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Petri games are a multi-player game model for the automatic synthesis of distributed systems, where

the players are represented as tokens on a Petri net and are grouped into environment players and

system players. As long as the players move in independent parts of the net, they do not know of

each other; when they synchronize at a joint transition, each player gets informed of the entire causal

history of the other players.

We show that the synthesis problem for two-player Petri games under a global safety condition

is NP-complete and it can be solved within a non-deterministic exponential upper bound in the case

of up to 4 players. Furthermore, we show the undecidability of the synthesis problem for Petri games

with at least 6 players under a local safety condition.

1 Introduction

A Petri game is a model for distributed, reactive systems. It is played on a Petri net where each place is

either a system place or an environment place. The tokens on system places are system players and they

control which transitions to take next. The tokens on environment places are uncontrollable environment

players. Essential for Petri games is the informedness of the players. As long as the players move in

independent parts of the net, they do not know of each other; when taking a joint transition they exchange

information about their complete causal history.

A winning strategy of the system players reacts to all options of the environment players while

satisfying a winning condition. Thereby, a decision of a system player is based on its causal history,

which grows infinitely in a Petri net with loops. Different causal histories allow different decisions. The

synthesis problem asks whether there is a winning strategy of the system players. There have been several

positive results on deciding the synthesis problem for Petri games, obtained by restricting the number of

players [8, 7] or restricting the concurrent behaviour [13]. Also, an approach to bounded synthesis has

been proposed [6]. These papers considered as winning conditions either local safety conditions where

some ‘bad’ places must be avoided or global safety conditions requiring that some sets of places are

considered as ‘bad’ markings that must not be reached simultaneously.

Petri games are related to the model of control games played by multiple processes on Zielonka

automata. These games are also based on the causal memory of their processes. A control game is

a composition of local processes. The processes communicate via shared actions that are either con-

trollable or uncontrollable. A strategy consists of one local controller for each process that can restrict

controllable actions based on the causal past of the process. As in Petri games, a strategy must take

into account all uncontrollable behaviour in order to win. Unlike Petri games, one of the most common

winning conditions is a local termination condition. A formal relationship of the two models has been

presented in [1], where translations from Petri games into control games and back have been presented
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such that there is a weak bisimulation between the winning strategies of the two models. When trans-

lating a control game into a Petri game, the processes are turned one-by-one into players. These players

switch between system and environment players. The winning condition stays the same. The number of

places (or states) blows up exponentially when a game is translated in either direction.

Decidability results for control games have been obtained by restricting the communication architec-

ture [17, 10] or restricting the concurrent behaviour [15, 16]. Another class of decidable control games

are decomposable games [11] that come with a local termination condition. Decomposable games are

decidable with up to 4 players [11]. In Sec. 3, we show that the synthesis problem for Petri games under

a global safety condition with up to 4 players is decidable within an exponential upper time bound, and

for two-player Petri games this problem is NP-complete.

In [12], it has been shown that the synthesis problem is undecidable for control games with at least 6

processes under a local termination condition. This result, together with the translation into Petri games

in [1], implies that there are 6-player Petri games that are equipped with a local termination condition

for which the synthesis problem is undecidable. In Sec. 4, we show in a direct proof that the synthesis

problem for Petri games with 6 players is also undecidable under a local safety condition.

The synthesis problem is of great interest because it automates the error-prone implementation pro-

cess while delivering implementations that are correct by construction. It was first introduced in [3].

Pnueli and Rosner introduced a setting of synchronous processes that communicate via shared vari-

ables [19]. For a single process, this setting is known to be decidable [2, 18]. For multiple processes,

the setting of Pnueli and Rosner is known to be undecidable [19]. There have been positive decidabil-

ity results on specific architectures with multiple processes, including pipelines [20], rings [14], and

acyclic architectures [9]. However, all the positive results for multiple processes have non-elementary

complexity.

2 Foundations

In this section, we define branching processes and unfoldings as in [4]. Also, we define Petri games and

their winning strategies as in [8].

Some notation: the power set of a set A is denoted by 2A = {B | B ⊆ A}, the set of nonempty finite

subsets of A by 2A
nf = {B | B ⊆ A∧B 6= /0∧B is finite}, and the set of finite subsets of A by 2A

f .

A Petri net or simply net is a structure N = (P,T ,pre,post, In), where P is the (possibly infinite)

set of places, T is the (possibly infinite) set of transitions, pre and post are flow mappings, In ⊆ P is

the initial marking, and the following properties hold: P ∩T = /0, pre : T → 2P
nf , post : T → 2P

f . A

Petri net is called finite if P ∪T is a finite set. The flow mappings pre and post are extended to places

as usual: ∀p ∈ P : pre(p) = {t ∈ T | p ∈ post(t)} and ∀p ∈ P : post(p) = {t ∈ T | p ∈ pre(t)}. A

marking M of a Petri net N is a multiset over P . In particular, In is a marking. By convention, a net

named N has the components (P,T ,pre,post, In), and analogously for net with decorated names like

N0,N1,N2, where the components are equally decorated.

A transition t ∈ T is enabled at marking M if pre(t) ⊆ M. If t is enabled, the transition t can be

fired, such that the new marking is M′ = M−pre(t)+post(t). This is denoted as M|t〉M′. This notation

is extended to sequences of enabled transitions M|t1 . . . tn〉M
′. A marking M is reachable if there exists a

sequence of successively enabled transitions (tk)k∈{1,...,n} and In|t1 . . . tn〉M. This sequence can be empty.

The set of all reachable markings of a net N is denoted as R(N). A Petri net N is called safe, if for all

reachable markings M(p)≤ 1 holds for all p ∈ P . Then, M is a subset of P. All Petri nets considered in

this paper are safe.
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A node x is a place or a transition x ∈ P ∪T . The binary flow relation F on nodes is defined

as follows: xF y if x ∈ pre(y). A node x is a causal predecessor of y, denoted as x ≤ y, if xF+y.

Furthermore, x ≤ x holds for all x ∈ P ∪T . Two nodes x,y ∈ P ∪T are causally related, if x ≤ y or

y ≤ x holds. We say x is a causal successor of y, if y ≤ x holds.

Two nodes x1,x2 ∈ P ∪T are in conflict, denoted x1#x2, if there exist two transitions t1, t2 ∈ T ,

t1 6= t2 with pre(t1)∩ pre(t2) 6= /0 and ti ≤ xi, i = 1,2. A node x ∈ P ∪T is in self-conflict if x#x.

Informally speaking, two nodes are in conflict if two transitions exist that share some place in their

presets and each node is a causal successor of one of those transitions. Two nodes x,y ∈ P ∪T are

concurrent, denoted x||y, if they are neither causally related nor in conflict.

A Petri net N is finitely preceded, if for every node x ∈ P ∪T the set {y ∈ P ∪T | y ≤ x} is finite.

That set is the causal history of a node. A Petri net N is acyclic, if the directed graph (P ∪T ,F ) is

acyclic. The following definitions lead to the definition of a branching process.

An occurrence net is a Petri net N with the following properties: N is acyclic, finitely preceded,

∀p ∈ P : |pre(p)| ≤ 1, no transition t ∈ T is in self-conflict, and In = {p ∈ P | pre(p) = /0}.

A homomorphism from one Petri net to another maps each node to a node such that the preset and

postset relations are preserved including the initial marking. Formally, let N1 and N2 be two Petri nets.

Then a homomorphism from N1 to N2 is a mapping h : P1 ∪T1 → P2 ∪T2 with following properties:

h(P1) ⊆ P2 and h(T1) ⊆ T2, for all transitions t ∈ T1, h restricted to pre1(t) is a bijection between

pre1(t) and pre2(h(t)), for all transitions t ∈ T1, h restricted to post1(t) is a bijection between post1(t)
and post2(h(t)), and the restriction of h to In1 is a bijection between In1 and In2. An isomorphism is a

bijective homomorphism.

A run is represented by a (possibly infinite) firing sequence of transitions. A branching process of a

Petri net represents (possibly) multiple runs of the underlying Petri net.

Branching process. A branching process of a net N0 is a pair B = (N,π), where N is an occurrence

net and π a homomorphism from N to N0 such that: (∗) For all t1, t2 ∈ T : if pre(t1) = pre(t2) and

π(t1) = π(t2), then t1 = t2.

An example of a Petri net and a branching process is shown in Fig. 1.

The notion of the set of all reachable markings of a branching process B = (N,π) is extended to

R(B) = R(N). By convention, a branching Process B has the components (NB,πB). Throughout this

paper, B1 and B2 are branching processes of an underlying net N0. The property (∗) of the definition

of a branching process ensures that every run of the Petri net is represented at most once. Informally

speaking, a run only consists of concurrent and causally related nodes and a node can be part of multiple

runs. Nodes that are in conflict, cannot belong to the same run.

Homomorphism on branching processes. A homomorphism from B1 to B2 is a homomorphism h

from N1 to N2 such that π2 ◦h = π1. The branching processes B1 and B2 are isomorphic if there exists an

isomorphism from B1 to B2 which is denoted as B1
∼= B2.

A natural partial order on branching processes is defined in the following.

Subprocess relation of branching processes. B1 approximates B2, denoted by B1 ≤ B2, if there

exists an injective homomorphism from B1 to B2.

Now we define the unfolding of a net as the maximal branching process that contains all (possibly

infinite) runs of a net. Loosely speaking, the unfolding of a net is an acyclic net with the same behaviour

as the original net, but where each place and transition has a unique causal history.

Unfolding. The unfolding unf(N0) of a Petri net N0 is the maximal branching process with respect to

the subprocess relation ≤ of branching processes. This definition is unique up to isomorphism. We refer

to the components of the unfolding as Tunf(N0), Punf(N0), preunf(N0), postunf(N0), and Inunf(N0).
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Figure 1: A Petri net N0 on the left and a branching process B = (N,π) of N0 on the right. Places are

shown as circles, transitions as boxes and the preset and postset relations as arrows. The initial marking

{e1,e2} is represented by the black dots, the tokens. The homomorphism π from N to N0 is given as

π(ei
j) = e j and π(t i

j) = t j. The transitions t1
1 and t1

2 are in conflict, i.e., t1
1 #t1

2 , and also t2
2 #t1

2 , t1
3 #t1

2 , t2
2 #t1

3 .

In Fig. 1, the branching process B is the unfolding of the Petri net N0 assuming that the dots to the

left of the place e2
1 indicate that the branching process continues infinitely in the same way.

We continue with the definition of a Petri game. A Petri game is played on a finite and safe Petri net.

Tokens may transit from a system place to an environment place and vice versa.

Petri game. A Petri game on an underlying finite and safe Petri net N0 is a tuple G = (PS
0 ,P

E
0 ,T0,

pre0,post0, In0,B), where the set P0 of places of N0 is partitioned into disjoint sets of system places

PS
0 , and environment places PE

0 , and where B ∈ 2P0 is the set of bad markings.

A winning strategy of a Petri game is a branching process of the underlying Petri net of the game. A

strategy must satisfy 4 properties that are reasonable properties of implementations of processes. Beside

a safety property, each process must act deterministically, determinism, and at least one process must

enable a transition if possible, deadlock avoiding. Loosely speaking, the justified refusal property forces

the system players to commit to transitions that are always allowed on their current place. Strategies for

Petri games are obtained by cutting out parts of the unfolding.

Winning strategy A winning strategy σ of a Petri-game G = (PS
0 ,P

E
0 ,T0,pre0,post0, In0,B) with

underlying Petri-net N0 is a branching process σ = (N,π) of N0 satisfying the following properties:

1. Justified refusal: Let C ⊆ P be a set of pairwise concurrent places and t ∈ T0 a transition with

π(C) = pre0(t). If no t ′ ∈ T with π(t ′) = t and pre(t ′) =C exists, then there exists a place p ∈C

with π(p) ∈ PS
0 , such that t /∈ π(post(p)).

2. Safety: For all reachable markings M ∈ R(N) it holds that π(M) /∈ B.

3. Determinism: For all p ∈ P with π(p) ∈ PS
0 and for all reachable markings M in N with p ∈ M

there exists at most one transition t ∈ post(p), which is enabled in M.

4. Deadlock avoiding: For all reachable markings M in N there exists an enabled transition, if a

transition is enabled in π(M) in the underlying Petri-net N0.

We refer to a token on a system place as a system player, and a token on an environment place as

an environment player. The justified refusal property ensures that a system player allows all instances

of an outgoing transition or no instance at all. The global safety property ensures that no bad markings

are reachable. The determinism property ensures that for each system place at most one transition is

enabled in every reachable marking. The deadlock avoiding property ensures that the system allows at

least one transition in every reachable marking if an enabled transition exists in that marking, e.g. the

system players cannot add deadlocks to the existing deadlocks in the Petri net by forbidding transitions.
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The unfolding unf(G) of a Petri game G is like the unfolding unf(N0) = (N,π) of the underlying Petri

net N0 of G, additionally keeping the distinction between system and environment: a place p in N is a

system place if π(p) ∈ PS
0 and an environment place if π(p) ∈ PE

0 . A winning strategy σG of G can be

seen as a subprocess of unf(G).
Fig. 2 shows a Petri game with 4 players modelling the control of a room with two doors that must

not be opened at the same time so that the two places of the bad marking {O1,O2} are not reached

simultaneously. After receiving a request to open door via transition r1 the first system player on place

S12 can decide to proceed with communicating (transition t) or without communicating (transition n1) to

the second system player, then on place S22. On place S13 the system player chooses between opening

the door (o1) or denying the request (d1) for the environment player waiting on W 1. From place S14

the system player can close the door it has opened before (c1). The second system player has the same

options after receiving a request via r2. After that, if both players open their doors the bad marking

{O1,O2} is reached. At least one system player has to deny the request to win the game.

P1p1C1
r1 S11

S12W 1

n1

S13

d1

o1

O1

c1

S14

t

S21

S22

r2 P2 p2 C2

W 2

n2

S23

d2

o2

O2

c2

S24

G:

Figure 2: A Petri game G: the grey places belong to the system players and the white places to the

environment players. There are two doors and two system players taking requests to open the door. After

a request the system players decide whether to communicate and open their door afterwards. The bad

marking {O1,O2} is reached if the system players decide to open both doors simultaneously.

Fig. 3 shows an initial part of the unfolding of the Petri game in Fig. 2. The parts that are not

greyed out are the initial parts of a winning strategy. Here, the system player agree on communicating

via t1. The first player decides to open its door via transition o1
2 while the other door remains closed

via transition d2
2 . After the transition c1

2 the first door is closed again. The following is not shown in

Fig. 3 anymore: after both players have received another opening request via r1
2 and r2

2, respectively,

the winning strategy could continue opening door 2 and keeping door 1 closed since the different causal

histories allow different decisions.

According to the definition of a winning strategy it is also possible that a winning strategy denies all

requests to open a door. The example is chosen with foresight for the content in Section 3.

3 Decidability Results

In this section, we show that the synthesis problem for Petri games with up to 4 players under a global

safety condition is decidable in non-deterministic exponential time (NEXP), and NP-complete in the 2-

player case. In [11], a related result is shown that the synthesis problem for 4-process control games
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σG = (N,π):

Figure 3: An initial part of the unfolding of the Petri game G in Fig. 2. The nodes that are not greyed out

form an initial part of a winning strategy σG where door 1 gets opened and door 2 remains closed after

the system players have communicated. The homomorphism π is defined analogously to that in Fig. 1.

with a local termination condition is decidable. The translation [1] of this result to Petri games gives

a decidability result for Petri games with 4 players with a local termination condition, without process

generation and deletion. There are no complexity bounds for the 4-player case given in [11], and the

translation to Petri games already generates an exponential blow up in the number of nodes [1].

A Petri game G is called a K-player Petri game, K ∈ N, if and only if for all reachable markings

M ∈ R(G) it holds that |M| ≤ K. Two-player Petri games can be seen as a natural generalisation of

infinite games on graphs with a safety winning condition. NP-hardness is established by a reduction of

the 3-SAT problem to 2-player Petri games.

Lemma 3.1. There exists a polynomial-time reduction of the 3-SAT problem to the synthesis problem of

two-player Petri games.

Proof. Let F = (x1
1 ∨ x1

2 ∨ x1
3)∧ . . .∧ (xn

1 ∨ xn
2 ∨ xn

3) be an instance of the 3-SAT problem in conjunctive

normal form where all clauses consist of exactly three literals and where xi
j, i = 1, . . . ,n and j = 1,2,3,

is a positive or negative (with overline) literal from the set {x1, x̄1, . . .xm, x̄m}. Fig. 4 shows the Petri

game of F . If F is satisfiable, the top system player chooses the transitions according to the boolean

assignment that satisfies F , for example x̄1 if the truth value of x1 is false under the boolean assignment.

The bottom system player chooses the literal that is true under the boolean assignment in each clause,

for example if x1
1 = x̄1, she may choose x1

1 since the top system player chooses it. Both system players

do not know how when the transition of the other player are fired such that it has to be correct for all

possible orders of execution, for example the top player could have chosen the truth value for xn already

before the bottom player chose the literal for the first clause.

Conversely, the top player’s choices yield a boolean assignment that satisfies F if the Petri game

shown has a winning strategy since the bottom player chooses one literal of each clause that must be true
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x1

x̄1
• • •

xn

x̄n

x1
2

x1
1

x1
3

• • •

xn
2

xn
1

xn
3

Figure 4: 3-SAT problem F as a Petri game. The top system player chooses sequentially the truth value

for x1, . . .xn. The bottom system player has to choose a literal for each clause according to the truth

values chosen by the top player. The bad markings are {{xk,x
i
j} | xi

j = x̄k}∪ {{x̄k,x
i
j} | xi

j = xk}. So

every time the bottom player chooses a literal that is not chosen by the top system player a bad marking

is reached, e.g. the top player chooses x1 and the bottom player x1
3 where x1

3 = x̄1.

under the boolean assignment.

Note that the 2-player case is NP-hard even without an environment player. The matching upper

bound is established later, along with the complexity of the 4-player case.

The idea of solving 4-player Petri games is to find game states where a winning strategy can be

repeated and still win. A few definitions are necessary to formalise repeating a part of a winning strategy.

The following definitions about branching processes are equivalent to those in [5].

Cut. The reachable markings in a branching process B are called cuts. A cut is a maximal set of

pairwise concurrent places [7].

Future of a cut. We define the branching process Fut(B,C) of a cut C ⊆ PB as follows: PFut(B,C)∪
TFut(B,C) = {x ∈ PB ∪TB | ∀p ∈C : p ≤ x∨ p||x}, the mappings preset and post are the mappings preB

and postB restricted to TFut(B,C), and InFut(B,C) = C. Generally, the future Fut(B,C) is not a branching

process of the underlying net N0 of B (i.e. πB : TB ∪PB → T0 ∪P0) but it is a branching process of

the net (P0,T0,pre0,post0,πB(C)), i.e. Fut(B,C) is a branching process of N0 if πB(C) = In0. (This

definition is equal to the definition of ⇑Configuration in [5].)

Informally speaking, the definition of the future of a cut coincides with the intuition that it is the

branching process that follows after that cut.

Last known cut and last known marking. The last known cut lkc(t) of a transition t of a branching

process B is defined as lkc(t) = {p ∈ PB | p ≮ t ∧∀t ′ ∈ preB(p) : t ′ ≤ t}. Informally speaking, this cut

is reached by firing all transitions that are causal predecessors of t. The last known marking lkm(t) is

defined as πB(lkc(t)), which is the marking reached in the underlying Petri net. (The lkc is the cut of a

local configuration [5])

A cut and glue operation formalises the process of copying the future of one cut to another cut of

a strategy. Later, the actual requirements for when to copy are defined. In the following, B and B′ are

branching processes of (possibly different) nets.

Cut. B−B′ = (PB \ (PB′ \ InB′),TB \TB′ ,preB ↾TB−B′
,postB ↾TB−B′

, InB)

If B′ is the future of a cut of B, the cut operation removes B′ from B leaving only the initial marking

of B′ in B.
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Glue. B+B′=(PB∪PB′,TB∪TB′,preB+B′,postB+B′, InB), where preB+B′(t)=

{

preB(t) t ∈ TB

preB′(t) t ∈ TB′

,

and analogously postB+B′.

If the initial marking of B′ is a cut in B, B′ gets glued to that cut. Generally, B−B′ and B+B′ are not

branching processes. However, if there are two cuts C1,C2 ⊆ PB with πB(C1) = πB(C2) cutting out the

future of C2 and glueing an isomorphic copy (this is just a necessary renaming) of the future of C1 to C2

yields a branching process.

Cut and glued branching process. Let Fut(B,C1)
′
be an isomorphic copy of Fut(B,C1), Fut(B,C1)

′

∼= Fut(B,C1), such that InFut(B,C1)
′ = C2 and (PB ∪TB)∩ (PFut(B,C1)

′ ∪TFut(B,C1)
′) = C2. The cut and

glued branching process BC1→C2
is the branching process BC1→C2

= B−Fut(B,C2)+Fut(B,C1)
′
. This

definition is unique up to isomorphism.

Definition 3.1 (Imitable cuts). Let σ be a winning strategy of a Petri game G. A cut C2 is imitable by a

cut C1 if σC1→C2
is a winning strategy.

Now we define the actual cuts that are imitable. The first kind of these cuts are cuts where a subset of

players take transitions without communicating to the remaining players until all players of this subset

synchronise at a joint transition for the second time. In the following, we fix σ as a winning strategy of

a Petri game G.

Definition 3.2 (Partial repetition cuts). Let t1, t2 ∈ Tσ . The cuts lkc(t1) and lkc(t2) are partial repetition

cuts, denoted prc(t1, t2), if lkm(t1) = lkm(t2)∧ lkc(t1)\post(t1) = lkc(t2)\post(t2). The partial repetitions

cuts prc(t1, t2) are called a loop, denoted prcloop(t1, t2) if t1 < t2.

Lemma 3.2 (Partial repetition cuts are imitable). For transitions t1, t2 ∈Tσ , prc(t1, t2) implies that lkc(t2)
is imitable by lkc(t1) and vice versa.

Proof by contradiction. We show that σlkc(t1)→lkc(t2) = σ −Fut(σ , lkc(t2))+Fut(B, lkc(t1))
′
is a winning

strategy. Suppose that there exists a cut C ⊆ Pσlkc(t1)→lkc(t2)
such that one of the properties of the winning

strategy is violated.

We distinguish two cases: The first case is that there exists a place p ∈ C such that t2 ≤ p. Then,

C ⊆ PFut(σlkc(t1)→lkc(t2)
,lkc(t2)), holds. Since Fut(σlkc(t1)→lkc(t2), lkc(t2)) = Fut(σ , lkc(t1))

′ ∼= Fut(σ , lkc(t1))
it follows directly that σ is not a winning strategy if σlkc(t1)→lkc(t2) is not winning.

The second case is that there exists no place p ∈C such that t2 ≤ p, i.e. ∀p ∈C : p ≤ t2 ∨ p#t2 ∨ p||t2
holds. Since the last known cuts of t1 and t2 are equal except for post(t1) and post(t2) the branching

processes Fut(σ , lkc(t2)) and Fut(σ , lkc(t1)) are isomorphic up to the nodes that are causal successors

of t1 and t2 respectively. This means that all transitions and places that are not causal successors of t2
are only renamed by constructing σlkc(t1)→lkc(t2). Since there is no place in C that is a causal successor of

t2 there is no transition enabled in C that could have been added or removed. It follows that σ is not a

winning strategy, if σlkc(t1)→lkc(t2) is not a winning strategy.

In Fig. 5 is an example of partial repetition cuts. Note that not all of those partial repetition cuts are

loops as the players can reach the same places in the underlying Petri net by taking different transitions.

Partial repetition cuts are defined regardless of the number of players in a Petri game, i.e, these cuts are

imitable in any Petri game.

Maximally repeated strategy. Since the nodes of a branching process are countable we can con-

struct by induction over the partial repetition cuts of a winning strategy σ a winning strategy σ
pr where

prc(t1, t2) implies that Fut(σ pr, t1)∼= Fut(σ pr, t2). σ
pr denotes a maximally repeated strategy of σ .
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lkc(r2
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Figure 5: Example of partial repetition cuts. Assume that this is a part of a winning strategy where the

second system player denies (d2
1 ) the first request (r2

1) to open the door without communicating with the

other system player via transition t. Here, the last known cuts of r2
1 and r2

2 are lkc(r2
1) = {C1

1 ,S
11
1 ,S22

1 ,W 2
1 }

and lkc(r2
2)= {C1

1 ,S
11
1 ,S22

2 ,W 2
2 }, so lkm(r2

1)= lkm(r2
2). Thus, a partial repetition cut (that is a loop) occurs

prcloop(r
2
1,r

2
2).

The partial repetition cuts have a useful implication for the case with up to 4 players: if two players do

not take any joint transition with one of the two remaining players they will get to a partial repetition cut

eventually. The idea of the following definition of a synchronisation segment is based on this implication.

Informally speaking, a synchronisation segment describes the part starting from the last known cut of a

transition t until all other players are causal successors of this transition or the strategy can be repeated

due to the partial repetition cuts. Here, the idea of when to repeat a strategy is that if all players play

identically starting from the last known cut of transition t until they get to know of transition t the strategy

can be repeated after transition t.

Definition 3.3 (Synchronisation segment). The synchronisation segment Seg(t) of a transition t ∈ TB of

a branching process B is defined as a smallest branching process (with respect to ≤) such that

(1.) Seg(t)≤ Fut(B, lkc(t)) and

(2.) ∀t ′ ∈ TFut(B,lkc(t)) : t ′ /∈ TSeg(t) ⇒ (a) (∀p ∈ preB(t
′) : t ≤ p)∨

(b) (∃t1, t2, t3 ∈ TSeg(t) : prcloop(t1, t2)∧ t3 ≤ t2 ∧prc(t ′, t3))

For a transition t ′ ∈ Fut(B, lkc(t)) that is not in TSeg(t), all places in its preset are causal successors

of t (2.a) or there is a transition t3 with prc(t ′, t3) within a loop (2.b). So, the parts of a winning strategy

that get repeated due to partial repetition cuts are included in the synchronisation segment. An example

of a synchronisation segment is shown in Fig. 6 and Fig. 7. Synchronisation equivalent cuts are those

cuts where the synchronisation segments are isomorphic.

Definition 3.4 (Synchronisation equivalent cuts). Let σ
pr be a maximally repeated winning strategy of a

Petri game G and t1, t2 ∈ Tσ
pr . The cuts lkc(t1) and lkc(t2) are synchronisation equivalent cuts, denoted

sqc(t1, t2), if Seg(t1)∼= Seg(t2). sqc(t1, t2) is called an s-loop, denoted sqcloop, if t1 < t2.

Now, we show that a winning strategy can be repeated after synchronisation equivalent cuts.

Lemma 3.3 (Synchronisation equivalent cuts are imitable). For transitions t1, t2 ∈ Tσ
pr , sqc(t1, t2) im-

plies that lkc(t2) is imitable by lkc(t1) and vice versa.

Proof. We show that σ
pr

lkc(t1)→lkc(t2)
= σ

pr −Fut(σ , lkc(t2))+Fut(σ , lkc(t1))
′
is a winning strategy. Since

Seg(t1) ∼= Seg(t2) the construction is only a renaming for the nodes in the synchronisation segment and

for those that get repeated due to the partial repetition cuts. Thus, only nodes that are causal successors

of t2 may be removed or added. Now, the proof works in the same way as the proof of Lemma 3.2, that

partial repetition cuts are imitable.
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Figure 6: A subprocess of σG of Fig. 3 is shown. The nodes inside the dashed, blue box are the nodes of

the synchronisation segment Seg(t1). The initial marking is InSeg(t1) = {W 1
1 ,S

13
2 ,S23

2 ,W 2
1 }. This segment

ends after the transitions o1
2 and d2

2 since t1 < O1
2,S

14
2 ,S21

4 ,C2
4 . So, if σG repeats to open the first door and

keeping the second door closed after taking the transition t the winning strategy could repeat itself due

to synchronisation equivalent cuts.
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Figure 7: A branching process of the Petri game G of Fig. 2 is shown. The nodes inside the dashed,

blue box are the nodes of the synchronisation segment Seg(r1
1).

We show that 4-player Petri games can be solved in NEXP with the help of Lemma 3.2 and Lemma

3.3. A winning prefix of sufficient size is guessed from which a winning strategy can be constructed. A

branching process B is a winning prefix if there exists a winning strategy σ with B ≤ σ .

Theorem 3.4. The synthesis problem of 2-player Petri games is NP-complete and in NEXP for 3- and

4-player Petri games.

Proof. Structure of this proof: from the 2-player case over the 3-player case to the 4-player case the size

of a winning prefix is determined to guarantee that a winning strategy can be constructed by repeating

the futures of imitable cuts. A prefix of appropriate size is guessed and it is checked if it is winning. The

prefix does not contain any causal successors of transitions t2 if ∃t1 : prcloop(t1, t2)∨ sqcloop(t1, t2). Also,

it does not contain causal successors of transitions t4, if ∃t1, t2, t3 : t3 ≤ t2 ∧ ((prc(t3, t4)∧prcloop(t1, t2))∨
(sqc(t2, t3)∧ sqcloop(t1, t2))). Let T be the number of transitions of the Petri game.

If a player does not take any joint transition she eventually repeats a place she lays on, i.e. she reaches

a partial repetition cut. This occurs after at most T transitions. Otherwise, the two players take a joint

transition after at most T transitions. Since there are at most T different joint transitions, a winning prefix

from which a winning strategy can be constructed is at most of size O(T 2). To check if the guessed prefix
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is winning, we have to check all reachable markings for the winning properties. In a safe Petri net with

T 2 transitions and at most two tokens there are at most T 4 reachable markings. Thus, guessing a winning

prefix and checking if it is winning takes time in O(|T |4), which shows together with Lemma 3.1 that

the synthesis problem for two-player Petri games is NP-complete.

In the 3-player case, it holds for the same reasons as in the 2-player case that each pair of two

players reaches partial repetition cuts after at most T 2 transitions without taking a joint transition with the

remaining third player. The remaining third player can take up to T transitions herself before reaching

a partial repetition cut or taking a joint transition. Therefore, a synchronisation segment has at most

T 2 +T transitions resulting in at most 2(T
2+T )2

non-isomorphic synchronisation segments. Therefore, a

synchronisation equivalent cut is always reached after at most 2(T
2+T)2

transitions such that the winning

prefix can be extended step by step by reaching synchronisation equivalent cuts again and again. Thus,

the size of a winning prefix is in O(2T 4

). To check if the prefix is winning takes polynomial time in its

size and it follows that the 3-player case is decidable in NEXP.

In a 4-player Petri game, it also holds that each pair of two players reaches partial repetition cuts

after at most T 2 transitions without taking a joint transition with one of the two remaining players. So,

there are two pairs of players that can take T 2 transitions until they reach partial repetition cuts or one

player of each pair communicate with each other. This leaves the other two players until they reach

partial repetition cuts or take a joint transition again after T 2 transitions. Thus, there are at most 23T 2

non-isomorphic synchronisation segments. Therefore, the size of a winning prefix of a 4-player Petri

game that needs to be checked if it is winning is in O(26T 2

). So the bound is in NEXP. Note that if more

than 2 players take a joint transition the size of the synchronisation segments decreases.

This construction does not work for the 5-player case. The problem that occurs is tricky to see.

Assume there is a group of 3 players and a group of 2 players that take joint transitions repeatedly within

their group, only two players participating at a time. The group of 2 players get to partial repetition

cuts or one of them takes a joint transition with one player of the other group, while the group of 3

players might not get to partial repetition cuts. After two players, one from each group, have taken a

joint transition the problem occurs: the remaining 3 players that did not participate in that joint transition

might form a new group of 3 players that do not reach partial repetition cuts. This cannot occur in the

4-player case since there is only a pair of players left.

4 Undecidability Result

In this section, a tiling problem is reduced to the synthesis problem of a 6-player Petri game with a global

safety condition. The tiling problem used here is the ω bipartite colouring problem (ω-BCP). The un-

decidable ω Post correspondence problem (ω-PCP) is reducible to the ω-BCP. Later, the undecidability

result can be simplified to local safety as a winning condition. The reduction is similar to the work in

[12], where the (normal) Post correspondence problem is reduced to a colouring problem followed by

a reduction to the synthesis problem of 6-process control games with local termination as a winning

condition.

Employing the translation of control games into Petri games in [1], the 6-process control games

yield 6-player Petri games (with exponentially many additional nodes) for local termination as a winning

condition. In the obtained Petri game, all players alternate in their roles as environment and system

players. Instead, we present a direct construction of 6-player Petri games with at most 3 simultaneous

system players. Later, we show that the number of system players can be even further reduced to 2.
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Definition 4.1 (ω bipartite colourings). Let C be a finite set of colours. An ω bipartite colouring is a

mapping f : N2 7→ C. The initial colour is f (1,1). We define three subsets of C2 called the patterns

induced by f :

• the diagonal patterns of f are all pairs {( f (x,y), f (x+1,y+1)) | (x,y) ∈ N2)}

• the horizontal patterns of f are all pairs {( f (x,y), f (x+1,y)) | (x,y) ∈ N2)}

• the vertical patterns of f are all pairs {( f (x,y), f (x,y+1)) | (x,y) ∈ N2)}

We define a colouring constraint as a 4-tuple (Ci,DP,HP,VP), where Ci is the set of initial colours, DP

a set of diagonal patterns, VP a set of vertical patterns and HP a set of horizontal patterns. DP, VP and

HP are called forbidden patterns. A colouring f satisfies a colouring constraint if its initial colour is in

Ci and no diagonal pattern of f is in DP, no vertical pattern of f is in VP and no horizontal pattern of f

is in HP.

ω-BCP. Given a finite set of colours C and colouring constraints (Ci,DP, VP,HP), decide whether

there exists an ω bipartite colouring that satisfies the colouring constraints. This problem is a variation

of the standard tiling problem and it is also undecidable. In the following we define a Petri game for

which a winning strategy exists if and only if a given ω-BCP has a solution. In this Petri game shown

in Fig. 8, there are two identical parts, a top part and a bottom part, each consisting of 3 players. The

idea is that the number of rounds played in the lower and upper parts refer to the x and y coordinates of

a tile, respectively, so that the system players choose a colour for each tile. Each colour choice requires

one player from each part of the Petri game, so there can be a maximum of 3 colour choices in one run

of the Petri game. If the colours chosen refer to a forbidden pattern a bad marking is reached. As the

bad markings have to be defined on the Petri net and not on the unfolding, we define when two system

players are in the same round or when a player is one round ahead or one round behind to be able to

check for forbidden patterns.

Compared rounds of two players. In the Petri net NCP of Fig. 8, we compare the rounds of two

players a and b, both from the same part. We say a,b ∈ {0,1,2} are in the same round if and only if for

their places eX
a j and eX

bk, X ∈ {T,B}, j,k ∈ {0,1,2} or j,k ∈ {3,4} or j,k ∈ {5,2} holds. We say that a is

one round ahead of b (or b is one round behind of a) if and only if ( j ∈ {3} and k ∈ {2}) or ( j ∈ {5} and

k ∈ {4}) . Other combinations of indices are not possible.

Definition 4.2 (Petri game of an ω Bipartite colouring Problem). Let CP be an ω-BCP with colours

C and constraints Ci, DP, VP and HP. The components of the Petri net of the Petri game GCP are the

components of NCP from Fig. 8. The bad markings of the Petri game GCP are defined as follows:

B = BSame ∪BDP∪BHP∪BVP∪Binit, where

BSame = {{eaT j−aB j′ ,ebT k−bBk′ ,(cu,a),(cv,b)} |
aT and bT are in the same round and aB and bB are in same the round ,cu 6= cv},

BDP = {{eaT j−aB j′ ,ebT k−bBk′ ,(cu,a),(cv,b) |
aT and aB are one round ahead of bT and bB respectively ,(cv,cu) ∈ DP},

BVP = {{{eaT j−aB j′ ,ebT k−bBk′ ,(cu,a),(cv,b)} |
aT is a round ahead of bT and aB and bB are in the same round ,(cv,cu) ∈ VP}},

BHP = {{{eaT j−aB j′ ,ebT k−bBk′ ,(cu,a),(cv,b)} |
aB is a round ahead of bB and aT and bB are in the same round ,(cv,cu) ∈ HP}},

Binit = {{eaT j−aB j′ ,(cu,a)} | j, j′ ∈ {0,1},cu /∈ Ci}.

In addition to the colouring constraints, the bad markings contain the set BSame to ensure that system

players must choose the same colour for two checks whenever the checks occur in the same round for
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Figure 8: Petri net NCP of the Petri game GCP of an ω-BCP. We have two structurally identical parts

consisting of 3 environment players, a top part and a bottom part. Two of the players synchronise at each

transition in these parts. After firing 3 such transitions, each player has synchronised with the other two

players in its part. We define such a block of 3 transitions as a round. Each part has 3 rounds. After the

third round the players return to the places they were in before the second round. This means that we

have an initial round and then the players alternate between the second and third rounds. As the game

progresses, the nodes have exact information in the unfolding about how many rounds they have played.

In the middle part, the environment players can take a check transition ta j−ak, where a ∈ {0,1,2} and

j,k ∈ {0, . . . ,5} and pre(ta j−ak) = {eT
a j,e

B
ak}. After that, the system player on place sa has to choose a

colour. Based on the number of rounds x and y played in the lower part and upper part, respectively, the

system player has to determine the colour f (x,y) of the given ω-BCP.
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both players. To define a colouring from a strategy of the Petri game, we define the number of rounds

played in the unfolding.

Number of rounds. Let unf(GCP) be the unfolding of GCP of Fig. 8. The number of rounds

played in part X , X ∈ {T,B} in a place p ∈ Punf(GCP) is defined as rX(p) = max(⌈|{t ∈ TunfCP
| t ≤

p and t is a transition in part X}|/3⌉,1)

This means that the number of rounds is incremented after a player has taken two transitions, starting

from round 1. The divisor is 3 because the players also get the knowledge of the synchronisation of the

other two players in their part. The number of rounds is not increased after a check transition.

Theorem 4.1 (Characterization of ω-BCP as a Petri game). The ω-BCP is reducible to the synthesis

Problem of 6-player Petri games.

Proof. Let CP be a colouring problem and GCP be the Petri game from Def. 4.2. We show that there

exists a solution for CP if and only if there exists a winning strategy for GCP.

We start by assuming that there is a solution f : N×N 7→ C for the colouring problem CP. After

the environment player has chosen a check transition the system player must choose a colour in place sa,

a ∈ {0,1,2}. Since the system player knows the entire causal history, she knows the number of rounds

played in the top and the bottom part of the Petri game. Let rT (sa) = y denote the number of rounds in

the top part and rB(sa) = x the number of rounds in the bottom part. Then, the winning strategy for the

system players is to choose the colour f (x,y). This way no bad marking is reachable. The bad markings

in BSame are avoided because f (x,y) is unique. The bad markings in BDP,BVP and BHP are avoided

because f avoids all forbidden patterns. Finally, the bad markings Binit are avoided because f (1,1) is an

initial colour.

Now, we assume that there is a winning strategy for the Petri game GCP. We define the colouring

f : N×N 7→ C derived from the winning strategy as follows: f (x,y) = c if there exists a system place

sa ∈ Punf(NCP) with rB(sa) = x and rT (sa) = y and tac ∈ post(sa).

We show that for every colour that a system player has to choose, there are sequences of checks

such that all colouring constraints are met. In these sequences of checks, any two consecutive checks

can be carried out concurrently while the system players do not know whether the other check is the

previous check or the next check, so the winning strategy must play correctly for both checks. Informally

speaking, this leads to infinite sequences of dependencies as a check depends on the choice of the colour

of the previous check and again that check depends on its previous check and so on.

In Fig. 9, it is crucial to see that there are concurrent places between different rounds such that we

can always find at least one suitable check for all diagonal, vertical and horizontal patterns. To check the

horizontal pattern of ( f (1,1), f (2,1)) for example, the checks t00−03 and t20−22 are fired. The places in

the upper part are eT
00 and eT

20 respectively, which are both in the first round. The places in the lower part

are eB
03 and eB

22 respectively, where eB
03 is in the second round and eB

22 in the first round. These two checks

can be performed concurrently since eT
00 and eT

20 are concurrent, as are eB
22 and eB

03. For the initial colour

we have the extra initial round which does not get repeated.

The colouring f is well-defined as the set of bad markings BSame ensures that every two colours

chosen when both top rounds and both bottom rounds are the same the colours chosen also must be the

same in a winning strategy. This can be seen with the help of Fig. 9, too. There, we can find a sequence

of checks throughout one round such that the colour chosen at the beginning of that round (e.g. eB
03) is

still the same colour as chosen at the end of that round (e.g eB
04) (assuming that the top round does not

change too).

It is easy to see that the Petri game presented here performs at most 3 checks in every possible
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Figure 9: Table of concurrent places of the first two rounds in the unfolding of the Petri game GCP.

Empty cells denote that the places are causally related. Filled cells denote that the places are concurrent.

The pattern continues identically. With the help of this table we can see the sequences of checks to

ensure that no bad markings are reached in the Petri game. For example, to check that the initial colour

chosen after the transition t00−00 and after t22−00 is the same, we can perform the following sequence of

checks of the indices of the places in the upper part: 00− 20− 01− 12− 22. The indices of the place

in the lower part remain 00 here. To carry out two consecutive checks in the same play they need to be

concurrent. We can check this in the table by going in a row from 00 to 20, then in the column from 20

to 01, then again checking in the row and so on. Note that the place of the bottom player can also change

in these sequences.

sequence of transitions. Therefore this Petri game has at most 3 system players. For the undecidability

result it is sufficient to have 2 concurrent checks. Therefore, the number of system players can be further

reduced to 2 by adapting the Petri game. This could be done by adding two environment players that are

consumed performing a check. Furthermore, by adding a transition for each bad marking to a bad place,

the set of bad markings can be simplified to a set of bad places, the local safety condition.

5 Conclusions

Our contribution to the synthesis problem of distributed systems is that this problem is undecidable for

6-player Petri games under a local safety condition and that two system processes are sufficient to obtain

undecidability. This adds neatly to the result in [7], where Petri games with one system player are solved

in exponential time. Furthermore, the synthesis problem for 2-player Petri games belongs to the class of

NP-complete problems, and we provide a non-deterministic exponential upper bound for this problem

for Petri games with a variable number of players up to 4 under a global safety condition. This is a new

class of Petri games for which the synthesis problem is decidable. The case of 5 players remains open.
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