilistic games we find that our implementation often
outperforms PRISM-games and especially whenever we are not required to compute the entire fixed point
in which case we are often 1-3 orders of magnitude faster. Again, we emphasise that PRISM-games is
meant for probabilistic games and as such this is not a completely fair one-to-one comparison.

Outline. This paper is structured as follows. Section 2 introduces the formal definitions of concur-
rent games and alternating-time temporal logic. In Section 3 we present how model checking of ATL
properties in concurrent games can be encoded in extended dependency graphs. We also give a short
explanation of the CERTAINZERO algorithm and our search strategies. In Section 4 we give a short ex-
ample of how to use CGAAL and the LCGS language. An evaluation of our tool and a comparison with
PRISM can be found in Section 5, and we conclude on our findings in Section 6.

2 Definitions

We recall the definitions of concurrent games and alternating-time temporal logic.

Concurrent Games A concurrent game structure (CGS) is a tuple S = ⟨k,Q,Π,π,d,δ ⟩ where:

• k ≥ 1 is a natural number of players. We identify the players with the numbers 1, . . . ,k.
• Q is a finite set of states.
• Π is a finite set of atomic propositions, also called labels.
• A set π(q) ⊆Π of propositions are true at q ∈Q. The function π is called the labelling function.
• For each player a ∈{1, . . . ,k} and each state q ∈Q, a natural number da(q)≥1 of moves are available

to player a at state q. The moves of player a at state q are identified with the numbers 1, . . . ,da(q).
A move vector at q ∈ Q is a tuple v = ⟨ j1, . . . , jk⟩ such that 1 ≤ ja ≤ da(q) for each player a ∈
{1, . . . ,k}. Additionally, given a state q ∈ Q, we write D(q) for the set {1, . . . ,d1(q)} ×⋯×
{1, . . . ,dk(q)} of all move vectors possible at q. The function D is called the move function.

• For each state q ∈ Q and each move vector v = ⟨ j1, . . . , jk⟩ ∈ D(q), we have that δ(q,v) ∈ Q is the
resulting state when each player a ∈ {1, . . . ,k} chooses move ja in the state q. The function δ is
called the transition function.

A state q′ is a successor to q if and only if there exists a transition from q to q′, i.e. there exists a
move vector v ∈ D(q) such that δ(q,v) = q′. A computation is an infinite sequence λ = q0,q1,q2, . . . of
states, such that for all i ≥ 0, the state qi+1 is a successor of qi. Given a computation λ and a position
i ≥ 0, we use the following notations:

λ [i] The ith state of the computation of λ

λ [0, i] The finite prefix q0,q1, . . . ,qi of λ

λ [i,∞] The infinite suffix qi,qi+1,qi+2, . . . of λ

A computation starting in the state q is called a q-computation.
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Game strategies Consider a concurrent game structure S = ⟨k,Q,Π,π,d,δ ⟩ over the set Σ = {1, . . . ,k}
of players. A strategy for a player a ∈ Σ is a function za ∶Q→N that maps every state q ∈Q to a natural
number, such that za(q) ≤ da(q). In other words, the strategy za describes how player a chooses their
move in each state. A strategy za for a player a ∈ Σ induces a set of computations that the player a can
enforce. Given a state q ∈Q, a set A ⊆ Σ of players, and a set ZA = {za}a∈A of strategies, one strategy for
each player in A, we define the outcomes of the strategies ZA from q, denoted out(q,ZA), to be the set of
q-computations that the players of A enforce following the strategies of ZA. That is, a computation λ =
q0,q1,q2, . . . is in out(q,ZA) if q0 = q and for all positions i ≥ 0, there is a move vector v = ⟨ j1, . . . , jk⟩ ∈D
such that

1. ja = za(qi) for all players a ∈ A, and

2. δ(qi,v) = qi+1.

The set ZA = {{za}a∈A ∣ za is a strategy for the player a} contains all sets of strategies, that contain
one strategy for each player in A ⊆ Σ.

Alternating-time Temporal Logic The alternating-time temporal logic (ATL) [1] is defined with re-
spect to a finite set Π of propositions and a finite set Σ = {1, ...,k} of players. An ATL formula is given
by the abstract syntax:

φ ∶∶= p ∣ ¬φ ∣ φ1∨φ2 ∣ ⟪A⟫◯φ ∣ ⟪A⟫(φ1Uφ2) ∣ JAK(φ1Uφ2)

where p ∈Π is a proposition and A ⊆ Σ is a set of players. The operators ⟪⋅⟫ and J⋅K are path quantifiers.
We will refer to them as "enforce" and "despite", respectively. The ◯ ("next") and U ("until") are
temporal operators. Additional temporal operators like ♢ ("eventually") and □ ("invariant") are derived
as usual.

Given a state q of a game structure S, we write q ⊧ φ to indicate that the state q satisfies the property
described by φ . The satisfactory relation ⊧ is defined inductively:

• q ⊧ p iff p ∈ π(q).
• q ⊧ ¬φ iff q /⊧ φ .

• q ⊧ φ1∨φ2 iff q ⊧ φ1 or q ⊧ φ2.

• q⊧⟪A⟫◯φ iff there exists a set ZA ∈ZA of strategies, such that for all computations λ ∈ out(q,ZA),
we have λ [1] ⊧ φ .

• q ⊧ ⟪A⟫(φ1Uφ2) iff there exists a set ZA ∈ ZA of strategies, such that for all computation λ ∈
out(q,ZA) there exists a position i ≥ 0, such that λ [i] ⊧ φ2 and for all positions 0 ≤ j < i, we have
λ [ j] ⊧ φ1.

• q ⊧ JAK(φ1Uφ2) iff for all sets ZA ∈ ZA of strategies, we have that there exists a computation
λ ∈ out(q,ZA), such that there exists a position i ≥ 0, such that λ [i] ⊧ φ2 and for all positions
0 ≤ j < i, we have λ [ j] ⊧ φ1.

3 Model Checking

In order to check if a CGS satisfies an ATL property, CGAAL encodes the problem as an extended
dependency graph and finds a fixed-point assignment describing the satisfaction relation.
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Extended Dependency Graphs An extended dependency graph (EDG) is a tuple G = ⟨C,E,N⟩ where
C is a finite set of configurations (vertices), E ⊆C×P(C) is a finite set of hyper-edges, and N ⊆C×C is
a finite set of negation edges.

For a hyper-edge e = ⟨c,T ⟩ ∈ E we call c the source configuration and T ⊆C the set of target config-
urations. Similarly, c is called the source configuration of the negation edge ⟨c,c′⟩ ∈ N. We write c→ c′

if there exists an edge ⟨c,T ⟩ ∈ E such that c′ ∈ T and c 99K c′ if ⟨c,c′⟩ ∈ N. Furthermore, we write c⇝ c′

if c→ c′ or c 99K c′. An EDG G = ⟨C,E,N⟩ is negation safe if there are no c,c′ ∈C such that c 99K c′

and c′⇝∗ c. In what follows, we consider only negation-safe EDGs. Let dist ∶C→N0 be the maximum
number of negation edges throughout all paths starting in a configuration c ∈C, inductively defined as:

dist(c) =max{dist(c′′)+1 ∣ c′,c′′ ∈C and c→∗ c′ 99K c′′} (1)

By convention max∅ = 0. We define the dist(G) of an EDG G as dist(G) =maxc∈C(dist(c)). A compo-
nent Ki of an EDG G, where i ∈N0, is a subgraph induced on G by the sets

• Ci = {c ∈C ∣ dist(c) ≤ i}
• Ei = {⟨c,T ⟩ ∈ E ∣ dist(c) ≤ i}
• Ni = {⟨c,c′⟩ ∈N ∣ dist(c) ≤ i}

denoting the set of configurations, hyper-edges and negation edges respectively in each respective com-
ponent. By definition, the component K0 has no negation edges.

Assignments An assignment α ∶C→ {0,1} is a function that assigns boolean values to configurations
of an EDG G = ⟨C,E,N⟩, where 0 and 1 represent false and true, respectively. We define α0 as the zero
assignment where α0(c) = 0 for all c ∈C. We assume a component-wise ordering ⊑ on assignments such
that we have α ⊑ α

′ whenever α(c) ≤ α
′(c) for all c ∈C. The set of all assignments of an EDG G is

denoted by AG and ⟨AG,⊑⟩ is a complete lattice.
By Knaster and Tarski’s theorem, we can find a minimum fixed point on the complete lattice for any

monotonic function. The minimum fixed-point assignment αmin of an EDG G, denoted as α
G
min =α

Kdist(G)
min

is defined inductively on the components K0,K1, . . . ,Kdist(G) of G. For all 0 ≤ i ≤ dist(G), we define α
Ki
min

to be the minimum fixed-point assignment of the monotonic function Fi ∶ACi →ACi where

Fi(α)(c) = α(c)∨
⎡⎢⎢⎢⎢⎣
⋁

⟨c,T ⟩∈Ei

⋀
c′∈T

α(c′)
⎤⎥⎥⎥⎥⎦
∨
⎡⎢⎢⎢⎢⎣
⋁

⟨c,c′⟩∈Ni

¬α
Ki−1
min (c

′)
⎤⎥⎥⎥⎥⎦

(2)

By convention, the conjunction of ∅ is true and the disjunction of ∅ is false. In the component K0
there are no negation edges, which means the last clause in the disjunction is false for K0. We will refer to
the repeated use of the Fi as the global algorithm because it requires building and iterating over the entire
EDG. By Equation (2) each configuration in the EDG is comparable to a boolean formula in disjunctive
normal form where each clause is another configuration or a negation of another configuration. Clearly,
this makes EDGs an expressive structure and we shall now encode ATL model checking in an EDG.

3.1 Encoding of ATL in an EDG

We first establish some definitions related to subsets of move vectors induced by a coalition of players.
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Partial Moves. Given a CGS S with the set of states Q and k players, we use V1 ×⋯×Vk = V ⊆ D(q)
where q ∈Q to denote a partial move in q, where zero or more of the players’ moves are fixed, i.e. their
set of possible moves contain a single number. For instance, if V = {2}×{1,2,3} in a 2-player game,
then player 1 has chosen move 2 while player 2 is still free to choose from 1, 2, or 3. Furthermore, we
use the notation V[a↦ j] for a variant V ′ of a partial move V =V1×⋯×Vk where player a chooses move
j. More precisely

V[a↦ j] =V ′1 ×⋯×V ′k where 1 ≤ i ≤ k and V ′i =
⎧⎪⎪⎨⎪⎪⎩

{ j} if i = a
Vi otherwise

(3)

With this notation in mind, we define the function pmoves. The function pmoves gives the set of all
possible partial moves that follow from the players of the set A ⊆ Σ making a combination of moves in
the state q ∈Q:

pmoves(q,A) = {D(q)[a↦ ja][b↦ jb]⋯ ∣ {a,b, . . .} = A and ∀i ∈ A.1 ≤ ji ≤ di(q)} (4)

For instance, if D(q) = {1,2}×{1,2} in a 2-player game and A = {1}. Then pmoves(q,A) = {{1}×
{1,2},{2}×{1,2}} contains two partial moves. One where player 1 chooses action 1, and another where
player 1 chooses action 2. In other words, the pmoves function constructs the partial moves that the set
A of players can choose from when working together in the state q. If A chooses V ∈ pmoves(q,A), then
V contains all move vectors that result from the remaining players Σ/A also making a choice.

We define a partial transition function ∆ that produces a set of possible successor states given a state
q ∈Q and a partial move V . That is

∆(q,V) = {s ∣ v ∈ V and δ(q,v) = s} where V ⊆D(q) (5)

With EDGs, assignments, and partial moves introduced, we can now define how the satisfaction
relation ⊧ can be encoded as an EDG.

Encoding. Given a CGS S, a state q of S, and an ATL state formula φ we now construct an EDG
where every configuration is either a pair of a state and a formula, or a triple of a state, partial move, and
a formula. The triples represent partially evaluated states, where some players’ moves are already set.
Starting from the initial pair ⟨q,φ⟩, the dependency graph is constructed according to Figures 1 to 6. The
figures show which outgoing edges each configuration has and the target configurations of those edges.

Theorem 3.1. Given a CGS S = ⟨k,Q,Π,π,d,δ ⟩, a state q ∈ Q, and an ATL formula φ , let G be the
negation-safe EDG rooted in ⟨q,φ⟩ constructed following Figures 1 to 6. Then α

G
min(⟨q,φ⟩) = 1 if and

only if q ⊧ φ .

The proof of Theorem 3.1 can be found in the extended version of this paper.

Certain Zero In addition to the global algorithm (repeated application of Fi from Equation (2)),
CGAAL also implements a local algorithm heavily inspired by the distributed CERTAINZERO algorithm
by Dalsgaard et al. [4]. A local algorithm specialises in finding the assignment α

G
min(⟨q,φ⟩) of a specific

configuration ⟨q,φ⟩ and not necessarily the assignment of the whole EDG. This allows the algorithm
to terminate early in many cases. For the CERTAINZERO algorithm, Dalsgaard et al. also introduce a
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⟨q,true⟩

∅

⟨q,¬φ⟩

⟨q,φ⟩

⟨q, p⟩

∅

if p ∈ π(q)

⟨q, p⟩ if p ∉ π(q)

Figure 1: EDG encoding of true, negation, and atomic proposition

⟨q,φ1∨φ2⟩

⟨q,φ1⟩ ⟨q,φ2⟩

Figure 2: EDG encoding of disjunction

⟨q,⟪A⟫◯φ⟩

⟨q1,φ⟩ ⋯ ⟨qn,φ⟩ ⋯ ⟨s1,φ⟩ ⋯ ⟨sm,φ⟩

where {{q1, . . . ,qn}, . . . ,{s1, . . . ,sm}} = {∆(q,V) ∣ V ∈ pmoves(q,A)}

Figure 3: EDG encoding of next

⟨q,⟪A⟫(φ1Uφ2)⟩

⟨q,φ2⟩

⟨q,φ1⟩

⟨q1,⟪A⟫(φ1Uφ2)⟩ ⋯ ⟨qn,⟪A⟫(φ1Uφ2)⟩ ⋯ ⟨s1,⟪A⟫(φ1Uφ2)⟩ ⋯ ⟨sm,⟪A⟫(φ1Uφ2)⟩

where {{q1, . . . ,qn}, . . . ,{s1, . . . ,sm}} = {∆(q,V) ∣ V ∈ pmoves(q,A)}

Figure 4: EDG encoding of enforce until

⟨q,JAK(φ1Uφ2)⟩

⟨q,φ2⟩

⟨q,φ1⟩ ⟨q,V1,JAK(φ1Uφ2)⟩ ⋯ ⟨q,Vn,JAK(φ1Uφ2)⟩

where {V1, . . . ,Vn} = pmoves(q,A)

Figure 5: EDG encoding of despite until

⟨q,V,φ⟩

⟨q1,φ⟩ ⋯ ⟨qn,φ⟩

where {v1, . . . ,vn} = V and qi = δ(q,vi) for 1 ≤ i ≤ n

Figure 6: EDG encoding of partially moved despite until



106 CGAAL

�

?

0 1 Figure 7: Ordering of assignment values
for fixed-point computation in the CER-
TAINZERO algorithm. The top values are
more certain.

symbolic assignment with new assignment values. The value � indicates that the configuration is un-
explored. The value ? (unknown) indicates that the configuration is explored, but its final value has yet
to be determined. Lastly, 0 and 1 indicate the final values in the minimum fixed-point assignment α

G
min.

This induces an ordering as seen in the lattice in Figure 7. During the algorithm, the assignments of the
configurations will rise to more and more certain values, and if the assignment of a configuration ever
becomes 0 or 1, we can be certain that its final value is 0 or 1, respectively. This is one of the properties
that lead to improved performance, since in contrast to the global algorithm where all configurations are
initially assigned 0, we can distinguish an initial 0 and a certain 0. Hence, the CERTAINZERO algorithm
can terminate early if the root configuration is ever assigned either 0 or 1. Otherwise, it terminates when
it can no longer raise any assignment values.

3.2 Search Strategies

The CERTAINZERO algorithm is controlled by a search strategy, which determines in which order the
edges are explored and evaluated. Our search strategies for CGAAL include the common breadth-first
search (BFS) and depth-first search (DFS) strategies, as well as multiple search strategies based on
heuristics. Some of these are discussed in the following subsections. Which strategy is best depends
heavily on the shape of the EDG which is determined by the CGS and the ATL formula in question. An
evaluation of the strategies can be found in Section 5. The BFS strategy is the default strategy.

Dependency Heuristic Search (DHS) PageRank [15] is an algorithm that was created to estimate
the importance of a website based on how many other websites have links to it. The idea has since
been used in other areas, such as graph recommendation systems [13] or measuring structural-context
similarity with SimRank [7]. Our dependency heuristic search (DHS) uses a similar idea by assuming
that configurations with many ingoing edges are important. Finding the assignments of these, results
in more back-propagation, bringing us closer to termination. In other words, the heuristic focuses on
the trunk of the EDG where certain assignments are of high value. Specifically, DHS prioritise edges
where the source configuration has a high number of ingoing edges. That is, if e is an edge with source
configuration c then:

priority(e) = indegree(source(e)) = ∣{e′ ∣ (e′ = ⟨c′,T ⟩ ∈ E ∧c ∈ T)∨e′ = ⟨c′,c⟩ ∈N}∣ (6)

Edges with the same priority are subject to FIFO ordering. However, since we do not know the whole
graph in advance, we must continuously update the priority of edges when we explore successors of new
configurations. This is only a small overhead with a priority queue data structure.

Linear Programming Heuristic Search (LPS) In this search strategy, we take advantage of how
LCGS states can be represented as vectors, i.e. Q is a vector space. Given an edge with source config-
uration ⟨q,φ⟩, we transform φ into a set Lφ of linear constraints, each defined as a pair ⟨C,b⟩, where C
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2 4 6 8

2

4

6

8

q

s

distLPS(⟨q,φ⟩)

−x+y ≥ 1
1
2 x+y ≥ 7

Figure 8: The distance distLPS(⟨q,φ⟩) = 7 when q = ⟨7,1⟩ ∈
Q = R2 and Lφ corresponds to the constraints −x+ y ≥ 1 and
1
2 x+y ≥ 7. The state s minimises ∣∣s−q∣∣1 while adhering to the
constraints.

is a matrix and b is a vector. We prioritise edge e if its source configuration ⟨q,φ⟩ has a low estimated
distance to satisfaction as given by:

distLPS(⟨q,φ⟩) =min ∣∣s−q∣∣1 subject to Cs ≥ b where s ∈Q, ⟨C,b⟩ ∈Lφ (7)

where ∣∣ ⋅ ∣∣1 is the 1-norm, i.e. taxicap distance. The following equation is an equivalent linear program-
ming problem:

min∑
i

xi subject to Cs ≥ b and −xi ≤ si−qi ≤ xi ∀i where s ∈Q, ⟨C,b⟩ ∈Lφ (8)

A visualisation of the distance distLPS can be seen on Figure 8, where Q =R2, q = ⟨7,1⟩ ∈Q and

Lφ = {⟨[
−1 1

1
2 1

] ,[1
7
]⟩}

Many methods exist for solving linear programming problems. We use a library called minilp1. The
LPS strategy assumes value-wise close states are structurally close and works best when the constituent
variables of states represent non-categorical data. The drawback of this method is the computational
overhead of linear programming amplified by the potential need to solve multiple linear programming
problems for each configuration based on the structure of φ . We reduce some of this overhead by caching
the set Lφ for each φ .

We also support an alternative search strategy involving linear programming. It is called Linear
Representative Search (LRS) and it computes the distance described above for the root configuration
only. The closest satisfying state s is then saved and edges are prioritised based on the 1-norm distance
between s and the state in their source configuration. In other words, we assume that the state s found for
the root represents all satisfied states. As a result this search strategy is cheaper than LPS but risks being
inaccurate.

Instability Heuristic Search (IHS) The Petri Net model checker TAPAAL [8] implements the CER-
TAINZERO algorithm as well. Their configurations consist of a marking (a state) and a property, and
their default search strategy uses a heuristic that estimates the distance between the marking of the con-
figuration and a marking that satisfies the formula of the configuration. Our novel instability heuristic
is inspired by their heuristic, but we differ by acknowledging that since there are negation edges in the
EDG, we may not always be looking for a state that satisfies the formula. That is, if the state already

1minilp crate: https://crates.io/crates/minilp

https://crates.io/crates/minilp
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satisfies the associated formula, we estimate the distance to a state that does not instead. This guides
the search towards configurations where the assignment is unstable and thus may have a high influence.
Algorithms 1 and 2 find the distIHS described above for an edge. The algorithms use an abstract metric
BiDist which for state-property pairs finds ⟨t̂, f̂ ⟩ where t̂ is the distance to the property being true and f̂
is the distance to the property being false.

Algorithm 1: distIHS

Input : An edge e ∈ E
Output: An estimated distance to a different assignment

1 if e = ⟨c,T ⟩ ∈ E then
2 ⟨t̂, f̂ ⟩ ∶=

d
⟨q,φ⟩∈T BiDist(q,φ);

3 return t̂ if t̂ > 0, otherwise f̂

4 else if e = ⟨c,⟨q,φ⟩⟩ ∈N then
5 ⟨t̂, f̂ ⟩ ∶= BiDist(q,φ);
6 return f̂ if f̂ < 0, otherwise t̂

Algorithm 2: BiDist
Input : A state q and formula φ

Output: A bi-distance ⟨t̂, f̂ ⟩ describing the instability of φ in q
1 if φ = expr1◁expr2 and v = eval(q,expr1)−eval(q,expr2) then
2 return ⟨v,0⟩ if v > 0, otherwise ⟨0,v⟩
3 else if φ = expr1▷expr2 and v = eval(q,expr2)−eval(q,expr1) then
4 return ⟨v,0⟩ if v > 0, otherwise ⟨0,v⟩
5 else if φ = ¬φ

′ and ⟨t̂, f̂ ⟩ = BiDist(q,φ ′) then
6 return ⟨ f̂ , t̂⟩
7 else if φ = φ1∧φ2 then
8 return BiDist(q,φ1)⊓BiDist(q,φ2)
9 else if φ = φ1∨φ2 then

10 return BiDist(q,φ1)⊔BiDist(q,φ2)
11 else if φ = ⟪A⟫◯φ

′ then
12 return BiDist(q,φ ′)
13 else if φ = ⟪A⟫(φ1 U φ2) then
14 return BiDist(q,φ1)⊔BiDist(q,φ2)
15 else if φ = JAK(φ1 U φ2) then
16 return BiDist(q,φ1)⊔BiDist(q,φ2)
17 // where ◁ ∈ {<,≤},⟨t̂1, f̂1⟩⊓ ⟨t̂2, f̂2⟩ = ⟨t̂1+ t̂2,min{ f̂1, f̂2}⟩
18 // ▷ ∈ {>,≥},⟨t̂1, f̂1⟩⊔ ⟨t̂2, f̂2⟩ = ⟨min{t̂1, t̂2}, f̂1+ f̂2⟩

4 Tool Overview

CGAAL (https://github.com/d702e20/CGAAL) is written in Rust and consists of a command-line
interface and a verification engine. The primary feature of CGAAL is the verification of ATL properties

https://github.com/d702e20/CGAAL
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for CGSs. Verification is either done with a global algorithm or local algorithm, both of which are
described in Section 3. If requested, a partial strategy witness can also be computed, which instructs how
the given players must play to satisfy the given property. Another feature converts the model into dot
graph format such that it can be visually rendered with Graphviz.2

To model concurrent game structures for CGAAL, we designed a declarative Language for Concurrent
Game Structure, called LCGS. In LCGS a CGS is defined with a series of declarations such that it is
possible to find the successors of any state from the declarations alone. The language acts as an abstract
representation of the CGS and allows us to save memory at the small cost of having to evaluate the
expressions of declarations whenever successors are explored. The syntax of the language is inspired by
PRISM-lang [11] used by the PRISM model checker to model stochastic multi-player games with rewards.
However, LCGS differs in multiple ways. For instance, LCGS has player templates instead of modules,
and templates have no effect unless there exists an instance of it. Additionally, synchronisations affecting
the internal state of a player are much easier to declare.

Example Use As an example, we want to check if a cowboy can guarantee to stay alive in a three-way
Mexican standoff. The standoff is simulated in rounds and in each round a cowboy can choose to wait,
shoot the cowboy to the right, or shoot the cowboy to the left. If a cowboy is hit by two bullets, he dies.

1 const max_health = 2;
2

3 template cowboy
4

5 // How many bullets a cowboy can be hit by before dying
6 health : [0 .. max_health] init max_health;
7 health’ = max(health - opp_right.shoot_left - opp_left.shoot_right, 0);
8

9 // A proposition used by ATL formulae
10 label alive = health > 0;
11

12 // The actions available to each cowboy
13 [wait] 1;
14 [shoot_right] health > 0 && opp_right.health > 0;
15 [shoot_left] health > 0 && opp_left.health > 0;
16

17 endtemplate
18

19 // The three cowboys in the Mexican standoff
20 player billy = cowboy [opp_right=clayton, opp_left=jesse];
21 player clayton = cowboy [opp_right=jesse, opp_left=billy];
22 player jesse = cowboy [opp_right=billy, opp_left=clayton];

Listing 1: LCGS implementation of a Mexican standoff

We model this scenario in Listing 1. The cowboy template is declared on lines 3-17. Herein, on line
6, we define that each cowboy can be hit by two bullets before being incapacitated, but we make this
number a constant on line 1 so it is easy to change. Each cowboy has their own health variable and the
combination of the values of these variables makes up a state. Line 7 defines how the health of a cowboy
is updated in each transition. The value of opp_right.shoot_left and opp_left.shoot_right are
1 if this cowboy was shot by the given opponent to the right or left, respectively, otherwise 0. On line 10

2Graphviz: https://graphviz.org/

https://graphviz.org/
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we define a label called alive, which is a proposition that is true if the cowboy has more than zero health.
Lines 13-15 define the actions of the cowboy template, and the expression to the right of the name is a
condition defining in which states the action is available. As can be seen, a cowboy can always wait, but
only shoot if they and their target are alive. Lastly, we declare three instances of the cowboy template
on lines 20-22. We define the right and left opponent in the relabelling function after the name of the
template. Any identifier in a template can be relabelled to another expression as long as the result is
syntactically and semantically correct.

The ATL formula ⟪billy⟫□billy.alive is satisfied if the cowboy billy has a strategy to stay
alive. We can now run CGAAL with the following command: ./cgaal solver -m standoff.lcgs
-f billy-can-stay-alive.atl, and CGAAL will tell us that the property is not satisfied. Billy has
no strategy that can guarantee his survival.

5 Evaluation

To evaluate our tool, we run several experiments. In our experiments we compare our global algorithm,
our local algorithm using our various search strategies, and the established tool PRISM-games. We use
several different concurrent game case studies. Some of these are PRISM-games case studies adapted to
LCGS for CGAAL and determinised if needed. Others are well-known algorithms and games constructed
during the development of CGAAL. We make the PRISM-lang and LCGS implementations of models as
identical as possible, such that the state spaces are comparable. Some of the concurrent games and related
ATL formulae used in the experiments are presented below. Queries marked with ⊺ (resp. �) are satisfied
(resp. not satisfied), and queries marked with † may terminate early as we are not required to compute
the entire fixed-point:

• Mexican-Standoff: In this model N cowboys stand in a circle, each with a revolver. At each
moment they can choose to shoot another cowboy or do nothing. If a cowboy is hit by B bullets,
they are incapacitated. We run the following queries:

MSB
Nφ
�†
1 = ⟪p1⟫□p1_alive

MSB
Nφ
�
2 = ⟪p1⟫♢¬p1_alive

MSB
Nφ
⊺
3 = ⟪{pi ∈ Σ ∣ 1 ≡ i mod 2}⟫□p1_alive

• Gossiping Girls: In this model, N nodes each know a piece of information. The nodes can ex-
change information by calling each other. Our experiments include both a fully connected network
of nodes and a circular network of nodes. We run the following queries:

GGNφ
⊺†
1 = ⟪Σ⟫(calls ≤ 10 U all_girls_know_all)

GGNφ
⊺†
2 = ⟪Σ⟫(calls ≤ 10 U only_p1_knows_all)

GGNφ
⊺†
3 = ⟪Σ⟫(calls ≤ 10 U p1_knows_all)

GGNφ
⊺†
4 = ⟪Σ⟫♢calls > 10∧all_girls_know_all

GGNφ
⊺†
5 = ⟪∅⟫♢calls > 10

GGNφ
�†
6 = ⟪p1⟫(calls ≤ 10 U p1_knows_all)

GGNφ
⊺†
7 = ⟪Σ∖{p1}⟫♢everyone_except_p1_knows_all
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• Robot Coordination: In this model, four robots move orthogonally on a N by N grid. Each robot
needs to reach the opposite corner of where they start, but crashing into each other is fatal. We run
the following queries:

RCNφ
�
1 = ⟪p1, p2, p3⟫♢p1_at_target ∧ p2_at_target

RCNφ
⊺
2 = all_robots_at_home

RCNφ
⊺†
3 = ⟪p1, p2, p3, p4⟫♢all_robots_at_targets

RCNφ
�
4 = ⟪p1, p3, p4⟫♢p1_at_target ∧¬p1_crashed

Each experiment is run with a time limit of two hours, allocated 128 GB of memory, and has 32 cores
available regardless of how many worker threads CGAAL may spawn. All experiments are run on several
identical AMD EPYC 7642 based servers, allowing only one experiment per node at a time to reduce
noise in the results.

Results Here we provide a select set of experimental results that roughly exemplify our findings in
general. For a more thorough set of results along with all of our experimental data and the Python script
processing it, see the git repository https://github.com/d702e20/evaluation-results/.

We find that the local on-the-fly algorithm is often one order of magnitude faster than the global algo-
rithm regardless of the search strategy. However, the global algorithm can compete with and sometimes
outperforms the local algorithm in cases where the local algorithm cannot terminate early. This matches
observations made by A. Dalsgaard et al. [4] and M. C. Jensen et al. [10].

PRISM-games is a stochastic model checker and checks queries involving both probability and re-
wards, capabilities which are irrelevant in our test cases. Therefore, in many cases, CGAAL’s local
algorithm is two orders of magnitude faster than PRISM-games, typically when the model has many
synchronisations that affect internal states of modules such as in Mexican Standoff and Gossiping Girls
as seen in Figures 9a and 9c. Such synchronisations also require a high amount of PRISM-lang code,
while being easily expressed in LCGS. However, there are a few cases where PRISM-games is faster than
CGAAL, e.g. RCNφ

�
1 and RCNφ

�
4 as seen in Figure 9b. Here the local algorithm cannot terminate early.

The choice of search strategy sometimes has a discernible impact on the performance of the local
algorithm. Which search strategy is best varies from case to case and no definitive best strategy. The
BFS strategy does not work well when the local algorithm can terminate early based on information
found multiple moves into the model, but its low overhead is beneficial when early termination is not
possible. The IHS strategy is often a good choice when early termination is possible. The LPS strategy
is often significantly slower than the others, which is unsurprising given its overhead of solving linear
programming problems. In models where differences in the states correspond to a distance in space, such
as in robot coordination, the LPS strategy performs notably better and is even faster than both BFS and
DFS on RC4φ

⊺†
3 . The lightweight version, LRS, which only solves the linear problem once, matches LPS

in these cases but is also generally better due to its lower overhead.
A general trend in our experiments is that we see an increase in the execution speed of our distributed

implementation as we increase the number of compute threads available. The only times we do not see a
speed-up with an increased number of compute threads are when the models are small enough such that
the overhead of managing the additional threads is significant. Similarly, a single thread performs better
than a few threads in many cases, since there is no communication overhead with only one compute
thread. In general, depending on the search strategy employed, we see an improvement on a scale of one
to two orders of magnitude when increasing the number of compute threads as exemplified in Figure 9d.

https://github.com/d702e20/evaluation-results/
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(a) Mexican-standoff: horizontal axis is (N,B) tuples
with N being the number of cowboys in the model and
B the number of bullets the cowboys can be hit by.

(b) Robot Coordination: horizontal axis is the size of the
grid the robots are to manoeuvre on.

(c) Gossiping girls in a circular topology: horizontal
axis being the number of girls in the circle.

(d) Gossiping girls with six girls in a circular topology:
horizontal axis being the number of compute threads
used in our distributed algorithm. Note that PRISM was
always run with just one thread.

Figure 9: Select experimental results. CGAAL-results in Figures 9a to 9c show the best result for each
search strategy when varying between 1 and 32 threads.
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6 Conclusion

In this paper, we present CGAAL, our model checker of alternating-time temporal logic properties in
concurrent games. CGAAL checks such properties by encoding the problem as an extended dependency
graph and then computes the satisfaction relation using the distributed local on-the-fly CERTAINZERO

algorithm by Dalsgaard et al. [4]. We provide multiple novel search strategies for the algorithm and allow
concurrent games to be expressed in our language LCGS. Our experiments show that the local on-the-fly
algorithm outperforms the global algorithm in the majority of cases. We also find that CGAAL outper-
forms the state-of-the-art tool PRISM-games by being up to two orders of magnitude faster, especially in
models where synchronisations affect the internal state of modules and whenever we are not required to
compute the entire fixed point. However, this comparison is unfair, since our test only uses a fraction of
PRISM-games feature set.

CGAAL is still in early development and much work is needed before it competes with PRISM in
terms of capabilities. However, dependency graphs have been used for encoding various model-checking
problems, and we intend to incorporate these techniques into CGAAL.
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